xref: /netbsd-src/sys/dev/nand/nand.c (revision 52682d394ef133627bd8cb03e5f64c0dfc9cdfbc)
1 /*	$NetBSD: nand.c,v 1.12 2011/06/28 07:16:11 ahoka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Department of Software Engineering,
5  *		      University of Szeged, Hungary
6  * Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by the Department of Software Engineering, University of Szeged, Hungary
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.12 2011/06/28 07:16:11 ahoka Exp $");
38 
39 #include "locators.h"
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/sysctl.h>
46 #include <sys/atomic.h>
47 
48 #include <dev/flash/flash.h>
49 #include <dev/nand/nand.h>
50 #include <dev/nand/onfi.h>
51 #include <dev/nand/hamming.h>
52 #include <dev/nand/nand_bbt.h>
53 #include <dev/nand/nand_crc.h>
54 
55 #include "opt_nand.h"
56 
57 int nand_match(device_t, cfdata_t, void *);
58 void nand_attach(device_t, device_t, void *);
59 int nand_detach(device_t, int);
60 bool nand_shutdown(device_t, int);
61 
62 int nand_print(void *, const char *);
63 
64 static int nand_search(device_t, cfdata_t, const int *, void *);
65 static void nand_address_row(device_t, size_t);
66 static void nand_address_column(device_t, size_t, size_t);
67 static int nand_fill_chip_structure(device_t, struct nand_chip *);
68 static int nand_scan_media(device_t, struct nand_chip *);
69 static bool nand_check_wp(device_t);
70 
71 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
72     nand_match, nand_attach, nand_detach, NULL);
73 
74 #ifdef NAND_DEBUG
75 int	nanddebug = NAND_DEBUG;
76 #endif
77 
78 int nand_cachesync_timeout = 1;
79 int nand_cachesync_nodenum;
80 
81 #ifdef NAND_VERBOSE
82 const struct nand_manufacturer nand_mfrs[] = {
83 	{ NAND_MFR_AMD,		"AMD" },
84 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
85 	{ NAND_MFR_RENESAS,	"Renesas" },
86 	{ NAND_MFR_STMICRO,	"ST Micro" },
87 	{ NAND_MFR_MICRON,	"Micron" },
88 	{ NAND_MFR_NATIONAL,	"National" },
89 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
90 	{ NAND_MFR_HYNIX,	"Hynix" },
91 	{ NAND_MFR_SAMSUNG,	"Samsung" },
92 	{ NAND_MFR_UNKNOWN,	"Unknown" }
93 };
94 
95 static const char *
96 nand_midtoname(int id)
97 {
98 	int i;
99 
100 	for (i = 0; nand_mfrs[i].id != 0; i++) {
101 		if (nand_mfrs[i].id == id)
102 			return nand_mfrs[i].name;
103 	}
104 
105 	KASSERT(nand_mfrs[i].id == 0);
106 
107 	return nand_mfrs[i].name;
108 }
109 #endif
110 
111 /* ARGSUSED */
112 int
113 nand_match(device_t parent, cfdata_t match, void *aux)
114 {
115 	/* pseudo device, always attaches */
116 	return 1;
117 }
118 
119 void
120 nand_attach(device_t parent, device_t self, void *aux)
121 {
122 	struct nand_softc *sc = device_private(self);
123 	struct nand_attach_args *naa = aux;
124 	struct nand_chip *chip = &sc->sc_chip;
125 
126 	sc->sc_dev = self;
127 	sc->controller_dev = parent;
128 	sc->nand_if = naa->naa_nand_if;
129 
130 	aprint_naive("\n");
131 
132 	if (nand_check_wp(self)) {
133 		aprint_error("NAND chip is write protected!\n");
134 		return;
135 	}
136 
137 	if (nand_scan_media(self, chip)) {
138 		return;
139 	}
140 
141 	/* allocate cache */
142 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
143 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
144 
145 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
146 
147 	if (nand_sync_thread_start(self)) {
148 		goto error;
149 	}
150 
151 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
152 		aprint_error_dev(sc->sc_dev,
153 		    "couldn't establish power handler\n");
154 
155 #ifdef NAND_BBT
156 	nand_bbt_init(self);
157 	nand_bbt_scan(self);
158 #endif
159 
160 	/*
161 	 * Attach all our devices
162 	 */
163 	config_search_ia(nand_search, self, NULL, NULL);
164 
165 	return;
166 error:
167 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
168 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
169 	mutex_destroy(&sc->sc_device_lock);
170 }
171 
172 static int
173 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
174 {
175 	struct nand_softc *sc = device_private(parent);
176 	struct nand_chip *chip = &sc->sc_chip;
177 	struct flash_interface *flash_if;
178 	struct flash_attach_args faa;
179 
180 	flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
181 
182 	flash_if->type = FLASH_TYPE_NAND;
183 
184 	flash_if->read = nand_flash_read;
185 	flash_if->write = nand_flash_write;
186 	flash_if->erase = nand_flash_erase;
187 	flash_if->block_isbad = nand_flash_isbad;
188 	flash_if->block_markbad = nand_flash_markbad;
189 
190 	flash_if->submit = nand_io_submit;
191 
192 	flash_if->erasesize = chip->nc_block_size;
193 	flash_if->page_size = chip->nc_page_size;
194 	flash_if->writesize = chip->nc_page_size;
195 
196 	flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
197 
198 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
199 		flash_if->size = chip->nc_size -
200 		    flash_if->partition.part_offset;
201 		flash_if->partition.part_size = flash_if->size;
202 	} else {
203 		flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
204 		flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
205 	}
206 
207 	if (cf->cf_loc[FLASHBUSCF_READONLY])
208 		flash_if->partition.part_flags = FLASH_PART_READONLY;
209 	else
210 		flash_if->partition.part_flags = 0;
211 
212 	faa.flash_if = flash_if;
213 
214 	if (config_match(parent, cf, &faa)) {
215 		if (config_attach(parent, cf, &faa, nand_print) != NULL) {
216 			return 0;
217 		} else {
218 			return 1;
219 		}
220 	} else {
221 		kmem_free(flash_if, sizeof(*flash_if));
222 	}
223 
224 	return 1;
225 }
226 
227 int
228 nand_detach(device_t self, int flags)
229 {
230 	struct nand_softc *sc = device_private(self);
231 	struct nand_chip *chip = &sc->sc_chip;
232 	int error = 0;
233 
234 	error = config_detach_children(self, flags);
235 	if (error) {
236 		return error;
237 	}
238 
239 	nand_sync_thread_stop(self);
240 #ifdef NAND_BBT
241 	nand_bbt_detach(self);
242 #endif
243 	/* free oob cache */
244 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
245 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
246 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
247 
248 	mutex_destroy(&sc->sc_device_lock);
249 
250 	pmf_device_deregister(sc->sc_dev);
251 
252 	return error;
253 }
254 
255 int
256 nand_print(void *aux, const char *pnp)
257 {
258 	if (pnp != NULL)
259 		aprint_normal("nand at %s\n", pnp);
260 
261 	return UNCONF;
262 }
263 
264 /* ask for a nand driver to attach to the controller */
265 device_t
266 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
267 {
268 	struct nand_attach_args arg;
269 
270 	KASSERT(nand_if != NULL);
271 
272 	/* fill the defaults if we have null pointers */
273 	if (nand_if->program_page == NULL) {
274 		nand_if->program_page = &nand_default_program_page;
275 	}
276 
277 	if (nand_if->read_page == NULL) {
278 		nand_if->read_page = &nand_default_read_page;
279 	}
280 
281 	arg.naa_nand_if = nand_if;
282 	return config_found_ia(parent, "nandbus", &arg, nand_print);
283 }
284 
285 /* default everything to reasonable values, to ease future api changes */
286 void
287 nand_init_interface(struct nand_interface *interface)
288 {
289 	interface->select = &nand_default_select;
290 	interface->command = NULL;
291 	interface->address = NULL;
292 	interface->read_buf_1 = NULL;
293 	interface->read_buf_2 = NULL;
294 	interface->read_1 = NULL;
295 	interface->read_2 = NULL;
296 	interface->write_buf_1 = NULL;
297 	interface->write_buf_2 = NULL;
298 	interface->write_1 = NULL;
299 	interface->write_2 = NULL;
300 	interface->busy = NULL;
301 
302 	/*-
303 	 * most drivers dont want to change this, but some implement
304 	 * read/program in one step
305 	 */
306 	interface->program_page = &nand_default_program_page;
307 	interface->read_page = &nand_default_read_page;
308 
309 	/* default to soft ecc, that should work everywhere */
310 	interface->ecc_compute = &nand_default_ecc_compute;
311 	interface->ecc_correct = &nand_default_ecc_correct;
312 	interface->ecc_prepare = NULL;
313 	interface->ecc.necc_code_size = 3;
314 	interface->ecc.necc_block_size = 256;
315 	interface->ecc.necc_type = NAND_ECC_TYPE_SW;
316 }
317 
318 #if 0
319 /* handle quirks here */
320 static void
321 nand_quirks(device_t self, struct nand_chip *chip)
322 {
323 	/* this is an example only! */
324 	switch (chip->nc_manf_id) {
325 	case NAND_MFR_SAMSUNG:
326 		if (chip->nc_dev_id == 0x00) {
327 			/* do something only samsung chips need */
328 			/* or */
329 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
330 		}
331 	}
332 
333 	return;
334 }
335 #endif
336 
337 static int
338 nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
339 {
340 	switch (chip->nc_manf_id) {
341 	case NAND_MFR_MICRON:
342 		return nand_read_parameters_micron(self, chip);
343 	default:
344 		return 1;
345 	}
346 
347 	return 0;
348 }
349 
350 /**
351  * scan media to determine the chip's properties
352  * this function resets the device
353  */
354 static int
355 nand_scan_media(device_t self, struct nand_chip *chip)
356 {
357 	struct nand_softc *sc = device_private(self);
358 	struct nand_ecc *ecc;
359 	uint8_t onfi_signature[4];
360 
361 	nand_select(self, true);
362 	nand_command(self, ONFI_RESET);
363 	nand_select(self, false);
364 
365 	/* check if the device implements the ONFI standard */
366 	nand_select(self, true);
367 	nand_command(self, ONFI_READ_ID);
368 	nand_address(self, 0x20);
369 	nand_read_1(self, &onfi_signature[0]);
370 	nand_read_1(self, &onfi_signature[1]);
371 	nand_read_1(self, &onfi_signature[2]);
372 	nand_read_1(self, &onfi_signature[3]);
373 	nand_select(self, false);
374 
375 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
376 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
377 		chip->nc_isonfi = false;
378 
379 		aprint_normal(": Legacy NAND Flash\n");
380 
381 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
382 
383 		if (nand_fill_chip_structure_legacy(self, chip)) {
384 			aprint_error_dev(self,
385 			    "can't read device parameters for legacy chip\n");
386 			return 1;
387 		}
388 	} else {
389 		chip->nc_isonfi = true;
390 
391 		aprint_normal(": ONFI NAND Flash\n");
392 
393 		nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
394 
395 		if (nand_fill_chip_structure(self, chip)) {
396 			aprint_error_dev(self,
397 			    "can't read device parameters\n");
398 			return 1;
399 		}
400 	}
401 
402 #ifdef NAND_VERBOSE
403 	aprint_normal_dev(self,
404 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
405 	    chip->nc_manf_id,
406 	    nand_midtoname(chip->nc_manf_id),
407 	    chip->nc_dev_id);
408 #endif
409 
410 	aprint_normal_dev(self,
411 	    "page size: %zu bytes, spare size: %zu bytes, "
412 	    "block size: %zu bytes\n",
413 	    chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
414 
415 	aprint_normal_dev(self,
416 	    "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
417 	    ", total storage size: %zu MB\n",
418 	    chip->nc_lun_blocks, chip->nc_num_luns,
419 	    chip->nc_size / 1024 / 1024);
420 
421 #ifdef NAND_VERBOSE
422 	aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
423 	    PRIu8 "\n",
424 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
425 #endif
426 
427 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
428 
429 	/*
430 	 * calculate the place of ecc data in oob
431 	 * we try to be compatible with Linux here
432 	 */
433 	switch (chip->nc_spare_size) {
434 	case 8:
435 		ecc->necc_offset = 0;
436 		break;
437 	case 16:
438 		ecc->necc_offset = 0;
439 		break;
440 	case 64:
441 		ecc->necc_offset = 40;
442 		break;
443 	case 128:
444 		ecc->necc_offset = 80;
445 		break;
446 	default:
447 		panic("OOB size is unexpected");
448 	}
449 
450 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
451 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
452 
453 	/* check if we fit in oob */
454 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
455 		panic("NAND ECC bits dont fit in OOB");
456 	}
457 
458 	/* TODO: mark free oob area available for file systems */
459 
460 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
461 
462 	/*
463 	 * calculate badblock marker offset in oob
464 	 * we try to be compatible with linux here
465 	 */
466 	if (chip->nc_page_size > 512)
467 		chip->nc_badmarker_offs = 0;
468 	else
469 		chip->nc_badmarker_offs = 5;
470 
471 	/* Calculate page shift and mask */
472 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
473 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
474 	/* same for block */
475 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
476 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
477 
478 	/* look for quirks here if needed in future */
479 	/* nand_quirks(self, chip); */
480 
481 	return 0;
482 }
483 
484 void
485 nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
486 {
487 	nand_select(self, true);
488 	nand_command(self, ONFI_READ_ID);
489 	nand_address(self, 0x00);
490 
491 	nand_read_1(self, manf);
492 	nand_read_1(self, dev);
493 
494 	nand_select(self, false);
495 }
496 
497 int
498 nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
499 {
500 	uint8_t *bufp;
501 	uint16_t crc;
502 	int i;//, tries = 0;
503 
504 	KASSERT(sizeof(*params) == 256);
505 
506 //read_params:
507 //	tries++;
508 
509 	nand_select(self, true);
510 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
511 	nand_address(self, 0x00);
512 
513 	nand_busy(self);
514 
515 	/* TODO check the signature if it contains at least 2 letters */
516 
517 	bufp = (uint8_t *)params;
518 	/* XXX why i am not using read_buf? */
519 	for (i = 0; i < 256; i++) {
520 		nand_read_1(self, &bufp[i]);
521 	}
522 	nand_select(self, false);
523 
524 	/* validate the parameter page with the crc */
525 	crc = nand_crc16(bufp, 254);
526 
527 	if (crc != params->param_integrity_crc) {
528 		aprint_error_dev(self, "parameter page crc check failed\n");
529 		/* TODO: we should read the next parameter page copy */
530 		return 1;
531 	}
532 
533 	return 0;
534 }
535 
536 static int
537 nand_fill_chip_structure(device_t self, struct nand_chip *chip)
538 {
539 	struct onfi_parameter_page params;
540 	uint8_t	vendor[13], model[21];
541 	int i;
542 
543 	if (nand_read_parameter_page(self, &params)) {
544 		return 1;
545 	}
546 
547 	/* strip manufacturer and model string */
548 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
549 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
550 		vendor[i] = 0;
551 	strlcpy(model, params.param_model, sizeof(model));
552 	for (i = 19; i > 0 && model[i] == ' '; i--)
553 		model[i] = 0;
554 
555 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
556 
557 	/* XXX TODO multiple LUNs */
558 	if (params.param_numluns != 1) {
559 		aprint_error_dev(self,
560 		    "more than one LUNs are not supported yet!\n");
561 
562 		return 1;
563 	}
564 
565 	chip->nc_size = params.param_pagesize * params.param_blocksize *
566 	    params.param_lunsize * params.param_numluns;
567 
568 	chip->nc_page_size = params.param_pagesize;
569 	chip->nc_block_pages = params.param_blocksize;
570 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
571 	chip->nc_spare_size = params.param_sparesize;
572 	chip->nc_lun_blocks = params.param_lunsize;
573 	chip->nc_num_luns = params.param_numluns;
574 
575 	/* the lower 4 bits contain the row address cycles */
576 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
577 	/* the upper 4 bits contain the column address cycles */
578 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
579 
580 	if (params.param_features & ONFI_FEATURE_16BIT)
581 		chip->nc_flags |= NC_BUSWIDTH_16;
582 
583 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
584 		chip->nc_flags |= NC_EXTENDED_PARAM;
585 
586 	return 0;
587 }
588 
589 /* ARGSUSED */
590 bool
591 nand_shutdown(device_t self, int howto)
592 {
593 	return true;
594 }
595 
596 static void
597 nand_address_column(device_t self, size_t row, size_t column)
598 {
599 	struct nand_softc *sc = device_private(self);
600 	struct nand_chip *chip = &sc->sc_chip;
601 	uint8_t i;
602 
603 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
604 		(uintmax_t )row, column));
605 
606 	/* XXX TODO */
607 	row >>= chip->nc_page_shift;
608 
609 	/* Write the column (subpage) address */
610 	if (chip->nc_flags & NC_BUSWIDTH_16)
611 		column >>= 1;
612 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
613 		nand_address(self, column & 0xff);
614 
615 	/* Write the row (page) address */
616 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
617 		nand_address(self, row & 0xff);
618 }
619 
620 static void
621 nand_address_row(device_t self, size_t row)
622 {
623 	struct nand_softc *sc = device_private(self);
624 	struct nand_chip *chip = &sc->sc_chip;
625 	int i;
626 
627 	/* XXX TODO */
628 	row >>= chip->nc_page_shift;
629 
630 	/* Write the row (page) address */
631 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
632 		nand_address(self, row & 0xff);
633 }
634 
635 static inline uint8_t
636 nand_get_status(device_t self)
637 {
638 	uint8_t status;
639 
640 	nand_command(self, ONFI_READ_STATUS);
641 	nand_busy(self);
642 	nand_read_1(self, &status);
643 
644 	return status;
645 }
646 
647 static bool
648 nand_check_wp(device_t self)
649 {
650 	if (nand_get_status(self) & 0x80)
651 		return false;
652 	else
653 		return true;
654 }
655 
656 static void
657 nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
658 {
659 	nand_command(self, ONFI_READ);
660 	nand_address_column(self, row, column);
661 	nand_command(self, ONFI_READ_START);
662 
663 	nand_busy(self);
664 }
665 
666 /* read a page with ecc correction, default implementation */
667 int
668 nand_default_read_page(device_t self, size_t offset, uint8_t *data)
669 {
670 	struct nand_softc *sc = device_private(self);
671 	struct nand_chip *chip = &sc->sc_chip;
672 	size_t b, bs, e, cs;
673 	uint8_t *ecc;
674 	int result;
675 
676 	nand_prepare_read(self, offset, 0);
677 
678 	bs = chip->nc_ecc->necc_block_size;
679 	cs = chip->nc_ecc->necc_code_size;
680 
681 	/* decide if we access by 8 or 16 bits */
682 	if (chip->nc_flags & NC_BUSWIDTH_16) {
683 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
684 			nand_ecc_prepare(self, NAND_ECC_READ);
685 			nand_read_buf_2(self, data + b, bs);
686 			nand_ecc_compute(self, data + b,
687 			    chip->nc_ecc_cache + e);
688 		}
689 	} else {
690 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
691 			nand_ecc_prepare(self, NAND_ECC_READ);
692 			nand_read_buf_1(self, data + b, bs);
693 			nand_ecc_compute(self, data + b,
694 			    chip->nc_ecc_cache + e);
695 		}
696 	}
697 
698 	/* for debugging new drivers */
699 #if 0
700 	nand_dump_data("page", data, chip->nc_page_size);
701 #endif
702 
703 	nand_read_oob(self, offset, chip->nc_oob_cache);
704 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
705 
706 	/* useful for debugging new ecc drivers */
707 #if 0
708 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
709 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
710 		printf("0x");
711 		for (b = 0; b < cs; b++) {
712 			printf("%.2hhx", ecc[e+b]);
713 		}
714 		printf(" 0x");
715 		for (b = 0; b < cs; b++) {
716 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
717 		}
718 		printf("\n");
719 	}
720 	printf("--------------\n");
721 #endif
722 
723 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
724 		result = nand_ecc_correct(self, data + b, ecc + e,
725 		    chip->nc_ecc_cache + e);
726 
727 		switch (result) {
728 		case NAND_ECC_OK:
729 			break;
730 		case NAND_ECC_CORRECTED:
731 			aprint_error_dev(self,
732 			    "data corrected with ECC at page offset 0x%jx "
733 			    "block %zu\n", (uintmax_t)offset, b);
734 			break;
735 		case NAND_ECC_TWOBIT:
736 			aprint_error_dev(self,
737 			    "uncorrectable ECC error at page offset 0x%jx "
738 			    "block %zu\n", (uintmax_t)offset, b);
739 			return EIO;
740 			break;
741 		case NAND_ECC_INVALID:
742 			aprint_error_dev(self,
743 			    "invalid ECC in oob at page offset 0x%jx "
744 			    "block %zu\n", (uintmax_t)offset, b);
745 			return EIO;
746 			break;
747 		default:
748 			panic("invalid ECC correction errno");
749 		}
750 	}
751 
752 	return 0;
753 }
754 
755 int
756 nand_default_program_page(device_t self, size_t page, const uint8_t *data)
757 {
758 	struct nand_softc *sc = device_private(self);
759 	struct nand_chip *chip = &sc->sc_chip;
760 	size_t bs, cs, e, b;
761 	uint8_t status;
762 	uint8_t *ecc;
763 
764 	nand_command(self, ONFI_PAGE_PROGRAM);
765 	nand_address_column(self, page, 0);
766 
767 	nand_busy(self);
768 
769 	bs = chip->nc_ecc->necc_block_size;
770 	cs = chip->nc_ecc->necc_code_size;
771 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
772 
773 	/* XXX code duplication */
774 	/* decide if we access by 8 or 16 bits */
775 	if (chip->nc_flags & NC_BUSWIDTH_16) {
776 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
777 			nand_ecc_prepare(self, NAND_ECC_WRITE);
778 			nand_write_buf_2(self, data + b, bs);
779 			nand_ecc_compute(self, data + b, ecc + e);
780 		}
781 		/* write oob with ecc correction code */
782 		nand_write_buf_2(self, chip->nc_oob_cache,
783 		    chip->nc_spare_size);
784 	} else {
785 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
786 			nand_ecc_prepare(self, NAND_ECC_WRITE);
787 			nand_write_buf_1(self, data + b, bs);
788 			nand_ecc_compute(self, data + b, ecc + e);
789 		}
790 		/* write oob with ecc correction code */
791 		nand_write_buf_1(self, chip->nc_oob_cache,
792 		    chip->nc_spare_size);
793 	}
794 
795 	nand_command(self, ONFI_PAGE_PROGRAM_START);
796 
797 	nand_busy(self);
798 
799 	/* for debugging ecc */
800 #if 0
801 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
802 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
803 		printf("0x");
804 		for (b = 0; b < cs; b++) {
805 			printf("%.2hhx", ecc[e+b]);
806 		}
807 		printf("\n");
808 	}
809 	printf("--------------\n");
810 #endif
811 
812 	status = nand_get_status(self);
813 	KASSERT(status & ONFI_STATUS_RDY);
814 	if (status & ONFI_STATUS_FAIL) {
815 		aprint_error_dev(self, "page program failed!\n");
816 		return EIO;
817 	}
818 
819 	return 0;
820 }
821 
822 /* read the OOB of a page */
823 int
824 nand_read_oob(device_t self, size_t page, uint8_t *oob)
825 {
826 	struct nand_softc *sc = device_private(self);
827 	struct nand_chip *chip = &sc->sc_chip;
828 
829 	nand_prepare_read(self, page, chip->nc_page_size);
830 
831 	if (chip->nc_flags & NC_BUSWIDTH_16)
832 		nand_read_buf_2(self, oob, chip->nc_spare_size);
833 	else
834 		nand_read_buf_1(self, oob, chip->nc_spare_size);
835 
836 	/* for debugging drivers */
837 #if 0
838 	nand_dump_data("oob", oob, chip->nc_spare_size);
839 #endif
840 
841 	return 0;
842 }
843 
844 static int
845 nand_write_oob(device_t self, size_t offset, const void *oob)
846 {
847 	struct nand_softc *sc = device_private(self);
848 	struct nand_chip *chip = &sc->sc_chip;
849 	uint8_t status;
850 
851 	nand_command(self, ONFI_PAGE_PROGRAM);
852 	nand_address_column(self, offset, chip->nc_page_size);
853 	nand_command(self, ONFI_PAGE_PROGRAM_START);
854 
855 	nand_busy(self);
856 
857 	if (chip->nc_flags & NC_BUSWIDTH_16)
858 		nand_write_buf_2(self, oob, chip->nc_spare_size);
859 	else
860 		nand_write_buf_1(self, oob, chip->nc_spare_size);
861 
862 	status = nand_get_status(self);
863 	KASSERT(status & ONFI_STATUS_RDY);
864 	if (status & ONFI_STATUS_FAIL)
865 		return EIO;
866 	else
867 		return 0;
868 }
869 
870 void
871 nand_markbad(device_t self, size_t offset)
872 {
873 	struct nand_softc *sc = device_private(self);
874 	struct nand_chip *chip = &sc->sc_chip;
875 	flash_off_t blockoffset, marker;
876 #ifdef NAND_BBT
877 	flash_off_t block;
878 
879 	block = offset / chip->nc_block_size;
880 
881 	nand_bbt_block_markbad(self, block);
882 #endif
883 	blockoffset = offset & chip->nc_block_mask;
884 	marker = chip->nc_badmarker_offs & ~0x01;
885 
886 	/* check if it is already marked bad */
887 	if (nand_isbad(self, blockoffset))
888 		return;
889 
890 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
891 
892 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
893 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
894 
895 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
896 }
897 
898 bool
899 nand_isfactorybad(device_t self, flash_off_t offset)
900 {
901 	struct nand_softc *sc = device_private(self);
902 	struct nand_chip *chip = &sc->sc_chip;
903 	flash_off_t block, first_page, last_page, page;
904 	int i;
905 
906 	/* Check for factory bad blocks first
907 	 * Factory bad blocks are marked in the first or last
908 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
909 	 */
910 	block = offset / chip->nc_block_size;
911 	first_page = block * chip->nc_block_size;
912 	last_page = (block + 1) * chip->nc_block_size
913 	    - chip->nc_page_size;
914 
915 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
916 		/* address OOB */
917 		nand_prepare_read(self, page, chip->nc_page_size);
918 
919 		if (chip->nc_flags & NC_BUSWIDTH_16) {
920 			uint16_t word;
921 			nand_read_2(self, &word);
922 			if (word == 0x0000)
923 				return true;
924 		} else {
925 			uint8_t byte;
926 			nand_read_1(self, &byte);
927 			if (byte == 0x00)
928 				return true;
929 		}
930 	}
931 
932 	return false;
933 }
934 
935 bool
936 nand_iswornoutbad(device_t self, flash_off_t offset)
937 {
938 	struct nand_softc *sc = device_private(self);
939 	struct nand_chip *chip = &sc->sc_chip;
940 	flash_off_t block;
941 
942 	/* we inspect the first page of the block */
943 	block = offset & chip->nc_block_mask;
944 
945 	/* Linux/u-boot compatible badblock handling */
946 	if (chip->nc_flags & NC_BUSWIDTH_16) {
947 		uint16_t word, mark;
948 
949 		nand_prepare_read(self, block,
950 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
951 
952 		nand_read_2(self, &word);
953 		mark = htole16(word);
954 		if (chip->nc_badmarker_offs & 0x01)
955 			mark >>= 8;
956 		if ((mark & 0xff) != 0xff)
957 			return true;
958 	} else {
959 		uint8_t byte;
960 
961 		nand_prepare_read(self, block,
962 		    chip->nc_page_size + chip->nc_badmarker_offs);
963 
964 		nand_read_1(self, &byte);
965 		if (byte != 0xff)
966 			return true;
967 	}
968 
969 	return false;
970 }
971 
972 bool
973 nand_isbad(device_t self, flash_off_t offset)
974 {
975 #ifdef NAND_BBT
976 	struct nand_softc *sc = device_private(self);
977 	struct nand_chip *chip = &sc->sc_chip;
978 	flash_off_t block;
979 
980 	block = offset / chip->nc_block_size;
981 
982 	return nand_bbt_block_isbad(self, block);
983 #else
984 	/* ONFI host requirement */
985 	if (nand_isfactorybad(self, offset))
986 		return true;
987 
988 	/* Look for Linux/U-Boot compatible bad marker */
989 	if (nand_iswornoutbad(self, offset))
990 		return true;
991 
992 	return false;
993 #endif
994 }
995 
996 int
997 nand_erase_block(device_t self, size_t offset)
998 {
999 	uint8_t status;
1000 
1001 	/* xxx calculate first page of block for address? */
1002 
1003 	nand_command(self, ONFI_BLOCK_ERASE);
1004 	nand_address_row(self, offset);
1005 	nand_command(self, ONFI_BLOCK_ERASE_START);
1006 
1007 	nand_busy(self);
1008 
1009 	status = nand_get_status(self);
1010 	KASSERT(status & ONFI_STATUS_RDY);
1011 	if (status & ONFI_STATUS_FAIL) {
1012 		aprint_error_dev(self, "block erase failed!\n");
1013 		nand_markbad(self, offset);
1014 		return EIO;
1015 	} else {
1016 		return 0;
1017 	}
1018 }
1019 
1020 /* default functions for driver development */
1021 
1022 /* default ECC using hamming code of 256 byte chunks */
1023 int
1024 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
1025 {
1026 	hamming_compute_256(data, code);
1027 
1028 	return 0;
1029 }
1030 
1031 int
1032 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
1033 	const uint8_t *compcode)
1034 {
1035 	return hamming_correct_256(data, origcode, compcode);
1036 }
1037 
1038 void
1039 nand_default_select(device_t self, bool enable)
1040 {
1041 	/* do nothing */
1042 	return;
1043 }
1044 
1045 /* implementation of the block device API */
1046 
1047 /*
1048  * handle (page) unaligned write to nand
1049  */
1050 static int
1051 nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
1052     size_t *retlen, const uint8_t *buf)
1053 {
1054 	struct nand_softc *sc = device_private(self);
1055 	struct nand_chip *chip = &sc->sc_chip;
1056 	flash_off_t first, last, firstoff;
1057 	const uint8_t *bufp;
1058 	flash_off_t addr;
1059 	size_t left, count;
1060 	int error = 0, i;
1061 
1062 	first = offset & chip->nc_page_mask;
1063 	firstoff = offset & ~chip->nc_page_mask;
1064 	/* XXX check if this should be len - 1 */
1065 	last = (offset + len) & chip->nc_page_mask;
1066 	count = last - first + 1;
1067 
1068 	addr = first;
1069 	*retlen = 0;
1070 
1071 	mutex_enter(&sc->sc_device_lock);
1072 	if (count == 1) {
1073 		if (nand_isbad(self, addr)) {
1074 			aprint_error_dev(self,
1075 			    "nand_flash_write_unaligned: "
1076 			    "bad block encountered\n");
1077 			error = EIO;
1078 			goto out;
1079 		}
1080 
1081 		error = nand_read_page(self, addr, chip->nc_page_cache);
1082 		if (error) {
1083 			goto out;
1084 		}
1085 
1086 		memcpy(chip->nc_page_cache + firstoff, buf, len);
1087 
1088 		error = nand_program_page(self, addr, chip->nc_page_cache);
1089 		if (error) {
1090 			goto out;
1091 		}
1092 
1093 		*retlen = len;
1094 		goto out;
1095 	}
1096 
1097 	bufp = buf;
1098 	left = len;
1099 
1100 	for (i = 0; i < count && left != 0; i++) {
1101 		if (nand_isbad(self, addr)) {
1102 			aprint_error_dev(self,
1103 			    "nand_flash_write_unaligned: "
1104 			    "bad block encountered\n");
1105 			error = EIO;
1106 			goto out;
1107 		}
1108 
1109 		if (i == 0) {
1110 			error = nand_read_page(self,
1111 			    addr, chip->nc_page_cache);
1112 			if (error) {
1113 				goto out;
1114 			}
1115 
1116 			memcpy(chip->nc_page_cache + firstoff,
1117 			    bufp, chip->nc_page_size - firstoff);
1118 
1119 			printf("program page: %s: %d\n", __FILE__, __LINE__);
1120 			error = nand_program_page(self,
1121 			    addr, chip->nc_page_cache);
1122 			if (error) {
1123 				goto out;
1124 			}
1125 
1126 			bufp += chip->nc_page_size - firstoff;
1127 			left -= chip->nc_page_size - firstoff;
1128 			*retlen += chip->nc_page_size - firstoff;
1129 
1130 		} else if (i == count - 1) {
1131 			error = nand_read_page(self,
1132 			    addr, chip->nc_page_cache);
1133 			if (error) {
1134 				goto out;
1135 			}
1136 
1137 			memcpy(chip->nc_page_cache, bufp, left);
1138 
1139 			error = nand_program_page(self,
1140 			    addr, chip->nc_page_cache);
1141 			if (error) {
1142 				goto out;
1143 			}
1144 
1145 			*retlen += left;
1146 			KASSERT(left < chip->nc_page_size);
1147 
1148 		} else {
1149 			/* XXX debug */
1150 			if (left > chip->nc_page_size) {
1151 				printf("left: %zu, i: %d, count: %zu\n",
1152 				    (size_t )left, i, count);
1153 			}
1154 			KASSERT(left > chip->nc_page_size);
1155 
1156 			error = nand_program_page(self, addr, bufp);
1157 			if (error) {
1158 				goto out;
1159 			}
1160 
1161 			bufp += chip->nc_page_size;
1162 			left -= chip->nc_page_size;
1163 			*retlen += chip->nc_page_size;
1164 		}
1165 
1166 		addr += chip->nc_page_size;
1167 	}
1168 
1169 	KASSERT(*retlen == len);
1170 out:
1171 	mutex_exit(&sc->sc_device_lock);
1172 
1173 	return error;
1174 }
1175 
1176 int
1177 nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1178     const uint8_t *buf)
1179 {
1180 	struct nand_softc *sc = device_private(self);
1181 	struct nand_chip *chip = &sc->sc_chip;
1182 	const uint8_t *bufp;
1183 	size_t pages, page;
1184 	daddr_t addr;
1185 	int error = 0;
1186 
1187 	if ((offset + len) > chip->nc_size) {
1188 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1189 			" is over device size (0x%jx)\n",
1190 			(uintmax_t)offset, (uintmax_t)len,
1191 			(uintmax_t)chip->nc_size));
1192 		return EINVAL;
1193 	}
1194 
1195 	if (len % chip->nc_page_size != 0 ||
1196 	    offset % chip->nc_page_size != 0) {
1197 		return nand_flash_write_unaligned(self,
1198 		    offset, len, retlen, buf);
1199 	}
1200 
1201 	pages = len / chip->nc_page_size;
1202 	KASSERT(pages != 0);
1203 	*retlen = 0;
1204 
1205 	addr = offset;
1206 	bufp = buf;
1207 
1208 	mutex_enter(&sc->sc_device_lock);
1209 	for (page = 0; page < pages; page++) {
1210 		/* do we need this check here? */
1211 		if (nand_isbad(self, addr)) {
1212 			aprint_error_dev(self,
1213 			    "nand_flash_write: bad block encountered\n");
1214 
1215 			error = EIO;
1216 			goto out;
1217 		}
1218 
1219 		error = nand_program_page(self, addr, bufp);
1220 		if (error) {
1221 			goto out;
1222 		}
1223 
1224 		addr += chip->nc_page_size;
1225 		bufp += chip->nc_page_size;
1226 		*retlen += chip->nc_page_size;
1227 	}
1228 out:
1229 	mutex_exit(&sc->sc_device_lock);
1230 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
1231 
1232 	return error;
1233 }
1234 
1235 /*
1236  * handle (page) unaligned read from nand
1237  */
1238 static int
1239 nand_flash_read_unaligned(device_t self, size_t offset,
1240     size_t len, size_t *retlen, uint8_t *buf)
1241 {
1242 	struct nand_softc *sc = device_private(self);
1243 	struct nand_chip *chip = &sc->sc_chip;
1244 	daddr_t first, last, count, firstoff;
1245 	uint8_t *bufp;
1246 	daddr_t addr;
1247 	size_t left;
1248 	int error = 0, i;
1249 
1250 	first = offset & chip->nc_page_mask;
1251 	firstoff = offset & ~chip->nc_page_mask;
1252 	last = (offset + len) & chip->nc_page_mask;
1253 	count = (last - first) / chip->nc_page_size + 1;
1254 
1255 	addr = first;
1256 	bufp = buf;
1257 	left = len;
1258 	*retlen = 0;
1259 
1260 	mutex_enter(&sc->sc_device_lock);
1261 	if (count == 1) {
1262 		error = nand_read_page(self, addr, chip->nc_page_cache);
1263 		if (error) {
1264 			goto out;
1265 		}
1266 
1267 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
1268 
1269 		*retlen = len;
1270 		goto out;
1271 	}
1272 
1273 	for (i = 0; i < count && left != 0; i++) {
1274 		error = nand_read_page(self, addr, chip->nc_page_cache);
1275 		if (error) {
1276 			goto out;
1277 		}
1278 
1279 		if (i == 0) {
1280 			memcpy(bufp, chip->nc_page_cache + firstoff,
1281 			    chip->nc_page_size - firstoff);
1282 
1283 			bufp += chip->nc_page_size - firstoff;
1284 			left -= chip->nc_page_size - firstoff;
1285 			*retlen += chip->nc_page_size - firstoff;
1286 
1287 		} else if (i == count - 1) {
1288 			memcpy(bufp, chip->nc_page_cache, left);
1289 			*retlen += left;
1290 			KASSERT(left < chip->nc_page_size);
1291 
1292 		} else {
1293 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1294 
1295 			bufp += chip->nc_page_size;
1296 			left -= chip->nc_page_size;
1297 			*retlen += chip->nc_page_size;
1298 		}
1299 
1300 		addr += chip->nc_page_size;
1301 	}
1302 	KASSERT(*retlen == len);
1303 out:
1304 	mutex_exit(&sc->sc_device_lock);
1305 
1306 	return error;
1307 }
1308 
1309 int
1310 nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
1311     uint8_t *buf)
1312 {
1313 	struct nand_softc *sc = device_private(self);
1314 	struct nand_chip *chip = &sc->sc_chip;
1315 	uint8_t *bufp;
1316 	size_t addr;
1317 	size_t i, pages;
1318 	int error = 0;
1319 
1320 	*retlen = 0;
1321 
1322 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
1323 		(uintmax_t)offset, len));
1324 
1325 	if (__predict_false((offset + len) > chip->nc_size)) {
1326 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
1327 			" is over device size (%ju)\n", (uintmax_t)offset,
1328 			len, (uintmax_t)chip->nc_size));
1329 		return EINVAL;
1330 	}
1331 
1332 	/* Handle unaligned access, shouldnt be needed when using the
1333 	 * block device, as strategy handles it, so only low level
1334 	 * accesses will use this path
1335 	 */
1336 	/* XXX^2 */
1337 #if 0
1338 	if (len < chip->nc_page_size)
1339 		panic("TODO page size is larger than read size");
1340 #endif
1341 
1342 	if (len % chip->nc_page_size != 0 ||
1343 	    offset % chip->nc_page_size != 0) {
1344 		return nand_flash_read_unaligned(self,
1345 		    offset, len, retlen, buf);
1346 	}
1347 
1348 	bufp = buf;
1349 	addr = offset;
1350 	pages = len / chip->nc_page_size;
1351 
1352 	mutex_enter(&sc->sc_device_lock);
1353 	for (i = 0; i < pages; i++) {
1354 		/* XXX do we need this check here? */
1355 		if (nand_isbad(self, addr)) {
1356 			aprint_error_dev(self, "bad block encountered\n");
1357 			error = EIO;
1358 			goto out;
1359 		}
1360 		error = nand_read_page(self, addr, bufp);
1361 		if (error)
1362 			goto out;
1363 
1364 		bufp += chip->nc_page_size;
1365 		addr += chip->nc_page_size;
1366 		*retlen += chip->nc_page_size;
1367 	}
1368 out:
1369 	mutex_exit(&sc->sc_device_lock);
1370 
1371 	return error;
1372 }
1373 
1374 int
1375 nand_flash_isbad(device_t self, flash_off_t ofs, bool *isbad)
1376 {
1377 	struct nand_softc *sc = device_private(self);
1378 	struct nand_chip *chip = &sc->sc_chip;
1379 	bool result;
1380 
1381 	if (ofs > chip->nc_size) {
1382 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1383 			" device size (0x%jx)\n", (uintmax_t)ofs,
1384 			(uintmax_t)chip->nc_size));
1385 		return EINVAL;
1386 	}
1387 
1388 	if (ofs % chip->nc_block_size != 0) {
1389 		DPRINTF(("offset (0x%jx) is not the multiple of block size "
1390 			"(%ju)",
1391 			(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
1392 		return EINVAL;
1393 	}
1394 
1395 	mutex_enter(&sc->sc_device_lock);
1396 	result = nand_isbad(self, ofs);
1397 	mutex_exit(&sc->sc_device_lock);
1398 
1399 	*isbad = result;
1400 
1401 	return 0;
1402 }
1403 
1404 int
1405 nand_flash_markbad(device_t self, flash_off_t ofs)
1406 {
1407 	struct nand_softc *sc = device_private(self);
1408 	struct nand_chip *chip = &sc->sc_chip;
1409 
1410 	if (ofs > chip->nc_size) {
1411 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1412 			" device size (0x%jx)\n", ofs,
1413 			(uintmax_t)chip->nc_size));
1414 		return EINVAL;
1415 	}
1416 
1417 	if (ofs % chip->nc_block_size != 0) {
1418 		panic("offset (%ju) is not the multiple of block size (%ju)",
1419 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1420 	}
1421 
1422 	mutex_enter(&sc->sc_device_lock);
1423 	nand_markbad(self, ofs);
1424 	mutex_exit(&sc->sc_device_lock);
1425 
1426 	return 0;
1427 }
1428 
1429 int
1430 nand_flash_erase(device_t self,
1431     struct flash_erase_instruction *ei)
1432 {
1433 	struct nand_softc *sc = device_private(self);
1434 	struct nand_chip *chip = &sc->sc_chip;
1435 	flash_off_t addr;
1436 	int error = 0;
1437 
1438 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1439 		return EINVAL;
1440 
1441 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1442 		DPRINTF(("nand_flash_erase: erase address is over the end"
1443 			" of the device\n"));
1444 		return EINVAL;
1445 	}
1446 
1447 	if (ei->ei_addr % chip->nc_block_size != 0) {
1448 		aprint_error_dev(self,
1449 		    "nand_flash_erase: ei_addr (%ju) is not"
1450 		    "the multiple of block size (%ju)",
1451 		    (uintmax_t)ei->ei_addr,
1452 		    (uintmax_t)chip->nc_block_size);
1453 		return EINVAL;
1454 	}
1455 
1456 	if (ei->ei_len % chip->nc_block_size != 0) {
1457 		aprint_error_dev(self,
1458 		    "nand_flash_erase: ei_len (%ju) is not"
1459 		    "the multiple of block size (%ju)",
1460 		    (uintmax_t)ei->ei_addr,
1461 		    (uintmax_t)chip->nc_block_size);
1462 		return EINVAL;
1463 	}
1464 
1465 	mutex_enter(&sc->sc_device_lock);
1466 	addr = ei->ei_addr;
1467 	while (addr < ei->ei_addr + ei->ei_len) {
1468 		if (nand_isbad(self, addr)) {
1469 			aprint_error_dev(self, "bad block encountered\n");
1470 			ei->ei_state = FLASH_ERASE_FAILED;
1471 			error = EIO;
1472 			goto out;
1473 		}
1474 
1475 		error = nand_erase_block(self, addr);
1476 		if (error) {
1477 			ei->ei_state = FLASH_ERASE_FAILED;
1478 			goto out;
1479 		}
1480 
1481 		addr += chip->nc_block_size;
1482 	}
1483 	mutex_exit(&sc->sc_device_lock);
1484 
1485 	ei->ei_state = FLASH_ERASE_DONE;
1486 	if (ei->ei_callback != NULL) {
1487 		ei->ei_callback(ei);
1488 	}
1489 
1490 	return 0;
1491 out:
1492 	mutex_exit(&sc->sc_device_lock);
1493 
1494 	return error;
1495 }
1496 
1497 static int
1498 sysctl_nand_verify(SYSCTLFN_ARGS)
1499 {
1500 	int error, t;
1501 	struct sysctlnode node;
1502 
1503 	node = *rnode;
1504 	t = *(int *)rnode->sysctl_data;
1505 	node.sysctl_data = &t;
1506 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1507 	if (error || newp == NULL)
1508 		return error;
1509 
1510 	if (node.sysctl_num == nand_cachesync_nodenum) {
1511 		if (t <= 0 || t > 60)
1512 			return EINVAL;
1513 	} else {
1514 		return EINVAL;
1515 	}
1516 
1517 	*(int *)rnode->sysctl_data = t;
1518 
1519 	return 0;
1520 }
1521 
1522 SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
1523 {
1524 	int rc, nand_root_num;
1525 	const struct sysctlnode *node;
1526 
1527 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1528 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
1529 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1530 		goto error;
1531 	}
1532 
1533 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1534 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
1535 	    SYSCTL_DESCR("NAND driver controls"),
1536 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1537 		goto error;
1538 	}
1539 
1540 	nand_root_num = node->sysctl_num;
1541 
1542 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1543 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1544 	    CTLTYPE_INT, "cache_sync_timeout",
1545 	    SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
1546 	    sysctl_nand_verify, 0, &nand_cachesync_timeout,
1547 	    0, CTL_HW, nand_root_num, CTL_CREATE,
1548 	    CTL_EOL)) != 0) {
1549 		goto error;
1550 	}
1551 
1552 	nand_cachesync_nodenum = node->sysctl_num;
1553 
1554 	return;
1555 
1556 error:
1557 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
1558 }
1559 
1560 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1561 
1562 #ifdef _MODULE
1563 #include "ioconf.c"
1564 #endif
1565 
1566 static int
1567 nand_modcmd(modcmd_t cmd, void *opaque)
1568 {
1569 	switch (cmd) {
1570 	case MODULE_CMD_INIT:
1571 #ifdef _MODULE
1572 		return config_init_component(cfdriver_ioconf_nand,
1573 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1574 #else
1575 		return 0;
1576 #endif
1577 	case MODULE_CMD_FINI:
1578 #ifdef _MODULE
1579 		return config_fini_component(cfdriver_ioconf_nand,
1580 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1581 #else
1582 		return 0;
1583 #endif
1584 	default:
1585 		return ENOTTY;
1586 	}
1587 }
1588