xref: /netbsd-src/sys/dev/mm.c (revision ba65fde2d7fefa7d39838fa5fa855e62bd606b5e)
1 /*	$NetBSD: mm.c,v 1.17 2013/01/19 00:27:34 matt Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2008, 2010 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christos Zoulas, Joerg Sonnenberger and Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Special /dev/{mem,kmem,zero,null} memory devices.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: mm.c,v 1.17 2013/01/19 00:27:34 matt Exp $");
38 
39 #include "opt_compat_netbsd.h"
40 
41 #include <sys/param.h>
42 #include <sys/conf.h>
43 #include <sys/ioctl.h>
44 #include <sys/mman.h>
45 #include <sys/uio.h>
46 #include <sys/termios.h>
47 
48 #include <dev/mm.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 static void *		dev_zero_page	__read_mostly;
53 static kmutex_t		dev_mem_lock	__cacheline_aligned;
54 static vaddr_t		dev_mem_addr	__read_mostly;
55 
56 static dev_type_read(mm_readwrite);
57 static dev_type_ioctl(mm_ioctl);
58 static dev_type_mmap(mm_mmap);
59 static dev_type_ioctl(mm_ioctl);
60 
61 const struct cdevsw mem_cdevsw = {
62 #ifdef __HAVE_MM_MD_OPEN
63 	mm_md_open,
64 #else
65 	nullopen,
66 #endif
67 	nullclose, mm_readwrite, mm_readwrite,
68 	mm_ioctl, nostop, notty, nopoll, mm_mmap, nokqfilter,
69 	D_MPSAFE
70 };
71 
72 #ifdef pmax	/* XXX */
73 const struct cdevsw mem_ultrix_cdevsw = {
74 	nullopen, nullclose, mm_readwrite, mm_readwrite, mm_ioctl,
75 	nostop, notty, nopoll, mm_mmap, nokqfilter, D_MPSAFE
76 };
77 #endif
78 
79 /*
80  * mm_init: initialize memory device driver.
81  */
82 void
83 mm_init(void)
84 {
85 	vaddr_t pg;
86 
87 	mutex_init(&dev_mem_lock, MUTEX_DEFAULT, IPL_NONE);
88 
89 	/* Read-only zero-page. */
90 	pg = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
91 	KASSERT(pg != 0);
92 	pmap_protect(pmap_kernel(), pg, pg + PAGE_SIZE, VM_PROT_READ);
93 	pmap_update(pmap_kernel());
94 	dev_zero_page = (void *)pg;
95 
96 #ifndef __HAVE_MM_MD_CACHE_ALIASING
97 	/* KVA for mappings during I/O. */
98 	dev_mem_addr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
99 	    UVM_KMF_VAONLY|UVM_KMF_WAITVA);
100 	KASSERT(dev_mem_addr != 0);
101 #else
102 	dev_mem_addr = 0;
103 #endif
104 }
105 
106 
107 /*
108  * dev_mem_getva: get a special virtual address.  If architecture requires,
109  * allocate VA according to PA, which avoids cache-aliasing issues.  Use a
110  * constant, general mapping address otherwise.
111  */
112 static inline vaddr_t
113 dev_mem_getva(paddr_t pa)
114 {
115 #ifdef __HAVE_MM_MD_CACHE_ALIASING
116 	return uvm_km_alloc(kernel_map, PAGE_SIZE,
117 	    atop(pa) & uvmexp.colormask,
118 	    UVM_KMF_VAONLY | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH);
119 #else
120 	return dev_mem_addr;
121 #endif
122 }
123 
124 static inline void
125 dev_mem_relva(paddr_t pa, vaddr_t va)
126 {
127 #ifdef __HAVE_MM_MD_CACHE_ALIASING
128 	uvm_km_free(kernel_map, va, PAGE_SIZE, UVM_KMF_VAONLY);
129 #else
130 	KASSERT(dev_mem_addr == va);
131 #endif
132 }
133 
134 /*
135  * dev_kmem_readwrite: helper for DEV_MEM (/dev/mem) case of R/W.
136  */
137 static int
138 dev_mem_readwrite(struct uio *uio, struct iovec *iov)
139 {
140 	paddr_t paddr;
141 	vaddr_t vaddr;
142 	vm_prot_t prot;
143 	size_t len, offset;
144 	bool have_direct;
145 	int error;
146 
147 	/* Check for wrap around. */
148 	if ((intptr_t)uio->uio_offset != uio->uio_offset) {
149 		return EFAULT;
150 	}
151 	paddr = uio->uio_offset & ~PAGE_MASK;
152 	prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
153 	error = mm_md_physacc(paddr, prot);
154 	if (error) {
155 		return error;
156 	}
157 	offset = uio->uio_offset & PAGE_MASK;
158 	len = MIN(uio->uio_resid, PAGE_SIZE - offset);
159 
160 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
161 	/* Is physical address directly mapped?  Return VA. */
162 	have_direct = mm_md_direct_mapped_phys(paddr, &vaddr);
163 #else
164 	vaddr = 0;
165 	have_direct = false;
166 #endif
167 	if (!have_direct) {
168 		/* Get a special virtual address. */
169 		const vaddr_t va = dev_mem_getva(paddr);
170 
171 		/* Map selected KVA to physical address. */
172 		mutex_enter(&dev_mem_lock);
173 		pmap_kenter_pa(va, paddr, prot, 0);
174 		pmap_update(pmap_kernel());
175 
176 		/* Perform I/O. */
177 		vaddr = va + offset;
178 		error = uiomove((void *)vaddr, len, uio);
179 
180 		/* Unmap, flush before unlock. */
181 		pmap_kremove(va, PAGE_SIZE);
182 		pmap_update(pmap_kernel());
183 		mutex_exit(&dev_mem_lock);
184 
185 		/* "Release" the virtual address. */
186 		dev_mem_relva(paddr, va);
187 	} else {
188 		/* Direct map, just perform I/O. */
189 		vaddr += offset;
190 		error = uiomove((void *)vaddr, len, uio);
191 	}
192 	return error;
193 }
194 
195 /*
196  * dev_kmem_readwrite: helper for DEV_KMEM (/dev/kmem) case of R/W.
197  */
198 static int
199 dev_kmem_readwrite(struct uio *uio, struct iovec *iov)
200 {
201 	void *addr;
202 	size_t len, offset;
203 	vm_prot_t prot;
204 	int error;
205 	bool md_kva;
206 
207 	/* Check for wrap around. */
208 	addr = (void *)(intptr_t)uio->uio_offset;
209 	if ((uintptr_t)addr != uio->uio_offset) {
210 		return EFAULT;
211 	}
212 	/*
213 	 * Handle non-page aligned offset.
214 	 * Otherwise, we operate in page-by-page basis.
215 	 */
216 	offset = uio->uio_offset & PAGE_MASK;
217 	len = MIN(uio->uio_resid, PAGE_SIZE - offset);
218 	prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
219 
220 	md_kva = false;
221 
222 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_IO
223 	paddr_t paddr;
224 	/* MD case: is this is a directly mapped address? */
225 	if (mm_md_direct_mapped_io(addr, &paddr)) {
226 		/* If so, validate physical address. */
227 		error = mm_md_physacc(paddr, prot);
228 		if (error) {
229 			return error;
230 		}
231 		md_kva = true;
232 	}
233 #endif
234 	if (!md_kva) {
235 		bool checked = false;
236 
237 #ifdef __HAVE_MM_MD_KERNACC
238 		/* MD check for the address. */
239 		error = mm_md_kernacc(addr, prot, &checked);
240 		if (error) {
241 			return error;
242 		}
243 #endif
244 		/* UVM check for the address (unless MD indicated to not). */
245 		if (!checked && !uvm_kernacc(addr, len, prot)) {
246 			return EFAULT;
247 		}
248 	}
249 	error = uiomove(addr, len, uio);
250 	return error;
251 }
252 
253 /*
254  * dev_zero_readwrite: helper for DEV_ZERO (/dev/null) case of R/W.
255  */
256 static inline int
257 dev_zero_readwrite(struct uio *uio, struct iovec *iov)
258 {
259 	size_t len;
260 
261 	/* Nothing to do for the write case. */
262 	if (uio->uio_rw == UIO_WRITE) {
263 		uio->uio_resid = 0;
264 		return 0;
265 	}
266 	/*
267 	 * Read in page-by-page basis, caller will continue.
268 	 * Cut appropriately for a single/last-iteration cases.
269 	 */
270 	len = MIN(iov->iov_len, PAGE_SIZE);
271 	return uiomove(dev_zero_page, len, uio);
272 }
273 
274 /*
275  * mm_readwrite: general memory R/W function.
276  */
277 static int
278 mm_readwrite(dev_t dev, struct uio *uio, int flags)
279 {
280 	struct iovec *iov;
281 	int error;
282 
283 #ifdef __HAVE_MM_MD_READWRITE
284 	/* If defined - there are extra MD cases. */
285 	switch (minor(dev)) {
286 	case DEV_MEM:
287 	case DEV_KMEM:
288 	case DEV_NULL:
289 	case DEV_ZERO:
290 #if defined(COMPAT_16) && defined(__arm)
291 	case _DEV_ZERO_oARM:
292 #endif
293 		break;
294 	default:
295 		return mm_md_readwrite(dev, uio);
296 	}
297 #endif
298 	error = 0;
299 	while (uio->uio_resid > 0 && error == 0) {
300 		iov = uio->uio_iov;
301 		if (iov->iov_len == 0) {
302 			/* Processed; next I/O vector. */
303 			uio->uio_iov++;
304 			uio->uio_iovcnt--;
305 			KASSERT(uio->uio_iovcnt >= 0);
306 			continue;
307 		}
308 		/* Helper functions will process in page-by-page basis. */
309 		switch (minor(dev)) {
310 		case DEV_MEM:
311 			error = dev_mem_readwrite(uio, iov);
312 			break;
313 		case DEV_KMEM:
314 			error = dev_kmem_readwrite(uio, iov);
315 			break;
316 		case DEV_NULL:
317 			if (uio->uio_rw == UIO_WRITE) {
318 				uio->uio_resid = 0;
319 			}
320 			/* Break directly out of the loop. */
321 			return 0;
322 #if defined(COMPAT_16) && defined(__arm)
323 		case _DEV_ZERO_oARM:
324 #endif
325 		case DEV_ZERO:
326 			error = dev_zero_readwrite(uio, iov);
327 			break;
328 		default:
329 			error = ENXIO;
330 			break;
331 		}
332 	}
333 	return error;
334 }
335 
336 /*
337  * mm_mmap: general mmap() handler.
338  */
339 static paddr_t
340 mm_mmap(dev_t dev, off_t off, int acc)
341 {
342 	vm_prot_t prot;
343 
344 #ifdef __HAVE_MM_MD_MMAP
345 	/* If defined - there are extra mmap() MD cases. */
346 	switch (minor(dev)) {
347 	case DEV_MEM:
348 	case DEV_KMEM:
349 	case DEV_NULL:
350 #if defined(COMPAT_16) && defined(__arm)
351 	case _DEV_ZERO_oARM:
352 #endif
353 	case DEV_ZERO:
354 		break;
355 	default:
356 		return mm_md_mmap(dev, off, acc);
357 	}
358 #endif
359 	/*
360 	 * /dev/null does not make sense, /dev/kmem is volatile and
361 	 * /dev/zero is handled in mmap already.
362 	 */
363 	if (minor(dev) != DEV_MEM) {
364 		return -1;
365 	}
366 
367 	prot = 0;
368 	if (acc & PROT_EXEC)
369 		prot |= VM_PROT_EXECUTE;
370 	if (acc & PROT_READ)
371 		prot |= VM_PROT_READ;
372 	if (acc & PROT_WRITE)
373 		prot |= VM_PROT_WRITE;
374 
375 	/* Validate the physical address. */
376 	if (mm_md_physacc(off, prot) != 0) {
377 		return -1;
378 	}
379 	return off >> PGSHIFT;
380 }
381 
382 static int
383 mm_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
384 {
385 
386 	switch (cmd) {
387 	case FIONBIO:
388 		/* We never block anyway. */
389 		return 0;
390 
391 	case FIOSETOWN:
392 	case FIOGETOWN:
393 	case TIOCGPGRP:
394 	case TIOCSPGRP:
395 	case TIOCGETA:
396 		return ENOTTY;
397 
398 	case FIOASYNC:
399 		if ((*(int *)data) == 0) {
400 			return 0;
401 		}
402 		/* FALLTHROUGH */
403 	default:
404 		return EOPNOTSUPP;
405 	}
406 }
407