xref: /netbsd-src/sys/dev/nand/nand.c (revision 2b6ee22130b628b099671b82a7a7f5c1f5a1f09e)
1 /*	$NetBSD: nand.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010 Department of Software Engineering,
5  *		      University of Szeged, Hungary
6  * Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to The NetBSD Foundation
10  * by the Department of Software Engineering, University of Szeged, Hungary
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
26  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 /* Common driver for NAND chips implementing the ONFI 2.2 specification */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.1 2011/02/26 18:07:31 ahoka Exp $");
38 
39 #include "locators.h"
40 
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/device.h>
44 #include <sys/kmem.h>
45 #include <sys/sysctl.h>
46 
47 #include <dev/flash/flash.h>
48 #include <dev/nand/nand.h>
49 #include <dev/nand/onfi.h>
50 #include <dev/nand/hamming.h>
51 #include <dev/nand/nand_bbt.h>
52 #include <dev/nand/nand_crc.h>
53 
54 #include "opt_nand.h"
55 
56 int nand_match(device_t parent, cfdata_t match, void *aux);
57 void nand_attach(device_t parent, device_t self, void *aux);
58 int nand_detach(device_t device, int flags);
59 bool nand_shutdown(device_t self, int howto);
60 
61 int nand_print(void *aux, const char *pnp);
62 
63 static int nand_search(device_t parent, cfdata_t cf, const int *ldesc,
64     void *aux);
65 static void nand_address_row(device_t self, size_t row);
66 static void nand_address_column(device_t self, size_t row, size_t column);
67 static void nand_readid(device_t self, struct nand_chip *chip);
68 static void nand_read_parameter_page(device_t self, struct nand_chip *chip);
69 static const char *nand_midtoname(int id);
70 static int nand_scan_media(device_t self, struct nand_chip *chip);
71 static bool nand_check_wp(device_t self);
72 
73 CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
74     nand_match, nand_attach, nand_detach, NULL);
75 
76 #ifdef NAND_DEBUG
77 int	nanddebug = NAND_DEBUG;
78 #endif
79 
80 int nand_cachesync_timeout = 1;
81 int nand_cachesync_nodenum;
82 
83 const struct nand_manufacturer nand_mfrs[] = {
84 	{ NAND_MFR_AMD,		"AMD" },
85 	{ NAND_MFR_FUJITSU,	"Fujitsu" },
86 	{ NAND_MFR_RENESAS,	"Renesas" },
87 	{ NAND_MFR_STMICRO,	"ST Micro" },
88 	{ NAND_MFR_MICRON,	"Micron" },
89 	{ NAND_MFR_NATIONAL,	"National" },
90 	{ NAND_MFR_TOSHIBA,	"Toshiba" },
91 	{ NAND_MFR_HYNIX,	"Hynix" },
92 	{ NAND_MFR_SAMSUNG,	"Samsung" },
93 	{ NAND_MFR_UNKNOWN,	"Unknown" }
94 };
95 
96 /* ARGSUSED */
97 int
98 nand_match(device_t parent, cfdata_t match, void *aux)
99 {
100 	/* pseudo device, always attaches */
101 	return 1;
102 }
103 
104 void
105 nand_attach(device_t parent, device_t self, void *aux)
106 {
107 	struct nand_softc *sc = device_private(self);
108 	struct nand_attach_args *naa = aux;
109 	struct nand_chip *chip = &sc->sc_chip;
110 //	struct flash_interface *flash_if;
111 //	int i;
112 
113 	sc->sc_dev = self;
114 	sc->nand_dev = parent;
115 	sc->nand_if = naa->naa_nand_if;
116 
117 //	sc->nand_softc = device_private(parent);
118 
119 	aprint_naive("\n");
120 //	aprint_normal(": NAND flash memory\n");
121 
122 	if (nand_check_wp(self)) {
123 		aprint_error("NAND chip is write protected!\n");
124 		return;
125 	}
126 	if (nand_scan_media(self, chip))
127 		return;
128 
129 	/* allocate cache */
130 	chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
131 	chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
132 
133 	mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
134 
135 	if (nand_sync_thread_start(self)) {
136 		goto error;
137 	}
138 
139 	if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
140 		aprint_error_dev(sc->sc_dev,
141 		    "couldn't establish power handler\n");
142 
143 #ifdef NAND_BBT
144 	nand_bbt_init(self);
145 	nand_bbt_scan(self);
146 #endif
147 
148 	/*
149 	 * Attach all our devices
150 	 */
151 	config_search_ia(nand_search, self, NULL, NULL);
152 
153 	return;
154 error:
155 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
156 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
157 	mutex_destroy(&sc->sc_device_lock);
158 }
159 
160 static int
161 nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
162 {
163 	struct nand_softc *sc = device_private(parent);
164 	struct nand_chip *chip = &sc->sc_chip;
165 	struct flash_interface *flash_if;
166 	struct flash_attach_args faa;
167 
168 	flash_if = kmem_alloc(sizeof(*flash_if), KM_SLEEP);
169 
170 	flash_if->type = FLASH_TYPE_NAND;
171 
172 	flash_if->read = nand_flash_read;
173 	flash_if->write = nand_flash_write;
174 	flash_if->erase = nand_flash_erase;
175 	flash_if->block_isbad = nand_flash_isbad;
176 	flash_if->block_markbad = nand_flash_markbad;
177 
178 	flash_if->submit = nand_io_submit;
179 
180 	flash_if->erasesize = chip->nc_block_size;
181 	flash_if->page_size = chip->nc_page_size;
182 	flash_if->writesize = chip->nc_page_size;
183 
184 	flash_if->partition.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
185 
186 	if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
187 		flash_if->size = chip->nc_size -
188 		    flash_if->partition.part_offset;
189 		flash_if->partition.part_size = flash_if->size;
190 	} else {
191 		flash_if->size = cf->cf_loc[FLASHBUSCF_SIZE];
192 		flash_if->partition.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
193 	}
194 
195 	if (cf->cf_loc[FLASHBUSCF_READONLY])
196 		flash_if->partition.part_flags = FLASH_PART_READONLY;
197 	else
198 		flash_if->partition.part_flags = 0;
199 
200 	faa.flash_if = flash_if;
201 
202 	if (config_match(parent, cf, &faa)) {
203 		config_attach(parent, cf, &faa, nand_print);
204 		return 0;
205 	} else {
206 		kmem_free(flash_if, sizeof(*flash_if));
207 	}
208 
209 	return 1;
210 }
211 
212 int
213 nand_detach(device_t self, int flags)
214 {
215 	struct nand_softc *sc = device_private(self);
216 	struct nand_chip *chip = &sc->sc_chip;
217 	int ret = 0;
218 
219 #ifdef NAND_BBT
220 	nand_bbt_detach(self);
221 #endif
222 	nand_sync_thread_stop(self);
223 
224 	/* free oob cache */
225 	kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
226 	kmem_free(chip->nc_page_cache, chip->nc_page_size);
227 	kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
228 
229 	mutex_destroy(&sc->sc_device_lock);
230 
231 	pmf_device_deregister(sc->sc_dev);
232 
233 	return ret;
234 }
235 
236 int
237 nand_print(void *aux, const char *pnp)
238 {
239 	if (pnp != NULL)
240 		aprint_normal("nand at %s\n", pnp);
241 
242 	return UNCONF;
243 }
244 
245 device_t
246 nand_attach_mi(struct nand_interface *nand_if, device_t parent)
247 {
248 	struct nand_attach_args arg;
249 
250 	KASSERT(nand_if != NULL);
251 
252 	arg.naa_nand_if = nand_if;
253 	return config_found_ia(parent, "nandbus", &arg, nand_print);
254 }
255 
256 static const char *
257 nand_midtoname(int id)
258 {
259 	int i;
260 
261 	for (i = 0; nand_mfrs[i].id != 0; i++) {
262 		if (nand_mfrs[i].id == id)
263 			return nand_mfrs[i].name;
264 	}
265 
266 	KASSERT(nand_mfrs[i].id == 0);
267 
268 	return nand_mfrs[i].name;
269 }
270 
271 #if 0
272 /* handle quirks here */
273 static void
274 nand_quirks(device_t self, struct nand_chip *chip)
275 {
276 	/* this is an example only! */
277 	switch (chip->nc_manf_id) {
278 	case NAND_MFR_SAMSUNG:
279 		if (chip->nc_dev_id == 0x00) {
280 			/* do something only samsung chips need */
281 			/* or */
282 			/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
283 		}
284 	}
285 
286 	return;
287 }
288 #endif
289 
290 /**
291  * scan media to determine the chip's properties
292  * this function resets the device
293  */
294 static int
295 nand_scan_media(device_t self, struct nand_chip *chip)
296 {
297 	struct nand_softc *sc = device_private(self);
298 	struct nand_ecc *ecc;
299 	uint8_t onfi_signature[4];
300 
301 	nand_select(self, true);
302 	nand_command(self, ONFI_RESET);
303 	nand_select(self, false);
304 
305 	nand_select(self, true);
306 	nand_command(self, ONFI_READ_ID);
307 	nand_address(self, 0x20);
308 	nand_read_byte(self, &onfi_signature[0]);
309 	nand_read_byte(self, &onfi_signature[1]);
310 	nand_read_byte(self, &onfi_signature[2]);
311 	nand_read_byte(self, &onfi_signature[3]);
312 	nand_select(self, false);
313 
314 	if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
315 	    onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
316 		aprint_error_dev(self,
317 		    "device does not support the ONFI specification\n");
318 
319 		return 1;
320 	}
321 
322 	nand_readid(self, chip);
323 
324 	aprint_normal(": NAND Flash\n");
325 
326 	aprint_debug_dev(self,
327 	    "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
328 	    chip->nc_manf_id,
329 	    nand_midtoname(chip->nc_manf_id),
330 	    chip->nc_dev_id);
331 
332 	nand_read_parameter_page(self, chip);
333 
334 	ecc = chip->nc_ecc = &sc->nand_if->ecc;
335 
336 	/*
337 	 * calculate the place of ecc data in oob
338 	 * we try to be compatible with Linux here
339 	 */
340 	switch (chip->nc_spare_size) {
341 	case 8:
342 		ecc->necc_offset = 0;
343 		break;
344 	case 16:
345 		ecc->necc_offset = 0;
346 		break;
347 	case 64:
348 		ecc->necc_offset = 40;
349 		break;
350 	case 128:
351 		ecc->necc_offset = 80;
352 		break;
353 	default:
354 		panic("OOB size is unexpected");
355 	}
356 
357 	ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
358 	ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
359 
360 	/* check if we fit in oob */
361 	if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
362 		panic("NAND ECC bits dont fit in OOB");
363 	}
364 
365 	/* TODO: mark free oob area available for file systems */
366 
367 	chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
368 
369 	/*
370 	 * calculate badblock marker offset in oob
371 	 * we try to be compatible with linux here
372 	 */
373 	if (chip->nc_page_size > 512)
374 		chip->nc_badmarker_offs = 0;
375 	else
376 		chip->nc_badmarker_offs = 5;
377 
378 	/* Calculate page shift and mask */
379 	chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
380 	chip->nc_page_mask = ~(chip->nc_page_size - 1);
381 	/* same for block */
382 	chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
383 	chip->nc_block_mask = ~(chip->nc_block_size - 1);
384 
385 	/* look for quirks here if needed in future */
386 	/* nand_quirks(self, chip); */
387 
388 	return 0;
389 }
390 
391 static void
392 nand_readid(device_t self, struct nand_chip *chip)
393 {
394 	nand_select(self, true);
395 	nand_command(self, ONFI_READ_ID);
396 	nand_address(self, 0x00);
397 	nand_read_byte(self, &chip->nc_manf_id);
398 	nand_read_byte(self, &chip->nc_dev_id);
399 	nand_select(self, false);
400 }
401 
402 /* read the parameter page. TODO: check CRC! */
403 static void
404 nand_read_parameter_page(device_t self, struct nand_chip *chip)
405 {
406 	struct onfi_parameter_page params;
407 	uint8_t *bufp;
408 	uint8_t	vendor[13], model[21];
409 	uint16_t crc;
410 	int i;
411 
412 	KASSERT(sizeof(params) == 256);
413 
414 	nand_select(self, true);
415 	nand_command(self, ONFI_READ_PARAMETER_PAGE);
416 	nand_address(self, 0x00);
417 
418 	nand_busy(self);
419 
420 	bufp = (uint8_t *)&params;
421 	for (i = 0; i < 256; i++) {
422 		nand_read_byte(self, &bufp[i]);
423 	}
424 	nand_select(self, false);
425 
426 	/* validate the parameter page with the crc */
427 	crc = nand_crc16(bufp, 254);
428 
429 	if (crc != params.param_integrity_crc) {
430 		aprint_error_dev(self, "parameter page crc check failed\n");
431 		/* TODO: we should read the next parameter page copy */
432 	}
433 
434 	/* strip manufacturer and model string */
435 	strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
436 	for (i = 11; i > 0 && vendor[i] == ' '; i--)
437 		vendor[i] = 0;
438 	strlcpy(model, params.param_model, sizeof(model));
439 	for (i = 19; i > 0 && model[i] == ' '; i--)
440 		model[i] = 0;
441 
442 	aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
443 
444 	aprint_normal_dev(self,
445 	   "page size: %u bytes, spare size: %u bytes, block size: %u bytes\n",
446 	    params.param_pagesize, params.param_sparesize,
447 	    params.param_blocksize * params.param_pagesize);
448 
449 	aprint_normal_dev(self,
450 	    "LUN size: %u blocks, LUNs: %u, total storage size: %u MB\n",
451 	    params.param_lunsize, params.param_numluns,
452 	    params.param_blocksize * params.param_pagesize *
453 	    params.param_lunsize * params.param_numluns / 1024 / 1024);
454 
455 	/* XXX TODO multiple LUNs */
456 	if (__predict_false(params.param_numluns != 1))
457 		panic("more than one LUNs are not supported yet!\n");
458 
459 	chip->nc_size = params.param_pagesize * params.param_blocksize *
460 	    params.param_lunsize * params.param_numluns;
461 
462 	chip->nc_page_size = params.param_pagesize;
463 	chip->nc_block_pages = params.param_blocksize;
464 	chip->nc_block_size = params.param_blocksize * params.param_pagesize;
465 	chip->nc_spare_size = params.param_sparesize;
466 
467 	/* the lower 4 bits contain the row address cycles */
468 	chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
469 	/* the upper 4 bits contain the column address cycles */
470 	chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
471 
472 #ifdef NAND_VERBOSE
473 	aprint_normal_dev(self, "column cycles: %d, row cycles: %d\n",
474 	    chip->nc_addr_cycles_column, chip->nc_addr_cycles_row);
475 #endif
476 
477 	if (params.param_features & ONFI_FEATURE_16BIT)
478 		chip->nc_flags |= NC_BUSWIDTH_16;
479 
480 	if (params.param_features & ONFI_FEATURE_EXTENDED_PARAM)
481 		chip->nc_flags |= NC_EXTENDED_PARAM;
482 }
483 
484 /* ARGSUSED */
485 bool
486 nand_shutdown(device_t self, int howto)
487 {
488 	return true;
489 }
490 
491 static void
492 nand_address_column(device_t self, size_t row, size_t column)
493 {
494 	struct nand_softc *sc = device_private(self);
495 	struct nand_chip *chip = &sc->sc_chip;
496 	uint8_t i;
497 
498 	DPRINTF(("addressing row: 0x%jx column: %zu\n",
499 		(uintmax_t )row, column));
500 
501 	/* XXX TODO */
502 	row >>= chip->nc_page_shift;
503 //	DPRINTF(("row address is: 0x%jx\n", (uintmax_t )row));
504 
505 	/* Write the column (subpage) address */
506 	if (chip->nc_flags & NC_BUSWIDTH_16)
507 		column >>= 1;
508 	for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
509 		nand_address(self, column & 0xff);
510 
511 	/* Write the row (page) address */
512 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
513 		nand_address(self, row & 0xff);
514 }
515 
516 static void
517 nand_address_row(device_t self, size_t row)
518 {
519 	struct nand_softc *sc = device_private(self);
520 	struct nand_chip *chip = &sc->sc_chip;
521 	off_t i;
522 
523 //	DPRINTF(("addressing row: %zu\n", row));
524 
525 	/* XXX TODO */
526 	row >>= chip->nc_page_shift;
527 
528 	/* Write the row (page) address */
529 	for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
530 		nand_address(self, row & 0xff);
531 }
532 
533 static inline uint8_t
534 nand_get_status(device_t self)
535 {
536 	uint8_t status;
537 
538 	nand_command(self, ONFI_READ_STATUS);
539 	nand_busy(self);
540 	nand_read_byte(self, &status);
541 
542 	return status;
543 }
544 
545 static bool
546 nand_check_wp(device_t self)
547 {
548 	if (nand_get_status(self) & 0x80)
549 		return false;
550 	else
551 		return true;
552 }
553 
554 static void
555 nand_prepare_read(device_t self, flash_addr_t row, flash_addr_t column)
556 {
557 	nand_command(self, ONFI_READ);
558 	nand_address_column(self, row, column);
559 	nand_command(self, ONFI_READ_START);
560 
561 	nand_busy(self);
562 }
563 
564 /* read a page with ecc correction */
565 int
566 nand_read_page(device_t self, size_t offset, uint8_t *data)
567 {
568 	struct nand_softc *sc = device_private(self);
569 	struct nand_chip *chip = &sc->sc_chip;
570 	size_t b, bs, e, cs;
571 	uint8_t *ecc;
572 	int result;
573 
574 	DPRINTF(("nand read page\n"));
575 
576 	nand_prepare_read(self, offset, 0);
577 
578 	bs = chip->nc_ecc->necc_block_size;
579 	cs = chip->nc_ecc->necc_code_size;
580 
581 	/* decide if we access by 8 or 16 bits */
582 	if (chip->nc_flags & NC_BUSWIDTH_16) {
583 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
584 			nand_ecc_prepare(self, NAND_ECC_READ);
585 			nand_read_buf_word(self, data + b, bs);
586 			nand_ecc_compute(self, data + b,
587 			    chip->nc_ecc_cache + e);
588 		}
589 	} else {
590 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
591 			nand_ecc_prepare(self, NAND_ECC_READ);
592 			nand_read_buf_byte(self, data + b, bs);
593 			nand_ecc_compute(self, data + b,
594 			    chip->nc_ecc_cache + e);
595 		}
596 	}
597 
598 //	nand_dump_data("page", data, chip->nc_page_size);
599 
600 	nand_read_oob(self, offset, chip->nc_oob_cache);
601 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
602 
603 	/* useful for debugging new ecc drivers */
604 #if 0
605 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
606 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
607 		printf("0x");
608 		for (b = 0; b < cs; b++) {
609 			printf("%.2hhx", ecc[e+b]);
610 		}
611 		printf(" 0x");
612 		for (b = 0; b < cs; b++) {
613 			printf("%.2hhx", chip->nc_ecc_cache[e+b]);
614 		}
615 		printf("\n");
616 	}
617 	printf("--------------\n");
618 #endif
619 
620 	for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
621 		result = nand_ecc_correct(self, data + b, ecc + e,
622 		    chip->nc_ecc_cache + e);
623 
624 		switch (result) {
625 		case NAND_ECC_OK:
626 			break;
627 		case NAND_ECC_CORRECTED:
628 			aprint_error_dev(self,
629 			    "data corrected with ECC at page offset 0x%jx "
630 			    "block %zu\n", (uintmax_t)offset, b);
631 			break;
632 		case NAND_ECC_TWOBIT:
633 			aprint_error_dev(self,
634 			    "uncorrectable ECC error at page offset 0x%jx "
635 			    "block %zu\n", (uintmax_t)offset, b);
636 			return EIO;
637 			break;
638 		case NAND_ECC_INVALID:
639 			aprint_error_dev(self,
640 			    "invalid ECC in oob at page offset 0x%jx "
641 			    "block %zu\n", (uintmax_t)offset, b);
642 			return EIO;
643 			break;
644 		default:
645 			panic("invalid ECC correction errno");
646 		}
647 	}
648 
649 	return 0;
650 }
651 
652 static int
653 nand_program_page(device_t self, size_t page, const uint8_t *data)
654 {
655 	struct nand_softc *sc = device_private(self);
656 	struct nand_chip *chip = &sc->sc_chip;
657 	size_t bs, cs, e, b;
658 	uint8_t status;
659 	uint8_t *ecc;
660 
661 	nand_command(self, ONFI_PAGE_PROGRAM);
662 	nand_address_column(self, page, 0);
663 
664 	nand_busy(self);
665 
666 	bs = chip->nc_ecc->necc_block_size;
667 	cs = chip->nc_ecc->necc_code_size;
668 	ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
669 
670 	/* XXX code duplication */
671 	/* decide if we access by 8 or 16 bits */
672 	if (chip->nc_flags & NC_BUSWIDTH_16) {
673 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
674 			nand_ecc_prepare(self, NAND_ECC_WRITE);
675 			nand_write_buf_word(self, data + b, bs);
676 			nand_ecc_compute(self, data + b, ecc + e);
677 		}
678 		/* write oob with ecc correction code */
679 		nand_write_buf_word(self, chip->nc_oob_cache,
680 		    chip->nc_spare_size);
681 	} else {
682 		for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
683 			nand_ecc_prepare(self, NAND_ECC_WRITE);
684 			nand_write_buf_byte(self, data + b, bs);
685 			nand_ecc_compute(self, data + b, ecc + e);
686 		}
687 		/* write oob with ecc correction code */
688 		nand_write_buf_byte(self, chip->nc_oob_cache,
689 		    chip->nc_spare_size);
690 	}
691 
692 	nand_command(self, ONFI_PAGE_PROGRAM_START);
693 
694 	nand_busy(self);
695 
696 #if 0
697 	printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
698 	for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
699 		printf("0x");
700 		for (b = 0; b < cs; b++) {
701 			printf("%.2hhx", ecc[e+b]);
702 		}
703 		printf("\n");
704 	}
705 	printf("--------------\n");
706 #endif
707 
708 	status = nand_get_status(self);
709 	KASSERT(status & ONFI_STATUS_RDY);
710 	if (status & ONFI_STATUS_FAIL) {
711 		aprint_error_dev(self, "page program failed!\n");
712 		return EIO;
713 	}
714 
715 	return 0;
716 }
717 
718 int
719 nand_read_oob(device_t self, size_t page, void *oob)
720 {
721 	struct nand_softc *sc = device_private(self);
722 	struct nand_chip *chip = &sc->sc_chip;
723 
724 	nand_prepare_read(self, page, chip->nc_page_size);
725 
726 	if (chip->nc_flags & NC_BUSWIDTH_16)
727 		nand_read_buf_word(self, oob, chip->nc_spare_size);
728 	else
729 		nand_read_buf_byte(self, oob, chip->nc_spare_size);
730 
731 //	nand_dump_data("oob", oob, chip->nc_spare_size);
732 
733 	return 0;
734 }
735 
736 static int
737 nand_write_oob(device_t self, size_t offset, const void *oob)
738 {
739 	struct nand_softc *sc = device_private(self);
740 	struct nand_chip *chip = &sc->sc_chip;
741 	uint8_t status;
742 
743 	nand_command(self, ONFI_PAGE_PROGRAM);
744 	nand_address_column(self, offset, chip->nc_page_size);
745 	nand_command(self, ONFI_PAGE_PROGRAM_START);
746 
747 	nand_busy(self);
748 
749 	if (chip->nc_flags & NC_BUSWIDTH_16)
750 		nand_write_buf_word(self, oob, chip->nc_spare_size);
751 	else
752 		nand_write_buf_byte(self, oob, chip->nc_spare_size);
753 
754 	status = nand_get_status(self);
755 	KASSERT(status & ONFI_STATUS_RDY);
756 	if (status & ONFI_STATUS_FAIL)
757 		return EIO;
758 	else
759 		return 0;
760 }
761 
762 void
763 nand_markbad(device_t self, size_t offset)
764 {
765 	struct nand_softc *sc = device_private(self);
766 	struct nand_chip *chip = &sc->sc_chip;
767 	flash_addr_t blockoffset, marker;
768 #ifdef NAND_BBT
769 	flash_addr_t block;
770 
771 	block = offset / chip->nc_block_size;
772 
773 	nand_bbt_block_markbad(self, block);
774 #endif
775 	blockoffset = offset & chip->nc_block_mask;
776 	marker = chip->nc_badmarker_offs & ~0x01;
777 
778 	/* check if it is already marked bad */
779 	if (nand_isbad(self, blockoffset))
780 		return;
781 
782 	nand_read_oob(self, blockoffset, chip->nc_oob_cache);
783 
784 	chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
785 	chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
786 
787 	nand_write_oob(self, blockoffset, chip->nc_oob_cache);
788 }
789 
790 bool
791 nand_isfactorybad(device_t self, flash_addr_t offset)
792 {
793 	struct nand_softc *sc = device_private(self);
794 	struct nand_chip *chip = &sc->sc_chip;
795 	flash_addr_t block, first_page, last_page, page;
796 	int i;
797 
798 	/* Check for factory bad blocks first
799 	 * Factory bad blocks are marked in the first or last
800 	 * page of the blocks, see: ONFI 2.2, 3.2.2.
801 	 */
802 	block = offset / chip->nc_block_size;
803 	first_page = block * chip->nc_block_size;
804 	last_page = (block + 1) * chip->nc_block_size
805 	    - chip->nc_page_size;
806 
807 	for (i = 0, page = first_page; i < 2; i++, page = last_page) {
808 		/* address OOB */
809 		nand_prepare_read(self, page, chip->nc_page_size);
810 
811 		if (chip->nc_flags & NC_BUSWIDTH_16) {
812 			uint16_t word;
813 			nand_read_word(self, &word);
814 			if (word == 0x0000)
815 				return true;
816 		} else {
817 			uint8_t byte;
818 			nand_read_byte(self, &byte);
819 			if (byte == 0x00)
820 				return true;
821 		}
822 	}
823 
824 	return false;
825 }
826 
827 bool
828 nand_iswornoutbad(device_t self, flash_addr_t offset)
829 {
830 	struct nand_softc *sc = device_private(self);
831 	struct nand_chip *chip = &sc->sc_chip;
832 	flash_addr_t block;
833 
834 	/* we inspect the first page of the block */
835 	block = offset & chip->nc_block_mask;
836 
837 	/* Linux/u-boot compatible badblock handling */
838 	if (chip->nc_flags & NC_BUSWIDTH_16) {
839 		uint16_t word, mark;
840 
841 		nand_prepare_read(self, block,
842 		    chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
843 
844 		nand_read_word(self, &word);
845 		mark = htole16(word);
846 		if (chip->nc_badmarker_offs & 0x01)
847 			mark >>= 8;
848 		if ((mark & 0xff) != 0xff)
849 			return true;
850 	} else {
851 		uint8_t byte;
852 
853 		nand_prepare_read(self, block,
854 		    chip->nc_page_size + chip->nc_badmarker_offs);
855 
856 		nand_read_byte(self, &byte);
857 		if (byte != 0xff)
858 			return true;
859 	}
860 
861 	return false;
862 }
863 
864 bool
865 nand_isbad(device_t self, flash_addr_t offset)
866 {
867 #ifdef NAND_BBT
868 	struct nand_softc *sc = device_private(self);
869 	struct nand_chip *chip = &sc->sc_chip;
870 	flash_addr_t block;
871 
872 	block = offset / chip->nc_block_size;
873 
874 	return nand_bbt_block_isbad(self, block);
875 #else
876 	/* ONFI host requirement */
877 	if (nand_isfactorybad(self, offset))
878 		return true;
879 
880 	/* Look for Linux/U-Boot compatible bad marker */
881 	if (nand_iswornoutbad(self, offset))
882 		return true;
883 
884 	return false;
885 #endif
886 }
887 
888 int
889 nand_erase_block(device_t self, size_t offset)
890 {
891 //	struct nand_softc *sc = device_private(self);
892 //	struct nand_chip *chip = &sc->sc_chip;
893 	uint8_t status;
894 
895 	/* xxx calculate first page of block for address? */
896 
897 	nand_command(self, ONFI_BLOCK_ERASE);
898 	nand_address_row(self, offset);
899 	nand_command(self, ONFI_BLOCK_ERASE_START);
900 
901 	nand_busy(self);
902 
903 	status = nand_get_status(self);
904 	KASSERT(status & ONFI_STATUS_RDY);
905 	if (status & ONFI_STATUS_FAIL) {
906 		aprint_error_dev(self, "block erase failed!\n");
907 		nand_markbad(self, offset);
908 		return EIO;
909 	} else {
910 		return 0;
911 	}
912 }
913 
914 /* default functions for driver development */
915 
916 /* default ECC using hamming code of 256 byte chunks */
917 int
918 nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
919 {
920 	hamming_compute_256(data, code);
921 
922 	return 0;
923 }
924 
925 int
926 nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
927 	const uint8_t *compcode)
928 {
929 	return hamming_correct_256(data, origcode, compcode);
930 }
931 
932 void
933 nand_default_select(device_t self, bool enable)
934 {
935 	/* do nothing */
936 	return;
937 }
938 
939 /* implementation of the block device API */
940 
941 /*
942  * handle (page) unaligned write to nand
943  */
944 static int
945 nand_flash_write_unaligned(device_t self, off_t offset, size_t len,
946     size_t *retlen, const uint8_t *buf)
947 {
948 	struct nand_softc *sc = device_private(self);
949 	struct nand_chip *chip = &sc->sc_chip;
950 	flash_addr_t first, last, firstoff;
951 	const uint8_t *bufp;
952 	flash_addr_t addr;
953 	size_t left, count;
954 	int error, i;
955 
956 	/* to debug chfs */
957 //	printf("unaligned write to nand\n");
958 
959 	first = offset & chip->nc_page_mask;
960 	firstoff = offset & ~chip->nc_page_mask;
961 	/* XXX check if this should be len - 1 */
962 	last = (offset + len) & chip->nc_page_mask;
963 	count = last - first + 1;
964 
965 	addr = first;
966 	*retlen = 0;
967 
968 	if (count == 1) {
969 		if (nand_isbad(self, addr)) {
970 			aprint_error_dev(self,
971 			    "nand_flash_write_unaligned: "
972 			    "bad block encountered\n");
973 			return EIO;
974 		}
975 
976 		error = nand_read_page(self, addr, chip->nc_page_cache);
977 		if (error)
978 			return error;
979 
980 		memcpy(chip->nc_page_cache + firstoff, buf, len);
981 
982 		error = nand_program_page(self, addr, chip->nc_page_cache);
983 		if (error)
984 			return error;
985 
986 		*retlen = len;
987 		return 0;
988 	}
989 
990 	bufp = buf;
991 	left = len;
992 
993 	for (i = 0; i < count && left != 0; i++) {
994 		if (nand_isbad(self, addr)) {
995 			aprint_error_dev(self,
996 			    "nand_flash_write_unaligned: "
997 			    "bad block encountered\n");
998 			return EIO;
999 		}
1000 
1001 		if (i == 0) {
1002 			error = nand_read_page(self,
1003 			    addr, chip->nc_page_cache);
1004 			if (error)
1005 				return error;
1006 
1007 			memcpy(chip->nc_page_cache + firstoff,
1008 			    bufp, chip->nc_page_size - firstoff);
1009 
1010 			printf("program page: %s: %d\n", __FILE__, __LINE__);
1011 			error = nand_program_page(self,
1012 			    addr, chip->nc_page_cache);
1013 			if (error)
1014 				return error;
1015 
1016 			bufp += chip->nc_page_size - firstoff;
1017 			left -= chip->nc_page_size - firstoff;
1018 			*retlen += chip->nc_page_size - firstoff;
1019 
1020 		} else if (i == count - 1) {
1021 			error = nand_read_page(self,
1022 			    addr, chip->nc_page_cache);
1023 			if (error)
1024 				return error;
1025 
1026 			memcpy(chip->nc_page_cache, bufp, left);
1027 
1028 			error = nand_program_page(self,
1029 			    addr, chip->nc_page_cache);
1030 			if (error)
1031 				return error;
1032 
1033 			*retlen += left;
1034 			KASSERT(left < chip->nc_page_size);
1035 
1036 		} else {
1037 			/* XXX debug */
1038 			if (left > chip->nc_page_size) {
1039 				printf("left: %zu, i: %d, count: %zu\n",
1040 				    (size_t )left, i, count);
1041 			}
1042 			KASSERT(left > chip->nc_page_size);
1043 
1044 			error = nand_program_page(self, addr, bufp);
1045 			if (error)
1046 				return error;
1047 
1048 			bufp += chip->nc_page_size;
1049 			left -= chip->nc_page_size;
1050 			*retlen += chip->nc_page_size;
1051 		}
1052 
1053 		addr += chip->nc_page_size;
1054 	}
1055 
1056 	KASSERT(*retlen == len);
1057 
1058 	return 0;
1059 }
1060 
1061 int
1062 nand_flash_write(device_t self, off_t offset, size_t len, size_t *retlen,
1063     const uint8_t *buf)
1064 {
1065 	struct nand_softc *sc = device_private(self);
1066 	struct nand_chip *chip = &sc->sc_chip;
1067 	const uint8_t *bufp;
1068 	size_t pages, page;
1069 	daddr_t addr;
1070 	int error = 0;
1071 
1072 	if ((offset + len) > chip->nc_size) {
1073 		DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
1074 			" is over device size (0x%jx)\n",
1075 			(uintmax_t)offset, (uintmax_t)len,
1076 			(uintmax_t)chip->nc_size));
1077 		return EINVAL;
1078 	}
1079 
1080 	if (len % chip->nc_page_size != 0 ||
1081 	    offset % chip->nc_page_size != 0) {
1082 		return nand_flash_write_unaligned(self,
1083 		    offset, len, retlen, buf);
1084 	}
1085 
1086 	pages = len / chip->nc_page_size;
1087 	KASSERT(pages != 0);
1088 	*retlen = 0;
1089 
1090 	addr = offset;
1091 	bufp = buf;
1092 
1093 	mutex_enter(&sc->sc_device_lock);
1094 	for (page = 0; page < pages; page++) {
1095 		/* do we need this check here? */
1096 		if (nand_isbad(self, addr)) {
1097 			aprint_error_dev(self,
1098 			    "nand_flash_write: bad block encountered\n");
1099 
1100 			error = EIO;
1101 			goto out;
1102 		}
1103 
1104 		error = nand_program_page(self, addr, bufp);
1105 		if (error)
1106 			goto out;
1107 
1108 		addr += chip->nc_page_size;
1109 		bufp += chip->nc_page_size;
1110 		*retlen += chip->nc_page_size;
1111 	}
1112 out:
1113 	mutex_exit(&sc->sc_device_lock);
1114 	DPRINTF(("page programming: retlen: %zu, len: %zu\n", *retlen, len));
1115 
1116 	return error;
1117 }
1118 
1119 /*
1120  * handle (page) unaligned read from nand
1121  */
1122 static int
1123 nand_flash_read_unaligned(device_t self, size_t offset,
1124     size_t len, size_t *retlen, uint8_t *buf)
1125 {
1126 	struct nand_softc *sc = device_private(self);
1127 	struct nand_chip *chip = &sc->sc_chip;
1128 	daddr_t first, last, count, firstoff;
1129 	uint8_t *bufp;
1130 	daddr_t addr;
1131 	size_t left;
1132 	int error = 0, i;
1133 
1134 	/* to debug chfs */
1135 //	printf("unaligned read from nand\n");
1136 
1137 	first = offset & chip->nc_page_mask;
1138 	firstoff = offset & ~chip->nc_page_mask;
1139 	last = (offset + len) & chip->nc_page_mask;
1140 //	lastoff = chip->nc_page_size - (offset + len) & ~chip->nc_page_mask;
1141 	count = (last - first) / chip->nc_page_size + 1;
1142 
1143 	addr = first;
1144 	bufp = buf;
1145 	left = len;
1146 	*retlen = 0;
1147 
1148 	mutex_enter(&sc->sc_device_lock);
1149 	if (count == 1) {
1150 		error = nand_read_page(self, addr, chip->nc_page_cache);
1151 		if (error)
1152 			goto out;
1153 
1154 		memcpy(bufp, chip->nc_page_cache + firstoff, len);
1155 
1156 		*retlen = len;
1157 		goto out;
1158 	}
1159 
1160 	for (i = 0; i < count && left != 0; i++) {
1161 		error = nand_read_page(self, addr, chip->nc_page_cache);
1162 		if (error)
1163 			goto out;
1164 
1165 		if (i == 0) {
1166 			memcpy(bufp, chip->nc_page_cache + firstoff,
1167 			    chip->nc_page_size - firstoff);
1168 
1169 			bufp += chip->nc_page_size - firstoff;
1170 			left -= chip->nc_page_size - firstoff;
1171 			*retlen += chip->nc_page_size - firstoff;
1172 
1173 		} else if (i == count - 1) {
1174 			memcpy(bufp, chip->nc_page_cache, left);
1175 			*retlen += left;
1176 			KASSERT(left < chip->nc_page_size);
1177 
1178 		} else {
1179 			memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
1180 
1181 			bufp += chip->nc_page_size;
1182 			left -= chip->nc_page_size;
1183 			*retlen += chip->nc_page_size;
1184 		}
1185 
1186 		addr += chip->nc_page_size;
1187 	}
1188 
1189 	KASSERT(*retlen == len);
1190 
1191 out:
1192 	mutex_exit(&sc->sc_device_lock);
1193 
1194 	return error;
1195 }
1196 
1197 int
1198 nand_flash_read(device_t self, off_t offset, size_t len, size_t *retlen,
1199     uint8_t *buf)
1200 {
1201 	struct nand_softc *sc = device_private(self);
1202 	struct nand_chip *chip = &sc->sc_chip;
1203 	uint8_t *bufp;
1204 	size_t addr;
1205 	size_t i, pages;
1206 	int error = 0;
1207 
1208 	*retlen = 0;
1209 
1210 	DPRINTF(("nand_flash_read: off: 0x%jx, len: %zu\n",
1211 		(uintmax_t)offset, len));
1212 
1213 	if (__predict_false((offset + len) > chip->nc_size)) {
1214 		DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %zu),"
1215 			" is over device size (%ju)\n", (uintmax_t)offset,
1216 			len, (uintmax_t)chip->nc_size));
1217 		return EINVAL;
1218 	}
1219 
1220 	/* Handle unaligned access, shouldnt be needed when using the
1221 	 * block device, as strategy handles it, so only low level
1222 	 * accesses will use this path
1223 	 */
1224 //	if (len < chip->nc_page_size)
1225 //		panic("TODO page size is larger than read size");
1226 
1227 	if (len % chip->nc_page_size != 0 ||
1228 	    offset % chip->nc_page_size != 0) {
1229 		return nand_flash_read_unaligned(self,
1230 		    offset, len, retlen, buf);
1231 	}
1232 
1233 	bufp = buf;
1234 	addr = offset;
1235 	pages = len / chip->nc_page_size;
1236 
1237 	mutex_enter(&sc->sc_device_lock);
1238 	for (i = 0; i < pages; i++) {
1239 		/* do we need this check here? */
1240 		if (nand_isbad(self, addr)) {
1241 			aprint_error_dev(self, "bad block encountered\n");
1242 			error = EIO;
1243 			goto out;
1244 		}
1245 		error = nand_read_page(self, addr, bufp);
1246 		if (error)
1247 			goto out;
1248 
1249 		bufp += chip->nc_page_size;
1250 		addr += chip->nc_page_size;
1251 		*retlen += chip->nc_page_size;
1252 	}
1253 
1254 out:
1255 	mutex_exit(&sc->sc_device_lock);
1256 
1257 	return error;
1258 }
1259 
1260 int
1261 nand_flash_isbad(device_t self, uint64_t ofs)
1262 {
1263 	struct nand_softc *sc = device_private(self);
1264 	struct nand_chip *chip = &sc->sc_chip;
1265 	bool result;
1266 //	uint64_t block_num;
1267 
1268 	if (ofs > chip->nc_size) {
1269 		DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
1270 			" device size (0x%jx)\n", (uintmax_t)ofs,
1271 			(uintmax_t)chip->nc_size));
1272 		return EINVAL;
1273 	}
1274 
1275 	if (ofs % chip->nc_block_size != 0) {
1276 		panic("offset (0x%jx) is not the multiple of block size (%ju)",
1277 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1278 	}
1279 //	block_num = ofs / fl->flash_if.erasesize;
1280 
1281 	mutex_enter(&sc->sc_device_lock);
1282 	result = nand_isbad(self, ofs);
1283 	mutex_exit(&sc->sc_device_lock);
1284 
1285 	if (result)
1286 		return 1;
1287 	else
1288 		return 0;
1289 }
1290 
1291 int
1292 nand_flash_markbad(device_t self, uint64_t ofs)
1293 {
1294 	struct nand_softc *sc = device_private(self);
1295 	struct nand_chip *chip = &sc->sc_chip;
1296 
1297 //	uint64_t block_num;
1298 
1299 	if (ofs > chip->nc_size) {
1300 		DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
1301 			" device size (0x%jx)\n", ofs,
1302 			(uintmax_t)chip->nc_size));
1303 		return EINVAL;
1304 	}
1305 
1306 	if (ofs % chip->nc_block_size != 0) {
1307 		panic("offset (%ju) is not the multiple of block size (%ju)",
1308 		    (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
1309 	}
1310 
1311 //	block_num = ofs / fl->flash_if->erasesize;
1312 
1313 	mutex_enter(&sc->sc_device_lock);
1314 	nand_markbad(self, ofs);
1315 	mutex_exit(&sc->sc_device_lock);
1316 
1317 	return 0;
1318 }
1319 
1320 int
1321 nand_flash_erase(device_t self,
1322     struct flash_erase_instruction *ei)
1323 {
1324 	struct nand_softc *sc = device_private(self);
1325 	struct nand_chip *chip = &sc->sc_chip;
1326 	flash_addr_t addr;
1327 	int error;
1328 //	off_t block_num;
1329 
1330 //	if (FLASH_CLOSED == sc->sc_flash.status)
1331 //		return FLASH_CLOSED;
1332 
1333 	if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
1334 		return EINVAL;
1335 
1336 	if (ei->ei_addr + ei->ei_len > chip->nc_size) {
1337 		DPRINTF(("nand_flash_erase: erase address is over the end"
1338 			" of the device\n"));
1339 		return EINVAL;
1340 	}
1341 
1342 	if (ei->ei_addr % chip->nc_block_size != 0) {
1343 		aprint_error_dev(self,
1344 		    "nand_flash_erase: ei_addr (%ju) is not"
1345 		    "the multiple of block size (%ju)",
1346 		    (uintmax_t)ei->ei_addr,
1347 		    (uintmax_t)chip->nc_block_size);
1348 		return EINVAL;
1349 	}
1350 
1351 	if (ei->ei_len % chip->nc_block_size != 0) {
1352 		aprint_error_dev(self,
1353 		    "nand_flash_erase: ei_len (%ju) is not"
1354 		    "the multiple of block size (%ju)",
1355 		    (uintmax_t)ei->ei_addr,
1356 		    (uintmax_t)chip->nc_block_size);
1357 		return EINVAL;
1358 	}
1359 
1360 	mutex_enter(&sc->sc_device_lock);
1361 	addr = ei->ei_addr;
1362 	while (addr < ei->ei_addr + ei->ei_len) {
1363 		if (nand_isbad(self, addr)) {
1364 			mutex_exit(&sc->sc_device_lock);
1365 			aprint_error_dev(self, "bad block encountered\n");
1366 			ei->ei_state = FLASH_ERASE_FAILED;
1367 			return EIO;
1368 		}
1369 
1370 		error = nand_erase_block(self, addr);
1371 		if (error) {
1372 			mutex_exit(&sc->sc_device_lock);
1373 			ei->ei_state = FLASH_ERASE_FAILED;
1374 			return error;
1375 		}
1376 
1377 		addr += chip->nc_block_size;
1378 	}
1379 	mutex_exit(&sc->sc_device_lock);
1380 
1381 	ei->ei_state = FLASH_ERASE_DONE;
1382 	if (ei->ei_callback != NULL)
1383 		ei->ei_callback(ei);
1384 
1385 	return 0;
1386 }
1387 
1388 static int
1389 sysctl_nand_verify(SYSCTLFN_ARGS)
1390 {
1391 	int error, t;
1392 	struct sysctlnode node;
1393 
1394 	node = *rnode;
1395 	t = *(int *)rnode->sysctl_data;
1396 	node.sysctl_data = &t;
1397 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1398 	if (error || newp == NULL)
1399 		return error;
1400 
1401 	if (node.sysctl_num == nand_cachesync_nodenum) {
1402 		if (t <= 0 || t > 60)
1403 			return EINVAL;
1404 	} else {
1405 		return EINVAL;
1406 	}
1407 
1408 	*(int *)rnode->sysctl_data = t;
1409 
1410 	return 0;
1411 }
1412 
1413 SYSCTL_SETUP(sysctl_nand, "sysctl nand subtree setup")
1414 {
1415 	int rc, nand_root_num;
1416 	const struct sysctlnode *node;
1417 
1418 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
1419 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
1420 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
1421 		goto error;
1422 	}
1423 
1424 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1425 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "nand",
1426 	    SYSCTL_DESCR("NAND driver controls"),
1427 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
1428 		goto error;
1429 	}
1430 
1431 	nand_root_num = node->sysctl_num;
1432 
1433 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
1434 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1435 	    CTLTYPE_INT, "cache_sync_timeout",
1436 	    SYSCTL_DESCR("NAND write cache sync timeout in seconds"),
1437 	    sysctl_nand_verify, 0, &nand_cachesync_timeout,
1438 	    0, CTL_HW, nand_root_num, CTL_CREATE,
1439 	    CTL_EOL)) != 0) {
1440 		goto error;
1441 	}
1442 
1443 	nand_cachesync_nodenum = node->sysctl_num;
1444 
1445 	return;
1446 
1447 error:
1448 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
1449 }
1450 
1451 MODULE(MODULE_CLASS_DRIVER, nand, "flash");
1452 
1453 #ifdef _MODULE
1454 #include "ioconf.c"
1455 #endif
1456 
1457 static int
1458 nand_modcmd(modcmd_t cmd, void *opaque)
1459 {
1460 	switch (cmd) {
1461 	case MODULE_CMD_INIT:
1462 #ifdef _MODULE
1463 		return config_init_component(cfdriver_ioconf_nand,
1464 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1465 #else
1466 		return 0;
1467 #endif
1468 	case MODULE_CMD_FINI:
1469 #ifdef _MODULE
1470 		return config_fini_component(cfdriver_ioconf_nand,
1471 		    cfattach_ioconf_nand, cfdata_ioconf_nand);
1472 #else
1473 		return 0;
1474 #endif
1475 	default:
1476 		return ENOTTY;
1477 	}
1478 }
1479