xref: /netbsd-src/sys/dev/pci/agp.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: agp.c,v 1.79 2011/04/04 20:37:56 dyoung Exp $	*/
2 
3 /*-
4  * Copyright (c) 2000 Doug Rabson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  *	$FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
29  */
30 
31 /*
32  * Copyright (c) 2001 Wasabi Systems, Inc.
33  * All rights reserved.
34  *
35  * Written by Frank van der Linden for Wasabi Systems, Inc.
36  *
37  * Redistribution and use in source and binary forms, with or without
38  * modification, are permitted provided that the following conditions
39  * are met:
40  * 1. Redistributions of source code must retain the above copyright
41  *    notice, this list of conditions and the following disclaimer.
42  * 2. Redistributions in binary form must reproduce the above copyright
43  *    notice, this list of conditions and the following disclaimer in the
44  *    documentation and/or other materials provided with the distribution.
45  * 3. All advertising materials mentioning features or use of this software
46  *    must display the following acknowledgement:
47  *      This product includes software developed for the NetBSD Project by
48  *      Wasabi Systems, Inc.
49  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
50  *    or promote products derived from this software without specific prior
51  *    written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
56  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
57  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
58  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
59  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
60  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
61  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
62  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
63  * POSSIBILITY OF SUCH DAMAGE.
64  */
65 
66 
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.79 2011/04/04 20:37:56 dyoung Exp $");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/kernel.h>
74 #include <sys/device.h>
75 #include <sys/conf.h>
76 #include <sys/ioctl.h>
77 #include <sys/fcntl.h>
78 #include <sys/agpio.h>
79 #include <sys/proc.h>
80 #include <sys/mutex.h>
81 
82 #include <dev/pci/pcireg.h>
83 #include <dev/pci/pcivar.h>
84 #include <dev/pci/agpvar.h>
85 #include <dev/pci/agpreg.h>
86 #include <dev/pci/pcidevs.h>
87 
88 #include <sys/bus.h>
89 
90 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
91 
92 /* Helper functions for implementing chipset mini drivers. */
93 /* XXXfvdl get rid of this one. */
94 
95 extern struct cfdriver agp_cd;
96 
97 static int agp_info_user(struct agp_softc *, agp_info *);
98 static int agp_setup_user(struct agp_softc *, agp_setup *);
99 static int agp_allocate_user(struct agp_softc *, agp_allocate *);
100 static int agp_deallocate_user(struct agp_softc *, int);
101 static int agp_bind_user(struct agp_softc *, agp_bind *);
102 static int agp_unbind_user(struct agp_softc *, agp_unbind *);
103 static int agp_generic_enable_v2(struct agp_softc *,
104     const struct pci_attach_args *, int, u_int32_t);
105 static int agp_generic_enable_v3(struct agp_softc *,
106     const struct pci_attach_args *, int, u_int32_t);
107 static int agpdev_match(const struct pci_attach_args *);
108 static bool agp_resume(device_t, const pmf_qual_t *);
109 
110 #include "agp_ali.h"
111 #include "agp_amd.h"
112 #include "agp_i810.h"
113 #include "agp_intel.h"
114 #include "agp_sis.h"
115 #include "agp_via.h"
116 #include "agp_amd64.h"
117 
118 const struct agp_product {
119 	uint32_t	ap_vendor;
120 	uint32_t	ap_product;
121 	int		(*ap_match)(const struct pci_attach_args *);
122 	int		(*ap_attach)(device_t, device_t, void *);
123 } agp_products[] = {
124 #if NAGP_AMD64 > 0
125 	{ PCI_VENDOR_ALI,	PCI_PRODUCT_ALI_M1689,
126 	  agp_amd64_match,	agp_amd64_attach },
127 #endif
128 
129 #if NAGP_ALI > 0
130 	{ PCI_VENDOR_ALI,	-1,
131 	  NULL,			agp_ali_attach },
132 #endif
133 
134 #if NAGP_AMD64 > 0
135 	{ PCI_VENDOR_AMD,	PCI_PRODUCT_AMD_AGP8151_DEV,
136 	  agp_amd64_match,	agp_amd64_attach },
137 #endif
138 
139 #if NAGP_AMD > 0
140 	{ PCI_VENDOR_AMD,	-1,
141 	  agp_amd_match,	agp_amd_attach },
142 #endif
143 
144 #if NAGP_I810 > 0
145 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_MCH,
146 	  NULL,			agp_i810_attach },
147 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810_DC100_MCH,
148 	  NULL,			agp_i810_attach },
149 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82810E_MCH,
150 	  NULL,			agp_i810_attach },
151 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82815_FULL_HUB,
152 	  NULL,			agp_i810_attach },
153 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82840_HB,
154 	  NULL,			agp_i810_attach },
155 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82830MP_IO_1,
156 	  NULL,			agp_i810_attach },
157 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82845G_DRAM,
158 	  NULL,			agp_i810_attach },
159 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82855GM_MCH,
160 	  NULL,			agp_i810_attach },
161 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82865_HB,
162 	  NULL,			agp_i810_attach },
163 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915G_HB,
164 	  NULL,			agp_i810_attach },
165 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82915GM_HB,
166 	  NULL,			agp_i810_attach },
167 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945P_MCH,
168 	  NULL,			agp_i810_attach },
169 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GM_HB,
170 	  NULL,			agp_i810_attach },
171 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82945GME_HB,
172 	  NULL,			agp_i810_attach },
173 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965Q_HB,
174 	  NULL,			agp_i810_attach },
175 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965PM_HB,
176 	  NULL,			agp_i810_attach },
177 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965G_HB,
178 	  NULL,			agp_i810_attach },
179 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q35_HB,
180 	  NULL,			agp_i810_attach },
181 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G33_HB,
182 	  NULL,			agp_i810_attach },
183 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q33_HB,
184 	  NULL,			agp_i810_attach },
185 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G35_HB,
186 	  NULL,			agp_i810_attach },
187 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82946GZ_HB,
188 	  NULL,			agp_i810_attach },
189 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82GM45_HB,
190 	  NULL, 		agp_i810_attach },
191 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82IGD_E_HB,
192 	  NULL, 		agp_i810_attach },
193 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82Q45_HB,
194 	  NULL, 		agp_i810_attach },
195 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G45_HB,
196 	  NULL, 		agp_i810_attach },
197 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82G41_HB,
198 	  NULL, 		agp_i810_attach },
199 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_E7221_HB,
200 	  NULL, 		agp_i810_attach },
201 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82965GME_HB,
202 	  NULL, 		agp_i810_attach },
203 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_82B43_HB,
204 	  NULL, 		agp_i810_attach },
205 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
206 	  NULL, 		agp_i810_attach },
207 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
208 	  NULL, 		agp_i810_attach },
209 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
210 	  NULL, 		agp_i810_attach },
211 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
212 	  NULL, 		agp_i810_attach },
213 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_HB,
214 	  NULL, 		agp_i810_attach },
215 	{ PCI_VENDOR_INTEL,	PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
216 	  NULL, 		agp_i810_attach },
217 #endif
218 
219 #if NAGP_INTEL > 0
220 	{ PCI_VENDOR_INTEL,	-1,
221 	  NULL,			agp_intel_attach },
222 #endif
223 
224 #if NAGP_AMD64 > 0
225 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
226 	  agp_amd64_match,	agp_amd64_attach },
227 	{ PCI_VENDOR_NVIDIA,	PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
228 	  agp_amd64_match,	agp_amd64_attach },
229 #endif
230 
231 #if NAGP_AMD64 > 0
232 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_755,
233 	  agp_amd64_match,	agp_amd64_attach },
234 	{ PCI_VENDOR_SIS,	PCI_PRODUCT_SIS_760,
235 	  agp_amd64_match,	agp_amd64_attach },
236 #endif
237 
238 #if NAGP_SIS > 0
239 	{ PCI_VENDOR_SIS,	-1,
240 	  NULL,			agp_sis_attach },
241 #endif
242 
243 #if NAGP_AMD64 > 0
244 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8M800_0,
245 	  agp_amd64_match,	agp_amd64_attach },
246 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8T890_0,
247 	  agp_amd64_match,	agp_amd64_attach },
248 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB_0,
249 	  agp_amd64_match,	agp_amd64_attach },
250 	{ PCI_VENDOR_VIATECH,	PCI_PRODUCT_VIATECH_K8HTB,
251 	  agp_amd64_match,	agp_amd64_attach },
252 #endif
253 
254 #if NAGP_VIA > 0
255 	{ PCI_VENDOR_VIATECH,	-1,
256 	  NULL,			agp_via_attach },
257 #endif
258 
259 	{ 0,			0,
260 	  NULL,			NULL },
261 };
262 
263 static const struct agp_product *
264 agp_lookup(const struct pci_attach_args *pa)
265 {
266 	const struct agp_product *ap;
267 
268 	/* First find the vendor. */
269 	for (ap = agp_products; ap->ap_attach != NULL; ap++) {
270 		if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
271 			break;
272 	}
273 
274 	if (ap->ap_attach == NULL)
275 		return (NULL);
276 
277 	/* Now find the product within the vendor's domain. */
278 	for (; ap->ap_attach != NULL; ap++) {
279 		if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
280 			/* Ran out of this vendor's section of the table. */
281 			return (NULL);
282 		}
283 		if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
284 			/* Exact match. */
285 			break;
286 		}
287 		if (ap->ap_product == (uint32_t) -1) {
288 			/* Wildcard match. */
289 			break;
290 		}
291 	}
292 
293 	if (ap->ap_attach == NULL)
294 		return (NULL);
295 
296 	/* Now let the product-specific driver filter the match. */
297 	if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
298 		return (NULL);
299 
300 	return (ap);
301 }
302 
303 static int
304 agpmatch(device_t parent, cfdata_t match, void *aux)
305 {
306 	struct agpbus_attach_args *apa = aux;
307 	struct pci_attach_args *pa = &apa->apa_pci_args;
308 
309 	if (agp_lookup(pa) == NULL)
310 		return (0);
311 
312 	return (1);
313 }
314 
315 static const int agp_max[][2] = {
316 	{0,	0},
317 	{32,	4},
318 	{64,	28},
319 	{128,	96},
320 	{256,	204},
321 	{512,	440},
322 	{1024,	942},
323 	{2048,	1920},
324 	{4096,	3932}
325 };
326 #define agp_max_size	(sizeof(agp_max) / sizeof(agp_max[0]))
327 
328 static void
329 agpattach(device_t parent, device_t self, void *aux)
330 {
331 	struct agpbus_attach_args *apa = aux;
332 	struct pci_attach_args *pa = &apa->apa_pci_args;
333 	struct agp_softc *sc = device_private(self);
334 	const struct agp_product *ap;
335 	int memsize, i, ret;
336 
337 	ap = agp_lookup(pa);
338 	KASSERT(ap != NULL);
339 
340 	aprint_naive(": AGP controller\n");
341 
342 	sc->as_dev = self;
343 	sc->as_dmat = pa->pa_dmat;
344 	sc->as_pc = pa->pa_pc;
345 	sc->as_tag = pa->pa_tag;
346 	sc->as_id = pa->pa_id;
347 
348 	/*
349 	 * Work out an upper bound for agp memory allocation. This
350 	 * uses a heuristic table from the Linux driver.
351 	 */
352 	memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
353 	for (i = 0; i < agp_max_size; i++) {
354 		if (memsize <= agp_max[i][0])
355 			break;
356 	}
357 	if (i == agp_max_size)
358 		i = agp_max_size - 1;
359 	sc->as_maxmem = agp_max[i][1] << 20U;
360 
361 	/*
362 	 * The mutex is used to prevent re-entry to
363 	 * agp_generic_bind_memory() since that function can sleep.
364 	 */
365 	mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
366 
367 	TAILQ_INIT(&sc->as_memory);
368 
369 	ret = (*ap->ap_attach)(parent, self, pa);
370 	if (ret == 0)
371 		aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
372 		    (unsigned long)sc->as_apaddr,
373 		    (unsigned long)AGP_GET_APERTURE(sc));
374 	else
375 		sc->as_chipc = NULL;
376 
377 	if (!device_pmf_is_registered(self)) {
378 		if (!pmf_device_register(self, NULL, agp_resume))
379 			aprint_error_dev(self, "couldn't establish power "
380 			    "handler\n");
381 	}
382 }
383 
384 CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
385     agpmatch, agpattach, NULL, NULL);
386 
387 int
388 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
389 {
390 	/*
391 	 * Find the aperture. Don't map it (yet), this would
392 	 * eat KVA.
393 	 */
394 	if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
395 	    PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
396 	    &sc->as_apflags) != 0)
397 		return ENXIO;
398 
399 	sc->as_apt = pa->pa_memt;
400 
401 	return 0;
402 }
403 
404 struct agp_gatt *
405 agp_alloc_gatt(struct agp_softc *sc)
406 {
407 	u_int32_t apsize = AGP_GET_APERTURE(sc);
408 	u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
409 	struct agp_gatt *gatt;
410 	void *virtual;
411 	int dummyseg;
412 
413 	gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
414 	if (!gatt)
415 		return NULL;
416 	gatt->ag_entries = entries;
417 
418 	if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
419 	    0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
420 	    &gatt->ag_dmaseg, 1, &dummyseg) != 0) {
421 		free(gatt, M_AGP);
422 		return NULL;
423 	}
424 	gatt->ag_virtual = (uint32_t *)virtual;
425 
426 	gatt->ag_size = entries * sizeof(u_int32_t);
427 	memset(gatt->ag_virtual, 0, gatt->ag_size);
428 	agp_flush_cache();
429 
430 	return gatt;
431 }
432 
433 void
434 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
435 {
436 	agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
437 	    (void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
438 	free(gatt, M_AGP);
439 }
440 
441 
442 int
443 agp_generic_detach(struct agp_softc *sc)
444 {
445 	mutex_destroy(&sc->as_mtx);
446 	agp_flush_cache();
447 	return 0;
448 }
449 
450 static int
451 agpdev_match(const struct pci_attach_args *pa)
452 {
453 	if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
454 	    PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
455 		if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
456 		    NULL, NULL))
457 		return 1;
458 
459 	return 0;
460 }
461 
462 int
463 agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
464 {
465 	struct pci_attach_args pa;
466 	pcireg_t tstatus, mstatus;
467 	int capoff;
468 
469 	if (pci_find_device(&pa, agpdev_match) == 0 ||
470 	    pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
471 	     &capoff, NULL) == 0) {
472 		aprint_error_dev(sc->as_dev, "can't find display\n");
473 		return ENXIO;
474 	}
475 
476 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
477 	    sc->as_capoff + AGP_STATUS);
478 	mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
479 	    capoff + AGP_STATUS);
480 
481 	if (AGP_MODE_GET_MODE_3(mode) &&
482 	    AGP_MODE_GET_MODE_3(tstatus) &&
483 	    AGP_MODE_GET_MODE_3(mstatus))
484 		return agp_generic_enable_v3(sc, &pa, capoff, mode);
485 	else
486 		return agp_generic_enable_v2(sc, &pa, capoff, mode);
487 }
488 
489 static int
490 agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
491     int capoff, u_int32_t mode)
492 {
493 	pcireg_t tstatus, mstatus;
494 	pcireg_t command;
495 	int rq, sba, fw, rate;
496 
497 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
498 	    sc->as_capoff + AGP_STATUS);
499 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
500 	    capoff + AGP_STATUS);
501 
502 	/* Set RQ to the min of mode, tstatus and mstatus */
503 	rq = AGP_MODE_GET_RQ(mode);
504 	if (AGP_MODE_GET_RQ(tstatus) < rq)
505 		rq = AGP_MODE_GET_RQ(tstatus);
506 	if (AGP_MODE_GET_RQ(mstatus) < rq)
507 		rq = AGP_MODE_GET_RQ(mstatus);
508 
509 	/* Set SBA if all three can deal with SBA */
510 	sba = (AGP_MODE_GET_SBA(tstatus)
511 	       & AGP_MODE_GET_SBA(mstatus)
512 	       & AGP_MODE_GET_SBA(mode));
513 
514 	/* Similar for FW */
515 	fw = (AGP_MODE_GET_FW(tstatus)
516 	       & AGP_MODE_GET_FW(mstatus)
517 	       & AGP_MODE_GET_FW(mode));
518 
519 	/* Figure out the max rate */
520 	rate = (AGP_MODE_GET_RATE(tstatus)
521 		& AGP_MODE_GET_RATE(mstatus)
522 		& AGP_MODE_GET_RATE(mode));
523 	if (rate & AGP_MODE_V2_RATE_4x)
524 		rate = AGP_MODE_V2_RATE_4x;
525 	else if (rate & AGP_MODE_V2_RATE_2x)
526 		rate = AGP_MODE_V2_RATE_2x;
527 	else
528 		rate = AGP_MODE_V2_RATE_1x;
529 
530 	/* Construct the new mode word and tell the hardware */
531 	command = AGP_MODE_SET_RQ(0, rq);
532 	command = AGP_MODE_SET_SBA(command, sba);
533 	command = AGP_MODE_SET_FW(command, fw);
534 	command = AGP_MODE_SET_RATE(command, rate);
535 	command = AGP_MODE_SET_AGP(command, 1);
536 	pci_conf_write(sc->as_pc, sc->as_tag,
537 	    sc->as_capoff + AGP_COMMAND, command);
538 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
539 
540 	return 0;
541 }
542 
543 static int
544 agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
545     int capoff, u_int32_t mode)
546 {
547 	pcireg_t tstatus, mstatus;
548 	pcireg_t command;
549 	int rq, sba, fw, rate, arqsz, cal;
550 
551 	tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
552 	    sc->as_capoff + AGP_STATUS);
553 	mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
554 	    capoff + AGP_STATUS);
555 
556 	/* Set RQ to the min of mode, tstatus and mstatus */
557 	rq = AGP_MODE_GET_RQ(mode);
558 	if (AGP_MODE_GET_RQ(tstatus) < rq)
559 		rq = AGP_MODE_GET_RQ(tstatus);
560 	if (AGP_MODE_GET_RQ(mstatus) < rq)
561 		rq = AGP_MODE_GET_RQ(mstatus);
562 
563 	/*
564 	 * ARQSZ - Set the value to the maximum one.
565 	 * Don't allow the mode register to override values.
566 	 */
567 	arqsz = AGP_MODE_GET_ARQSZ(mode);
568 	if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
569 		arqsz = AGP_MODE_GET_ARQSZ(tstatus);
570 	if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
571 		arqsz = AGP_MODE_GET_ARQSZ(mstatus);
572 
573 	/* Calibration cycle - don't allow override by mode register */
574 	cal = AGP_MODE_GET_CAL(tstatus);
575 	if (AGP_MODE_GET_CAL(mstatus) < cal)
576 		cal = AGP_MODE_GET_CAL(mstatus);
577 
578 	/* SBA must be supported for AGP v3. */
579 	sba = 1;
580 
581 	/* Set FW if all three support it. */
582 	fw = (AGP_MODE_GET_FW(tstatus)
583 	       & AGP_MODE_GET_FW(mstatus)
584 	       & AGP_MODE_GET_FW(mode));
585 
586 	/* Figure out the max rate */
587 	rate = (AGP_MODE_GET_RATE(tstatus)
588 		& AGP_MODE_GET_RATE(mstatus)
589 		& AGP_MODE_GET_RATE(mode));
590 	if (rate & AGP_MODE_V3_RATE_8x)
591 		rate = AGP_MODE_V3_RATE_8x;
592 	else
593 		rate = AGP_MODE_V3_RATE_4x;
594 
595 	/* Construct the new mode word and tell the hardware */
596 	command = AGP_MODE_SET_RQ(0, rq);
597 	command = AGP_MODE_SET_ARQSZ(command, arqsz);
598 	command = AGP_MODE_SET_CAL(command, cal);
599 	command = AGP_MODE_SET_SBA(command, sba);
600 	command = AGP_MODE_SET_FW(command, fw);
601 	command = AGP_MODE_SET_RATE(command, rate);
602 	command = AGP_MODE_SET_AGP(command, 1);
603 	pci_conf_write(sc->as_pc, sc->as_tag,
604 	    sc->as_capoff + AGP_COMMAND, command);
605 	pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + AGP_COMMAND, command);
606 
607 	return 0;
608 }
609 
610 struct agp_memory *
611 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
612 {
613 	struct agp_memory *mem;
614 
615 	if ((size & (AGP_PAGE_SIZE - 1)) != 0)
616 		return 0;
617 
618 	if (sc->as_allocated + size > sc->as_maxmem)
619 		return 0;
620 
621 	if (type != 0) {
622 		printf("agp_generic_alloc_memory: unsupported type %d\n",
623 		       type);
624 		return 0;
625 	}
626 
627 	mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
628 	if (mem == NULL)
629 		return NULL;
630 
631 	if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
632 			      size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
633 		free(mem, M_AGP);
634 		return NULL;
635 	}
636 
637 	mem->am_id = sc->as_nextid++;
638 	mem->am_size = size;
639 	mem->am_type = 0;
640 	mem->am_physical = 0;
641 	mem->am_offset = 0;
642 	mem->am_is_bound = 0;
643 	TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
644 	sc->as_allocated += size;
645 
646 	return mem;
647 }
648 
649 int
650 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
651 {
652 	if (mem->am_is_bound)
653 		return EBUSY;
654 
655 	sc->as_allocated -= mem->am_size;
656 	TAILQ_REMOVE(&sc->as_memory, mem, am_link);
657 	bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
658 	free(mem, M_AGP);
659 	return 0;
660 }
661 
662 int
663 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
664 			off_t offset)
665 {
666 	off_t i, k;
667 	bus_size_t done, j;
668 	int error;
669 	bus_dma_segment_t *segs, *seg;
670 	bus_addr_t pa;
671 	int contigpages, nseg;
672 
673 	mutex_enter(&sc->as_mtx);
674 
675 	if (mem->am_is_bound) {
676 		aprint_error_dev(sc->as_dev, "memory already bound\n");
677 		mutex_exit(&sc->as_mtx);
678 		return EINVAL;
679 	}
680 
681 	if (offset < 0
682 	    || (offset & (AGP_PAGE_SIZE - 1)) != 0
683 	    || offset + mem->am_size > AGP_GET_APERTURE(sc)) {
684 		aprint_error_dev(sc->as_dev,
685 			      "binding memory at bad offset %#lx\n",
686 			      (unsigned long) offset);
687 		mutex_exit(&sc->as_mtx);
688 		return EINVAL;
689 	}
690 
691 	/*
692 	 * XXXfvdl
693 	 * The memory here needs to be directly accessable from the
694 	 * AGP video card, so it should be allocated using bus_dma.
695 	 * However, it need not be contiguous, since individual pages
696 	 * are translated using the GATT.
697 	 *
698 	 * Using a large chunk of contiguous memory may get in the way
699 	 * of other subsystems that may need one, so we try to be friendly
700 	 * and ask for allocation in chunks of a minimum of 8 pages
701 	 * of contiguous memory on average, falling back to 4, 2 and 1
702 	 * if really needed. Larger chunks are preferred, since allocating
703 	 * a bus_dma_segment per page would be overkill.
704 	 */
705 
706 	for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
707 		nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
708 		segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
709 		if (segs == NULL) {
710 			mutex_exit(&sc->as_mtx);
711 			return ENOMEM;
712 		}
713 		if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
714 				     segs, nseg, &mem->am_nseg,
715 				     contigpages > 1 ?
716 				     BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
717 			free(segs, M_AGP);
718 			continue;
719 		}
720 		if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
721 		    mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
722 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
723 			free(segs, M_AGP);
724 			continue;
725 		}
726 		if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
727 		    mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
728 			bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
729 			    mem->am_size);
730 			bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
731 			free(segs, M_AGP);
732 			continue;
733 		}
734 		mem->am_dmaseg = segs;
735 		break;
736 	}
737 
738 	if (contigpages == 0) {
739 		mutex_exit(&sc->as_mtx);
740 		return ENOMEM;
741 	}
742 
743 
744 	/*
745 	 * Bind the individual pages and flush the chipset's
746 	 * TLB.
747 	 */
748 	done = 0;
749 	for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
750 		seg = &mem->am_dmamap->dm_segs[i];
751 		/*
752 		 * Install entries in the GATT, making sure that if
753 		 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
754 		 * aligned to PAGE_SIZE, we don't modify too many GATT
755 		 * entries.
756 		 */
757 		for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
758 		     j += AGP_PAGE_SIZE) {
759 			pa = seg->ds_addr + j;
760 			AGP_DPF(("binding offset %#lx to pa %#lx\n",
761 				(unsigned long)(offset + done + j),
762 				(unsigned long)pa));
763 			error = AGP_BIND_PAGE(sc, offset + done + j, pa);
764 			if (error) {
765 				/*
766 				 * Bail out. Reverse all the mappings
767 				 * and unwire the pages.
768 				 */
769 				for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
770 					AGP_UNBIND_PAGE(sc, offset + k);
771 
772 				bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
773 				bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
774 						 mem->am_size);
775 				bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
776 						mem->am_nseg);
777 				free(mem->am_dmaseg, M_AGP);
778 				mutex_exit(&sc->as_mtx);
779 				return error;
780 			}
781 		}
782 		done += seg->ds_len;
783 	}
784 
785 	/*
786 	 * Flush the CPU cache since we are providing a new mapping
787 	 * for these pages.
788 	 */
789 	agp_flush_cache();
790 
791 	/*
792 	 * Make sure the chipset gets the new mappings.
793 	 */
794 	AGP_FLUSH_TLB(sc);
795 
796 	mem->am_offset = offset;
797 	mem->am_is_bound = 1;
798 
799 	mutex_exit(&sc->as_mtx);
800 
801 	return 0;
802 }
803 
804 int
805 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
806 {
807 	int i;
808 
809 	mutex_enter(&sc->as_mtx);
810 
811 	if (!mem->am_is_bound) {
812 		aprint_error_dev(sc->as_dev, "memory is not bound\n");
813 		mutex_exit(&sc->as_mtx);
814 		return EINVAL;
815 	}
816 
817 
818 	/*
819 	 * Unbind the individual pages and flush the chipset's
820 	 * TLB. Unwire the pages so they can be swapped.
821 	 */
822 	for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
823 		AGP_UNBIND_PAGE(sc, mem->am_offset + i);
824 
825 	agp_flush_cache();
826 	AGP_FLUSH_TLB(sc);
827 
828 	bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
829 	bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
830 	bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
831 
832 	free(mem->am_dmaseg, M_AGP);
833 
834 	mem->am_offset = 0;
835 	mem->am_is_bound = 0;
836 
837 	mutex_exit(&sc->as_mtx);
838 
839 	return 0;
840 }
841 
842 /* Helper functions for implementing user/kernel api */
843 
844 static int
845 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
846 {
847 	if (sc->as_state != AGP_ACQUIRE_FREE)
848 		return EBUSY;
849 	sc->as_state = state;
850 
851 	return 0;
852 }
853 
854 static int
855 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
856 {
857 
858 	if (sc->as_state == AGP_ACQUIRE_FREE)
859 		return 0;
860 
861 	if (sc->as_state != state)
862 		return EBUSY;
863 
864 	sc->as_state = AGP_ACQUIRE_FREE;
865 	return 0;
866 }
867 
868 static struct agp_memory *
869 agp_find_memory(struct agp_softc *sc, int id)
870 {
871 	struct agp_memory *mem;
872 
873 	AGP_DPF(("searching for memory block %d\n", id));
874 	TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
875 		AGP_DPF(("considering memory block %d\n", mem->am_id));
876 		if (mem->am_id == id)
877 			return mem;
878 	}
879 	return 0;
880 }
881 
882 /* Implementation of the userland ioctl api */
883 
884 static int
885 agp_info_user(struct agp_softc *sc, agp_info *info)
886 {
887 	memset(info, 0, sizeof *info);
888 	info->bridge_id = sc->as_id;
889 	if (sc->as_capoff != 0)
890 		info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
891 					       sc->as_capoff + AGP_STATUS);
892 	else
893 		info->agp_mode = 0; /* i810 doesn't have real AGP */
894 	info->aper_base = sc->as_apaddr;
895 	info->aper_size = AGP_GET_APERTURE(sc) >> 20;
896 	info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
897 	info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
898 
899 	return 0;
900 }
901 
902 static int
903 agp_setup_user(struct agp_softc *sc, agp_setup *setup)
904 {
905 	return AGP_ENABLE(sc, setup->agp_mode);
906 }
907 
908 static int
909 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
910 {
911 	struct agp_memory *mem;
912 
913 	mem = AGP_ALLOC_MEMORY(sc,
914 			       alloc->type,
915 			       alloc->pg_count << AGP_PAGE_SHIFT);
916 	if (mem) {
917 		alloc->key = mem->am_id;
918 		alloc->physical = mem->am_physical;
919 		return 0;
920 	} else {
921 		return ENOMEM;
922 	}
923 }
924 
925 static int
926 agp_deallocate_user(struct agp_softc *sc, int id)
927 {
928 	struct agp_memory *mem = agp_find_memory(sc, id);
929 
930 	if (mem) {
931 		AGP_FREE_MEMORY(sc, mem);
932 		return 0;
933 	} else {
934 		return ENOENT;
935 	}
936 }
937 
938 static int
939 agp_bind_user(struct agp_softc *sc, agp_bind *bind)
940 {
941 	struct agp_memory *mem = agp_find_memory(sc, bind->key);
942 
943 	if (!mem)
944 		return ENOENT;
945 
946 	return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
947 }
948 
949 static int
950 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
951 {
952 	struct agp_memory *mem = agp_find_memory(sc, unbind->key);
953 
954 	if (!mem)
955 		return ENOENT;
956 
957 	return AGP_UNBIND_MEMORY(sc, mem);
958 }
959 
960 static int
961 agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
962 {
963 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
964 
965 	if (sc == NULL)
966 		return ENXIO;
967 
968 	if (sc->as_chipc == NULL)
969 		return ENXIO;
970 
971 	if (!sc->as_isopen)
972 		sc->as_isopen = 1;
973 	else
974 		return EBUSY;
975 
976 	return 0;
977 }
978 
979 static int
980 agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
981 {
982 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
983 	struct agp_memory *mem;
984 
985 	if (sc == NULL)
986 		return ENODEV;
987 
988 	/*
989 	 * Clear the GATT and force release on last close
990 	 */
991 	if (sc->as_state == AGP_ACQUIRE_USER) {
992 		while ((mem = TAILQ_FIRST(&sc->as_memory))) {
993 			if (mem->am_is_bound) {
994 				printf("agpclose: mem %d is bound\n",
995 				       mem->am_id);
996 				AGP_UNBIND_MEMORY(sc, mem);
997 			}
998 			/*
999 			 * XXX it is not documented, but if the protocol allows
1000 			 * allocate->acquire->bind, it would be possible that
1001 			 * memory ranges are allocated by the kernel here,
1002 			 * which we shouldn't free. We'd have to keep track of
1003 			 * the memory range's owner.
1004 			 * The kernel API is unsed yet, so we get away with
1005 			 * freeing all.
1006 			 */
1007 			AGP_FREE_MEMORY(sc, mem);
1008 		}
1009 		agp_release_helper(sc, AGP_ACQUIRE_USER);
1010 	}
1011 	sc->as_isopen = 0;
1012 
1013 	return 0;
1014 }
1015 
1016 static int
1017 agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
1018 {
1019 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1020 
1021 	if (sc == NULL)
1022 		return ENODEV;
1023 
1024 	if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
1025 		return EPERM;
1026 
1027 	switch (cmd) {
1028 	case AGPIOC_INFO:
1029 		return agp_info_user(sc, (agp_info *) data);
1030 
1031 	case AGPIOC_ACQUIRE:
1032 		return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
1033 
1034 	case AGPIOC_RELEASE:
1035 		return agp_release_helper(sc, AGP_ACQUIRE_USER);
1036 
1037 	case AGPIOC_SETUP:
1038 		return agp_setup_user(sc, (agp_setup *)data);
1039 
1040 #ifdef __x86_64__
1041 {
1042 	/*
1043 	 * Handle paddr_t change from 32 bit for non PAE kernels
1044 	 * to 64 bit.
1045 	 */
1046 #define AGPIOC_OALLOCATE  _IOWR(AGPIOC_BASE, 6, agp_oallocate)
1047 
1048 	typedef struct _agp_oallocate {
1049 		int key;		/* tag of allocation            */
1050 		size_t pg_count;	/* number of pages              */
1051 		uint32_t type;		/* 0 == normal, other devspec   */
1052 		u_long physical;	/* device specific (some devices
1053 					 * need a phys address of the
1054 					 * actual page behind the gatt
1055 					 * table)                        */
1056 	} agp_oallocate;
1057 
1058 	case AGPIOC_OALLOCATE: {
1059 		int ret;
1060 		agp_allocate aga;
1061 		agp_oallocate *oaga = data;
1062 
1063 		aga.type = oaga->type;
1064 		aga.pg_count = oaga->pg_count;
1065 
1066 		if ((ret = agp_allocate_user(sc, &aga)) == 0) {
1067 			oaga->key = aga.key;
1068 			oaga->physical = (u_long)aga.physical;
1069 		}
1070 
1071 		return ret;
1072 	}
1073 }
1074 #endif
1075 	case AGPIOC_ALLOCATE:
1076 		return agp_allocate_user(sc, (agp_allocate *)data);
1077 
1078 	case AGPIOC_DEALLOCATE:
1079 		return agp_deallocate_user(sc, *(int *) data);
1080 
1081 	case AGPIOC_BIND:
1082 		return agp_bind_user(sc, (agp_bind *)data);
1083 
1084 	case AGPIOC_UNBIND:
1085 		return agp_unbind_user(sc, (agp_unbind *)data);
1086 
1087 	}
1088 
1089 	return EINVAL;
1090 }
1091 
1092 static paddr_t
1093 agpmmap(dev_t dev, off_t offset, int prot)
1094 {
1095 	struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
1096 
1097 	if (sc == NULL)
1098 		return ENODEV;
1099 
1100 	if (offset > AGP_GET_APERTURE(sc))
1101 		return -1;
1102 
1103 	return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
1104 	    BUS_SPACE_MAP_LINEAR));
1105 }
1106 
1107 const struct cdevsw agp_cdevsw = {
1108 	agpopen, agpclose, noread, nowrite, agpioctl,
1109 	nostop, notty, nopoll, agpmmap, nokqfilter, D_OTHER
1110 };
1111 
1112 /* Implementation of the kernel api */
1113 
1114 void *
1115 agp_find_device(int unit)
1116 {
1117 	return device_lookup_private(&agp_cd, unit);
1118 }
1119 
1120 enum agp_acquire_state
1121 agp_state(void *devcookie)
1122 {
1123 	struct agp_softc *sc = devcookie;
1124 
1125 	return sc->as_state;
1126 }
1127 
1128 void
1129 agp_get_info(void *devcookie, struct agp_info *info)
1130 {
1131 	struct agp_softc *sc = devcookie;
1132 
1133 	info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
1134 	    sc->as_capoff + AGP_STATUS);
1135 	info->ai_aperture_base = sc->as_apaddr;
1136 	info->ai_aperture_size = sc->as_apsize;	/* XXXfvdl inconsistent */
1137 	info->ai_memory_allowed = sc->as_maxmem;
1138 	info->ai_memory_used = sc->as_allocated;
1139 }
1140 
1141 int
1142 agp_acquire(void *dev)
1143 {
1144 	return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
1145 }
1146 
1147 int
1148 agp_release(void *dev)
1149 {
1150 	return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
1151 }
1152 
1153 int
1154 agp_enable(void *dev, u_int32_t mode)
1155 {
1156 	struct agp_softc *sc = dev;
1157 
1158 	return AGP_ENABLE(sc, mode);
1159 }
1160 
1161 void *
1162 agp_alloc_memory(void *dev, int type, vsize_t bytes)
1163 {
1164 	struct agp_softc *sc = dev;
1165 
1166 	return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
1167 }
1168 
1169 void
1170 agp_free_memory(void *dev, void *handle)
1171 {
1172 	struct agp_softc *sc = dev;
1173 	struct agp_memory *mem = handle;
1174 
1175 	AGP_FREE_MEMORY(sc, mem);
1176 }
1177 
1178 int
1179 agp_bind_memory(void *dev, void *handle, off_t offset)
1180 {
1181 	struct agp_softc *sc = dev;
1182 	struct agp_memory *mem = handle;
1183 
1184 	return AGP_BIND_MEMORY(sc, mem, offset);
1185 }
1186 
1187 int
1188 agp_unbind_memory(void *dev, void *handle)
1189 {
1190 	struct agp_softc *sc = dev;
1191 	struct agp_memory *mem = handle;
1192 
1193 	return AGP_UNBIND_MEMORY(sc, mem);
1194 }
1195 
1196 void
1197 agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
1198 {
1199 	struct agp_memory *mem = handle;
1200 
1201 	mi->ami_size = mem->am_size;
1202 	mi->ami_physical = mem->am_physical;
1203 	mi->ami_offset = mem->am_offset;
1204 	mi->ami_is_bound = mem->am_is_bound;
1205 }
1206 
1207 int
1208 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
1209 		 bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
1210 		 bus_dma_segment_t *seg, int nseg, int *rseg)
1211 
1212 {
1213 	int error, level = 0;
1214 
1215 	if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
1216 			seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
1217 		goto out;
1218 	level++;
1219 
1220 	if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
1221 			BUS_DMA_NOWAIT | flags)) != 0)
1222 		goto out;
1223 	level++;
1224 
1225 	if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
1226 			BUS_DMA_NOWAIT, mapp)) != 0)
1227 		goto out;
1228 	level++;
1229 
1230 	if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
1231 			BUS_DMA_NOWAIT)) != 0)
1232 		goto out;
1233 
1234 	*baddr = (*mapp)->dm_segs[0].ds_addr;
1235 
1236 	return 0;
1237 out:
1238 	switch (level) {
1239 	case 3:
1240 		bus_dmamap_destroy(tag, *mapp);
1241 		/* FALLTHROUGH */
1242 	case 2:
1243 		bus_dmamem_unmap(tag, *vaddr, size);
1244 		/* FALLTHROUGH */
1245 	case 1:
1246 		bus_dmamem_free(tag, seg, *rseg);
1247 		break;
1248 	default:
1249 		break;
1250 	}
1251 
1252 	return error;
1253 }
1254 
1255 void
1256 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
1257 		void *vaddr, bus_dma_segment_t *seg, int nseg)
1258 {
1259 	bus_dmamap_unload(tag, map);
1260 	bus_dmamap_destroy(tag, map);
1261 	bus_dmamem_unmap(tag, vaddr, size);
1262 	bus_dmamem_free(tag, seg, nseg);
1263 }
1264 
1265 static bool
1266 agp_resume(device_t dv, const pmf_qual_t *qual)
1267 {
1268 	agp_flush_cache();
1269 
1270 	return true;
1271 }
1272