xref: /netbsd-src/sys/dev/nand/nand.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /*	$NetBSD: nand.c,v 1.23 2013/10/20 17:13:18 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Department of Software Engineering,
5  *		      University of Szeged, Hungary
6  * Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by the Department of Software Engineering, University of Szeged, Hungary
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.23 2013/10/20 17:13:18 christos Exp $");
38 
39 #include "locators.h"
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/atomic.h>
46 
47 #include <dev/flash/flash.h>
48 #include <dev/flash/flash_io.h>
49 #include <dev/nand/nand.h>
50 #include <dev/nand/onfi.h>
51 #include <dev/nand/hamming.h>
52 #include <dev/nand/nand_bbt.h>
53 #include <dev/nand/nand_crc.h>
54 
55 #include "opt_nand.h"
56 
57 int nand_match(device_t, cfdata_t, void *);
58 void nand_attach(device_t, device_t, void *);
59 int nand_detach(device_t, int);
60 bool nand_shutdown(device_t, int);
61 
62 int nand_print(void *, const char *);
63 
64 static int nand_search(device_t, cfdata_t, const int *, void *);
65 static void nand_address_row(device_t, size_t);
66 static void nand_address_column(device_t, size_t, size_t);
67 static int nand_fill_chip_structure(device_t, struct nand_chip *);
68 static int nand_scan_media(device_t, struct nand_chip *);
69 static bool nand_check_wp(device_t);
70 
71 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
72     nand_match, nand_attach, nand_detach, NULL);
73 
74 #ifdef NAND_DEBUG
75 int	nanddebug = NAND_DEBUG;
76 #endif
77 
78 struct flash_interface nand_flash_if = {
79 	.type = FLASH_TYPE_NAND,
80 
81 	.read = nand_flash_read,
82 	.write = nand_flash_write,
83 	.erase = nand_flash_erase,
84 	.block_isbad = nand_flash_isbad,
85 	.block_markbad = nand_flash_markbad,
86 
87 	.submit = nand_flash_submit
88 };
89 
90 #ifdef NAND_VERBOSE
91 const struct nand_manufacturer nand_mfrs[] = {
92 	{ NAND_MFR_AMD,		"AMD" },
93 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
94 	{ NAND_MFR_RENESAS,	"Renesas" },
95 	{ NAND_MFR_STMICRO,	"ST Micro" },
96 	{ NAND_MFR_MICRON,	"Micron" },
97 	{ NAND_MFR_NATIONAL,	"National" },
98 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
99 	{ NAND_MFR_HYNIX,	"Hynix" },
100 	{ NAND_MFR_SAMSUNG,	"Samsung" },
101 	{ NAND_MFR_UNKNOWN,	"Unknown" }
102 };
103 
104 static const char *
105 nand_midtoname(int id)
106 {
107 	int i;
108 
109 	for (i = 0; nand_mfrs[i].id != 0; i++) {
110 		if (nand_mfrs[i].id == id)
111 			return nand_mfrs[i].name;
112 	}
113 
114 	KASSERT(nand_mfrs[i].id == 0);
115 
116 	return nand_mfrs[i].name;
117 }
118 #endif
119 
120 /* ARGSUSED */
121 int
122 nand_match(device_t parent, cfdata_t match, void *aux)
123 {
124 	/* pseudo device, always attaches */
125 	return 1;
126 }
127 
128 void
129 nand_attach(device_t parent, device_t self, void *aux)
130 {
131 	struct nand_softc *sc = device_private(self);
132 	struct nand_attach_args *naa = aux;
133 	struct nand_chip *chip = &sc->sc_chip;
134 
135 	sc->sc_dev = self;
136 	sc->controller_dev = parent;
137 	sc->nand_if = naa->naa_nand_if;
138 
139 	aprint_naive("\n");
140 
141 	if (nand_check_wp(self)) {
142 		aprint_error("NAND chip is write protected!\n");
143 		return;
144 	}
145 
146 	if (nand_scan_media(self, chip)) {
147 		return;
148 	}
149 
150 	nand_flash_if.erasesize = chip->nc_block_size;
151 	nand_flash_if.page_size = chip->nc_page_size;
152 	nand_flash_if.writesize = chip->nc_page_size;
153 
154 	/* allocate cache */
155 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
156 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
157 
158 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
159 
160 	if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
161 		goto error;
162 	}
163 
164 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
165 		aprint_error_dev(sc->sc_dev,
166 		    "couldn't establish power handler\n");
167 
168 #ifdef NAND_BBT
169 	nand_bbt_init(self);
170 	nand_bbt_scan(self);
171 #endif
172 
173 	/*
174 	 * Attach all our devices
175 	 */
176 	config_search_ia(nand_search, self, NULL, NULL);
177 
178 	return;
179 error:
180 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
181 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
182 	mutex_destroy(&sc->sc_device_lock);
183 }
184 
185 static int
186 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
187 {
188 	struct nand_softc *sc = device_private(parent);
189 	struct nand_chip *chip = &sc->sc_chip;
190 	struct flash_attach_args faa;
191 
192 	faa.flash_if = &nand_flash_if;
193 
194 	faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
195 
196 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
197 		faa.partinfo.part_size = chip->nc_size -
198 		    faa.partinfo.part_offset;
199 	} else {
200 		faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
201 	}
202 
203 	if (cf->cf_loc[FLASHBUSCF_READONLY])
204 		faa.partinfo.part_flags = FLASH_PART_READONLY;
205 	else
206 		faa.partinfo.part_flags = 0;
207 
208 	if (config_match(parent, cf, &faa)) {
209 		if (config_attach(parent, cf, &faa, nand_print) != NULL) {
210 			return 0;
211 		} else {
212 			return 1;
213 		}
214 	}
215 
216 	return 1;
217 }
218 
219 int
220 nand_detach(device_t self, int flags)
221 {
222 	struct nand_softc *sc = device_private(self);
223 	struct nand_chip *chip = &sc->sc_chip;
224 	int error = 0;
225 
226 	error = config_detach_children(self, flags);
227 	if (error) {
228 		return error;
229 	}
230 
231 	flash_sync_thread_destroy(&sc->sc_flash_io);
232 #ifdef NAND_BBT
233 	nand_bbt_detach(self);
234 #endif
235 	/* free oob cache */
236 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
237 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
238 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
239 
240 	mutex_destroy(&sc->sc_device_lock);
241 
242 	pmf_device_deregister(sc->sc_dev);
243 
244 	return error;
245 }
246 
247 int
248 nand_print(void *aux, const char *pnp)
249 {
250 	if (pnp != NULL)
251 		aprint_normal("nand at %s\n", pnp);
252 
253 	return UNCONF;
254 }
255 
256 /* ask for a nand driver to attach to the controller */
257 device_t
258 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
259 {
260 	struct nand_attach_args arg;
261 
262 	KASSERT(nand_if != NULL);
263 
264 	/* fill the defaults if we have null pointers */
265 	if (nand_if->program_page == NULL) {
266 		nand_if->program_page = &nand_default_program_page;
267 	}
268 
269 	if (nand_if->read_page == NULL) {
270 		nand_if->read_page = &nand_default_read_page;
271 	}
272 
273 	arg.naa_nand_if = nand_if;
274 	return config_found_ia(parent, "nandbus", &arg, nand_print);
275 }
276 
277 /* default everything to reasonable values, to ease future api changes */
278 void
279 nand_init_interface(struct nand_interface *interface)
280 {
281 	interface->select = &nand_default_select;
282 	interface->command = NULL;
283 	interface->address = NULL;
284 	interface->read_buf_1 = NULL;
285 	interface->read_buf_2 = NULL;
286 	interface->read_1 = NULL;
287 	interface->read_2 = NULL;
288 	interface->write_buf_1 = NULL;
289 	interface->write_buf_2 = NULL;
290 	interface->write_1 = NULL;
291 	interface->write_2 = NULL;
292 	interface->busy = NULL;
293 
294 	/*-
295 	 * most drivers dont want to change this, but some implement
296 	 * read/program in one step
297 	 */
298 	interface->program_page = &nand_default_program_page;
299 	interface->read_page = &nand_default_read_page;
300 
301 	/* default to soft ecc, that should work everywhere */
302 	interface->ecc_compute = &nand_default_ecc_compute;
303 	interface->ecc_correct = &nand_default_ecc_correct;
304 	interface->ecc_prepare = NULL;
305 	interface->ecc.necc_code_size = 3;
306 	interface->ecc.necc_block_size = 256;
307 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
308 }
309 
310 #if 0
311 /* handle quirks here */
312 static void
313 nand_quirks(device_t self, struct nand_chip *chip)
314 {
315 	/* this is an example only! */
316 	switch (chip->nc_manf_id) {
317 	case NAND_MFR_SAMSUNG:
318 		if (chip->nc_dev_id == 0x00) {
319 			/* do something only samsung chips need */
320 			/* or */
321 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
322 		}
323 	}
324 
325 	return;
326 }
327 #endif
328 
329 static int
330 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
331 {
332 	switch (chip->nc_manf_id) {
333 	case NAND_MFR_MICRON:
334 		return nand_read_parameters_micron(self, chip);
335 	case NAND_MFR_SAMSUNG:
336 		return nand_read_parameters_samsung(self, chip);
337 	default:
338 		return 1;
339 	}
340 
341 	return 0;
342 }
343 
344 /**
345  * scan media to determine the chip's properties
346  * this function resets the device
347  */
348 static int
349 nand_scan_media(device_t self, struct nand_chip *chip)
350 {
351 	struct nand_softc *sc = device_private(self);
352 	struct nand_ecc *ecc;
353 	uint8_t onfi_signature[4];
354 
355 	nand_select(self, true);
356 	nand_command(self, ONFI_RESET);
357 	nand_select(self, false);
358 
359 	/* check if the device implements the ONFI standard */
360 	nand_select(self, true);
361 	nand_command(self, ONFI_READ_ID);
362 	nand_address(self, 0x20);
363 	nand_read_1(self, &onfi_signature[0]);
364 	nand_read_1(self, &onfi_signature[1]);
365 	nand_read_1(self, &onfi_signature[2]);
366 	nand_read_1(self, &onfi_signature[3]);
367 	nand_select(self, false);
368 
369 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
370 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
371 		chip->nc_isonfi = false;
372 
373 		aprint_normal(": Legacy NAND Flash\n");
374 
375 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
376 
377 		if (nand_fill_chip_structure_legacy(self, chip)) {
378 			aprint_error_dev(self,
379 			    "can't read device parameters for legacy chip\n");
380 			return 1;
381 		}
382 	} else {
383 		chip->nc_isonfi = true;
384 
385 		aprint_normal(": ONFI NAND Flash\n");
386 
387 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
388 
389 		if (nand_fill_chip_structure(self, chip)) {
390 			aprint_error_dev(self,
391 			    "can't read device parameters\n");
392 			return 1;
393 		}
394 	}
395 
396 #ifdef NAND_VERBOSE
397 	aprint_normal_dev(self,
398 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
399 	    chip->nc_manf_id,
400 	    nand_midtoname(chip->nc_manf_id),
401 	    chip->nc_dev_id);
402 #endif
403 
404 	aprint_normal_dev(self,
405 	    "page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, "
406 	    "block size: %" PRIu32 " bytes\n",
407 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
408 
409 	aprint_normal_dev(self,
410 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
411 	    ", total storage size: %" PRIu64 " MB\n",
412 	    chip->nc_lun_blocks, chip->nc_num_luns,
413 	    chip->nc_size / 1024 / 1024);
414 
415 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
416 	    PRIu8 ", width: %s\n",
417 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row,
418 	    (chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8");
419 
420 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
421 
422 	/*
423 	 * calculate the place of ecc data in oob
424 	 * we try to be compatible with Linux here
425 	 */
426 	switch (chip->nc_spare_size) {
427 	case 8:
428 		ecc->necc_offset = 0;
429 		break;
430 	case 16:
431 		ecc->necc_offset = 0;
432 		break;
433 	case 32:
434 		ecc->necc_offset = 0;
435 		break;
436 	case 64:
437 		ecc->necc_offset = 40;
438 		break;
439 	case 128:
440 		ecc->necc_offset = 80;
441 		break;
442 	default:
443 		panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size);
444 	}
445 
446 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
447 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
448 
449 	/* check if we fit in oob */
450 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
451 		panic("NAND ECC bits dont fit in OOB");
452 	}
453 
454 	/* TODO: mark free oob area available for file systems */
455 
456 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
457 
458 	/*
459 	 * calculate badblock marker offset in oob
460 	 * we try to be compatible with linux here
461 	 */
462 	if (chip->nc_page_size > 512)
463 		chip->nc_badmarker_offs = 0;
464 	else
465 		chip->nc_badmarker_offs = 5;
466 
467 	/* Calculate page shift and mask */
468 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
469 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
470 	/* same for block */
471 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
472 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
473 
474 	/* look for quirks here if needed in future */
475 	/* nand_quirks(self, chip); */
476 
477 	return 0;
478 }
479 
480 void
481 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
482 {
483 	nand_select(self, true);
484 	nand_command(self, ONFI_READ_ID);
485 	nand_address(self, 0x00);
486 
487 	nand_read_1(self, manf);
488 	nand_read_1(self, dev);
489 
490 	nand_select(self, false);
491 }
492 
493 int
494 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
495 {
496 	uint8_t *bufp;
497 	uint16_t crc;
498 	int i;//, tries = 0;
499 
500 	KASSERT(sizeof(*params) == 256);
501 
502 //read_params:
503 //	tries++;
504 
505 	nand_select(self, true);
506 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
507 	nand_address(self, 0x00);
508 
509 	nand_busy(self);
510 
511 	/* TODO check the signature if it contains at least 2 letters */
512 
513 	bufp = (uint8_t *)params;
514 	/* XXX why i am not using read_buf? */
515 	for (i = 0; i < 256; i++) {
516 		nand_read_1(self, &bufp[i]);
517 	}
518 	nand_select(self, false);
519 
520 	/* validate the parameter page with the crc */
521 	crc = nand_crc16(bufp, 254);
522 
523 	if (crc != params->param_integrity_crc) {
524 		aprint_error_dev(self, "parameter page crc check failed\n");
525 		/* TODO: we should read the next parameter page copy */
526 		return 1;
527 	}
528 
529 	return 0;
530 }
531 
532 static int
533 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
534 {
535 	struct onfi_parameter_page params;
536 	uint8_t	vendor[13], model[21];
537 	int i;
538 
539 	if (nand_read_parameter_page(self, &params)) {
540 		return 1;
541 	}
542 
543 	/* strip manufacturer and model string */
544 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
545 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
546 		vendor[i] = 0;
547 	strlcpy(model, params.param_model, sizeof(model));
548 	for (i = 19; i > 0 && model[i] == ' '; i--)
549 		model[i] = 0;
550 
551 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
552 
553 	chip->nc_page_size = le32toh(params.param_pagesize);
554 	chip->nc_block_size =
555 	    le32toh(params.param_blocksize) * chip->nc_page_size;
556 	chip->nc_spare_size = le16toh(params.param_sparesize);
557 	chip->nc_lun_blocks = le32toh(params.param_lunsize);
558 	chip->nc_num_luns = params.param_numluns;
559 
560 	chip->nc_size =
561 	    chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns;
562 
563 	/* the lower 4 bits contain the row address cycles */
564 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
565 	/* the upper 4 bits contain the column address cycles */
566 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
567 
568 	uint16_t features = le16toh(params.param_features);
569 	if (features & ONFI_FEATURE_16BIT) {
570 		chip->nc_flags |= NC_BUSWIDTH_16;
571 	}
572 
573 	if (features & ONFI_FEATURE_EXTENDED_PARAM) {
574 		chip->nc_flags |= NC_EXTENDED_PARAM;
575 	}
576 
577 	return 0;
578 }
579 
580 /* ARGSUSED */
581 bool
582 nand_shutdown(device_t self, int howto)
583 {
584 	return true;
585 }
586 
587 static void
588 nand_address_column(device_t self, size_t row, size_t column)
589 {
590 	struct nand_softc *sc = device_private(self);
591 	struct nand_chip *chip = &sc->sc_chip;
592 	uint8_t i;
593 
594 	DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n",
595 		(uintmax_t )row, column));
596 
597 	/* XXX TODO */
598 	row >>= chip->nc_page_shift;
599 
600 	/* Write the column (subpage) address */
601 	if (chip->nc_flags & NC_BUSWIDTH_16)
602 		column >>= 1;
603 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
604 		nand_address(self, column & 0xff);
605 
606 	/* Write the row (page) address */
607 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
608 		nand_address(self, row & 0xff);
609 }
610 
611 static void
612 nand_address_row(device_t self, size_t row)
613 {
614 	struct nand_softc *sc = device_private(self);
615 	struct nand_chip *chip = &sc->sc_chip;
616 	int i;
617 
618 	/* XXX TODO */
619 	row >>= chip->nc_page_shift;
620 
621 	/* Write the row (page) address */
622 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
623 		nand_address(self, row & 0xff);
624 }
625 
626 static inline uint8_t
627 nand_get_status(device_t self)
628 {
629 	uint8_t status;
630 
631 	nand_command(self, ONFI_READ_STATUS);
632 	nand_busy(self);
633 	nand_read_1(self, &status);
634 
635 	return status;
636 }
637 
638 static bool
639 nand_check_wp(device_t self)
640 {
641 	if (nand_get_status(self) & 0x80)
642 		return false;
643 	else
644 		return true;
645 }
646 
647 static void
648 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
649 {
650 	nand_command(self, ONFI_READ);
651 	nand_address_column(self, row, column);
652 	nand_command(self, ONFI_READ_START);
653 
654 	nand_busy(self);
655 }
656 
657 /* read a page with ecc correction, default implementation */
658 int
659 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
660 {
661 	struct nand_softc *sc = device_private(self);
662 	struct nand_chip *chip = &sc->sc_chip;
663 	size_t b, bs, e, cs;
664 	uint8_t *ecc;
665 	int result;
666 
667 	nand_prepare_read(self, offset, 0);
668 
669 	bs = chip->nc_ecc->necc_block_size;
670 	cs = chip->nc_ecc->necc_code_size;
671 
672 	/* decide if we access by 8 or 16 bits */
673 	if (chip->nc_flags & NC_BUSWIDTH_16) {
674 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
675 			nand_ecc_prepare(self, NAND_ECC_READ);
676 			nand_read_buf_2(self, data + b, bs);
677 			nand_ecc_compute(self, data + b,
678 			    chip->nc_ecc_cache + e);
679 		}
680 	} else {
681 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
682 			nand_ecc_prepare(self, NAND_ECC_READ);
683 			nand_read_buf_1(self, data + b, bs);
684 			nand_ecc_compute(self, data + b,
685 			    chip->nc_ecc_cache + e);
686 		}
687 	}
688 
689 	/* for debugging new drivers */
690 #if 0
691 	nand_dump_data("page", data, chip->nc_page_size);
692 #endif
693 
694 	nand_read_oob(self, offset, chip->nc_oob_cache);
695 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
696 
697 	/* useful for debugging new ecc drivers */
698 #if 0
699 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
700 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
701 		printf("0x");
702 		for (b = 0; b < cs; b++) {
703 			printf("%.2hhx", ecc[e+b]);
704 		}
705 		printf(" 0x");
706 		for (b = 0; b < cs; b++) {
707 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
708 		}
709 		printf("\n");
710 	}
711 	printf("--------------\n");
712 #endif
713 
714 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
715 		result = nand_ecc_correct(self, data + b, ecc + e,
716 		    chip->nc_ecc_cache + e);
717 
718 		switch (result) {
719 		case NAND_ECC_OK:
720 			break;
721 		case NAND_ECC_CORRECTED:
722 			aprint_error_dev(self,
723 			    "data corrected with ECC at page offset 0x%jx "
724 			    "block %zu\n", (uintmax_t)offset, b);
725 			break;
726 		case NAND_ECC_TWOBIT:
727 			aprint_error_dev(self,
728 			    "uncorrectable ECC error at page offset 0x%jx "
729 			    "block %zu\n", (uintmax_t)offset, b);
730 			return EIO;
731 			break;
732 		case NAND_ECC_INVALID:
733 			aprint_error_dev(self,
734 			    "invalid ECC in oob at page offset 0x%jx "
735 			    "block %zu\n", (uintmax_t)offset, b);
736 			return EIO;
737 			break;
738 		default:
739 			panic("invalid ECC correction errno");
740 		}
741 	}
742 
743 	return 0;
744 }
745 
746 int
747 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
748 {
749 	struct nand_softc *sc = device_private(self);
750 	struct nand_chip *chip = &sc->sc_chip;
751 	size_t bs, cs, e, b;
752 	uint8_t status;
753 	uint8_t *ecc;
754 
755 	nand_command(self, ONFI_PAGE_PROGRAM);
756 	nand_address_column(self, page, 0);
757 
758 	nand_busy(self);
759 
760 	bs = chip->nc_ecc->necc_block_size;
761 	cs = chip->nc_ecc->necc_code_size;
762 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
763 
764 	/* XXX code duplication */
765 	/* decide if we access by 8 or 16 bits */
766 	if (chip->nc_flags & NC_BUSWIDTH_16) {
767 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
768 			nand_ecc_prepare(self, NAND_ECC_WRITE);
769 			nand_write_buf_2(self, data + b, bs);
770 			nand_ecc_compute(self, data + b, ecc + e);
771 		}
772 		/* write oob with ecc correction code */
773 		nand_write_buf_2(self, chip->nc_oob_cache,
774 		    chip->nc_spare_size);
775 	} else {
776 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
777 			nand_ecc_prepare(self, NAND_ECC_WRITE);
778 			nand_write_buf_1(self, data + b, bs);
779 			nand_ecc_compute(self, data + b, ecc + e);
780 		}
781 		/* write oob with ecc correction code */
782 		nand_write_buf_1(self, chip->nc_oob_cache,
783 		    chip->nc_spare_size);
784 	}
785 
786 	nand_command(self, ONFI_PAGE_PROGRAM_START);
787 
788 	nand_busy(self);
789 
790 	/* for debugging ecc */
791 #if 0
792 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
793 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
794 		printf("0x");
795 		for (b = 0; b < cs; b++) {
796 			printf("%.2hhx", ecc[e+b]);
797 		}
798 		printf("\n");
799 	}
800 	printf("--------------\n");
801 #endif
802 
803 	status = nand_get_status(self);
804 	KASSERT(status & ONFI_STATUS_RDY);
805 	if (status & ONFI_STATUS_FAIL) {
806 		aprint_error_dev(self, "page program failed!\n");
807 		return EIO;
808 	}
809 
810 	return 0;
811 }
812 
813 /* read the OOB of a page */
814 int
815 nand_read_oob(device_t self, size_t page, uint8_t *oob)
816 {
817 	struct nand_softc *sc = device_private(self);
818 	struct nand_chip *chip = &sc->sc_chip;
819 
820 	nand_prepare_read(self, page, chip->nc_page_size);
821 
822 	if (chip->nc_flags & NC_BUSWIDTH_16)
823 		nand_read_buf_2(self, oob, chip->nc_spare_size);
824 	else
825 		nand_read_buf_1(self, oob, chip->nc_spare_size);
826 
827 	/* for debugging drivers */
828 #if 0
829 	nand_dump_data("oob", oob, chip->nc_spare_size);
830 #endif
831 
832 	return 0;
833 }
834 
835 static int
836 nand_write_oob(device_t self, size_t offset, const void *oob)
837 {
838 	struct nand_softc *sc = device_private(self);
839 	struct nand_chip *chip = &sc->sc_chip;
840 	uint8_t status;
841 
842 	nand_command(self, ONFI_PAGE_PROGRAM);
843 	nand_address_column(self, offset, chip->nc_page_size);
844 	nand_command(self, ONFI_PAGE_PROGRAM_START);
845 
846 	nand_busy(self);
847 
848 	if (chip->nc_flags & NC_BUSWIDTH_16)
849 		nand_write_buf_2(self, oob, chip->nc_spare_size);
850 	else
851 		nand_write_buf_1(self, oob, chip->nc_spare_size);
852 
853 	status = nand_get_status(self);
854 	KASSERT(status & ONFI_STATUS_RDY);
855 	if (status & ONFI_STATUS_FAIL)
856 		return EIO;
857 	else
858 		return 0;
859 }
860 
861 void
862 nand_markbad(device_t self, size_t offset)
863 {
864 	struct nand_softc *sc = device_private(self);
865 	struct nand_chip *chip = &sc->sc_chip;
866 	flash_off_t blockoffset;
867 #ifdef NAND_BBT
868 	flash_off_t block;
869 
870 	block = offset / chip->nc_block_size;
871 
872 	nand_bbt_block_markbad(self, block);
873 #endif
874 	blockoffset = offset & chip->nc_block_mask;
875 
876 	/* check if it is already marked bad */
877 	if (nand_isbad(self, blockoffset))
878 		return;
879 
880 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
881 
882 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
883 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
884 
885 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
886 }
887 
888 bool
889 nand_isfactorybad(device_t self, flash_off_t offset)
890 {
891 	struct nand_softc *sc = device_private(self);
892 	struct nand_chip *chip = &sc->sc_chip;
893 	flash_off_t block, first_page, last_page, page;
894 	int i;
895 
896 	/* Check for factory bad blocks first
897 	 * Factory bad blocks are marked in the first or last
898 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
899 	 */
900 	block = offset / chip->nc_block_size;
901 	first_page = block * chip->nc_block_size;
902 	last_page = (block + 1) * chip->nc_block_size
903 	    - chip->nc_page_size;
904 
905 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
906 		/* address OOB */
907 		nand_prepare_read(self, page, chip->nc_page_size);
908 
909 		if (chip->nc_flags & NC_BUSWIDTH_16) {
910 			uint16_t word;
911 			nand_read_2(self, &word);
912 			if (word == 0x0000)
913 				return true;
914 		} else {
915 			uint8_t byte;
916 			nand_read_1(self, &byte);
917 			if (byte == 0x00)
918 				return true;
919 		}
920 	}
921 
922 	return false;
923 }
924 
925 bool
926 nand_iswornoutbad(device_t self, flash_off_t offset)
927 {
928 	struct nand_softc *sc = device_private(self);
929 	struct nand_chip *chip = &sc->sc_chip;
930 	flash_off_t block;
931 
932 	/* we inspect the first page of the block */
933 	block = offset & chip->nc_block_mask;
934 
935 	/* Linux/u-boot compatible badblock handling */
936 	if (chip->nc_flags & NC_BUSWIDTH_16) {
937 		uint16_t word, mark;
938 
939 		nand_prepare_read(self, block,
940 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
941 
942 		nand_read_2(self, &word);
943 		mark = htole16(word);
944 		if (chip->nc_badmarker_offs & 0x01)
945 			mark >>= 8;
946 		if ((mark & 0xff) != 0xff)
947 			return true;
948 	} else {
949 		uint8_t byte;
950 
951 		nand_prepare_read(self, block,
952 		    chip->nc_page_size + chip->nc_badmarker_offs);
953 
954 		nand_read_1(self, &byte);
955 		if (byte != 0xff)
956 			return true;
957 	}
958 
959 	return false;
960 }
961 
962 bool
963 nand_isbad(device_t self, flash_off_t offset)
964 {
965 #ifdef NAND_BBT
966 	struct nand_softc *sc = device_private(self);
967 	struct nand_chip *chip = &sc->sc_chip;
968 	flash_off_t block;
969 
970 	block = offset / chip->nc_block_size;
971 
972 	return nand_bbt_block_isbad(self, block);
973 #else
974 	/* ONFI host requirement */
975 	if (nand_isfactorybad(self, offset))
976 		return true;
977 
978 	/* Look for Linux/U-Boot compatible bad marker */
979 	if (nand_iswornoutbad(self, offset))
980 		return true;
981 
982 	return false;
983 #endif
984 }
985 
986 int
987 nand_erase_block(device_t self, size_t offset)
988 {
989 	uint8_t status;
990 
991 	/* xxx calculate first page of block for address? */
992 
993 	nand_command(self, ONFI_BLOCK_ERASE);
994 	nand_address_row(self, offset);
995 	nand_command(self, ONFI_BLOCK_ERASE_START);
996 
997 	nand_busy(self);
998 
999 	status = nand_get_status(self);
1000 	KASSERT(status & ONFI_STATUS_RDY);
1001 	if (status & ONFI_STATUS_FAIL) {
1002 		aprint_error_dev(self, "block erase failed!\n");
1003 		nand_markbad(self, offset);
1004 		return EIO;
1005 	} else {
1006 		return 0;
1007 	}
1008 }
1009 
1010 /* default functions for driver development */
1011 
1012 /* default ECC using hamming code of 256 byte chunks */
1013 int
1014 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
1015 {
1016 	hamming_compute_256(data, code);
1017 
1018 	return 0;
1019 }
1020 
1021 int
1022 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
1023 	const uint8_t *compcode)
1024 {
1025 	return hamming_correct_256(data, origcode, compcode);
1026 }
1027 
1028 void
1029 nand_default_select(device_t self, bool enable)
1030 {
1031 	/* do nothing */
1032 	return;
1033 }
1034 
1035 /* implementation of the block device API */
1036 
1037 int
1038 nand_flash_submit(device_t self, struct buf * const bp)
1039 {
1040 	struct nand_softc *sc = device_private(self);
1041 
1042 	return flash_io_submit(&sc->sc_flash_io, bp);
1043 }
1044 
1045 /*
1046  * handle (page) unaligned write to nand
1047  */
1048 static int
1049 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
1050     size_t *retlen, const uint8_t *buf)
1051 {
1052 	struct nand_softc *sc = device_private(self);
1053 	struct nand_chip *chip = &sc->sc_chip;
1054 	flash_off_t first, last, firstoff;
1055 	const uint8_t *bufp;
1056 	flash_off_t addr;
1057 	size_t left, count;
1058 	int error = 0, i;
1059 
1060 	first = offset & chip->nc_page_mask;
1061 	firstoff = offset & ~chip->nc_page_mask;
1062 	/* XXX check if this should be len - 1 */
1063 	last = (offset + len) & chip->nc_page_mask;
1064 	count = last - first + 1;
1065 
1066 	addr = first;
1067 	*retlen = 0;
1068 
1069 	mutex_enter(&sc->sc_device_lock);
1070 	if (count == 1) {
1071 		if (nand_isbad(self, addr)) {
1072 			aprint_error_dev(self,
1073 			    "nand_flash_write_unaligned: "
1074 			    "bad block encountered\n");
1075 			error = EIO;
1076 			goto out;
1077 		}
1078 
1079 		error = nand_read_page(self, addr, chip->nc_page_cache);
1080 		if (error) {
1081 			goto out;
1082 		}
1083 
1084 		memcpy(chip->nc_page_cache + firstoff, buf, len);
1085 
1086 		error = nand_program_page(self, addr, chip->nc_page_cache);
1087 		if (error) {
1088 			goto out;
1089 		}
1090 
1091 		*retlen = len;
1092 		goto out;
1093 	}
1094 
1095 	bufp = buf;
1096 	left = len;
1097 
1098 	for (i = 0; i < count && left != 0; i++) {
1099 		if (nand_isbad(self, addr)) {
1100 			aprint_error_dev(self,
1101 			    "nand_flash_write_unaligned: "
1102 			    "bad block encountered\n");
1103 			error = EIO;
1104 			goto out;
1105 		}
1106 
1107 		if (i == 0) {
1108 			error = nand_read_page(self,
1109 			    addr, chip->nc_page_cache);
1110 			if (error) {
1111 				goto out;
1112 			}
1113 
1114 			memcpy(chip->nc_page_cache + firstoff,
1115 			    bufp, chip->nc_page_size - firstoff);
1116 
1117 			printf("program page: %s: %d\n", __FILE__, __LINE__);
1118 			error = nand_program_page(self,
1119 			    addr, chip->nc_page_cache);
1120 			if (error) {
1121 				goto out;
1122 			}
1123 
1124 			bufp += chip->nc_page_size - firstoff;
1125 			left -= chip->nc_page_size - firstoff;
1126 			*retlen += chip->nc_page_size - firstoff;
1127 
1128 		} else if (i == count - 1) {
1129 			error = nand_read_page(self,
1130 			    addr, chip->nc_page_cache);
1131 			if (error) {
1132 				goto out;
1133 			}
1134 
1135 			memcpy(chip->nc_page_cache, bufp, left);
1136 
1137 			error = nand_program_page(self,
1138 			    addr, chip->nc_page_cache);
1139 			if (error) {
1140 				goto out;
1141 			}
1142 
1143 			*retlen += left;
1144 			KASSERT(left < chip->nc_page_size);
1145 
1146 		} else {
1147 			/* XXX debug */
1148 			if (left > chip->nc_page_size) {
1149 				printf("left: %zu, i: %d, count: %zu\n",
1150 				    left, i, count);
1151 			}
1152 			KASSERT(left > chip->nc_page_size);
1153 
1154 			error = nand_program_page(self, addr, bufp);
1155 			if (error) {
1156 				goto out;
1157 			}
1158 
1159 			bufp += chip->nc_page_size;
1160 			left -= chip->nc_page_size;
1161 			*retlen += chip->nc_page_size;
1162 		}
1163 
1164 		addr += chip->nc_page_size;
1165 	}
1166 
1167 	KASSERT(*retlen == len);
1168 out:
1169 	mutex_exit(&sc->sc_device_lock);
1170 
1171 	return error;
1172 }
1173 
1174 int
1175 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1176     const uint8_t *buf)
1177 {
1178 	struct nand_softc *sc = device_private(self);
1179 	struct nand_chip *chip = &sc->sc_chip;
1180 	const uint8_t *bufp;
1181 	size_t pages, page;
1182 	daddr_t addr;
1183 	int error = 0;
1184 
1185 	if ((offset + len) > chip->nc_size) {
1186 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1187 			" is over device size (0x%jx)\n",
1188 			(uintmax_t)offset, (uintmax_t)len,
1189 			(uintmax_t)chip->nc_size));
1190 		return EINVAL;
1191 	}
1192 
1193 	if (len % chip->nc_page_size != 0 ||
1194 	    offset % chip->nc_page_size != 0) {
1195 		return nand_flash_write_unaligned(self,
1196 		    offset, len, retlen, buf);
1197 	}
1198 
1199 	pages = len / chip->nc_page_size;
1200 	KASSERT(pages != 0);
1201 	*retlen = 0;
1202 
1203 	addr = offset;
1204 	bufp = buf;
1205 
1206 	mutex_enter(&sc->sc_device_lock);
1207 	for (page = 0; page < pages; page++) {
1208 		/* do we need this check here? */
1209 		if (nand_isbad(self, addr)) {
1210 			aprint_error_dev(self,
1211 			    "nand_flash_write: bad block encountered\n");
1212 
1213 			error = EIO;
1214 			goto out;
1215 		}
1216 
1217 		error = nand_program_page(self, addr, bufp);
1218 		if (error) {
1219 			goto out;
1220 		}
1221 
1222 		addr += chip->nc_page_size;
1223 		bufp += chip->nc_page_size;
1224 		*retlen += chip->nc_page_size;
1225 	}
1226 out:
1227 	mutex_exit(&sc->sc_device_lock);
1228 	DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len));
1229 
1230 	return error;
1231 }
1232 
1233 /*
1234  * handle (page) unaligned read from nand
1235  */
1236 static int
1237 nand_flash_read_unaligned(device_t self, size_t offset,
1238     size_t len, size_t *retlen, uint8_t *buf)
1239 {
1240 	struct nand_softc *sc = device_private(self);
1241 	struct nand_chip *chip = &sc->sc_chip;
1242 	daddr_t first, last, count, firstoff;
1243 	uint8_t *bufp;
1244 	daddr_t addr;
1245 	size_t left;
1246 	int error = 0, i;
1247 
1248 	first = offset & chip->nc_page_mask;
1249 	firstoff = offset & ~chip->nc_page_mask;
1250 	last = (offset + len) & chip->nc_page_mask;
1251 	count = (last - first) / chip->nc_page_size + 1;
1252 
1253 	addr = first;
1254 	bufp = buf;
1255 	left = len;
1256 	*retlen = 0;
1257 
1258 	mutex_enter(&sc->sc_device_lock);
1259 	if (count == 1) {
1260 		error = nand_read_page(self, addr, chip->nc_page_cache);
1261 		if (error) {
1262 			goto out;
1263 		}
1264 
1265 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
1266 
1267 		*retlen = len;
1268 		goto out;
1269 	}
1270 
1271 	for (i = 0; i < count && left != 0; i++) {
1272 		error = nand_read_page(self, addr, chip->nc_page_cache);
1273 		if (error) {
1274 			goto out;
1275 		}
1276 
1277 		if (i == 0) {
1278 			memcpy(bufp, chip->nc_page_cache + firstoff,
1279 			    chip->nc_page_size - firstoff);
1280 
1281 			bufp += chip->nc_page_size - firstoff;
1282 			left -= chip->nc_page_size - firstoff;
1283 			*retlen += chip->nc_page_size - firstoff;
1284 
1285 		} else if (i == count - 1) {
1286 			memcpy(bufp, chip->nc_page_cache, left);
1287 			*retlen += left;
1288 			KASSERT(left < chip->nc_page_size);
1289 
1290 		} else {
1291 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1292 
1293 			bufp += chip->nc_page_size;
1294 			left -= chip->nc_page_size;
1295 			*retlen += chip->nc_page_size;
1296 		}
1297 
1298 		addr += chip->nc_page_size;
1299 	}
1300 	KASSERT(*retlen == len);
1301 out:
1302 	mutex_exit(&sc->sc_device_lock);
1303 
1304 	return error;
1305 }
1306 
1307 int
1308 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1309     uint8_t *buf)
1310 {
1311 	struct nand_softc *sc = device_private(self);
1312 	struct nand_chip *chip = &sc->sc_chip;
1313 	uint8_t *bufp;
1314 	size_t addr;
1315 	size_t i, pages;
1316 	int error = 0;
1317 
1318 	*retlen = 0;
1319 
1320 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n",
1321 		(uintmax_t)offset, len));
1322 
1323 	if (__predict_false((offset + len) > chip->nc_size)) {
1324 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 "),"
1325 			" is over device size (%ju)\n", (uintmax_t)offset,
1326 			len, (uintmax_t)chip->nc_size));
1327 		return EINVAL;
1328 	}
1329 
1330 	/* Handle unaligned access, shouldnt be needed when using the
1331 	 * block device, as strategy handles it, so only low level
1332 	 * accesses will use this path
1333 	 */
1334 	/* XXX^2 */
1335 #if 0
1336 	if (len < chip->nc_page_size)
1337 		panic("TODO page size is larger than read size");
1338 #endif
1339 
1340 	if (len % chip->nc_page_size != 0 ||
1341 	    offset % chip->nc_page_size != 0) {
1342 		return nand_flash_read_unaligned(self,
1343 		    offset, len, retlen, buf);
1344 	}
1345 
1346 	bufp = buf;
1347 	addr = offset;
1348 	pages = len / chip->nc_page_size;
1349 
1350 	mutex_enter(&sc->sc_device_lock);
1351 	for (i = 0; i < pages; i++) {
1352 		/* XXX do we need this check here? */
1353 		if (nand_isbad(self, addr)) {
1354 			aprint_error_dev(self, "bad block encountered\n");
1355 			error = EIO;
1356 			goto out;
1357 		}
1358 		error = nand_read_page(self, addr, bufp);
1359 		if (error)
1360 			goto out;
1361 
1362 		bufp += chip->nc_page_size;
1363 		addr += chip->nc_page_size;
1364 		*retlen += chip->nc_page_size;
1365 	}
1366 out:
1367 	mutex_exit(&sc->sc_device_lock);
1368 
1369 	return error;
1370 }
1371 
1372 int
1373 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
1374 {
1375 	struct nand_softc *sc = device_private(self);
1376 	struct nand_chip *chip = &sc->sc_chip;
1377 	bool result;
1378 
1379 	if (ofs > chip->nc_size) {
1380 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1381 			" device size (0x%jx)\n", (uintmax_t)ofs,
1382 			(uintmax_t)chip->nc_size));
1383 		return EINVAL;
1384 	}
1385 
1386 	if (ofs % chip->nc_block_size != 0) {
1387 		DPRINTF(("offset (0x%jx) is not a multiple of block size "
1388 			"(%ju)",
1389 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
1390 		return EINVAL;
1391 	}
1392 
1393 	mutex_enter(&sc->sc_device_lock);
1394 	result = nand_isbad(self, ofs);
1395 	mutex_exit(&sc->sc_device_lock);
1396 
1397 	*is_bad = result;
1398 
1399 	return 0;
1400 }
1401 
1402 int
1403 nand_flash_markbad(device_t self, flash_off_t ofs)
1404 {
1405 	struct nand_softc *sc = device_private(self);
1406 	struct nand_chip *chip = &sc->sc_chip;
1407 
1408 	if (ofs > chip->nc_size) {
1409 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1410 			" device size (0x%jx)\n", ofs,
1411 			(uintmax_t)chip->nc_size));
1412 		return EINVAL;
1413 	}
1414 
1415 	if (ofs % chip->nc_block_size != 0) {
1416 		panic("offset (%ju) is not a multiple of block size (%ju)",
1417 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1418 	}
1419 
1420 	mutex_enter(&sc->sc_device_lock);
1421 	nand_markbad(self, ofs);
1422 	mutex_exit(&sc->sc_device_lock);
1423 
1424 	return 0;
1425 }
1426 
1427 int
1428 nand_flash_erase(device_t self,
1429     struct flash_erase_instruction *ei)
1430 {
1431 	struct nand_softc *sc = device_private(self);
1432 	struct nand_chip *chip = &sc->sc_chip;
1433 	flash_off_t addr;
1434 	int error = 0;
1435 
1436 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1437 		return EINVAL;
1438 
1439 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1440 		DPRINTF(("nand_flash_erase: erase address is over the end"
1441 			" of the device\n"));
1442 		return EINVAL;
1443 	}
1444 
1445 	if (ei->ei_addr % chip->nc_block_size != 0) {
1446 		aprint_error_dev(self,
1447 		    "nand_flash_erase: ei_addr (%ju) is not"
1448 		    " a multiple of block size (%ju)",
1449 		    (uintmax_t)ei->ei_addr,
1450 		    (uintmax_t)chip->nc_block_size);
1451 		return EINVAL;
1452 	}
1453 
1454 	if (ei->ei_len % chip->nc_block_size != 0) {
1455 		aprint_error_dev(self,
1456 		    "nand_flash_erase: ei_len (%ju) is not"
1457 		    " a multiple of block size (%ju)",
1458 		    (uintmax_t)ei->ei_len,
1459 		    (uintmax_t)chip->nc_block_size);
1460 		return EINVAL;
1461 	}
1462 
1463 	mutex_enter(&sc->sc_device_lock);
1464 	addr = ei->ei_addr;
1465 	while (addr < ei->ei_addr + ei->ei_len) {
1466 		if (nand_isbad(self, addr)) {
1467 			aprint_error_dev(self, "bad block encountered\n");
1468 			ei->ei_state = FLASH_ERASE_FAILED;
1469 			error = EIO;
1470 			goto out;
1471 		}
1472 
1473 		error = nand_erase_block(self, addr);
1474 		if (error) {
1475 			ei->ei_state = FLASH_ERASE_FAILED;
1476 			goto out;
1477 		}
1478 
1479 		addr += chip->nc_block_size;
1480 	}
1481 	mutex_exit(&sc->sc_device_lock);
1482 
1483 	ei->ei_state = FLASH_ERASE_DONE;
1484 	if (ei->ei_callback != NULL) {
1485 		ei->ei_callback(ei);
1486 	}
1487 
1488 	return 0;
1489 out:
1490 	mutex_exit(&sc->sc_device_lock);
1491 
1492 	return error;
1493 }
1494 
1495 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1496 
1497 #ifdef _MODULE
1498 #include "ioconf.c"
1499 #endif
1500 
1501 static int
1502 nand_modcmd(modcmd_t cmd, void *opaque)
1503 {
1504 	switch (cmd) {
1505 	case MODULE_CMD_INIT:
1506 #ifdef _MODULE
1507 		return config_init_component(cfdriver_ioconf_nand,
1508 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1509 #else
1510 		return 0;
1511 #endif
1512 	case MODULE_CMD_FINI:
1513 #ifdef _MODULE
1514 		return config_fini_component(cfdriver_ioconf_nand,
1515 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1516 #else
1517 		return 0;
1518 #endif
1519 	default:
1520 		return ENOTTY;
1521 	}
1522 }
1523