1 /* $NetBSD: agp.c,v 1.28 2003/06/29 22:30:23 fvdl Exp $ */ 2 3 /*- 4 * Copyright (c) 2000 Doug Rabson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ 29 */ 30 31 /* 32 * Copyright (c) 2001 Wasabi Systems, Inc. 33 * All rights reserved. 34 * 35 * Written by Frank van der Linden for Wasabi Systems, Inc. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. All advertising materials mentioning features or use of this software 46 * must display the following acknowledgement: 47 * This product includes software developed for the NetBSD Project by 48 * Wasabi Systems, Inc. 49 * 4. The name of Wasabi Systems, Inc. may not be used to endorse 50 * or promote products derived from this software without specific prior 51 * written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 56 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 57 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 58 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 59 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 60 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 61 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 62 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 63 * POSSIBILITY OF SUCH DAMAGE. 64 */ 65 66 67 #include <sys/cdefs.h> 68 __KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.28 2003/06/29 22:30:23 fvdl Exp $"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/malloc.h> 73 #include <sys/kernel.h> 74 #include <sys/device.h> 75 #include <sys/conf.h> 76 #include <sys/ioctl.h> 77 #include <sys/fcntl.h> 78 #include <sys/agpio.h> 79 #include <sys/proc.h> 80 81 #include <uvm/uvm_extern.h> 82 83 #include <dev/pci/pcireg.h> 84 #include <dev/pci/pcivar.h> 85 #include <dev/pci/agpvar.h> 86 #include <dev/pci/agpreg.h> 87 #include <dev/pci/pcidevs.h> 88 89 #include <machine/bus.h> 90 91 MALLOC_DEFINE(M_AGP, "AGP", "AGP memory"); 92 93 /* Helper functions for implementing chipset mini drivers. */ 94 /* XXXfvdl get rid of this one. */ 95 96 extern struct cfdriver agp_cd; 97 98 dev_type_open(agpopen); 99 dev_type_close(agpclose); 100 dev_type_ioctl(agpioctl); 101 dev_type_mmap(agpmmap); 102 103 const struct cdevsw agp_cdevsw = { 104 agpopen, agpclose, noread, nowrite, agpioctl, 105 nostop, notty, nopoll, agpmmap, nokqfilter, 106 }; 107 108 int agpmatch(struct device *, struct cfdata *, void *); 109 void agpattach(struct device *, struct device *, void *); 110 111 CFATTACH_DECL(agp, sizeof(struct agp_softc), 112 agpmatch, agpattach, NULL, NULL); 113 114 static int agp_info_user(struct agp_softc *, agp_info *); 115 static int agp_setup_user(struct agp_softc *, agp_setup *); 116 static int agp_allocate_user(struct agp_softc *, agp_allocate *); 117 static int agp_deallocate_user(struct agp_softc *, int); 118 static int agp_bind_user(struct agp_softc *, agp_bind *); 119 static int agp_unbind_user(struct agp_softc *, agp_unbind *); 120 static int agpdev_match(struct pci_attach_args *); 121 122 #include "agp_ali.h" 123 #include "agp_amd.h" 124 #include "agp_i810.h" 125 #include "agp_intel.h" 126 #include "agp_sis.h" 127 #include "agp_via.h" 128 129 const struct agp_product { 130 uint32_t ap_vendor; 131 uint32_t ap_product; 132 int (*ap_match)(const struct pci_attach_args *); 133 int (*ap_attach)(struct device *, struct device *, void *); 134 } agp_products[] = { 135 #if NAGP_ALI > 0 136 { PCI_VENDOR_ALI, -1, 137 NULL, agp_ali_attach }, 138 #endif 139 140 #if NAGP_AMD > 0 141 { PCI_VENDOR_AMD, -1, 142 agp_amd_match, agp_amd_attach }, 143 #endif 144 145 #if NAGP_I810 > 0 146 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH, 147 NULL, agp_i810_attach }, 148 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH, 149 NULL, agp_i810_attach }, 150 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH, 151 NULL, agp_i810_attach }, 152 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB, 153 NULL, agp_i810_attach }, 154 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB, 155 NULL, agp_i810_attach }, 156 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1, 157 NULL, agp_i810_attach }, 158 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM, 159 NULL, agp_i810_attach }, 160 #endif 161 162 #if NAGP_INTEL > 0 163 { PCI_VENDOR_INTEL, -1, 164 NULL, agp_intel_attach }, 165 #endif 166 167 #if NAGP_SIS > 0 168 { PCI_VENDOR_SIS, -1, 169 NULL, agp_sis_attach }, 170 #endif 171 172 #if NAGP_VIA > 0 173 { PCI_VENDOR_VIATECH, -1, 174 NULL, agp_via_attach }, 175 #endif 176 177 { 0, 0, 178 NULL, NULL }, 179 }; 180 181 static const struct agp_product * 182 agp_lookup(const struct pci_attach_args *pa) 183 { 184 const struct agp_product *ap; 185 186 /* First find the vendor. */ 187 for (ap = agp_products; ap->ap_attach != NULL; ap++) { 188 if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor) 189 break; 190 } 191 192 if (ap->ap_attach == NULL) 193 return (NULL); 194 195 /* Now find the product within the vendor's domain. */ 196 for (; ap->ap_attach != NULL; ap++) { 197 if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) { 198 /* Ran out of this vendor's section of the table. */ 199 return (NULL); 200 } 201 if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) { 202 /* Exact match. */ 203 break; 204 } 205 if (ap->ap_product == (uint32_t) -1) { 206 /* Wildcard match. */ 207 break; 208 } 209 } 210 211 if (ap->ap_attach == NULL) 212 return (NULL); 213 214 /* Now let the product-specific driver filter the match. */ 215 if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0) 216 return (NULL); 217 218 return (ap); 219 } 220 221 int 222 agpmatch(struct device *parent, struct cfdata *match, void *aux) 223 { 224 struct agpbus_attach_args *apa = aux; 225 struct pci_attach_args *pa = &apa->apa_pci_args; 226 227 if (strcmp(apa->apa_busname, "agp") != 0) 228 return (0); 229 230 if (agp_lookup(pa) == NULL) 231 return (0); 232 233 return (1); 234 } 235 236 static int agp_max[][2] = { 237 {0, 0}, 238 {32, 4}, 239 {64, 28}, 240 {128, 96}, 241 {256, 204}, 242 {512, 440}, 243 {1024, 942}, 244 {2048, 1920}, 245 {4096, 3932} 246 }; 247 #define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0])) 248 249 void 250 agpattach(struct device *parent, struct device *self, void *aux) 251 { 252 struct agpbus_attach_args *apa = aux; 253 struct pci_attach_args *pa = &apa->apa_pci_args; 254 struct agp_softc *sc = (void *)self; 255 const struct agp_product *ap; 256 int memsize, i, ret; 257 258 ap = agp_lookup(pa); 259 if (ap == NULL) { 260 printf("\n"); 261 panic("agpattach: impossible"); 262 } 263 264 aprint_naive(": AGP controller\n"); 265 266 sc->as_dmat = pa->pa_dmat; 267 sc->as_pc = pa->pa_pc; 268 sc->as_tag = pa->pa_tag; 269 sc->as_id = pa->pa_id; 270 271 /* 272 * Work out an upper bound for agp memory allocation. This 273 * uses a heurisitc table from the Linux driver. 274 */ 275 memsize = ptoa(physmem) >> 20; 276 for (i = 0; i < agp_max_size; i++) { 277 if (memsize <= agp_max[i][0]) 278 break; 279 } 280 if (i == agp_max_size) 281 i = agp_max_size - 1; 282 sc->as_maxmem = agp_max[i][1] << 20U; 283 284 /* 285 * The lock is used to prevent re-entry to 286 * agp_generic_bind_memory() since that function can sleep. 287 */ 288 lockinit(&sc->as_lock, PZERO|PCATCH, "agplk", 0, 0); 289 290 TAILQ_INIT(&sc->as_memory); 291 292 ret = (*ap->ap_attach)(parent, self, pa); 293 if (ret == 0) 294 aprint_normal(": aperture at 0x%lx, size 0x%lx\n", 295 (unsigned long)sc->as_apaddr, 296 (unsigned long)AGP_GET_APERTURE(sc)); 297 else 298 sc->as_chipc = NULL; 299 } 300 int 301 agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc) 302 { 303 /* 304 * Find the aperture. Don't map it (yet), this would 305 * eat KVA. 306 */ 307 if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, AGP_APBASE, 308 PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize, 309 &sc->as_apflags) != 0) 310 return ENXIO; 311 312 sc->as_apt = pa->pa_memt; 313 314 return 0; 315 } 316 317 struct agp_gatt * 318 agp_alloc_gatt(struct agp_softc *sc) 319 { 320 u_int32_t apsize = AGP_GET_APERTURE(sc); 321 u_int32_t entries = apsize >> AGP_PAGE_SHIFT; 322 struct agp_gatt *gatt; 323 int dummyseg; 324 325 gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT); 326 if (!gatt) 327 return NULL; 328 gatt->ag_entries = entries; 329 330 if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t), 331 0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual, 332 &gatt->ag_physical, &gatt->ag_dmaseg, 1, &dummyseg) != 0) 333 return NULL; 334 335 gatt->ag_size = entries * sizeof(u_int32_t); 336 memset(gatt->ag_virtual, 0, gatt->ag_size); 337 agp_flush_cache(); 338 339 return gatt; 340 } 341 342 void 343 agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) 344 { 345 agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap, 346 (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1); 347 free(gatt, M_AGP); 348 } 349 350 351 int 352 agp_generic_detach(struct agp_softc *sc) 353 { 354 lockmgr(&sc->as_lock, LK_DRAIN, 0); 355 agp_flush_cache(); 356 return 0; 357 } 358 359 static int 360 agpdev_match(struct pci_attach_args *pa) 361 { 362 if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY && 363 PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA) 364 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP, 365 NULL, NULL)) 366 return 1; 367 368 return 0; 369 } 370 371 int 372 agp_generic_enable(struct agp_softc *sc, u_int32_t mode) 373 { 374 struct pci_attach_args pa; 375 pcireg_t tstatus, mstatus; 376 pcireg_t command; 377 int rq, sba, fw, rate, capoff; 378 379 if (pci_find_device(&pa, agpdev_match) == 0 || 380 pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP, 381 &capoff, NULL) == 0) { 382 printf("%s: can't find display\n", sc->as_dev.dv_xname); 383 return ENXIO; 384 } 385 386 tstatus = pci_conf_read(sc->as_pc, sc->as_tag, 387 sc->as_capoff + AGP_STATUS); 388 mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag, 389 capoff + AGP_STATUS); 390 391 /* Set RQ to the min of mode, tstatus and mstatus */ 392 rq = AGP_MODE_GET_RQ(mode); 393 if (AGP_MODE_GET_RQ(tstatus) < rq) 394 rq = AGP_MODE_GET_RQ(tstatus); 395 if (AGP_MODE_GET_RQ(mstatus) < rq) 396 rq = AGP_MODE_GET_RQ(mstatus); 397 398 /* Set SBA if all three can deal with SBA */ 399 sba = (AGP_MODE_GET_SBA(tstatus) 400 & AGP_MODE_GET_SBA(mstatus) 401 & AGP_MODE_GET_SBA(mode)); 402 403 /* Similar for FW */ 404 fw = (AGP_MODE_GET_FW(tstatus) 405 & AGP_MODE_GET_FW(mstatus) 406 & AGP_MODE_GET_FW(mode)); 407 408 /* Figure out the max rate */ 409 rate = (AGP_MODE_GET_RATE(tstatus) 410 & AGP_MODE_GET_RATE(mstatus) 411 & AGP_MODE_GET_RATE(mode)); 412 if (rate & AGP_MODE_RATE_4x) 413 rate = AGP_MODE_RATE_4x; 414 else if (rate & AGP_MODE_RATE_2x) 415 rate = AGP_MODE_RATE_2x; 416 else 417 rate = AGP_MODE_RATE_1x; 418 419 /* Construct the new mode word and tell the hardware */ 420 command = AGP_MODE_SET_RQ(0, rq); 421 command = AGP_MODE_SET_SBA(command, sba); 422 command = AGP_MODE_SET_FW(command, fw); 423 command = AGP_MODE_SET_RATE(command, rate); 424 command = AGP_MODE_SET_AGP(command, 1); 425 pci_conf_write(sc->as_pc, sc->as_tag, 426 sc->as_capoff + AGP_COMMAND, command); 427 pci_conf_write(pa.pa_pc, pa.pa_tag, capoff + AGP_COMMAND, command); 428 429 return 0; 430 } 431 432 struct agp_memory * 433 agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) 434 { 435 struct agp_memory *mem; 436 437 if ((size & (AGP_PAGE_SIZE - 1)) != 0) 438 return 0; 439 440 if (sc->as_allocated + size > sc->as_maxmem) 441 return 0; 442 443 if (type != 0) { 444 printf("agp_generic_alloc_memory: unsupported type %d\n", 445 type); 446 return 0; 447 } 448 449 mem = malloc(sizeof *mem, M_AGP, M_WAITOK); 450 if (mem == NULL) 451 return NULL; 452 453 if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1, 454 size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { 455 free(mem, M_AGP); 456 return NULL; 457 } 458 459 mem->am_id = sc->as_nextid++; 460 mem->am_size = size; 461 mem->am_type = 0; 462 mem->am_physical = 0; 463 mem->am_offset = 0; 464 mem->am_is_bound = 0; 465 TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link); 466 sc->as_allocated += size; 467 468 return mem; 469 } 470 471 int 472 agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) 473 { 474 if (mem->am_is_bound) 475 return EBUSY; 476 477 sc->as_allocated -= mem->am_size; 478 TAILQ_REMOVE(&sc->as_memory, mem, am_link); 479 bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap); 480 free(mem, M_AGP); 481 return 0; 482 } 483 484 int 485 agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, 486 off_t offset) 487 { 488 off_t i, k; 489 bus_size_t done, j; 490 int error; 491 bus_dma_segment_t *segs, *seg; 492 bus_addr_t pa; 493 int contigpages, nseg; 494 495 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0); 496 497 if (mem->am_is_bound) { 498 printf("%s: memory already bound\n", sc->as_dev.dv_xname); 499 lockmgr(&sc->as_lock, LK_RELEASE, 0); 500 return EINVAL; 501 } 502 503 if (offset < 0 504 || (offset & (AGP_PAGE_SIZE - 1)) != 0 505 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { 506 printf("%s: binding memory at bad offset %#lx\n", 507 sc->as_dev.dv_xname, (unsigned long) offset); 508 lockmgr(&sc->as_lock, LK_RELEASE, 0); 509 return EINVAL; 510 } 511 512 /* 513 * XXXfvdl 514 * The memory here needs to be directly accessable from the 515 * AGP video card, so it should be allocated using bus_dma. 516 * However, it need not be contiguous, since individual pages 517 * are translated using the GATT. 518 * 519 * Using a large chunk of contiguous memory may get in the way 520 * of other subsystems that may need one, so we try to be friendly 521 * and ask for allocation in chunks of a minimum of 8 pages 522 * of contiguous memory on average, falling back to 4, 2 and 1 523 * if really needed. Larger chunks are preferred, since allocating 524 * a bus_dma_segment per page would be overkill. 525 */ 526 527 for (contigpages = 8; contigpages > 0; contigpages >>= 1) { 528 nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1; 529 segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); 530 if (segs == NULL) { 531 lockmgr(&sc->as_lock, LK_RELEASE, 0); 532 return ENOMEM; 533 } 534 if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0, 535 segs, nseg, &mem->am_nseg, 536 contigpages > 1 ? 537 BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) { 538 free(segs, M_AGP); 539 continue; 540 } 541 if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg, 542 mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) { 543 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 544 free(segs, M_AGP); 545 continue; 546 } 547 if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap, 548 mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) { 549 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 550 mem->am_size); 551 bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg); 552 free(segs, M_AGP); 553 continue; 554 } 555 mem->am_dmaseg = segs; 556 break; 557 } 558 559 if (contigpages == 0) { 560 lockmgr(&sc->as_lock, LK_RELEASE, 0); 561 return ENOMEM; 562 } 563 564 565 /* 566 * Bind the individual pages and flush the chipset's 567 * TLB. 568 */ 569 done = 0; 570 for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { 571 seg = &mem->am_dmamap->dm_segs[i]; 572 /* 573 * Install entries in the GATT, making sure that if 574 * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not 575 * aligned to PAGE_SIZE, we don't modify too many GATT 576 * entries. 577 */ 578 for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; 579 j += AGP_PAGE_SIZE) { 580 pa = seg->ds_addr + j; 581 AGP_DPF("binding offset %#lx to pa %#lx\n", 582 (unsigned long)(offset + done + j), 583 (unsigned long)pa); 584 error = AGP_BIND_PAGE(sc, offset + done + j, pa); 585 if (error) { 586 /* 587 * Bail out. Reverse all the mappings 588 * and unwire the pages. 589 */ 590 for (k = 0; k < done + j; k += AGP_PAGE_SIZE) 591 AGP_UNBIND_PAGE(sc, offset + k); 592 593 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 594 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, 595 mem->am_size); 596 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, 597 mem->am_nseg); 598 free(mem->am_dmaseg, M_AGP); 599 lockmgr(&sc->as_lock, LK_RELEASE, 0); 600 return error; 601 } 602 } 603 done += seg->ds_len; 604 } 605 606 /* 607 * Flush the cpu cache since we are providing a new mapping 608 * for these pages. 609 */ 610 agp_flush_cache(); 611 612 /* 613 * Make sure the chipset gets the new mappings. 614 */ 615 AGP_FLUSH_TLB(sc); 616 617 mem->am_offset = offset; 618 mem->am_is_bound = 1; 619 620 lockmgr(&sc->as_lock, LK_RELEASE, 0); 621 622 return 0; 623 } 624 625 int 626 agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) 627 { 628 int i; 629 630 lockmgr(&sc->as_lock, LK_EXCLUSIVE, 0); 631 632 if (!mem->am_is_bound) { 633 printf("%s: memory is not bound\n", sc->as_dev.dv_xname); 634 lockmgr(&sc->as_lock, LK_RELEASE, 0); 635 return EINVAL; 636 } 637 638 639 /* 640 * Unbind the individual pages and flush the chipset's 641 * TLB. Unwire the pages so they can be swapped. 642 */ 643 for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) 644 AGP_UNBIND_PAGE(sc, mem->am_offset + i); 645 646 agp_flush_cache(); 647 AGP_FLUSH_TLB(sc); 648 649 bus_dmamap_unload(sc->as_dmat, mem->am_dmamap); 650 bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size); 651 bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg); 652 653 free(mem->am_dmaseg, M_AGP); 654 655 mem->am_offset = 0; 656 mem->am_is_bound = 0; 657 658 lockmgr(&sc->as_lock, LK_RELEASE, 0); 659 660 return 0; 661 } 662 663 /* Helper functions for implementing user/kernel api */ 664 665 static int 666 agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state) 667 { 668 if (sc->as_state != AGP_ACQUIRE_FREE) 669 return EBUSY; 670 sc->as_state = state; 671 672 return 0; 673 } 674 675 static int 676 agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state) 677 { 678 struct agp_memory *mem; 679 680 if (sc->as_state == AGP_ACQUIRE_FREE) 681 return 0; 682 683 if (sc->as_state != state) 684 return EBUSY; 685 686 /* 687 * Clear out outstanding aperture mappings. 688 * (should not be necessary, done by caller) 689 */ 690 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 691 if (mem->am_is_bound) { 692 printf("agp_release_helper: mem %d is bound\n", 693 mem->am_id); 694 AGP_UNBIND_MEMORY(sc, mem); 695 } 696 } 697 698 sc->as_state = AGP_ACQUIRE_FREE; 699 return 0; 700 } 701 702 static struct agp_memory * 703 agp_find_memory(struct agp_softc *sc, int id) 704 { 705 struct agp_memory *mem; 706 707 AGP_DPF("searching for memory block %d\n", id); 708 TAILQ_FOREACH(mem, &sc->as_memory, am_link) { 709 AGP_DPF("considering memory block %d\n", mem->am_id); 710 if (mem->am_id == id) 711 return mem; 712 } 713 return 0; 714 } 715 716 /* Implementation of the userland ioctl api */ 717 718 static int 719 agp_info_user(struct agp_softc *sc, agp_info *info) 720 { 721 memset(info, 0, sizeof *info); 722 info->bridge_id = sc->as_id; 723 if (sc->as_capoff != 0) 724 info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag, 725 sc->as_capoff + AGP_STATUS); 726 else 727 info->agp_mode = 0; /* i810 doesn't have real AGP */ 728 info->aper_base = sc->as_apaddr; 729 info->aper_size = AGP_GET_APERTURE(sc) >> 20; 730 info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT; 731 info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT; 732 733 return 0; 734 } 735 736 static int 737 agp_setup_user(struct agp_softc *sc, agp_setup *setup) 738 { 739 return AGP_ENABLE(sc, setup->agp_mode); 740 } 741 742 static int 743 agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc) 744 { 745 struct agp_memory *mem; 746 747 mem = AGP_ALLOC_MEMORY(sc, 748 alloc->type, 749 alloc->pg_count << AGP_PAGE_SHIFT); 750 if (mem) { 751 alloc->key = mem->am_id; 752 alloc->physical = mem->am_physical; 753 return 0; 754 } else { 755 return ENOMEM; 756 } 757 } 758 759 static int 760 agp_deallocate_user(struct agp_softc *sc, int id) 761 { 762 struct agp_memory *mem = agp_find_memory(sc, id); 763 764 if (mem) { 765 AGP_FREE_MEMORY(sc, mem); 766 return 0; 767 } else { 768 return ENOENT; 769 } 770 } 771 772 static int 773 agp_bind_user(struct agp_softc *sc, agp_bind *bind) 774 { 775 struct agp_memory *mem = agp_find_memory(sc, bind->key); 776 777 if (!mem) 778 return ENOENT; 779 780 return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT); 781 } 782 783 static int 784 agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind) 785 { 786 struct agp_memory *mem = agp_find_memory(sc, unbind->key); 787 788 if (!mem) 789 return ENOENT; 790 791 return AGP_UNBIND_MEMORY(sc, mem); 792 } 793 794 int 795 agpopen(dev_t dev, int oflags, int devtype, struct proc *p) 796 { 797 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 798 799 if (sc == NULL) 800 return ENXIO; 801 802 if (sc->as_chipc == NULL) 803 return ENXIO; 804 805 if (!sc->as_isopen) 806 sc->as_isopen = 1; 807 else 808 return EBUSY; 809 810 return 0; 811 } 812 813 int 814 agpclose(dev_t dev, int fflag, int devtype, struct proc *p) 815 { 816 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 817 struct agp_memory *mem; 818 819 /* 820 * Clear the GATT and force release on last close 821 */ 822 if (sc->as_state == AGP_ACQUIRE_USER) { 823 while ((mem = TAILQ_FIRST(&sc->as_memory))) { 824 if (mem->am_is_bound) { 825 printf("agpclose: mem %d is bound\n", 826 mem->am_id); 827 AGP_UNBIND_MEMORY(sc, mem); 828 } 829 /* 830 * XXX it is not documented, but if the protocol allows 831 * allocate->acquire->bind, it would be possible that 832 * memory ranges are allocated by the kernel here, 833 * which we shouldn't free. We'd have to keep track of 834 * the memory range's owner. 835 * The kernel API is unsed yet, so we get away with 836 * freeing all. 837 */ 838 AGP_FREE_MEMORY(sc, mem); 839 } 840 agp_release_helper(sc, AGP_ACQUIRE_USER); 841 } 842 sc->as_isopen = 0; 843 844 return 0; 845 } 846 847 int 848 agpioctl(dev_t dev, u_long cmd, caddr_t data, int fflag, struct proc *p) 849 { 850 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 851 852 if (sc == NULL) 853 return ENODEV; 854 855 if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO) 856 return EPERM; 857 858 switch (cmd) { 859 case AGPIOC_INFO: 860 return agp_info_user(sc, (agp_info *) data); 861 862 case AGPIOC_ACQUIRE: 863 return agp_acquire_helper(sc, AGP_ACQUIRE_USER); 864 865 case AGPIOC_RELEASE: 866 return agp_release_helper(sc, AGP_ACQUIRE_USER); 867 868 case AGPIOC_SETUP: 869 return agp_setup_user(sc, (agp_setup *)data); 870 871 case AGPIOC_ALLOCATE: 872 return agp_allocate_user(sc, (agp_allocate *)data); 873 874 case AGPIOC_DEALLOCATE: 875 return agp_deallocate_user(sc, *(int *) data); 876 877 case AGPIOC_BIND: 878 return agp_bind_user(sc, (agp_bind *)data); 879 880 case AGPIOC_UNBIND: 881 return agp_unbind_user(sc, (agp_unbind *)data); 882 883 } 884 885 return EINVAL; 886 } 887 888 paddr_t 889 agpmmap(dev_t dev, off_t offset, int prot) 890 { 891 struct agp_softc *sc = device_lookup(&agp_cd, AGPUNIT(dev)); 892 893 if (offset > AGP_GET_APERTURE(sc)) 894 return -1; 895 896 return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot, 897 BUS_SPACE_MAP_LINEAR)); 898 } 899 900 /* Implementation of the kernel api */ 901 902 void * 903 agp_find_device(int unit) 904 { 905 return device_lookup(&agp_cd, unit); 906 } 907 908 enum agp_acquire_state 909 agp_state(void *devcookie) 910 { 911 struct agp_softc *sc = devcookie; 912 return sc->as_state; 913 } 914 915 void 916 agp_get_info(void *devcookie, struct agp_info *info) 917 { 918 struct agp_softc *sc = devcookie; 919 920 info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag, 921 sc->as_capoff + AGP_STATUS); 922 info->ai_aperture_base = sc->as_apaddr; 923 info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */ 924 info->ai_memory_allowed = sc->as_maxmem; 925 info->ai_memory_used = sc->as_allocated; 926 } 927 928 int 929 agp_acquire(void *dev) 930 { 931 return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL); 932 } 933 934 int 935 agp_release(void *dev) 936 { 937 return agp_release_helper(dev, AGP_ACQUIRE_KERNEL); 938 } 939 940 int 941 agp_enable(void *dev, u_int32_t mode) 942 { 943 struct agp_softc *sc = dev; 944 945 return AGP_ENABLE(sc, mode); 946 } 947 948 void *agp_alloc_memory(void *dev, int type, vsize_t bytes) 949 { 950 struct agp_softc *sc = dev; 951 952 return (void *)AGP_ALLOC_MEMORY(sc, type, bytes); 953 } 954 955 void agp_free_memory(void *dev, void *handle) 956 { 957 struct agp_softc *sc = dev; 958 struct agp_memory *mem = (struct agp_memory *) handle; 959 AGP_FREE_MEMORY(sc, mem); 960 } 961 962 int agp_bind_memory(void *dev, void *handle, off_t offset) 963 { 964 struct agp_softc *sc = dev; 965 struct agp_memory *mem = (struct agp_memory *) handle; 966 967 return AGP_BIND_MEMORY(sc, mem, offset); 968 } 969 970 int agp_unbind_memory(void *dev, void *handle) 971 { 972 struct agp_softc *sc = dev; 973 struct agp_memory *mem = (struct agp_memory *) handle; 974 975 return AGP_UNBIND_MEMORY(sc, mem); 976 } 977 978 void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi) 979 { 980 struct agp_memory *mem = (struct agp_memory *) handle; 981 982 mi->ami_size = mem->am_size; 983 mi->ami_physical = mem->am_physical; 984 mi->ami_offset = mem->am_offset; 985 mi->ami_is_bound = mem->am_is_bound; 986 } 987 988 int 989 agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, 990 bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr, 991 bus_dma_segment_t *seg, int nseg, int *rseg) 992 993 { 994 int error, level = 0; 995 996 if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, 997 seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) 998 goto out; 999 level++; 1000 1001 if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, 1002 BUS_DMA_NOWAIT | flags)) != 0) 1003 goto out; 1004 level++; 1005 1006 if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, 1007 BUS_DMA_NOWAIT, mapp)) != 0) 1008 goto out; 1009 level++; 1010 1011 if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, 1012 BUS_DMA_NOWAIT)) != 0) 1013 goto out; 1014 1015 *baddr = (*mapp)->dm_segs[0].ds_addr; 1016 1017 return 0; 1018 out: 1019 switch (level) { 1020 case 3: 1021 bus_dmamap_destroy(tag, *mapp); 1022 /* FALLTHROUGH */ 1023 case 2: 1024 bus_dmamem_unmap(tag, *vaddr, size); 1025 /* FALLTHROUGH */ 1026 case 1: 1027 bus_dmamem_free(tag, seg, *rseg); 1028 break; 1029 default: 1030 break; 1031 } 1032 1033 return error; 1034 } 1035 1036 void 1037 agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, 1038 caddr_t vaddr, bus_dma_segment_t *seg, int nseg) 1039 { 1040 1041 bus_dmamap_unload(tag, map); 1042 bus_dmamap_destroy(tag, map); 1043 bus_dmamem_unmap(tag, vaddr, size); 1044 bus_dmamem_free(tag, seg, nseg); 1045 } 1046