1 /* $NetBSD: nand.c,v 1.29 2021/08/07 16:19:13 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 2010 Department of Software Engineering, 5 * University of Szeged, Hungary 6 * Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org> 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to The NetBSD Foundation 10 * by the Department of Software Engineering, University of Szeged, Hungary 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */ 35 36 #include <sys/cdefs.h> 37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.29 2021/08/07 16:19:13 thorpej Exp $"); 38 39 #include "locators.h" 40 41 #include <sys/param.h> 42 #include <sys/types.h> 43 #include <sys/device.h> 44 #include <sys/kmem.h> 45 #include <sys/atomic.h> 46 47 #include <dev/flash/flash.h> 48 #include <dev/flash/flash_io.h> 49 #include <dev/nand/nand.h> 50 #include <dev/nand/onfi.h> 51 #include <dev/nand/hamming.h> 52 #include <dev/nand/nand_bbt.h> 53 #include <dev/nand/nand_crc.h> 54 55 #include "opt_nand.h" 56 57 int nand_match(device_t, cfdata_t, void *); 58 void nand_attach(device_t, device_t, void *); 59 int nand_detach(device_t, int); 60 bool nand_shutdown(device_t, int); 61 62 int nand_print(void *, const char *); 63 64 static int nand_search(device_t, cfdata_t, const int *, void *); 65 static void nand_address_row(device_t, size_t); 66 static inline uint8_t nand_get_status(device_t); 67 static void nand_address_column(device_t, size_t, size_t); 68 static int nand_fill_chip_structure(device_t, struct nand_chip *); 69 static int nand_scan_media(device_t, struct nand_chip *); 70 static bool nand_check_wp(device_t); 71 72 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc), 73 nand_match, nand_attach, nand_detach, NULL); 74 75 #ifdef NAND_DEBUG 76 int nanddebug = NAND_DEBUG; 77 #endif 78 79 struct flash_interface nand_flash_if = { 80 .type = FLASH_TYPE_NAND, 81 82 .read = nand_flash_read, 83 .write = nand_flash_write, 84 .erase = nand_flash_erase, 85 .block_isbad = nand_flash_isbad, 86 .block_markbad = nand_flash_markbad, 87 88 .submit = nand_flash_submit 89 }; 90 91 const struct nand_manufacturer nand_mfrs[] = { 92 { NAND_MFR_AMD, "AMD" }, 93 { NAND_MFR_FUJITSU, "Fujitsu" }, 94 { NAND_MFR_RENESAS, "Renesas" }, 95 { NAND_MFR_STMICRO, "ST Micro" }, 96 { NAND_MFR_MICRON, "Micron" }, 97 { NAND_MFR_NATIONAL, "National" }, 98 { NAND_MFR_TOSHIBA, "Toshiba" }, 99 { NAND_MFR_HYNIX, "Hynix" }, 100 { NAND_MFR_SAMSUNG, "Samsung" }, 101 { NAND_MFR_UNKNOWN, "Unknown" } 102 }; 103 104 static const char * 105 nand_midtoname(int id) 106 { 107 int i; 108 109 for (i = 0; nand_mfrs[i].id != 0; i++) { 110 if (nand_mfrs[i].id == id) 111 return nand_mfrs[i].name; 112 } 113 114 KASSERT(nand_mfrs[i].id == 0); 115 116 return nand_mfrs[i].name; 117 } 118 119 /* ARGSUSED */ 120 int 121 nand_match(device_t parent, cfdata_t match, void *aux) 122 { 123 /* pseudo device, always attaches */ 124 return 1; 125 } 126 127 void 128 nand_attach(device_t parent, device_t self, void *aux) 129 { 130 struct nand_softc *sc = device_private(self); 131 struct nand_attach_args *naa = aux; 132 struct nand_chip *chip = &sc->sc_chip; 133 134 sc->sc_dev = self; 135 sc->controller_dev = parent; 136 sc->nand_if = naa->naa_nand_if; 137 138 aprint_naive("\n"); 139 140 if (nand_check_wp(self)) { 141 aprint_error("NAND chip is write protected!\n"); 142 return; 143 } 144 145 if (nand_scan_media(self, chip)) { 146 return; 147 } 148 149 nand_flash_if.erasesize = chip->nc_block_size; 150 nand_flash_if.page_size = chip->nc_page_size; 151 nand_flash_if.writesize = chip->nc_page_size; 152 153 /* allocate cache */ 154 chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP); 155 chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP); 156 157 mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE); 158 159 if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) { 160 goto error; 161 } 162 163 if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown)) 164 aprint_error_dev(sc->sc_dev, 165 "couldn't establish power handler\n"); 166 167 #ifdef NAND_BBT 168 nand_bbt_init(self); 169 nand_bbt_scan(self); 170 #endif 171 172 /* 173 * Attach all our devices 174 */ 175 config_search(self, NULL, 176 CFARGS(.search = nand_search)); 177 178 return; 179 error: 180 kmem_free(chip->nc_oob_cache, chip->nc_spare_size); 181 kmem_free(chip->nc_page_cache, chip->nc_page_size); 182 mutex_destroy(&sc->sc_device_lock); 183 } 184 185 static int 186 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux) 187 { 188 struct nand_softc *sc = device_private(parent); 189 struct nand_chip *chip = &sc->sc_chip; 190 struct flash_attach_args faa; 191 192 if (cf->cf_loc[FLASHBUSCF_DYNAMIC] != 0) 193 return 0; 194 195 faa.flash_if = &nand_flash_if; 196 197 faa.partinfo.part_name = NULL; 198 faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET]; 199 200 if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) { 201 faa.partinfo.part_size = chip->nc_size - 202 faa.partinfo.part_offset; 203 } else { 204 faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE]; 205 } 206 207 if (cf->cf_loc[FLASHBUSCF_READONLY]) 208 faa.partinfo.part_flags = FLASH_PART_READONLY; 209 else 210 faa.partinfo.part_flags = 0; 211 212 if (config_probe(parent, cf, &faa)) { 213 if (config_attach(parent, cf, &faa, nand_print, 214 CFARGS_NONE) != NULL) { 215 return 0; 216 } else { 217 return 1; 218 } 219 } 220 221 return 1; 222 } 223 224 void 225 nand_attach_mtdparts(device_t parent, const char *mtd_id, const char *cmdline) 226 { 227 struct nand_softc *sc = device_private(parent); 228 struct nand_chip *chip = &sc->sc_chip; 229 230 flash_attach_mtdparts(&nand_flash_if, parent, chip->nc_size, 231 mtd_id, cmdline); 232 } 233 234 int 235 nand_detach(device_t self, int flags) 236 { 237 struct nand_softc *sc = device_private(self); 238 struct nand_chip *chip = &sc->sc_chip; 239 int error = 0; 240 241 error = config_detach_children(self, flags); 242 if (error) { 243 return error; 244 } 245 246 flash_sync_thread_destroy(&sc->sc_flash_io); 247 #ifdef NAND_BBT 248 nand_bbt_detach(self); 249 #endif 250 /* free oob cache */ 251 kmem_free(chip->nc_oob_cache, chip->nc_spare_size); 252 kmem_free(chip->nc_page_cache, chip->nc_page_size); 253 kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size); 254 255 mutex_destroy(&sc->sc_device_lock); 256 257 pmf_device_deregister(sc->sc_dev); 258 259 return error; 260 } 261 262 int 263 nand_print(void *aux, const char *pnp) 264 { 265 if (pnp != NULL) 266 aprint_normal("nand at %s\n", pnp); 267 268 return UNCONF; 269 } 270 271 /* ask for a nand driver to attach to the controller */ 272 device_t 273 nand_attach_mi(struct nand_interface *nand_if, device_t parent) 274 { 275 struct nand_attach_args arg; 276 277 KASSERT(nand_if != NULL); 278 279 /* fill the defaults if we have null pointers */ 280 if (nand_if->program_page == NULL) { 281 nand_if->program_page = &nand_default_program_page; 282 } 283 284 if (nand_if->read_page == NULL) { 285 nand_if->read_page = &nand_default_read_page; 286 } 287 288 arg.naa_nand_if = nand_if; 289 return config_found(parent, &arg, nand_print, 290 CFARGS(.iattr = "nandbus")); 291 } 292 293 /* default everything to reasonable values, to ease future api changes */ 294 void 295 nand_init_interface(struct nand_interface *interface) 296 { 297 interface->select = &nand_default_select; 298 interface->command = NULL; 299 interface->address = NULL; 300 interface->read_buf_1 = NULL; 301 interface->read_buf_2 = NULL; 302 interface->read_1 = NULL; 303 interface->read_2 = NULL; 304 interface->write_buf_1 = NULL; 305 interface->write_buf_2 = NULL; 306 interface->write_1 = NULL; 307 interface->write_2 = NULL; 308 interface->busy = NULL; 309 310 /*- 311 * most drivers dont want to change this, but some implement 312 * read/program in one step 313 */ 314 interface->program_page = &nand_default_program_page; 315 interface->read_page = &nand_default_read_page; 316 317 /* default to soft ecc, that should work everywhere */ 318 interface->ecc_compute = &nand_default_ecc_compute; 319 interface->ecc_correct = &nand_default_ecc_correct; 320 interface->ecc_prepare = NULL; 321 interface->ecc.necc_code_size = 3; 322 interface->ecc.necc_block_size = 256; 323 interface->ecc.necc_type = NAND_ECC_TYPE_SW; 324 } 325 326 #if 0 327 /* handle quirks here */ 328 static void 329 nand_quirks(device_t self, struct nand_chip *chip) 330 { 331 /* this is an example only! */ 332 switch (chip->nc_manf_id) { 333 case NAND_MFR_SAMSUNG: 334 if (chip->nc_dev_id == 0x00) { 335 /* do something only samsung chips need */ 336 /* or */ 337 /* chip->nc_quirks |= NC_QUIRK_NO_READ_START */ 338 } 339 } 340 341 return; 342 } 343 #endif 344 345 static int 346 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip) 347 { 348 switch (chip->nc_manf_id) { 349 case NAND_MFR_MICRON: 350 return nand_read_parameters_micron(self, chip); 351 case NAND_MFR_SAMSUNG: 352 return nand_read_parameters_samsung(self, chip); 353 case NAND_MFR_TOSHIBA: 354 return nand_read_parameters_toshiba(self, chip); 355 default: 356 return 1; 357 } 358 359 return 0; 360 } 361 362 /** 363 * scan media to determine the chip's properties 364 * this function resets the device 365 */ 366 static int 367 nand_scan_media(device_t self, struct nand_chip *chip) 368 { 369 struct nand_softc *sc = device_private(self); 370 struct nand_ecc *ecc; 371 uint8_t onfi_signature[4]; 372 373 nand_select(self, true); 374 nand_command(self, ONFI_RESET); 375 KASSERT(nand_get_status(self) & ONFI_STATUS_RDY); 376 nand_select(self, false); 377 378 /* check if the device implements the ONFI standard */ 379 nand_select(self, true); 380 nand_command(self, ONFI_READ_ID); 381 nand_address(self, 0x20); 382 nand_read_1(self, &onfi_signature[0]); 383 nand_read_1(self, &onfi_signature[1]); 384 nand_read_1(self, &onfi_signature[2]); 385 nand_read_1(self, &onfi_signature[3]); 386 nand_select(self, false); 387 388 #ifdef NAND_DEBUG 389 device_printf(self, "signature: %02x %02x %02x %02x\n", 390 onfi_signature[0], onfi_signature[1], 391 onfi_signature[2], onfi_signature[3]); 392 #endif 393 394 if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' || 395 onfi_signature[2] != 'F' || onfi_signature[3] != 'I') { 396 chip->nc_isonfi = false; 397 398 aprint_normal(": Legacy NAND Flash\n"); 399 400 nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id); 401 402 if (nand_fill_chip_structure_legacy(self, chip)) { 403 aprint_error_dev(self, 404 "can't read device parameters for legacy chip\n"); 405 return 1; 406 } 407 } else { 408 chip->nc_isonfi = true; 409 410 aprint_normal(": ONFI NAND Flash\n"); 411 412 nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id); 413 414 if (nand_fill_chip_structure(self, chip)) { 415 aprint_error_dev(self, 416 "can't read device parameters\n"); 417 return 1; 418 } 419 } 420 421 aprint_normal_dev(self, 422 "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n", 423 chip->nc_manf_id, 424 nand_midtoname(chip->nc_manf_id), 425 chip->nc_dev_id); 426 427 aprint_normal_dev(self, 428 "page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, " 429 "block size: %" PRIu32 " bytes\n", 430 chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size); 431 432 aprint_normal_dev(self, 433 "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8 434 ", total storage size: %" PRIu64 " MB\n", 435 chip->nc_lun_blocks, chip->nc_num_luns, 436 chip->nc_size / 1024 / 1024); 437 438 aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %" 439 PRIu8 ", width: %s\n", 440 chip->nc_addr_cycles_column, chip->nc_addr_cycles_row, 441 (chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8"); 442 443 ecc = chip->nc_ecc = &sc->nand_if->ecc; 444 445 /* 446 * calculate the place of ecc data in oob 447 * we try to be compatible with Linux here 448 */ 449 switch (chip->nc_spare_size) { 450 case 8: 451 ecc->necc_offset = 0; 452 break; 453 case 16: 454 ecc->necc_offset = 0; 455 break; 456 case 32: 457 ecc->necc_offset = 0; 458 break; 459 case 64: 460 ecc->necc_offset = 40; 461 break; 462 case 128: 463 ecc->necc_offset = 80; 464 break; 465 default: 466 panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size); 467 } 468 469 ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size; 470 ecc->necc_size = ecc->necc_steps * ecc->necc_code_size; 471 472 /* check if we fit in oob */ 473 if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) { 474 panic("NAND ECC bits dont fit in OOB"); 475 } 476 477 /* TODO: mark free oob area available for file systems */ 478 479 chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP); 480 481 /* 482 * calculate badblock marker offset in oob 483 * we try to be compatible with linux here 484 */ 485 if (chip->nc_page_size > 512) 486 chip->nc_badmarker_offs = 0; 487 else 488 chip->nc_badmarker_offs = 5; 489 490 /* Calculate page shift and mask */ 491 chip->nc_page_shift = ffs(chip->nc_page_size) - 1; 492 chip->nc_page_mask = ~(chip->nc_page_size - 1); 493 /* same for block */ 494 chip->nc_block_shift = ffs(chip->nc_block_size) - 1; 495 chip->nc_block_mask = ~(chip->nc_block_size - 1); 496 497 /* look for quirks here if needed in future */ 498 /* nand_quirks(self, chip); */ 499 500 return 0; 501 } 502 503 void 504 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev) 505 { 506 nand_select(self, true); 507 nand_command(self, ONFI_READ_ID); 508 nand_address(self, 0x00); 509 510 nand_read_1(self, manf); 511 nand_read_1(self, dev); 512 513 nand_select(self, false); 514 } 515 516 int 517 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params) 518 { 519 uint8_t *bufp; 520 uint16_t crc; 521 int i;//, tries = 0; 522 523 KASSERT(sizeof(*params) == 256); 524 525 //read_params: 526 // tries++; 527 528 nand_select(self, true); 529 nand_command(self, ONFI_READ_PARAMETER_PAGE); 530 nand_address(self, 0x00); 531 532 nand_busy(self); 533 534 /* TODO check the signature if it contains at least 2 letters */ 535 536 bufp = (uint8_t *)params; 537 /* XXX why i am not using read_buf? */ 538 for (i = 0; i < 256; i++) { 539 nand_read_1(self, &bufp[i]); 540 } 541 nand_select(self, false); 542 543 /* validate the parameter page with the crc */ 544 crc = nand_crc16(bufp, 254); 545 546 if (crc != params->param_integrity_crc) { 547 aprint_error_dev(self, "parameter page crc check failed\n"); 548 /* TODO: we should read the next parameter page copy */ 549 return 1; 550 } 551 552 return 0; 553 } 554 555 static int 556 nand_fill_chip_structure(device_t self, struct nand_chip *chip) 557 { 558 struct onfi_parameter_page params; 559 uint8_t vendor[13], model[21]; 560 int i; 561 562 if (nand_read_parameter_page(self, ¶ms)) { 563 return 1; 564 } 565 566 /* strip manufacturer and model string */ 567 strlcpy(vendor, params.param_manufacturer, sizeof(vendor)); 568 for (i = 11; i > 0 && vendor[i] == ' '; i--) 569 vendor[i] = 0; 570 strlcpy(model, params.param_model, sizeof(model)); 571 for (i = 19; i > 0 && model[i] == ' '; i--) 572 model[i] = 0; 573 574 aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model); 575 576 chip->nc_page_size = le32toh(params.param_pagesize); 577 chip->nc_block_size = 578 le32toh(params.param_blocksize) * chip->nc_page_size; 579 chip->nc_spare_size = le16toh(params.param_sparesize); 580 chip->nc_lun_blocks = le32toh(params.param_lunsize); 581 chip->nc_num_luns = params.param_numluns; 582 583 chip->nc_size = 584 chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns; 585 586 /* the lower 4 bits contain the row address cycles */ 587 chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07; 588 /* the upper 4 bits contain the column address cycles */ 589 chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4; 590 591 uint16_t features = le16toh(params.param_features); 592 if (features & ONFI_FEATURE_16BIT) { 593 chip->nc_flags |= NC_BUSWIDTH_16; 594 } 595 596 if (features & ONFI_FEATURE_EXTENDED_PARAM) { 597 chip->nc_flags |= NC_EXTENDED_PARAM; 598 } 599 600 return 0; 601 } 602 603 /* ARGSUSED */ 604 bool 605 nand_shutdown(device_t self, int howto) 606 { 607 return true; 608 } 609 610 static void 611 nand_address_column(device_t self, size_t row, size_t column) 612 { 613 struct nand_softc *sc = device_private(self); 614 struct nand_chip *chip = &sc->sc_chip; 615 uint8_t i; 616 617 DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n", 618 (uintmax_t )row, column)); 619 620 /* XXX TODO */ 621 row >>= chip->nc_page_shift; 622 623 /* Write the column (subpage) address */ 624 if (chip->nc_flags & NC_BUSWIDTH_16) 625 column >>= 1; 626 for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8) 627 nand_address(self, column & 0xff); 628 629 /* Write the row (page) address */ 630 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8) 631 nand_address(self, row & 0xff); 632 } 633 634 static void 635 nand_address_row(device_t self, size_t row) 636 { 637 struct nand_softc *sc = device_private(self); 638 struct nand_chip *chip = &sc->sc_chip; 639 int i; 640 641 /* XXX TODO */ 642 row >>= chip->nc_page_shift; 643 644 /* Write the row (page) address */ 645 for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8) 646 nand_address(self, row & 0xff); 647 } 648 649 static inline uint8_t 650 nand_get_status(device_t self) 651 { 652 uint8_t status; 653 654 nand_command(self, ONFI_READ_STATUS); 655 nand_busy(self); 656 nand_read_1(self, &status); 657 658 return status; 659 } 660 661 static bool 662 nand_check_wp(device_t self) 663 { 664 if (nand_get_status(self) & ONFI_STATUS_WP) 665 return false; 666 else 667 return true; 668 } 669 670 static void 671 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column) 672 { 673 nand_command(self, ONFI_READ); 674 nand_address_column(self, row, column); 675 nand_command(self, ONFI_READ_START); 676 677 nand_busy(self); 678 } 679 680 /* read a page with ecc correction, default implementation */ 681 int 682 nand_default_read_page(device_t self, size_t offset, uint8_t *data) 683 { 684 struct nand_softc *sc = device_private(self); 685 struct nand_chip *chip = &sc->sc_chip; 686 size_t b, bs, e, cs; 687 uint8_t *ecc; 688 int result; 689 690 nand_prepare_read(self, offset, 0); 691 692 bs = chip->nc_ecc->necc_block_size; 693 cs = chip->nc_ecc->necc_code_size; 694 695 /* decide if we access by 8 or 16 bits */ 696 if (chip->nc_flags & NC_BUSWIDTH_16) { 697 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) { 698 nand_ecc_prepare(self, NAND_ECC_READ); 699 nand_read_buf_2(self, data + b, bs); 700 nand_ecc_compute(self, data + b, 701 chip->nc_ecc_cache + e); 702 } 703 } else { 704 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) { 705 nand_ecc_prepare(self, NAND_ECC_READ); 706 nand_read_buf_1(self, data + b, bs); 707 nand_ecc_compute(self, data + b, 708 chip->nc_ecc_cache + e); 709 } 710 } 711 712 /* for debugging new drivers */ 713 #if 0 714 nand_dump_data("page", data, chip->nc_page_size); 715 #endif 716 717 nand_read_oob(self, offset, chip->nc_oob_cache); 718 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset; 719 720 /* useful for debugging new ecc drivers */ 721 #if 0 722 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps); 723 for (e = 0; e < chip->nc_ecc->necc_steps; e++) { 724 printf("0x"); 725 for (b = 0; b < cs; b++) { 726 printf("%.2hhx", ecc[e+b]); 727 } 728 printf(" 0x"); 729 for (b = 0; b < cs; b++) { 730 printf("%.2hhx", chip->nc_ecc_cache[e+b]); 731 } 732 printf("\n"); 733 } 734 printf("--------------\n"); 735 #endif 736 737 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) { 738 result = nand_ecc_correct(self, data + b, ecc + e, 739 chip->nc_ecc_cache + e); 740 741 switch (result) { 742 case NAND_ECC_OK: 743 break; 744 case NAND_ECC_CORRECTED: 745 aprint_error_dev(self, 746 "data corrected with ECC at page offset 0x%jx " 747 "block %zu\n", (uintmax_t)offset, b); 748 break; 749 case NAND_ECC_TWOBIT: 750 aprint_error_dev(self, 751 "uncorrectable ECC error at page offset 0x%jx " 752 "block %zu\n", (uintmax_t)offset, b); 753 return EIO; 754 break; 755 case NAND_ECC_INVALID: 756 aprint_error_dev(self, 757 "invalid ECC in oob at page offset 0x%jx " 758 "block %zu\n", (uintmax_t)offset, b); 759 return EIO; 760 break; 761 default: 762 panic("invalid ECC correction errno"); 763 } 764 } 765 766 return 0; 767 } 768 769 int 770 nand_default_program_page(device_t self, size_t page, const uint8_t *data) 771 { 772 struct nand_softc *sc = device_private(self); 773 struct nand_chip *chip = &sc->sc_chip; 774 size_t bs, cs, e, b; 775 uint8_t status; 776 uint8_t *ecc; 777 778 nand_command(self, ONFI_PAGE_PROGRAM); 779 nand_address_column(self, page, 0); 780 781 nand_busy(self); 782 783 bs = chip->nc_ecc->necc_block_size; 784 cs = chip->nc_ecc->necc_code_size; 785 ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset; 786 787 /* XXX code duplication */ 788 /* decide if we access by 8 or 16 bits */ 789 if (chip->nc_flags & NC_BUSWIDTH_16) { 790 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) { 791 nand_ecc_prepare(self, NAND_ECC_WRITE); 792 nand_write_buf_2(self, data + b, bs); 793 nand_ecc_compute(self, data + b, ecc + e); 794 } 795 /* write oob with ecc correction code */ 796 nand_write_buf_2(self, chip->nc_oob_cache, 797 chip->nc_spare_size); 798 } else { 799 for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) { 800 nand_ecc_prepare(self, NAND_ECC_WRITE); 801 nand_write_buf_1(self, data + b, bs); 802 nand_ecc_compute(self, data + b, ecc + e); 803 } 804 /* write oob with ecc correction code */ 805 nand_write_buf_1(self, chip->nc_oob_cache, 806 chip->nc_spare_size); 807 } 808 809 nand_command(self, ONFI_PAGE_PROGRAM_START); 810 811 nand_busy(self); 812 813 /* for debugging ecc */ 814 #if 0 815 printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps); 816 for (e = 0; e < chip->nc_ecc->necc_steps; e++) { 817 printf("0x"); 818 for (b = 0; b < cs; b++) { 819 printf("%.2hhx", ecc[e+b]); 820 } 821 printf("\n"); 822 } 823 printf("--------------\n"); 824 #endif 825 826 status = nand_get_status(self); 827 KASSERT(status & ONFI_STATUS_RDY); 828 if (status & ONFI_STATUS_FAIL) { 829 aprint_error_dev(self, "page program failed!\n"); 830 return EIO; 831 } 832 833 return 0; 834 } 835 836 /* read the OOB of a page */ 837 int 838 nand_read_oob(device_t self, size_t page, uint8_t *oob) 839 { 840 struct nand_softc *sc = device_private(self); 841 struct nand_chip *chip = &sc->sc_chip; 842 843 nand_prepare_read(self, page, chip->nc_page_size); 844 845 if (chip->nc_flags & NC_BUSWIDTH_16) 846 nand_read_buf_2(self, oob, chip->nc_spare_size); 847 else 848 nand_read_buf_1(self, oob, chip->nc_spare_size); 849 850 /* for debugging drivers */ 851 #if 0 852 nand_dump_data("oob", oob, chip->nc_spare_size); 853 #endif 854 855 return 0; 856 } 857 858 static int 859 nand_write_oob(device_t self, size_t offset, const void *oob) 860 { 861 struct nand_softc *sc = device_private(self); 862 struct nand_chip *chip = &sc->sc_chip; 863 uint8_t status; 864 865 nand_command(self, ONFI_PAGE_PROGRAM); 866 nand_address_column(self, offset, chip->nc_page_size); 867 nand_command(self, ONFI_PAGE_PROGRAM_START); 868 869 nand_busy(self); 870 871 if (chip->nc_flags & NC_BUSWIDTH_16) 872 nand_write_buf_2(self, oob, chip->nc_spare_size); 873 else 874 nand_write_buf_1(self, oob, chip->nc_spare_size); 875 876 status = nand_get_status(self); 877 KASSERT(status & ONFI_STATUS_RDY); 878 if (status & ONFI_STATUS_FAIL) 879 return EIO; 880 else 881 return 0; 882 } 883 884 void 885 nand_markbad(device_t self, size_t offset) 886 { 887 struct nand_softc *sc = device_private(self); 888 struct nand_chip *chip = &sc->sc_chip; 889 flash_off_t blockoffset; 890 #ifdef NAND_BBT 891 flash_off_t block; 892 893 block = offset / chip->nc_block_size; 894 895 nand_bbt_block_markbad(self, block); 896 #endif 897 blockoffset = offset & chip->nc_block_mask; 898 899 /* check if it is already marked bad */ 900 if (nand_isbad(self, blockoffset)) 901 return; 902 903 nand_read_oob(self, blockoffset, chip->nc_oob_cache); 904 905 chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00; 906 chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00; 907 908 nand_write_oob(self, blockoffset, chip->nc_oob_cache); 909 } 910 911 bool 912 nand_isfactorybad(device_t self, flash_off_t offset) 913 { 914 struct nand_softc *sc = device_private(self); 915 struct nand_chip *chip = &sc->sc_chip; 916 flash_off_t block, first_page, last_page, page; 917 int i; 918 919 /* Check for factory bad blocks first 920 * Factory bad blocks are marked in the first or last 921 * page of the blocks, see: ONFI 2.2, 3.2.2. 922 */ 923 block = offset / chip->nc_block_size; 924 first_page = block * chip->nc_block_size; 925 last_page = (block + 1) * chip->nc_block_size 926 - chip->nc_page_size; 927 928 for (i = 0, page = first_page; i < 2; i++, page = last_page) { 929 /* address OOB */ 930 nand_prepare_read(self, page, chip->nc_page_size); 931 932 if (chip->nc_flags & NC_BUSWIDTH_16) { 933 uint16_t word; 934 nand_read_2(self, &word); 935 if (word == 0x0000) 936 return true; 937 } else { 938 uint8_t byte; 939 nand_read_1(self, &byte); 940 if (byte == 0x00) 941 return true; 942 } 943 } 944 945 return false; 946 } 947 948 bool 949 nand_iswornoutbad(device_t self, flash_off_t offset) 950 { 951 struct nand_softc *sc = device_private(self); 952 struct nand_chip *chip = &sc->sc_chip; 953 flash_off_t block; 954 955 /* we inspect the first page of the block */ 956 block = offset & chip->nc_block_mask; 957 958 /* Linux/u-boot compatible badblock handling */ 959 if (chip->nc_flags & NC_BUSWIDTH_16) { 960 uint16_t word, mark; 961 962 nand_prepare_read(self, block, 963 chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe)); 964 965 nand_read_2(self, &word); 966 mark = htole16(word); 967 if (chip->nc_badmarker_offs & 0x01) 968 mark >>= 8; 969 if ((mark & 0xff) != 0xff) 970 return true; 971 } else { 972 uint8_t byte; 973 974 nand_prepare_read(self, block, 975 chip->nc_page_size + chip->nc_badmarker_offs); 976 977 nand_read_1(self, &byte); 978 if (byte != 0xff) 979 return true; 980 } 981 982 return false; 983 } 984 985 bool 986 nand_isbad(device_t self, flash_off_t offset) 987 { 988 #ifdef NAND_BBT 989 struct nand_softc *sc = device_private(self); 990 struct nand_chip *chip = &sc->sc_chip; 991 flash_off_t block; 992 993 block = offset / chip->nc_block_size; 994 995 return nand_bbt_block_isbad(self, block); 996 #else 997 /* ONFI host requirement */ 998 if (nand_isfactorybad(self, offset)) 999 return true; 1000 1001 /* Look for Linux/U-Boot compatible bad marker */ 1002 if (nand_iswornoutbad(self, offset)) 1003 return true; 1004 1005 return false; 1006 #endif 1007 } 1008 1009 int 1010 nand_erase_block(device_t self, size_t offset) 1011 { 1012 uint8_t status; 1013 1014 /* xxx calculate first page of block for address? */ 1015 1016 nand_command(self, ONFI_BLOCK_ERASE); 1017 nand_address_row(self, offset); 1018 nand_command(self, ONFI_BLOCK_ERASE_START); 1019 1020 nand_busy(self); 1021 1022 status = nand_get_status(self); 1023 KASSERT(status & ONFI_STATUS_RDY); 1024 if (status & ONFI_STATUS_FAIL) { 1025 aprint_error_dev(self, "block erase failed!\n"); 1026 nand_markbad(self, offset); 1027 return EIO; 1028 } else { 1029 return 0; 1030 } 1031 } 1032 1033 /* default functions for driver development */ 1034 1035 /* default ECC using hamming code of 256 byte chunks */ 1036 int 1037 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code) 1038 { 1039 hamming_compute_256(data, code); 1040 1041 return 0; 1042 } 1043 1044 int 1045 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode, 1046 const uint8_t *compcode) 1047 { 1048 return hamming_correct_256(data, origcode, compcode); 1049 } 1050 1051 void 1052 nand_default_select(device_t self, bool enable) 1053 { 1054 /* do nothing */ 1055 return; 1056 } 1057 1058 /* implementation of the block device API */ 1059 1060 int 1061 nand_flash_submit(device_t self, struct buf * const bp) 1062 { 1063 struct nand_softc *sc = device_private(self); 1064 1065 return flash_io_submit(&sc->sc_flash_io, bp); 1066 } 1067 1068 /* 1069 * handle (page) unaligned write to nand 1070 */ 1071 static int 1072 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len, 1073 size_t *retlen, const uint8_t *buf) 1074 { 1075 struct nand_softc *sc = device_private(self); 1076 struct nand_chip *chip = &sc->sc_chip; 1077 flash_off_t first, last, firstoff; 1078 const uint8_t *bufp; 1079 flash_off_t addr; 1080 size_t left, count; 1081 int error = 0, i; 1082 1083 first = offset & chip->nc_page_mask; 1084 firstoff = offset & ~chip->nc_page_mask; 1085 /* XXX check if this should be len - 1 */ 1086 last = (offset + len) & chip->nc_page_mask; 1087 count = last - first + 1; 1088 1089 addr = first; 1090 *retlen = 0; 1091 1092 mutex_enter(&sc->sc_device_lock); 1093 if (count == 1) { 1094 if (nand_isbad(self, addr)) { 1095 aprint_error_dev(self, 1096 "nand_flash_write_unaligned: " 1097 "bad block encountered\n"); 1098 error = EIO; 1099 goto out; 1100 } 1101 1102 error = nand_read_page(self, addr, chip->nc_page_cache); 1103 if (error) { 1104 goto out; 1105 } 1106 1107 memcpy(chip->nc_page_cache + firstoff, buf, len); 1108 1109 error = nand_program_page(self, addr, chip->nc_page_cache); 1110 if (error) { 1111 goto out; 1112 } 1113 1114 *retlen = len; 1115 goto out; 1116 } 1117 1118 bufp = buf; 1119 left = len; 1120 1121 for (i = 0; i < count && left != 0; i++) { 1122 if (nand_isbad(self, addr)) { 1123 aprint_error_dev(self, 1124 "nand_flash_write_unaligned: " 1125 "bad block encountered\n"); 1126 error = EIO; 1127 goto out; 1128 } 1129 1130 if (i == 0) { 1131 error = nand_read_page(self, 1132 addr, chip->nc_page_cache); 1133 if (error) { 1134 goto out; 1135 } 1136 1137 memcpy(chip->nc_page_cache + firstoff, 1138 bufp, chip->nc_page_size - firstoff); 1139 1140 printf("program page: %s: %d\n", __FILE__, __LINE__); 1141 error = nand_program_page(self, 1142 addr, chip->nc_page_cache); 1143 if (error) { 1144 goto out; 1145 } 1146 1147 bufp += chip->nc_page_size - firstoff; 1148 left -= chip->nc_page_size - firstoff; 1149 *retlen += chip->nc_page_size - firstoff; 1150 1151 } else if (i == count - 1) { 1152 error = nand_read_page(self, 1153 addr, chip->nc_page_cache); 1154 if (error) { 1155 goto out; 1156 } 1157 1158 memcpy(chip->nc_page_cache, bufp, left); 1159 1160 error = nand_program_page(self, 1161 addr, chip->nc_page_cache); 1162 if (error) { 1163 goto out; 1164 } 1165 1166 *retlen += left; 1167 KASSERT(left < chip->nc_page_size); 1168 1169 } else { 1170 /* XXX debug */ 1171 if (left > chip->nc_page_size) { 1172 printf("left: %zu, i: %d, count: %zu\n", 1173 left, i, count); 1174 } 1175 KASSERT(left > chip->nc_page_size); 1176 1177 error = nand_program_page(self, addr, bufp); 1178 if (error) { 1179 goto out; 1180 } 1181 1182 bufp += chip->nc_page_size; 1183 left -= chip->nc_page_size; 1184 *retlen += chip->nc_page_size; 1185 } 1186 1187 addr += chip->nc_page_size; 1188 } 1189 1190 KASSERT(*retlen == len); 1191 out: 1192 mutex_exit(&sc->sc_device_lock); 1193 1194 return error; 1195 } 1196 1197 int 1198 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen, 1199 const uint8_t *buf) 1200 { 1201 struct nand_softc *sc = device_private(self); 1202 struct nand_chip *chip = &sc->sc_chip; 1203 const uint8_t *bufp; 1204 size_t pages, page; 1205 daddr_t addr; 1206 int error = 0; 1207 1208 if ((offset + len) > chip->nc_size) { 1209 DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju)," 1210 " is over device size (0x%jx)\n", 1211 (uintmax_t)offset, (uintmax_t)len, 1212 (uintmax_t)chip->nc_size)); 1213 return EINVAL; 1214 } 1215 1216 if (len % chip->nc_page_size != 0 || 1217 offset % chip->nc_page_size != 0) { 1218 return nand_flash_write_unaligned(self, 1219 offset, len, retlen, buf); 1220 } 1221 1222 pages = len / chip->nc_page_size; 1223 KASSERT(pages != 0); 1224 *retlen = 0; 1225 1226 addr = offset; 1227 bufp = buf; 1228 1229 mutex_enter(&sc->sc_device_lock); 1230 for (page = 0; page < pages; page++) { 1231 /* do we need this check here? */ 1232 if (nand_isbad(self, addr)) { 1233 aprint_error_dev(self, 1234 "nand_flash_write: bad block encountered\n"); 1235 1236 error = EIO; 1237 goto out; 1238 } 1239 1240 error = nand_program_page(self, addr, bufp); 1241 if (error) { 1242 goto out; 1243 } 1244 1245 addr += chip->nc_page_size; 1246 bufp += chip->nc_page_size; 1247 *retlen += chip->nc_page_size; 1248 } 1249 out: 1250 mutex_exit(&sc->sc_device_lock); 1251 DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len)); 1252 1253 return error; 1254 } 1255 1256 /* 1257 * handle (page) unaligned read from nand 1258 */ 1259 static int 1260 nand_flash_read_unaligned(device_t self, size_t offset, 1261 size_t len, size_t *retlen, uint8_t *buf) 1262 { 1263 struct nand_softc *sc = device_private(self); 1264 struct nand_chip *chip = &sc->sc_chip; 1265 daddr_t first, last, count, firstoff; 1266 uint8_t *bufp; 1267 daddr_t addr; 1268 size_t left; 1269 int error = 0, i; 1270 1271 first = offset & chip->nc_page_mask; 1272 firstoff = offset & ~chip->nc_page_mask; 1273 last = (offset + len) & chip->nc_page_mask; 1274 count = (last - first) / chip->nc_page_size + 1; 1275 1276 addr = first; 1277 bufp = buf; 1278 left = len; 1279 *retlen = 0; 1280 1281 mutex_enter(&sc->sc_device_lock); 1282 if (count == 1) { 1283 error = nand_read_page(self, addr, chip->nc_page_cache); 1284 if (error) { 1285 goto out; 1286 } 1287 1288 memcpy(bufp, chip->nc_page_cache + firstoff, len); 1289 1290 *retlen = len; 1291 goto out; 1292 } 1293 1294 for (i = 0; i < count && left != 0; i++) { 1295 error = nand_read_page(self, addr, chip->nc_page_cache); 1296 if (error) { 1297 goto out; 1298 } 1299 1300 if (i == 0) { 1301 memcpy(bufp, chip->nc_page_cache + firstoff, 1302 chip->nc_page_size - firstoff); 1303 1304 bufp += chip->nc_page_size - firstoff; 1305 left -= chip->nc_page_size - firstoff; 1306 *retlen += chip->nc_page_size - firstoff; 1307 1308 } else if (i == count - 1) { 1309 memcpy(bufp, chip->nc_page_cache, left); 1310 *retlen += left; 1311 KASSERT(left < chip->nc_page_size); 1312 1313 } else { 1314 memcpy(bufp, chip->nc_page_cache, chip->nc_page_size); 1315 1316 bufp += chip->nc_page_size; 1317 left -= chip->nc_page_size; 1318 *retlen += chip->nc_page_size; 1319 } 1320 1321 addr += chip->nc_page_size; 1322 } 1323 KASSERT(*retlen == len); 1324 out: 1325 mutex_exit(&sc->sc_device_lock); 1326 1327 return error; 1328 } 1329 1330 int 1331 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen, 1332 uint8_t *buf) 1333 { 1334 struct nand_softc *sc = device_private(self); 1335 struct nand_chip *chip = &sc->sc_chip; 1336 uint8_t *bufp; 1337 size_t addr; 1338 size_t i, pages; 1339 int error = 0; 1340 1341 *retlen = 0; 1342 1343 DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n", 1344 (uintmax_t)offset, len)); 1345 1346 if (__predict_false((offset + len) > chip->nc_size)) { 1347 DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 ")," 1348 " is over device size (%ju)\n", (uintmax_t)offset, 1349 len, (uintmax_t)chip->nc_size)); 1350 return EINVAL; 1351 } 1352 1353 /* Handle unaligned access, shouldnt be needed when using the 1354 * block device, as strategy handles it, so only low level 1355 * accesses will use this path 1356 */ 1357 /* XXX^2 */ 1358 #if 0 1359 if (len < chip->nc_page_size) 1360 panic("TODO page size is larger than read size"); 1361 #endif 1362 1363 if (len % chip->nc_page_size != 0 || 1364 offset % chip->nc_page_size != 0) { 1365 return nand_flash_read_unaligned(self, 1366 offset, len, retlen, buf); 1367 } 1368 1369 bufp = buf; 1370 addr = offset; 1371 pages = len / chip->nc_page_size; 1372 1373 mutex_enter(&sc->sc_device_lock); 1374 for (i = 0; i < pages; i++) { 1375 /* XXX do we need this check here? */ 1376 if (nand_isbad(self, addr)) { 1377 aprint_error_dev(self, "bad block encountered\n"); 1378 error = EIO; 1379 goto out; 1380 } 1381 error = nand_read_page(self, addr, bufp); 1382 if (error) 1383 goto out; 1384 1385 bufp += chip->nc_page_size; 1386 addr += chip->nc_page_size; 1387 *retlen += chip->nc_page_size; 1388 } 1389 out: 1390 mutex_exit(&sc->sc_device_lock); 1391 1392 return error; 1393 } 1394 1395 int 1396 nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad) 1397 { 1398 struct nand_softc *sc = device_private(self); 1399 struct nand_chip *chip = &sc->sc_chip; 1400 bool result; 1401 1402 if (ofs > chip->nc_size) { 1403 DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than" 1404 " device size (0x%jx)\n", (uintmax_t)ofs, 1405 (uintmax_t)chip->nc_size)); 1406 return EINVAL; 1407 } 1408 1409 if (ofs % chip->nc_block_size != 0) { 1410 DPRINTF(("offset (0x%jx) is not a multiple of block size " 1411 "(%ju)", 1412 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size)); 1413 return EINVAL; 1414 } 1415 1416 mutex_enter(&sc->sc_device_lock); 1417 result = nand_isbad(self, ofs); 1418 mutex_exit(&sc->sc_device_lock); 1419 1420 *is_bad = result; 1421 1422 return 0; 1423 } 1424 1425 int 1426 nand_flash_markbad(device_t self, flash_off_t ofs) 1427 { 1428 struct nand_softc *sc = device_private(self); 1429 struct nand_chip *chip = &sc->sc_chip; 1430 1431 if (ofs > chip->nc_size) { 1432 DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than" 1433 " device size (0x%jx)\n", ofs, 1434 (uintmax_t)chip->nc_size)); 1435 return EINVAL; 1436 } 1437 1438 if (ofs % chip->nc_block_size != 0) { 1439 panic("offset (%ju) is not a multiple of block size (%ju)", 1440 (uintmax_t)ofs, (uintmax_t)chip->nc_block_size); 1441 } 1442 1443 mutex_enter(&sc->sc_device_lock); 1444 nand_markbad(self, ofs); 1445 mutex_exit(&sc->sc_device_lock); 1446 1447 return 0; 1448 } 1449 1450 int 1451 nand_flash_erase(device_t self, 1452 struct flash_erase_instruction *ei) 1453 { 1454 struct nand_softc *sc = device_private(self); 1455 struct nand_chip *chip = &sc->sc_chip; 1456 flash_off_t addr; 1457 int error = 0; 1458 1459 if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size) 1460 return EINVAL; 1461 1462 if (ei->ei_addr + ei->ei_len > chip->nc_size) { 1463 DPRINTF(("nand_flash_erase: erase address is over the end" 1464 " of the device\n")); 1465 return EINVAL; 1466 } 1467 1468 if (ei->ei_addr % chip->nc_block_size != 0) { 1469 aprint_error_dev(self, 1470 "nand_flash_erase: ei_addr (%ju) is not" 1471 " a multiple of block size (%ju)", 1472 (uintmax_t)ei->ei_addr, 1473 (uintmax_t)chip->nc_block_size); 1474 return EINVAL; 1475 } 1476 1477 if (ei->ei_len % chip->nc_block_size != 0) { 1478 aprint_error_dev(self, 1479 "nand_flash_erase: ei_len (%ju) is not" 1480 " a multiple of block size (%ju)", 1481 (uintmax_t)ei->ei_len, 1482 (uintmax_t)chip->nc_block_size); 1483 return EINVAL; 1484 } 1485 1486 mutex_enter(&sc->sc_device_lock); 1487 addr = ei->ei_addr; 1488 while (addr < ei->ei_addr + ei->ei_len) { 1489 if (nand_isbad(self, addr)) { 1490 aprint_error_dev(self, "bad block encountered\n"); 1491 ei->ei_state = FLASH_ERASE_FAILED; 1492 error = EIO; 1493 goto out; 1494 } 1495 1496 error = nand_erase_block(self, addr); 1497 if (error) { 1498 ei->ei_state = FLASH_ERASE_FAILED; 1499 goto out; 1500 } 1501 1502 addr += chip->nc_block_size; 1503 } 1504 mutex_exit(&sc->sc_device_lock); 1505 1506 ei->ei_state = FLASH_ERASE_DONE; 1507 if (ei->ei_callback != NULL) { 1508 ei->ei_callback(ei); 1509 } 1510 1511 return 0; 1512 out: 1513 mutex_exit(&sc->sc_device_lock); 1514 1515 return error; 1516 } 1517 1518 MODULE(MODULE_CLASS_DRIVER, nand, "flash"); 1519 1520 #ifdef _MODULE 1521 #include "ioconf.c" 1522 #endif 1523 1524 static int 1525 nand_modcmd(modcmd_t cmd, void *opaque) 1526 { 1527 switch (cmd) { 1528 case MODULE_CMD_INIT: 1529 #ifdef _MODULE 1530 return config_init_component(cfdriver_ioconf_nand, 1531 cfattach_ioconf_nand, cfdata_ioconf_nand); 1532 #else 1533 return 0; 1534 #endif 1535 case MODULE_CMD_FINI: 1536 #ifdef _MODULE 1537 return config_fini_component(cfdriver_ioconf_nand, 1538 cfattach_ioconf_nand, cfdata_ioconf_nand); 1539 #else 1540 return 0; 1541 #endif 1542 default: 1543 return ENOTTY; 1544 } 1545 } 1546