xref: /netbsd-src/sys/dev/nand/nand.c (revision 7a6a7ae08ac6c612f0fbb0d4425825c6be2a9050)
1 /*	$NetBSD: nand.c,v 1.8 2011/04/10 12:48:09 ahoka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Department of Software Engineering,
5  *		      University of Szeged, Hungary
6  * Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by the Department of Software Engineering, University of Szeged, Hungary
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.8 2011/04/10 12:48:09 ahoka Exp $");
38 
39 #include "locators.h"
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/sysctl.h>
46 
47 #include <dev/flash/flash.h>
48 #include <dev/nand/nand.h>
49 #include <dev/nand/onfi.h>
50 #include <dev/nand/hamming.h>
51 #include <dev/nand/nand_bbt.h>
52 #include <dev/nand/nand_crc.h>
53 
54 #include "opt_nand.h"
55 
56 int nand_match(device_t, cfdata_t, void *);
57 void nand_attach(device_t, device_t, void *);
58 int nand_detach(device_t, int);
59 bool nand_shutdown(device_t, int);
60 
61 int nand_print(void *, const char *);
62 
63 static int nand_search(device_t, cfdata_t, const int *, void *);
64 static void nand_address_row(device_t, size_t);
65 static void nand_address_column(device_t, size_t, size_t);
66 static int nand_fill_chip_structure(device_t, struct nand_chip *);
67 static int nand_scan_media(device_t, struct nand_chip *);
68 static bool nand_check_wp(device_t);
69 
70 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
71     nand_match, nand_attach, nand_detach, NULL);
72 
73 #ifdef NAND_DEBUG
74 int	nanddebug = NAND_DEBUG;
75 #endif
76 
77 int nand_cachesync_timeout = 1;
78 int nand_cachesync_nodenum;
79 
80 #ifdef NAND_VERBOSE
81 const struct nand_manufacturer nand_mfrs[] = {
82 	{ NAND_MFR_AMD,		"AMD" },
83 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
84 	{ NAND_MFR_RENESAS,	"Renesas" },
85 	{ NAND_MFR_STMICRO,	"ST Micro" },
86 	{ NAND_MFR_MICRON,	"Micron" },
87 	{ NAND_MFR_NATIONAL,	"National" },
88 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
89 	{ NAND_MFR_HYNIX,	"Hynix" },
90 	{ NAND_MFR_SAMSUNG,	"Samsung" },
91 	{ NAND_MFR_UNKNOWN,	"Unknown" }
92 };
93 
94 static const char *
95 nand_midtoname(int id)
96 {
97 	int i;
98 
99 	for (i = 0; nand_mfrs[i].id != 0; i++) {
100 		if (nand_mfrs[i].id == id)
101 			return nand_mfrs[i].name;
102 	}
103 
104 	KASSERT(nand_mfrs[i].id == 0);
105 
106 	return nand_mfrs[i].name;
107 }
108 #endif
109 
110 /* ARGSUSED */
111 int
112 nand_match(device_t parent, cfdata_t match, void *aux)
113 {
114 	/* pseudo device, always attaches */
115 	return 1;
116 }
117 
118 void
119 nand_attach(device_t parent, device_t self, void *aux)
120 {
121 	struct nand_softc *sc = device_private(self);
122 	struct nand_attach_args *naa = aux;
123 	struct nand_chip *chip = &sc->sc_chip;
124 
125 	sc->sc_dev = self;
126 	sc->controller_dev = parent;
127 	sc->nand_if = naa->naa_nand_if;
128 
129 	aprint_naive("\n");
130 
131 	if (nand_check_wp(self)) {
132 		aprint_error("NAND chip is write protected!\n");
133 		return;
134 	}
135 
136 	if (nand_scan_media(self, chip)) {
137 		return;
138 	}
139 
140 	/* allocate cache */
141 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
142 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
143 
144 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
145 
146 	if (nand_sync_thread_start(self)) {
147 		goto error;
148 	}
149 
150 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
151 		aprint_error_dev(sc->sc_dev,
152 		    "couldn't establish power handler\n");
153 
154 #ifdef NAND_BBT
155 	nand_bbt_init(self);
156 	nand_bbt_scan(self);
157 #endif
158 
159 	/*
160 	 * Attach all our devices
161 	 */
162 	config_search_ia(nand_search, self, NULL, NULL);
163 
164 	return;
165 error:
166 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
167 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
168 	mutex_destroy(&sc->sc_device_lock);
169 }
170 
171 static int
172 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
173 {
174 	struct nand_softc *sc = device_private(parent);
175 	struct nand_chip *chip = &sc->sc_chip;
176 	struct flash_interface *flash_if;
177 	struct flash_attach_args faa;
178 
179 	flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
180 
181 	flash_if->type = FLASH_TYPE_NAND;
182 
183 	flash_if->read = nand_flash_read;
184 	flash_if->write = nand_flash_write;
185 	flash_if->erase = nand_flash_erase;
186 	flash_if->block_isbad = nand_flash_isbad;
187 	flash_if->block_markbad = nand_flash_markbad;
188 
189 	flash_if->submit = nand_io_submit;
190 
191 	flash_if->erasesize = chip->nc_block_size;
192 	flash_if->page_size = chip->nc_page_size;
193 	flash_if->writesize = chip->nc_page_size;
194 
195 	flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
196 
197 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
198 		flash_if->size = chip->nc_size -
199 		    flash_if->partition.part_offset;
200 		flash_if->partition.part_size = flash_if->size;
201 	} else {
202 		flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
203 		flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
204 	}
205 
206 	if (cf->cf_loc[FLASHBUSCF_READONLY])
207 		flash_if->partition.part_flags = FLASH_PART_READONLY;
208 	else
209 		flash_if->partition.part_flags = 0;
210 
211 	faa.flash_if = flash_if;
212 
213 	if (config_match(parent, cf, &faa)) {
214 		config_attach(parent, cf, &faa, nand_print);
215 		return 0;
216 	} else {
217 		kmem_free(flash_if, sizeof(*flash_if));
218 	}
219 
220 	return 1;
221 }
222 
223 int
224 nand_detach(device_t self, int flags)
225 {
226 	struct nand_softc *sc = device_private(self);
227 	struct nand_chip *chip = &sc->sc_chip;
228 	int ret = 0;
229 
230 #ifdef NAND_BBT
231 	nand_bbt_detach(self);
232 #endif
233 	nand_sync_thread_stop(self);
234 
235 	/* free oob cache */
236 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
237 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
238 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
239 
240 	mutex_destroy(&sc->sc_device_lock);
241 
242 	pmf_device_deregister(sc->sc_dev);
243 
244 	return ret;
245 }
246 
247 int
248 nand_print(void *aux, const char *pnp)
249 {
250 	if (pnp != NULL)
251 		aprint_normal("nand at %s\n", pnp);
252 
253 	return UNCONF;
254 }
255 
256 /* ask for a nand driver to attach to the controller */
257 device_t
258 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
259 {
260 	struct nand_attach_args arg;
261 
262 	KASSERT(nand_if != NULL);
263 
264 	/* fill the defaults if we have null pointers */
265 	if (nand_if->program_page == NULL) {
266 		nand_if->program_page = &nand_default_program_page;
267 	}
268 
269 	if (nand_if->read_page == NULL) {
270 		nand_if->read_page = &nand_default_read_page;
271 	}
272 
273 	arg.naa_nand_if = nand_if;
274 	return config_found_ia(parent, "nandbus", &arg, nand_print);
275 }
276 
277 /* default everything to reasonable values, to ease future api changes */
278 void
279 nand_init_interface(struct nand_interface *interface)
280 {
281 	interface->select = &nand_default_select;
282 	interface->command = NULL;
283 	interface->address = NULL;
284 	interface->read_buf_byte = NULL;
285 	interface->read_buf_word = NULL;
286 	interface->read_byte = NULL;
287 	interface->read_word = NULL;
288 	interface->write_buf_byte = NULL;
289 	interface->write_buf_word = NULL;
290 	interface->write_byte = NULL;
291 	interface->write_word = NULL;
292 	interface->busy = NULL;
293 
294 	/*-
295 	 * most drivers dont want to change this, but some implement
296 	 * read/program in one step
297 	 */
298 	interface->program_page = &nand_default_program_page;
299 	interface->read_page = &nand_default_read_page;
300 
301 	/* default to soft ecc, that should work everywhere */
302 	interface->ecc_compute = &nand_default_ecc_compute;
303 	interface->ecc_correct = &nand_default_ecc_correct;
304 	interface->ecc_prepare = NULL;
305 	interface->ecc.necc_code_size = 3;
306 	interface->ecc.necc_block_size = 256;
307 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
308 }
309 
310 #if 0
311 /* handle quirks here */
312 static void
313 nand_quirks(device_t self, struct nand_chip *chip)
314 {
315 	/* this is an example only! */
316 	switch (chip->nc_manf_id) {
317 	case NAND_MFR_SAMSUNG:
318 		if (chip->nc_dev_id == 0x00) {
319 			/* do something only samsung chips need */
320 			/* or */
321 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
322 		}
323 	}
324 
325 	return;
326 }
327 #endif
328 
329 static int
330 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
331 {
332 	switch (chip->nc_manf_id) {
333 	case NAND_MFR_MICRON:
334 		return nand_read_parameters_micron(self, chip);
335 	default:
336 		return 1;
337 	}
338 
339 	return 0;
340 }
341 
342 /**
343  * scan media to determine the chip's properties
344  * this function resets the device
345  */
346 static int
347 nand_scan_media(device_t self, struct nand_chip *chip)
348 {
349 	struct nand_softc *sc = device_private(self);
350 	struct nand_ecc *ecc;
351 	uint8_t onfi_signature[4];
352 
353 	nand_select(self, true);
354 	nand_command(self, ONFI_RESET);
355 	nand_select(self, false);
356 
357 	/* check if the device implements the ONFI standard */
358 	nand_select(self, true);
359 	nand_command(self, ONFI_READ_ID);
360 	nand_address(self, 0x20);
361 	nand_read_byte(self, &onfi_signature[0]);
362 	nand_read_byte(self, &onfi_signature[1]);
363 	nand_read_byte(self, &onfi_signature[2]);
364 	nand_read_byte(self, &onfi_signature[3]);
365 	nand_select(self, false);
366 
367 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
368 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
369 		chip->nc_isonfi = false;
370 
371 		aprint_normal(": Legacy NAND Flash\n");
372 
373 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
374 
375 		if (nand_fill_chip_structure_legacy(self, chip)) {
376 			aprint_error_dev(self,
377 			    "can't read device parameters for legacy chip\n");
378 			return 1;
379 		}
380 	} else {
381 		chip->nc_isonfi = true;
382 
383 		aprint_normal(": ONFI NAND Flash\n");
384 
385 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
386 
387 		if (nand_fill_chip_structure(self, chip)) {
388 			aprint_error_dev(self,
389 			    "can't read device parameters\n");
390 
391 			return 1;
392 		}
393 	}
394 
395 #ifdef NAND_VERBOSE
396 	aprint_normal_dev(self,
397 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
398 	    chip->nc_manf_id,
399 	    nand_midtoname(chip->nc_manf_id),
400 	    chip->nc_dev_id);
401 #endif
402 
403 	aprint_normal_dev(self,
404 	    "page size: %zu bytes, spare size: %zu bytes, "
405 	    "block size: %zu bytes\n",
406 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
407 
408 	aprint_normal_dev(self,
409 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
410 	    ", total storage size: %zu MB\n",
411 	    chip->nc_lun_blocks, chip->nc_num_luns,
412 	    chip->nc_size / 1024 / 1024);
413 
414 #ifdef NAND_VERBOSE
415 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
416 	    PRIu8 "\n",
417 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
418 #endif
419 
420 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
421 
422 	/*
423 	 * calculate the place of ecc data in oob
424 	 * we try to be compatible with Linux here
425 	 */
426 	switch (chip->nc_spare_size) {
427 	case 8:
428 		ecc->necc_offset = 0;
429 		break;
430 	case 16:
431 		ecc->necc_offset = 0;
432 		break;
433 	case 64:
434 		ecc->necc_offset = 40;
435 		break;
436 	case 128:
437 		ecc->necc_offset = 80;
438 		break;
439 	default:
440 		panic("OOB size is unexpected");
441 	}
442 
443 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
444 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
445 
446 	/* check if we fit in oob */
447 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
448 		panic("NAND ECC bits dont fit in OOB");
449 	}
450 
451 	/* TODO: mark free oob area available for file systems */
452 
453 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
454 
455 	/*
456 	 * calculate badblock marker offset in oob
457 	 * we try to be compatible with linux here
458 	 */
459 	if (chip->nc_page_size > 512)
460 		chip->nc_badmarker_offs = 0;
461 	else
462 		chip->nc_badmarker_offs = 5;
463 
464 	/* Calculate page shift and mask */
465 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
466 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
467 	/* same for block */
468 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
469 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
470 
471 	/* look for quirks here if needed in future */
472 	/* nand_quirks(self, chip); */
473 
474 	return 0;
475 }
476 
477 void
478 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
479 {
480 	nand_select(self, true);
481 	nand_command(self, ONFI_READ_ID);
482 	nand_address(self, 0x00);
483 
484 	nand_read_byte(self, manf);
485 	nand_read_byte(self, dev);
486 
487 	nand_select(self, false);
488 }
489 
490 int
491 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
492 {
493 	uint8_t *bufp;
494 	uint16_t crc;
495 	int i;//, tries = 0;
496 
497 	KASSERT(sizeof(*params) == 256);
498 
499 //read_params:
500 //	tries++;
501 
502 	nand_select(self, true);
503 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
504 	nand_address(self, 0x00);
505 
506 	nand_busy(self);
507 
508 	/* TODO check the signature if it contains at least 2 letters */
509 
510 	bufp = (uint8_t *)params;
511 	/* XXX why i am not using read_buf? */
512 	for (i = 0; i < 256; i++) {
513 		nand_read_byte(self, &bufp[i]);
514 	}
515 	nand_select(self, false);
516 
517 	/* validate the parameter page with the crc */
518 	crc = nand_crc16(bufp, 254);
519 
520 	if (crc != params->param_integrity_crc) {
521 		aprint_error_dev(self, "parameter page crc check failed\n");
522 		/* TODO: we should read the next parameter page copy */
523 		return 1;
524 	}
525 
526 	return 0;
527 }
528 
529 static int
530 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
531 {
532 	struct onfi_parameter_page params;
533 	uint8_t	vendor[13], model[21];
534 	int i;
535 
536 	if (nand_read_parameter_page(self, &params)) {
537 		return 1;
538 	}
539 
540 	/* strip manufacturer and model string */
541 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
542 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
543 		vendor[i] = 0;
544 	strlcpy(model, params.param_model, sizeof(model));
545 	for (i = 19; i > 0 && model[i] == ' '; i--)
546 		model[i] = 0;
547 
548 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
549 
550 	/* XXX TODO multiple LUNs */
551 	if (params.param_numluns != 1) {
552 		aprint_error_dev(self,
553 		    "more than one LUNs are not supported yet!\n");
554 
555 		return 1;
556 	}
557 
558 	chip->nc_size = params.param_pagesize * params.param_blocksize *
559 	    params.param_lunsize * params.param_numluns;
560 
561 	chip->nc_page_size = params.param_pagesize;
562 	chip->nc_block_pages = params.param_blocksize;
563 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
564 	chip->nc_spare_size = params.param_sparesize;
565 	chip->nc_lun_blocks = params.param_lunsize;
566 	chip->nc_num_luns = params.param_numluns;
567 
568 	/* the lower 4 bits contain the row address cycles */
569 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
570 	/* the upper 4 bits contain the column address cycles */
571 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
572 
573 	if (params.param_features & ONFI_FEATURE_16BIT)
574 		chip->nc_flags |= NC_BUSWIDTH_16;
575 
576 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
577 		chip->nc_flags |= NC_EXTENDED_PARAM;
578 
579 	return 0;
580 }
581 
582 /* ARGSUSED */
583 bool
584 nand_shutdown(device_t self, int howto)
585 {
586 	return true;
587 }
588 
589 static void
590 nand_address_column(device_t self, size_t row, size_t column)
591 {
592 	struct nand_softc *sc = device_private(self);
593 	struct nand_chip *chip = &sc->sc_chip;
594 	uint8_t i;
595 
596 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
597 		(uintmax_t )row, column));
598 
599 	/* XXX TODO */
600 	row >>= chip->nc_page_shift;
601 
602 	/* Write the column (subpage) address */
603 	if (chip->nc_flags & NC_BUSWIDTH_16)
604 		column >>= 1;
605 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
606 		nand_address(self, column & 0xff);
607 
608 	/* Write the row (page) address */
609 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
610 		nand_address(self, row & 0xff);
611 }
612 
613 static void
614 nand_address_row(device_t self, size_t row)
615 {
616 	struct nand_softc *sc = device_private(self);
617 	struct nand_chip *chip = &sc->sc_chip;
618 	int i;
619 
620 	/* XXX TODO */
621 	row >>= chip->nc_page_shift;
622 
623 	/* Write the row (page) address */
624 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
625 		nand_address(self, row & 0xff);
626 }
627 
628 static inline uint8_t
629 nand_get_status(device_t self)
630 {
631 	uint8_t status;
632 
633 	nand_command(self, ONFI_READ_STATUS);
634 	nand_busy(self);
635 	nand_read_byte(self, &status);
636 
637 	return status;
638 }
639 
640 static bool
641 nand_check_wp(device_t self)
642 {
643 	if (nand_get_status(self) & 0x80)
644 		return false;
645 	else
646 		return true;
647 }
648 
649 static void
650 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
651 {
652 	nand_command(self, ONFI_READ);
653 	nand_address_column(self, row, column);
654 	nand_command(self, ONFI_READ_START);
655 
656 	nand_busy(self);
657 }
658 
659 /* read a page with ecc correction, default implementation */
660 int
661 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
662 {
663 	struct nand_softc *sc = device_private(self);
664 	struct nand_chip *chip = &sc->sc_chip;
665 	size_t b, bs, e, cs;
666 	uint8_t *ecc;
667 	int result;
668 
669 	nand_prepare_read(self, offset, 0);
670 
671 	bs = chip->nc_ecc->necc_block_size;
672 	cs = chip->nc_ecc->necc_code_size;
673 
674 	/* decide if we access by 8 or 16 bits */
675 	if (chip->nc_flags & NC_BUSWIDTH_16) {
676 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
677 			nand_ecc_prepare(self, NAND_ECC_READ);
678 			nand_read_buf_word(self, data + b, bs);
679 			nand_ecc_compute(self, data + b,
680 			    chip->nc_ecc_cache + e);
681 		}
682 	} else {
683 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
684 			nand_ecc_prepare(self, NAND_ECC_READ);
685 			nand_read_buf_byte(self, data + b, bs);
686 			nand_ecc_compute(self, data + b,
687 			    chip->nc_ecc_cache + e);
688 		}
689 	}
690 
691 	/* for debugging new drivers */
692 #if 0
693 	nand_dump_data("page", data, chip->nc_page_size);
694 #endif
695 
696 	nand_read_oob(self, offset, chip->nc_oob_cache);
697 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
698 
699 	/* useful for debugging new ecc drivers */
700 #if 0
701 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
702 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
703 		printf("0x");
704 		for (b = 0; b < cs; b++) {
705 			printf("%.2hhx", ecc[e+b]);
706 		}
707 		printf(" 0x");
708 		for (b = 0; b < cs; b++) {
709 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
710 		}
711 		printf("\n");
712 	}
713 	printf("--------------\n");
714 #endif
715 
716 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
717 		result = nand_ecc_correct(self, data + b, ecc + e,
718 		    chip->nc_ecc_cache + e);
719 
720 		switch (result) {
721 		case NAND_ECC_OK:
722 			break;
723 		case NAND_ECC_CORRECTED:
724 			aprint_error_dev(self,
725 			    "data corrected with ECC at page offset 0x%jx "
726 			    "block %zu\n", (uintmax_t)offset, b);
727 			break;
728 		case NAND_ECC_TWOBIT:
729 			aprint_error_dev(self,
730 			    "uncorrectable ECC error at page offset 0x%jx "
731 			    "block %zu\n", (uintmax_t)offset, b);
732 			return EIO;
733 			break;
734 		case NAND_ECC_INVALID:
735 			aprint_error_dev(self,
736 			    "invalid ECC in oob at page offset 0x%jx "
737 			    "block %zu\n", (uintmax_t)offset, b);
738 			return EIO;
739 			break;
740 		default:
741 			panic("invalid ECC correction errno");
742 		}
743 	}
744 
745 	return 0;
746 }
747 
748 int
749 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
750 {
751 	struct nand_softc *sc = device_private(self);
752 	struct nand_chip *chip = &sc->sc_chip;
753 	size_t bs, cs, e, b;
754 	uint8_t status;
755 	uint8_t *ecc;
756 
757 	nand_command(self, ONFI_PAGE_PROGRAM);
758 	nand_address_column(self, page, 0);
759 
760 	nand_busy(self);
761 
762 	bs = chip->nc_ecc->necc_block_size;
763 	cs = chip->nc_ecc->necc_code_size;
764 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
765 
766 	/* XXX code duplication */
767 	/* decide if we access by 8 or 16 bits */
768 	if (chip->nc_flags & NC_BUSWIDTH_16) {
769 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
770 			nand_ecc_prepare(self, NAND_ECC_WRITE);
771 			nand_write_buf_word(self, data + b, bs);
772 			nand_ecc_compute(self, data + b, ecc + e);
773 		}
774 		/* write oob with ecc correction code */
775 		nand_write_buf_word(self, chip->nc_oob_cache,
776 		    chip->nc_spare_size);
777 	} else {
778 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
779 			nand_ecc_prepare(self, NAND_ECC_WRITE);
780 			nand_write_buf_byte(self, data + b, bs);
781 			nand_ecc_compute(self, data + b, ecc + e);
782 		}
783 		/* write oob with ecc correction code */
784 		nand_write_buf_byte(self, chip->nc_oob_cache,
785 		    chip->nc_spare_size);
786 	}
787 
788 	nand_command(self, ONFI_PAGE_PROGRAM_START);
789 
790 	nand_busy(self);
791 
792 	/* for debugging ecc */
793 #if 0
794 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
795 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
796 		printf("0x");
797 		for (b = 0; b < cs; b++) {
798 			printf("%.2hhx", ecc[e+b]);
799 		}
800 		printf("\n");
801 	}
802 	printf("--------------\n");
803 #endif
804 
805 	status = nand_get_status(self);
806 	KASSERT(status & ONFI_STATUS_RDY);
807 	if (status & ONFI_STATUS_FAIL) {
808 		aprint_error_dev(self, "page program failed!\n");
809 		return EIO;
810 	}
811 
812 	return 0;
813 }
814 
815 /* read the OOB of a page */
816 int
817 nand_read_oob(device_t self, size_t page, uint8_t *oob)
818 {
819 	struct nand_softc *sc = device_private(self);
820 	struct nand_chip *chip = &sc->sc_chip;
821 
822 	nand_prepare_read(self, page, chip->nc_page_size);
823 
824 	if (chip->nc_flags & NC_BUSWIDTH_16)
825 		nand_read_buf_word(self, oob, chip->nc_spare_size);
826 	else
827 		nand_read_buf_byte(self, oob, chip->nc_spare_size);
828 
829 	/* for debugging drivers */
830 #if 0
831 	nand_dump_data("oob", oob, chip->nc_spare_size);
832 #endif
833 
834 	return 0;
835 }
836 
837 static int
838 nand_write_oob(device_t self, size_t offset, const void *oob)
839 {
840 	struct nand_softc *sc = device_private(self);
841 	struct nand_chip *chip = &sc->sc_chip;
842 	uint8_t status;
843 
844 	nand_command(self, ONFI_PAGE_PROGRAM);
845 	nand_address_column(self, offset, chip->nc_page_size);
846 	nand_command(self, ONFI_PAGE_PROGRAM_START);
847 
848 	nand_busy(self);
849 
850 	if (chip->nc_flags & NC_BUSWIDTH_16)
851 		nand_write_buf_word(self, oob, chip->nc_spare_size);
852 	else
853 		nand_write_buf_byte(self, oob, chip->nc_spare_size);
854 
855 	status = nand_get_status(self);
856 	KASSERT(status & ONFI_STATUS_RDY);
857 	if (status & ONFI_STATUS_FAIL)
858 		return EIO;
859 	else
860 		return 0;
861 }
862 
863 void
864 nand_markbad(device_t self, size_t offset)
865 {
866 	struct nand_softc *sc = device_private(self);
867 	struct nand_chip *chip = &sc->sc_chip;
868 	flash_off_t blockoffset, marker;
869 #ifdef NAND_BBT
870 	flash_off_t block;
871 
872 	block = offset / chip->nc_block_size;
873 
874 	nand_bbt_block_markbad(self, block);
875 #endif
876 	blockoffset = offset & chip->nc_block_mask;
877 	marker = chip->nc_badmarker_offs & ~0x01;
878 
879 	/* check if it is already marked bad */
880 	if (nand_isbad(self, blockoffset))
881 		return;
882 
883 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
884 
885 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
886 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
887 
888 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
889 }
890 
891 bool
892 nand_isfactorybad(device_t self, flash_off_t offset)
893 {
894 	struct nand_softc *sc = device_private(self);
895 	struct nand_chip *chip = &sc->sc_chip;
896 	flash_off_t block, first_page, last_page, page;
897 	int i;
898 
899 	/* Check for factory bad blocks first
900 	 * Factory bad blocks are marked in the first or last
901 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
902 	 */
903 	block = offset / chip->nc_block_size;
904 	first_page = block * chip->nc_block_size;
905 	last_page = (block + 1) * chip->nc_block_size
906 	    - chip->nc_page_size;
907 
908 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
909 		/* address OOB */
910 		nand_prepare_read(self, page, chip->nc_page_size);
911 
912 		if (chip->nc_flags & NC_BUSWIDTH_16) {
913 			uint16_t word;
914 			nand_read_word(self, &word);
915 			if (word == 0x0000)
916 				return true;
917 		} else {
918 			uint8_t byte;
919 			nand_read_byte(self, &byte);
920 			if (byte == 0x00)
921 				return true;
922 		}
923 	}
924 
925 	return false;
926 }
927 
928 bool
929 nand_iswornoutbad(device_t self, flash_off_t offset)
930 {
931 	struct nand_softc *sc = device_private(self);
932 	struct nand_chip *chip = &sc->sc_chip;
933 	flash_off_t block;
934 
935 	/* we inspect the first page of the block */
936 	block = offset & chip->nc_block_mask;
937 
938 	/* Linux/u-boot compatible badblock handling */
939 	if (chip->nc_flags & NC_BUSWIDTH_16) {
940 		uint16_t word, mark;
941 
942 		nand_prepare_read(self, block,
943 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
944 
945 		nand_read_word(self, &word);
946 		mark = htole16(word);
947 		if (chip->nc_badmarker_offs & 0x01)
948 			mark >>= 8;
949 		if ((mark & 0xff) != 0xff)
950 			return true;
951 	} else {
952 		uint8_t byte;
953 
954 		nand_prepare_read(self, block,
955 		    chip->nc_page_size + chip->nc_badmarker_offs);
956 
957 		nand_read_byte(self, &byte);
958 		if (byte != 0xff)
959 			return true;
960 	}
961 
962 	return false;
963 }
964 
965 bool
966 nand_isbad(device_t self, flash_off_t offset)
967 {
968 #ifdef NAND_BBT
969 	struct nand_softc *sc = device_private(self);
970 	struct nand_chip *chip = &sc->sc_chip;
971 	flash_off_t block;
972 
973 	block = offset / chip->nc_block_size;
974 
975 	return nand_bbt_block_isbad(self, block);
976 #else
977 	/* ONFI host requirement */
978 	if (nand_isfactorybad(self, offset))
979 		return true;
980 
981 	/* Look for Linux/U-Boot compatible bad marker */
982 	if (nand_iswornoutbad(self, offset))
983 		return true;
984 
985 	return false;
986 #endif
987 }
988 
989 int
990 nand_erase_block(device_t self, size_t offset)
991 {
992 	uint8_t status;
993 
994 	/* xxx calculate first page of block for address? */
995 
996 	nand_command(self, ONFI_BLOCK_ERASE);
997 	nand_address_row(self, offset);
998 	nand_command(self, ONFI_BLOCK_ERASE_START);
999 
1000 	nand_busy(self);
1001 
1002 	status = nand_get_status(self);
1003 	KASSERT(status & ONFI_STATUS_RDY);
1004 	if (status & ONFI_STATUS_FAIL) {
1005 		aprint_error_dev(self, "block erase failed!\n");
1006 		nand_markbad(self, offset);
1007 		return EIO;
1008 	} else {
1009 		return 0;
1010 	}
1011 }
1012 
1013 /* default functions for driver development */
1014 
1015 /* default ECC using hamming code of 256 byte chunks */
1016 int
1017 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
1018 {
1019 	hamming_compute_256(data, code);
1020 
1021 	return 0;
1022 }
1023 
1024 int
1025 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
1026 	const uint8_t *compcode)
1027 {
1028 	return hamming_correct_256(data, origcode, compcode);
1029 }
1030 
1031 void
1032 nand_default_select(device_t self, bool enable)
1033 {
1034 	/* do nothing */
1035 	return;
1036 }
1037 
1038 /* implementation of the block device API */
1039 
1040 /*
1041  * handle (page) unaligned write to nand
1042  */
1043 static int
1044 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
1045     size_t *retlen, const uint8_t *buf)
1046 {
1047 	struct nand_softc *sc = device_private(self);
1048 	struct nand_chip *chip = &sc->sc_chip;
1049 	flash_off_t first, last, firstoff;
1050 	const uint8_t *bufp;
1051 	flash_off_t addr;
1052 	size_t left, count;
1053 	int error = 0, i;
1054 
1055 	first = offset & chip->nc_page_mask;
1056 	firstoff = offset & ~chip->nc_page_mask;
1057 	/* XXX check if this should be len - 1 */
1058 	last = (offset + len) & chip->nc_page_mask;
1059 	count = last - first + 1;
1060 
1061 	addr = first;
1062 	*retlen = 0;
1063 
1064 	mutex_enter(&sc->sc_device_lock);
1065 	if (count == 1) {
1066 		if (nand_isbad(self, addr)) {
1067 			aprint_error_dev(self,
1068 			    "nand_flash_write_unaligned: "
1069 			    "bad block encountered\n");
1070 			error = EIO;
1071 			goto out;
1072 		}
1073 
1074 		error = nand_read_page(self, addr, chip->nc_page_cache);
1075 		if (error) {
1076 			goto out;
1077 		}
1078 
1079 		memcpy(chip->nc_page_cache + firstoff, buf, len);
1080 
1081 		error = nand_program_page(self, addr, chip->nc_page_cache);
1082 		if (error) {
1083 			goto out;
1084 		}
1085 
1086 		*retlen = len;
1087 		goto out;
1088 	}
1089 
1090 	bufp = buf;
1091 	left = len;
1092 
1093 	for (i = 0; i < count && left != 0; i++) {
1094 		if (nand_isbad(self, addr)) {
1095 			aprint_error_dev(self,
1096 			    "nand_flash_write_unaligned: "
1097 			    "bad block encountered\n");
1098 			error = EIO;
1099 			goto out;
1100 		}
1101 
1102 		if (i == 0) {
1103 			error = nand_read_page(self,
1104 			    addr, chip->nc_page_cache);
1105 			if (error) {
1106 				goto out;
1107 			}
1108 
1109 			memcpy(chip->nc_page_cache + firstoff,
1110 			    bufp, chip->nc_page_size - firstoff);
1111 
1112 			printf("program page: %s: %d\n", __FILE__, __LINE__);
1113 			error = nand_program_page(self,
1114 			    addr, chip->nc_page_cache);
1115 			if (error) {
1116 				goto out;
1117 			}
1118 
1119 			bufp += chip->nc_page_size - firstoff;
1120 			left -= chip->nc_page_size - firstoff;
1121 			*retlen += chip->nc_page_size - firstoff;
1122 
1123 		} else if (i == count - 1) {
1124 			error = nand_read_page(self,
1125 			    addr, chip->nc_page_cache);
1126 			if (error) {
1127 				goto out;
1128 			}
1129 
1130 			memcpy(chip->nc_page_cache, bufp, left);
1131 
1132 			error = nand_program_page(self,
1133 			    addr, chip->nc_page_cache);
1134 			if (error) {
1135 				goto out;
1136 			}
1137 
1138 			*retlen += left;
1139 			KASSERT(left < chip->nc_page_size);
1140 
1141 		} else {
1142 			/* XXX debug */
1143 			if (left > chip->nc_page_size) {
1144 				printf("left: %zu, i: %d, count: %zu\n",
1145 				    (size_t )left, i, count);
1146 			}
1147 			KASSERT(left > chip->nc_page_size);
1148 
1149 			error = nand_program_page(self, addr, bufp);
1150 			if (error) {
1151 				goto out;
1152 			}
1153 
1154 			bufp += chip->nc_page_size;
1155 			left -= chip->nc_page_size;
1156 			*retlen += chip->nc_page_size;
1157 		}
1158 
1159 		addr += chip->nc_page_size;
1160 	}
1161 
1162 	KASSERT(*retlen == len);
1163 out:
1164 	mutex_exit(&sc->sc_device_lock);
1165 
1166 	return error;
1167 }
1168 
1169 int
1170 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1171     const uint8_t *buf)
1172 {
1173 	struct nand_softc *sc = device_private(self);
1174 	struct nand_chip *chip = &sc->sc_chip;
1175 	const uint8_t *bufp;
1176 	size_t pages, page;
1177 	daddr_t addr;
1178 	int error = 0;
1179 
1180 	if ((offset + len) > chip->nc_size) {
1181 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1182 			" is over device size (0x%jx)\n",
1183 			(uintmax_t)offset, (uintmax_t)len,
1184 			(uintmax_t)chip->nc_size));
1185 		return EINVAL;
1186 	}
1187 
1188 	if (len % chip->nc_page_size != 0 ||
1189 	    offset % chip->nc_page_size != 0) {
1190 		return nand_flash_write_unaligned(self,
1191 		    offset, len, retlen, buf);
1192 	}
1193 
1194 	pages = len / chip->nc_page_size;
1195 	KASSERT(pages != 0);
1196 	*retlen = 0;
1197 
1198 	addr = offset;
1199 	bufp = buf;
1200 
1201 	mutex_enter(&sc->sc_device_lock);
1202 	for (page = 0; page < pages; page++) {
1203 		/* do we need this check here? */
1204 		if (nand_isbad(self, addr)) {
1205 			aprint_error_dev(self,
1206 			    "nand_flash_write: bad block encountered\n");
1207 
1208 			error = EIO;
1209 			goto out;
1210 		}
1211 
1212 		error = nand_program_page(self, addr, bufp);
1213 		if (error) {
1214 			goto out;
1215 		}
1216 
1217 		addr += chip->nc_page_size;
1218 		bufp += chip->nc_page_size;
1219 		*retlen += chip->nc_page_size;
1220 	}
1221 out:
1222 	mutex_exit(&sc->sc_device_lock);
1223 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
1224 
1225 	return error;
1226 }
1227 
1228 /*
1229  * handle (page) unaligned read from nand
1230  */
1231 static int
1232 nand_flash_read_unaligned(device_t self, size_t offset,
1233     size_t len, size_t *retlen, uint8_t *buf)
1234 {
1235 	struct nand_softc *sc = device_private(self);
1236 	struct nand_chip *chip = &sc->sc_chip;
1237 	daddr_t first, last, count, firstoff;
1238 	uint8_t *bufp;
1239 	daddr_t addr;
1240 	size_t left;
1241 	int error = 0, i;
1242 
1243 	first = offset & chip->nc_page_mask;
1244 	firstoff = offset & ~chip->nc_page_mask;
1245 	last = (offset + len) & chip->nc_page_mask;
1246 	count = (last - first) / chip->nc_page_size + 1;
1247 
1248 	addr = first;
1249 	bufp = buf;
1250 	left = len;
1251 	*retlen = 0;
1252 
1253 	mutex_enter(&sc->sc_device_lock);
1254 	if (count == 1) {
1255 		error = nand_read_page(self, addr, chip->nc_page_cache);
1256 		if (error) {
1257 			goto out;
1258 		}
1259 
1260 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
1261 
1262 		*retlen = len;
1263 		goto out;
1264 	}
1265 
1266 	for (i = 0; i < count && left != 0; i++) {
1267 		error = nand_read_page(self, addr, chip->nc_page_cache);
1268 		if (error) {
1269 			goto out;
1270 		}
1271 
1272 		if (i == 0) {
1273 			memcpy(bufp, chip->nc_page_cache + firstoff,
1274 			    chip->nc_page_size - firstoff);
1275 
1276 			bufp += chip->nc_page_size - firstoff;
1277 			left -= chip->nc_page_size - firstoff;
1278 			*retlen += chip->nc_page_size - firstoff;
1279 
1280 		} else if (i == count - 1) {
1281 			memcpy(bufp, chip->nc_page_cache, left);
1282 			*retlen += left;
1283 			KASSERT(left < chip->nc_page_size);
1284 
1285 		} else {
1286 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1287 
1288 			bufp += chip->nc_page_size;
1289 			left -= chip->nc_page_size;
1290 			*retlen += chip->nc_page_size;
1291 		}
1292 
1293 		addr += chip->nc_page_size;
1294 	}
1295 
1296 	KASSERT(*retlen == len);
1297 
1298 out:
1299 	mutex_exit(&sc->sc_device_lock);
1300 
1301 	return error;
1302 }
1303 
1304 int
1305 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1306     uint8_t *buf)
1307 {
1308 	struct nand_softc *sc = device_private(self);
1309 	struct nand_chip *chip = &sc->sc_chip;
1310 	uint8_t *bufp;
1311 	size_t addr;
1312 	size_t i, pages;
1313 	int error = 0;
1314 
1315 	*retlen = 0;
1316 
1317 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
1318 		(uintmax_t)offset, len));
1319 
1320 	if (__predict_false((offset + len) > chip->nc_size)) {
1321 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
1322 			" is over device size (%ju)\n", (uintmax_t)offset,
1323 			len, (uintmax_t)chip->nc_size));
1324 		return EINVAL;
1325 	}
1326 
1327 	/* Handle unaligned access, shouldnt be needed when using the
1328 	 * block device, as strategy handles it, so only low level
1329 	 * accesses will use this path
1330 	 */
1331 	/* XXX^2 */
1332 #if 0
1333 	if (len < chip->nc_page_size)
1334 		panic("TODO page size is larger than read size");
1335 #endif
1336 
1337 
1338 	if (len % chip->nc_page_size != 0 ||
1339 	    offset % chip->nc_page_size != 0) {
1340 		return nand_flash_read_unaligned(self,
1341 		    offset, len, retlen, buf);
1342 	}
1343 
1344 	bufp = buf;
1345 	addr = offset;
1346 	pages = len / chip->nc_page_size;
1347 
1348 	mutex_enter(&sc->sc_device_lock);
1349 	for (i = 0; i < pages; i++) {
1350 		/* XXX do we need this check here? */
1351 		if (nand_isbad(self, addr)) {
1352 			aprint_error_dev(self, "bad block encountered\n");
1353 			error = EIO;
1354 			goto out;
1355 		}
1356 		error = nand_read_page(self, addr, bufp);
1357 		if (error)
1358 			goto out;
1359 
1360 		bufp += chip->nc_page_size;
1361 		addr += chip->nc_page_size;
1362 		*retlen += chip->nc_page_size;
1363 	}
1364 
1365 out:
1366 	mutex_exit(&sc->sc_device_lock);
1367 
1368 	return error;
1369 }
1370 
1371 int
1372 nand_flash_isbad(device_t self, flash_off_t ofs, bool *isbad)
1373 {
1374 	struct nand_softc *sc = device_private(self);
1375 	struct nand_chip *chip = &sc->sc_chip;
1376 	bool result;
1377 
1378 	if (ofs > chip->nc_size) {
1379 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1380 			" device size (0x%jx)\n", (uintmax_t)ofs,
1381 			(uintmax_t)chip->nc_size));
1382 		return EINVAL;
1383 	}
1384 
1385 	if (ofs % chip->nc_block_size != 0) {
1386 		DPRINTF(("offset (0x%jx) is not the multiple of block size "
1387 			"(%ju)",
1388 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
1389 		return EINVAL;
1390 	}
1391 
1392 	mutex_enter(&sc->sc_device_lock);
1393 	result = nand_isbad(self, ofs);
1394 	mutex_exit(&sc->sc_device_lock);
1395 
1396 	*isbad = result;
1397 
1398 	return 0;
1399 }
1400 
1401 int
1402 nand_flash_markbad(device_t self, flash_off_t ofs)
1403 {
1404 	struct nand_softc *sc = device_private(self);
1405 	struct nand_chip *chip = &sc->sc_chip;
1406 
1407 	if (ofs > chip->nc_size) {
1408 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1409 			" device size (0x%jx)\n", ofs,
1410 			(uintmax_t)chip->nc_size));
1411 		return EINVAL;
1412 	}
1413 
1414 	if (ofs % chip->nc_block_size != 0) {
1415 		panic("offset (%ju) is not the multiple of block size (%ju)",
1416 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1417 	}
1418 
1419 	mutex_enter(&sc->sc_device_lock);
1420 	nand_markbad(self, ofs);
1421 	mutex_exit(&sc->sc_device_lock);
1422 
1423 	return 0;
1424 }
1425 
1426 int
1427 nand_flash_erase(device_t self,
1428     struct flash_erase_instruction *ei)
1429 {
1430 	struct nand_softc *sc = device_private(self);
1431 	struct nand_chip *chip = &sc->sc_chip;
1432 	flash_off_t addr;
1433 	int error = 0;
1434 
1435 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1436 		return EINVAL;
1437 
1438 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1439 		DPRINTF(("nand_flash_erase: erase address is over the end"
1440 			" of the device\n"));
1441 		return EINVAL;
1442 	}
1443 
1444 	if (ei->ei_addr % chip->nc_block_size != 0) {
1445 		aprint_error_dev(self,
1446 		    "nand_flash_erase: ei_addr (%ju) is not"
1447 		    "the multiple of block size (%ju)",
1448 		    (uintmax_t)ei->ei_addr,
1449 		    (uintmax_t)chip->nc_block_size);
1450 		return EINVAL;
1451 	}
1452 
1453 	if (ei->ei_len % chip->nc_block_size != 0) {
1454 		aprint_error_dev(self,
1455 		    "nand_flash_erase: ei_len (%ju) is not"
1456 		    "the multiple of block size (%ju)",
1457 		    (uintmax_t)ei->ei_addr,
1458 		    (uintmax_t)chip->nc_block_size);
1459 		return EINVAL;
1460 	}
1461 
1462 	mutex_enter(&sc->sc_device_lock);
1463 	addr = ei->ei_addr;
1464 	while (addr < ei->ei_addr + ei->ei_len) {
1465 		if (nand_isbad(self, addr)) {
1466 			aprint_error_dev(self, "bad block encountered\n");
1467 			ei->ei_state = FLASH_ERASE_FAILED;
1468 
1469 			error = EIO;
1470 			goto out;
1471 		}
1472 
1473 		error = nand_erase_block(self, addr);
1474 		if (error) {
1475 			ei->ei_state = FLASH_ERASE_FAILED;
1476 
1477 			goto out;
1478 		}
1479 
1480 		addr += chip->nc_block_size;
1481 	}
1482 	mutex_exit(&sc->sc_device_lock);
1483 
1484 	ei->ei_state = FLASH_ERASE_DONE;
1485 	if (ei->ei_callback != NULL) {
1486 		ei->ei_callback(ei);
1487 	}
1488 
1489 	return 0;
1490 out:
1491 	mutex_exit(&sc->sc_device_lock);
1492 
1493 	return error;
1494 }
1495 
1496 static int
1497 sysctl_nand_verify(SYSCTLFN_ARGS)
1498 {
1499 	int error, t;
1500 	struct sysctlnode node;
1501 
1502 	node = *rnode;
1503 	t = *(int *)rnode->sysctl_data;
1504 	node.sysctl_data = &t;
1505 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1506 	if (error || newp == NULL)
1507 		return error;
1508 
1509 	if (node.sysctl_num == nand_cachesync_nodenum) {
1510 		if (t <= 0 || t > 60)
1511 			return EINVAL;
1512 	} else {
1513 		return EINVAL;
1514 	}
1515 
1516 	*(int *)rnode->sysctl_data = t;
1517 
1518 	return 0;
1519 }
1520 
1521 SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
1522 {
1523 	int rc, nand_root_num;
1524 	const struct sysctlnode *node;
1525 
1526 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1527 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
1528 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1529 		goto error;
1530 	}
1531 
1532 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1533 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
1534 	    SYSCTL_DESCR("NAND driver controls"),
1535 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1536 		goto error;
1537 	}
1538 
1539 	nand_root_num = node->sysctl_num;
1540 
1541 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1542 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1543 	    CTLTYPE_INT, "cache_sync_timeout",
1544 	    SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
1545 	    sysctl_nand_verify, 0, &nand_cachesync_timeout,
1546 	    0, CTL_HW, nand_root_num, CTL_CREATE,
1547 	    CTL_EOL)) != 0) {
1548 		goto error;
1549 	}
1550 
1551 	nand_cachesync_nodenum = node->sysctl_num;
1552 
1553 	return;
1554 
1555 error:
1556 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
1557 }
1558 
1559 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1560 
1561 #ifdef _MODULE
1562 #include "ioconf.c"
1563 #endif
1564 
1565 static int
1566 nand_modcmd(modcmd_t cmd, void *opaque)
1567 {
1568 	switch (cmd) {
1569 	case MODULE_CMD_INIT:
1570 #ifdef _MODULE
1571 		return config_init_component(cfdriver_ioconf_nand,
1572 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1573 #else
1574 		return 0;
1575 #endif
1576 	case MODULE_CMD_FINI:
1577 #ifdef _MODULE
1578 		return config_fini_component(cfdriver_ioconf_nand,
1579 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1580 #else
1581 		return 0;
1582 #endif
1583 	default:
1584 		return ENOTTY;
1585 	}
1586 }
1587