1 /* $NetBSD: agp.c,v 1.66 2010/01/08 19:56:51 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.66 2010/01/08 19:56:51 dyoung Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 #include <sys/mutex.h> 81 82 #include <uvm/uvm_extern.h> 83 84 #include <dev/pci/pcireg.h> 85 #include <dev/pci/pcivar.h> 86 #include <dev/pci/agpvar.h> 87 #include <dev/pci/agpreg.h> 88 #include <dev/pci/pcidevs.h> 89 90 #include <sys/bus.h> 91 92 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 93 94 /* Helper functions for implementing chipset mini drivers. */ 95 /* XXXfvdl get rid of this one. */ 96 97 extern struct cfdriver agp_cd; 98 99 static int agp_info_user(struct agp_softc *, agp_info *); 100 static int agp_setup_user(struct agp_softc *, agp_setup *); 101 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 102 static int agp_deallocate_user(struct agp_softc *, int); 103 static int agp_bind_user(struct agp_softc *, agp_bind *); 104 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 105 static int agpdev_match(struct pci_attach_args *); 106 static bool agp_resume(device_t, pmf_qual_t); 107 108 #include "agp_ali.h" 109 #include "agp_amd.h" 110 #include "agp_i810.h" 111 #include "agp_intel.h" 112 #include "agp_sis.h" 113 #include "agp_via.h" 114 #include "agp_amd64.h" 115 116 const struct agp_product { 117 uint32_t ap_vendor; 118 uint32_t ap_product; 119 int (*ap_match)(const struct pci_attach_args *); 120 int (*ap_attach)(device_t, device_t, void *); 121 } agp_products[] = { 122 #if NAGP_AMD64 > 0 123 { PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689, 124 agp_amd64_match, agp_amd64_attach }, 125 #endif 126 127 #if NAGP_ALI > 0 128 { PCI_VENDOR_ALI, -1, 129 NULL, agp_ali_attach }, 130 #endif 131 132 #if NAGP_AMD64 > 0 133 { PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV, 134 agp_amd64_match, agp_amd64_attach }, 135 #endif 136 137 #if NAGP_AMD > 0 138 { PCI_VENDOR_AMD, -1, 139 agp_amd_match, agp_amd_attach }, 140 #endif 141 142 #if NAGP_I810 > 0 143 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 144 NULL, agp_i810_attach }, 145 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 146 NULL, agp_i810_attach }, 147 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 148 NULL, agp_i810_attach }, 149 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 150 NULL, agp_i810_attach }, 151 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 152 NULL, agp_i810_attach }, 153 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 154 NULL, agp_i810_attach }, 155 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 156 NULL, agp_i810_attach }, 157 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH, 158 NULL, agp_i810_attach }, 159 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB, 160 NULL, agp_i810_attach }, 161 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB, 162 NULL, agp_i810_attach }, 163 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB, 164 NULL, agp_i810_attach }, 165 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH, 166 NULL, agp_i810_attach }, 167 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB, 168 NULL, agp_i810_attach }, 169 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB, 170 NULL, agp_i810_attach }, 171 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB, 172 NULL, agp_i810_attach }, 173 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB, 174 NULL, agp_i810_attach }, 175 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB, 176 NULL, agp_i810_attach }, 177 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB, 178 NULL, agp_i810_attach }, 179 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB, 180 NULL, agp_i810_attach }, 181 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB, 182 NULL, agp_i810_attach }, 183 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB, 184 NULL, agp_i810_attach }, 185 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB, 186 NULL, agp_i810_attach }, 187 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB, 188 NULL, agp_i810_attach }, 189 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB, 190 NULL, agp_i810_attach }, 191 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB, 192 NULL, agp_i810_attach }, 193 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB, 194 NULL, agp_i810_attach }, 195 #endif 196 197 #if NAGP_INTEL > 0 198 { PCI_VENDOR_INTEL, -1, 199 NULL, agp_intel_attach }, 200 #endif 201 202 #if NAGP_AMD64 > 0 203 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB, 204 agp_amd64_match, agp_amd64_attach }, 205 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB, 206 agp_amd64_match, agp_amd64_attach }, 207 #endif 208 209 #if NAGP_AMD64 > 0 210 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755, 211 agp_amd64_match, agp_amd64_attach }, 212 { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760, 213 agp_amd64_match, agp_amd64_attach }, 214 #endif 215 216 #if NAGP_SIS > 0 217 { PCI_VENDOR_SIS, -1, 218 NULL, agp_sis_attach }, 219 #endif 220 221 #if NAGP_AMD64 > 0 222 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0, 223 agp_amd64_match, agp_amd64_attach }, 224 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0, 225 agp_amd64_match, agp_amd64_attach }, 226 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0, 227 agp_amd64_match, agp_amd64_attach }, 228 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB, 229 agp_amd64_match, agp_amd64_attach }, 230 #endif 231 232 #if NAGP_VIA > 0 233 { PCI_VENDOR_VIATECH, -1, 234 NULL, agp_via_attach }, 235 #endif 236 237 { 0, 0, 238 NULL, NULL }, 239 }; 240 241 static const struct agp_product * 242 agp_lookup(const struct pci_attach_args *pa) 243 { 244 const struct agp_product *ap; 245 246 /* First find the vendor. */ 247 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 248 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 249 break; 250 } 251 252 if (ap->ap_attach == NULL) 253 return (NULL); 254 255 /* Now find the product within the vendor's domain. */ 256 for (; ap->ap_attach != NULL; ap++) { 257 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 258 /* Ran out of this vendor's section of the table. */ 259 return (NULL); 260 } 261 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 262 /* Exact match. */ 263 break; 264 } 265 if (ap->ap_product == (uint32_t) -1) { 266 /* Wildcard match. */ 267 break; 268 } 269 } 270 271 if (ap->ap_attach == NULL) 272 return (NULL); 273 274 /* Now let the product-specific driver filter the match. */ 275 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 276 return (NULL); 277 278 return (ap); 279 } 280 281 static int 282 agpmatch(device_t parent, cfdata_t match, void *aux) 283 { 284 struct agpbus_attach_args *apa = aux; 285 struct pci_attach_args *pa = &apa->apa_pci_args; 286 287 if (agp_lookup(pa) == NULL) 288 return (0); 289 290 return (1); 291 } 292 293 static const int agp_max[][2] = { 294 {0, 0}, 295 {32, 4}, 296 {64, 28}, 297 {128, 96}, 298 {256, 204}, 299 {512, 440}, 300 {1024, 942}, 301 {2048, 1920}, 302 {4096, 3932} 303 }; 304 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 305 306 static void 307 agpattach(device_t parent, device_t self, void *aux) 308 { 309 struct agpbus_attach_args *apa = aux; 310 struct pci_attach_args *pa = &apa->apa_pci_args; 311 struct agp_softc *sc = device_private(self); 312 const struct agp_product *ap; 313 int memsize, i, ret; 314 315 ap = agp_lookup(pa); 316 KASSERT(ap != NULL); 317 318 aprint_naive(": AGP controller\n"); 319 320 sc->as_dev = self; 321 sc->as_dmat = pa->pa_dmat; 322 sc->as_pc = pa->pa_pc; 323 sc->as_tag = pa->pa_tag; 324 sc->as_id = pa->pa_id; 325 326 /* 327 * Work out an upper bound for agp memory allocation. This 328 * uses a heuristic table from the Linux driver. 329 */ 330 memsize = ptoa(physmem) >> 20; 331 for (i = 0; i < agp_max_size; i++) { 332 if (memsize <= agp_max[i][0]) 333 break; 334 } 335 if (i == agp_max_size) 336 i = agp_max_size - 1; 337 sc->as_maxmem = agp_max[i][1] << 20U; 338 339 /* 340 * The mutex is used to prevent re-entry to 341 * agp_generic_bind_memory() since that function can sleep. 342 */ 343 mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE); 344 345 TAILQ_INIT(&sc->as_memory); 346 347 ret = (*ap->ap_attach)(parent, self, pa); 348 if (ret == 0) 349 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 350 (unsigned long)sc->as_apaddr, 351 (unsigned long)AGP_GET_APERTURE(sc)); 352 else 353 sc->as_chipc = NULL; 354 355 if (!device_pmf_is_registered(self)) { 356 if (!pmf_device_register(self, NULL, agp_resume)) 357 aprint_error_dev(self, "couldn't establish power " 358 "handler\n"); 359 } 360 } 361 362 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc), 363 agpmatch, agpattach, NULL, NULL); 364 365 int 366 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg) 367 { 368 /* 369 * Find the aperture. Don't map it (yet), this would 370 * eat KVA. 371 */ 372 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg, 373 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 374 &sc->as_apflags) != 0) 375 return ENXIO; 376 377 sc->as_apt = pa->pa_memt; 378 379 return 0; 380 } 381 382 struct agp_gatt * 383 agp_alloc_gatt(struct agp_softc *sc) 384 { 385 u_int32_t apsize = AGP_GET_APERTURE(sc); 386 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 387 struct agp_gatt *gatt; 388 void *virtual; 389 int dummyseg; 390 391 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 392 if (!gatt) 393 return NULL; 394 gatt->ag_entries = entries; 395 396 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 397 0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical, 398 &gatt->ag_dmaseg, 1, &dummyseg) != 0) { 399 free(gatt, M_AGP); 400 return NULL; 401 } 402 gatt->ag_virtual = (uint32_t *)virtual; 403 404 gatt->ag_size = entries * sizeof(u_int32_t); 405 memset(gatt->ag_virtual, 0, gatt->ag_size); 406 agp_flush_cache(); 407 408 return gatt; 409 } 410 411 void 412 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 413 { 414 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 415 (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 416 free(gatt, M_AGP); 417 } 418 419 420 int 421 agp_generic_detach(struct agp_softc *sc) 422 { 423 mutex_destroy(&sc->as_mtx); 424 agp_flush_cache(); 425 return 0; 426 } 427 428 static int 429 agpdev_match(struct pci_attach_args *pa) 430 { 431 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 432 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 433 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 434 NULL, NULL)) 435 return 1; 436 437 return 0; 438 } 439 440 int 441 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 442 { 443 struct pci_attach_args pa; 444 pcireg_t tstatus, mstatus; 445 pcireg_t command; 446 int rq, sba, fw, rate, capoff; 447 448 if (pci_find_device(&pa, agpdev_match) == 0 || 449 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 450 &capoff, NULL) == 0) { 451 aprint_error_dev(sc->as_dev, "can't find display\n"); 452 return ENXIO; 453 } 454 455 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 456 sc->as_capoff + AGP_STATUS); 457 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 458 capoff + AGP_STATUS); 459 460 /* Set RQ to the min of mode, tstatus and mstatus */ 461 rq = AGP_MODE_GET_RQ(mode); 462 if (AGP_MODE_GET_RQ(tstatus) < rq) 463 rq = AGP_MODE_GET_RQ(tstatus); 464 if (AGP_MODE_GET_RQ(mstatus) < rq) 465 rq = AGP_MODE_GET_RQ(mstatus); 466 467 /* Set SBA if all three can deal with SBA */ 468 sba = (AGP_MODE_GET_SBA(tstatus) 469 & AGP_MODE_GET_SBA(mstatus) 470 & AGP_MODE_GET_SBA(mode)); 471 472 /* Similar for FW */ 473 fw = (AGP_MODE_GET_FW(tstatus) 474 & AGP_MODE_GET_FW(mstatus) 475 & AGP_MODE_GET_FW(mode)); 476 477 /* Figure out the max rate */ 478 rate = (AGP_MODE_GET_RATE(tstatus) 479 & AGP_MODE_GET_RATE(mstatus) 480 & AGP_MODE_GET_RATE(mode)); 481 if (rate & AGP_MODE_RATE_4x) 482 rate = AGP_MODE_RATE_4x; 483 else if (rate & AGP_MODE_RATE_2x) 484 rate = AGP_MODE_RATE_2x; 485 else 486 rate = AGP_MODE_RATE_1x; 487 488 /* Construct the new mode word and tell the hardware */ 489 command = AGP_MODE_SET_RQ(0, rq); 490 command = AGP_MODE_SET_SBA(command, sba); 491 command = AGP_MODE_SET_FW(command, fw); 492 command = AGP_MODE_SET_RATE(command, rate); 493 command = AGP_MODE_SET_AGP(command, 1); 494 pci_conf_write(sc->as_pc, sc->as_tag, 495 sc->as_capoff + AGP_COMMAND, command); 496 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); 497 498 return 0; 499 } 500 501 struct agp_memory * 502 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 503 { 504 struct agp_memory *mem; 505 506 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 507 return 0; 508 509 if (sc->as_allocated + size > sc->as_maxmem) 510 return 0; 511 512 if (type != 0) { 513 printf("agp_generic_alloc_memory: unsupported type %d\n", 514 type); 515 return 0; 516 } 517 518 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 519 if (mem == NULL) 520 return NULL; 521 522 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 523 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 524 free(mem, M_AGP); 525 return NULL; 526 } 527 528 mem->am_id = sc->as_nextid++; 529 mem->am_size = size; 530 mem->am_type = 0; 531 mem->am_physical = 0; 532 mem->am_offset = 0; 533 mem->am_is_bound = 0; 534 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 535 sc->as_allocated += size; 536 537 return mem; 538 } 539 540 int 541 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 542 { 543 if (mem->am_is_bound) 544 return EBUSY; 545 546 sc->as_allocated -= mem->am_size; 547 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 548 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 549 free(mem, M_AGP); 550 return 0; 551 } 552 553 int 554 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 555 off_t offset) 556 { 557 off_t i, k; 558 bus_size_t done, j; 559 int error; 560 bus_dma_segment_t *segs, *seg; 561 bus_addr_t pa; 562 int contigpages, nseg; 563 564 mutex_enter(&sc->as_mtx); 565 566 if (mem->am_is_bound) { 567 aprint_error_dev(sc->as_dev, "memory already bound\n"); 568 mutex_exit(&sc->as_mtx); 569 return EINVAL; 570 } 571 572 if (offset < 0 573 || (offset & (AGP_PAGE_SIZE - 1)) != 0 574 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { 575 aprint_error_dev(sc->as_dev, 576 "binding memory at bad offset %#lx\n", 577 (unsigned long) offset); 578 mutex_exit(&sc->as_mtx); 579 return EINVAL; 580 } 581 582 /* 583 * XXXfvdl 584 * The memory here needs to be directly accessable from the 585 * AGP video card, so it should be allocated using bus_dma. 586 * However, it need not be contiguous, since individual pages 587 * are translated using the GATT. 588 * 589 * Using a large chunk of contiguous memory may get in the way 590 * of other subsystems that may need one, so we try to be friendly 591 * and ask for allocation in chunks of a minimum of 8 pages 592 * of contiguous memory on average, falling back to 4, 2 and 1 593 * if really needed. Larger chunks are preferred, since allocating 594 * a bus_dma_segment per page would be overkill. 595 */ 596 597 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 598 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 599 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 600 if (segs == NULL) { 601 mutex_exit(&sc->as_mtx); 602 return ENOMEM; 603 } 604 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 605 segs, nseg, &mem->am_nseg, 606 contigpages > 1 ? 607 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 608 free(segs, M_AGP); 609 continue; 610 } 611 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 612 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 613 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 614 free(segs, M_AGP); 615 continue; 616 } 617 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 618 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 619 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 620 mem->am_size); 621 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 622 free(segs, M_AGP); 623 continue; 624 } 625 mem->am_dmaseg = segs; 626 break; 627 } 628 629 if (contigpages == 0) { 630 mutex_exit(&sc->as_mtx); 631 return ENOMEM; 632 } 633 634 635 /* 636 * Bind the individual pages and flush the chipset's 637 * TLB. 638 */ 639 done = 0; 640 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 641 seg = &mem->am_dmamap->dm_segs[i]; 642 /* 643 * Install entries in the GATT, making sure that if 644 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 645 * aligned to PAGE_SIZE, we don't modify too many GATT 646 * entries. 647 */ 648 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 649 j += AGP_PAGE_SIZE) { 650 pa = seg->ds_addr + j; 651 AGP_DPF(("binding offset %#lx to pa %#lx\n", 652 (unsigned long)(offset + done + j), 653 (unsigned long)pa)); 654 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 655 if (error) { 656 /* 657 * Bail out. Reverse all the mappings 658 * and unwire the pages. 659 */ 660 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 661 AGP_UNBIND_PAGE(sc, offset + k); 662 663 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 664 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 665 mem->am_size); 666 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 667 mem->am_nseg); 668 free(mem->am_dmaseg, M_AGP); 669 mutex_exit(&sc->as_mtx); 670 return error; 671 } 672 } 673 done += seg->ds_len; 674 } 675 676 /* 677 * Flush the CPU cache since we are providing a new mapping 678 * for these pages. 679 */ 680 agp_flush_cache(); 681 682 /* 683 * Make sure the chipset gets the new mappings. 684 */ 685 AGP_FLUSH_TLB(sc); 686 687 mem->am_offset = offset; 688 mem->am_is_bound = 1; 689 690 mutex_exit(&sc->as_mtx); 691 692 return 0; 693 } 694 695 int 696 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 697 { 698 int i; 699 700 mutex_enter(&sc->as_mtx); 701 702 if (!mem->am_is_bound) { 703 aprint_error_dev(sc->as_dev, "memory is not bound\n"); 704 mutex_exit(&sc->as_mtx); 705 return EINVAL; 706 } 707 708 709 /* 710 * Unbind the individual pages and flush the chipset's 711 * TLB. Unwire the pages so they can be swapped. 712 */ 713 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 714 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 715 716 agp_flush_cache(); 717 AGP_FLUSH_TLB(sc); 718 719 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 720 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 721 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 722 723 free(mem->am_dmaseg, M_AGP); 724 725 mem->am_offset = 0; 726 mem->am_is_bound = 0; 727 728 mutex_exit(&sc->as_mtx); 729 730 return 0; 731 } 732 733 /* Helper functions for implementing user/kernel api */ 734 735 static int 736 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 737 { 738 if (sc->as_state != AGP_ACQUIRE_FREE) 739 return EBUSY; 740 sc->as_state = state; 741 742 return 0; 743 } 744 745 static int 746 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 747 { 748 749 if (sc->as_state == AGP_ACQUIRE_FREE) 750 return 0; 751 752 if (sc->as_state != state) 753 return EBUSY; 754 755 sc->as_state = AGP_ACQUIRE_FREE; 756 return 0; 757 } 758 759 static struct agp_memory * 760 agp_find_memory(struct agp_softc *sc, int id) 761 { 762 struct agp_memory *mem; 763 764 AGP_DPF(("searching for memory block %d\n", id)); 765 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 766 AGP_DPF(("considering memory block %d\n", mem->am_id)); 767 if (mem->am_id == id) 768 return mem; 769 } 770 return 0; 771 } 772 773 /* Implementation of the userland ioctl api */ 774 775 static int 776 agp_info_user(struct agp_softc *sc, agp_info *info) 777 { 778 memset(info, 0, sizeof *info); 779 info->bridge_id = sc->as_id; 780 if (sc->as_capoff != 0) 781 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 782 sc->as_capoff + AGP_STATUS); 783 else 784 info->agp_mode = 0; /* i810 doesn't have real AGP */ 785 info->aper_base = sc->as_apaddr; 786 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 787 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 788 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 789 790 return 0; 791 } 792 793 static int 794 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 795 { 796 return AGP_ENABLE(sc, setup->agp_mode); 797 } 798 799 static int 800 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 801 { 802 struct agp_memory *mem; 803 804 mem = AGP_ALLOC_MEMORY(sc, 805 alloc->type, 806 alloc->pg_count << AGP_PAGE_SHIFT); 807 if (mem) { 808 alloc->key = mem->am_id; 809 alloc->physical = mem->am_physical; 810 return 0; 811 } else { 812 return ENOMEM; 813 } 814 } 815 816 static int 817 agp_deallocate_user(struct agp_softc *sc, int id) 818 { 819 struct agp_memory *mem = agp_find_memory(sc, id); 820 821 if (mem) { 822 AGP_FREE_MEMORY(sc, mem); 823 return 0; 824 } else { 825 return ENOENT; 826 } 827 } 828 829 static int 830 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 831 { 832 struct agp_memory *mem = agp_find_memory(sc, bind->key); 833 834 if (!mem) 835 return ENOENT; 836 837 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 838 } 839 840 static int 841 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 842 { 843 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 844 845 if (!mem) 846 return ENOENT; 847 848 return AGP_UNBIND_MEMORY(sc, mem); 849 } 850 851 static int 852 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l) 853 { 854 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 855 856 if (sc == NULL) 857 return ENXIO; 858 859 if (sc->as_chipc == NULL) 860 return ENXIO; 861 862 if (!sc->as_isopen) 863 sc->as_isopen = 1; 864 else 865 return EBUSY; 866 867 return 0; 868 } 869 870 static int 871 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l) 872 { 873 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 874 struct agp_memory *mem; 875 876 if (sc == NULL) 877 return ENODEV; 878 879 /* 880 * Clear the GATT and force release on last close 881 */ 882 if (sc->as_state == AGP_ACQUIRE_USER) { 883 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 884 if (mem->am_is_bound) { 885 printf("agpclose: mem %d is bound\n", 886 mem->am_id); 887 AGP_UNBIND_MEMORY(sc, mem); 888 } 889 /* 890 * XXX it is not documented, but if the protocol allows 891 * allocate->acquire->bind, it would be possible that 892 * memory ranges are allocated by the kernel here, 893 * which we shouldn't free. We'd have to keep track of 894 * the memory range's owner. 895 * The kernel API is unsed yet, so we get away with 896 * freeing all. 897 */ 898 AGP_FREE_MEMORY(sc, mem); 899 } 900 agp_release_helper(sc, AGP_ACQUIRE_USER); 901 } 902 sc->as_isopen = 0; 903 904 return 0; 905 } 906 907 static int 908 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l) 909 { 910 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 911 912 if (sc == NULL) 913 return ENODEV; 914 915 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 916 return EPERM; 917 918 switch (cmd) { 919 case AGPIOC_INFO: 920 return agp_info_user(sc, (agp_info *) data); 921 922 case AGPIOC_ACQUIRE: 923 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 924 925 case AGPIOC_RELEASE: 926 return agp_release_helper(sc, AGP_ACQUIRE_USER); 927 928 case AGPIOC_SETUP: 929 return agp_setup_user(sc, (agp_setup *)data); 930 931 case AGPIOC_ALLOCATE: 932 return agp_allocate_user(sc, (agp_allocate *)data); 933 934 case AGPIOC_DEALLOCATE: 935 return agp_deallocate_user(sc, *(int *) data); 936 937 case AGPIOC_BIND: 938 return agp_bind_user(sc, (agp_bind *)data); 939 940 case AGPIOC_UNBIND: 941 return agp_unbind_user(sc, (agp_unbind *)data); 942 943 } 944 945 return EINVAL; 946 } 947 948 static paddr_t 949 agpmmap(dev_t dev, off_t offset, int prot) 950 { 951 struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev)); 952 953 if (sc == NULL) 954 return ENODEV; 955 956 if (offset > AGP_GET_APERTURE(sc)) 957 return -1; 958 959 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 960 BUS_SPACE_MAP_LINEAR)); 961 } 962 963 const struct cdevsw agp_cdevsw = { 964 agpopen, agpclose, noread, nowrite, agpioctl, 965 nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER 966 }; 967 968 /* Implementation of the kernel api */ 969 970 void * 971 agp_find_device(int unit) 972 { 973 return device_lookup_private(&agp_cd, unit); 974 } 975 976 enum agp_acquire_state 977 agp_state(void *devcookie) 978 { 979 struct agp_softc *sc = devcookie; 980 981 return sc->as_state; 982 } 983 984 void 985 agp_get_info(void *devcookie, struct agp_info *info) 986 { 987 struct agp_softc *sc = devcookie; 988 989 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 990 sc->as_capoff + AGP_STATUS); 991 info->ai_aperture_base = sc->as_apaddr; 992 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 993 info->ai_memory_allowed = sc->as_maxmem; 994 info->ai_memory_used = sc->as_allocated; 995 } 996 997 int 998 agp_acquire(void *dev) 999 { 1000 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 1001 } 1002 1003 int 1004 agp_release(void *dev) 1005 { 1006 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 1007 } 1008 1009 int 1010 agp_enable(void *dev, u_int32_t mode) 1011 { 1012 struct agp_softc *sc = dev; 1013 1014 return AGP_ENABLE(sc, mode); 1015 } 1016 1017 void * 1018 agp_alloc_memory(void *dev, int type, vsize_t bytes) 1019 { 1020 struct agp_softc *sc = dev; 1021 1022 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 1023 } 1024 1025 void 1026 agp_free_memory(void *dev, void *handle) 1027 { 1028 struct agp_softc *sc = dev; 1029 struct agp_memory *mem = handle; 1030 1031 AGP_FREE_MEMORY(sc, mem); 1032 } 1033 1034 int 1035 agp_bind_memory(void *dev, void *handle, off_t offset) 1036 { 1037 struct agp_softc *sc = dev; 1038 struct agp_memory *mem = handle; 1039 1040 return AGP_BIND_MEMORY(sc, mem, offset); 1041 } 1042 1043 int 1044 agp_unbind_memory(void *dev, void *handle) 1045 { 1046 struct agp_softc *sc = dev; 1047 struct agp_memory *mem = handle; 1048 1049 return AGP_UNBIND_MEMORY(sc, mem); 1050 } 1051 1052 void 1053 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi) 1054 { 1055 struct agp_memory *mem = handle; 1056 1057 mi->ami_size = mem->am_size; 1058 mi->ami_physical = mem->am_physical; 1059 mi->ami_offset = mem->am_offset; 1060 mi->ami_is_bound = mem->am_is_bound; 1061 } 1062 1063 int 1064 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 1065 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr, 1066 bus_dma_segment_t *seg, int nseg, int *rseg) 1067 1068 { 1069 int error, level = 0; 1070 1071 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 1072 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 1073 goto out; 1074 level++; 1075 1076 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 1077 BUS_DMA_NOWAIT | flags)) != 0) 1078 goto out; 1079 level++; 1080 1081 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1082 BUS_DMA_NOWAIT, mapp)) != 0) 1083 goto out; 1084 level++; 1085 1086 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1087 BUS_DMA_NOWAIT)) != 0) 1088 goto out; 1089 1090 *baddr = (*mapp)->dm_segs[0].ds_addr; 1091 1092 return 0; 1093 out: 1094 switch (level) { 1095 case 3: 1096 bus_dmamap_destroy(tag, *mapp); 1097 /* FALLTHROUGH */ 1098 case 2: 1099 bus_dmamem_unmap(tag, *vaddr, size); 1100 /* FALLTHROUGH */ 1101 case 1: 1102 bus_dmamem_free(tag, seg, *rseg); 1103 break; 1104 default: 1105 break; 1106 } 1107 1108 return error; 1109 } 1110 1111 void 1112 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1113 void *vaddr, bus_dma_segment_t *seg, int nseg) 1114 { 1115 bus_dmamap_unload(tag, map); 1116 bus_dmamap_destroy(tag, map); 1117 bus_dmamem_unmap(tag, vaddr, size); 1118 bus_dmamem_free(tag, seg, nseg); 1119 } 1120 1121 static bool 1122 agp_resume(device_t dv, pmf_qual_t qual) 1123 { 1124 agp_flush_cache(); 1125 1126 return true; 1127 } 1128