xref: /netbsd-src/sys/dev/mm.c (revision 1b9578b8c2c1f848eeb16dabbfd7d1f0d9fdefbd)
1 /*	$NetBSD: mm.c,v 1.15 2011/06/16 16:20:28 joerg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2008, 2010 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Christos Zoulas, Joerg Sonnenberger and Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Special /dev/{mem,kmem,zero,null} memory devices.
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: mm.c,v 1.15 2011/06/16 16:20:28 joerg Exp $");
38 
39 #include "opt_compat_netbsd.h"
40 
41 #include <sys/param.h>
42 #include <sys/conf.h>
43 #include <sys/ioctl.h>
44 #include <sys/mman.h>
45 #include <sys/uio.h>
46 #include <sys/termios.h>
47 
48 #include <dev/mm.h>
49 
50 #include <uvm/uvm_extern.h>
51 
52 static void *		dev_zero_page	__read_mostly;
53 static kmutex_t		dev_mem_lock	__cacheline_aligned;
54 static vaddr_t		dev_mem_addr	__read_mostly;
55 
56 static dev_type_read(mm_readwrite);
57 static dev_type_ioctl(mm_ioctl);
58 static dev_type_mmap(mm_mmap);
59 static dev_type_ioctl(mm_ioctl);
60 
61 const struct cdevsw mem_cdevsw = {
62 #ifdef __HAVE_MM_MD_OPEN
63 	mm_md_open,
64 #else
65 	nullopen,
66 #endif
67 	nullclose, mm_readwrite, mm_readwrite,
68 	mm_ioctl, nostop, notty, nopoll, mm_mmap, nokqfilter,
69 	D_MPSAFE
70 };
71 
72 #ifdef pmax	/* XXX */
73 const struct cdevsw mem_ultrix_cdevsw = {
74 	nullopen, nullclose, mm_readwrite, mm_readwrite, mm_ioctl,
75 	nostop, notty, nopoll, mm_mmap, nokqfilter, D_MPSAFE
76 };
77 #endif
78 
79 /*
80  * mm_init: initialize memory device driver.
81  */
82 void
83 mm_init(void)
84 {
85 	vaddr_t pg;
86 
87 	mutex_init(&dev_mem_lock, MUTEX_DEFAULT, IPL_NONE);
88 
89 	/* Read-only zero-page. */
90 	pg = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_WIRED|UVM_KMF_ZERO);
91 	KASSERT(pg != 0);
92 #if 0
93 	pmap_protect(pmap_kernel(), pg, pg + PAGE_SIZE, VM_PROT_READ);
94 #endif
95 	pmap_update(pmap_kernel());
96 	dev_zero_page = (void *)pg;
97 
98 #ifndef __HAVE_MM_MD_CACHE_ALIASING
99 	/* KVA for mappings during I/O. */
100 	dev_mem_addr = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
101 	    UVM_KMF_VAONLY|UVM_KMF_WAITVA);
102 	KASSERT(dev_mem_addr != 0);
103 #else
104 	dev_mem_addr = 0;
105 #endif
106 }
107 
108 
109 /*
110  * dev_mem_getva: get a special virtual address.  If architecture requires,
111  * allocate VA according to PA, which avoids cache-aliasing issues.  Use a
112  * constant, general mapping address otherwise.
113  */
114 static inline vaddr_t
115 dev_mem_getva(paddr_t pa)
116 {
117 #ifdef __HAVE_MM_MD_CACHE_ALIASING
118 	const vsize_t coloroff = trunc_page(pa) & ptoa(uvmexp.colormask);
119 	const vaddr_t kva = uvm_km_alloc(kernel_map, PAGE_SIZE + coloroff,
120 	    ptoa(uvmexp.ncolors), UVM_KMF_VAONLY | UVM_KMF_WAITVA);
121 
122 	return kva + coloroff;
123 #else
124 	return dev_mem_addr;
125 #endif
126 }
127 
128 static inline void
129 dev_mem_relva(paddr_t pa, vaddr_t va)
130 {
131 #ifdef __HAVE_MM_MD_CACHE_ALIASING
132 	const vsize_t coloroff = trunc_page(pa) & ptoa(uvmexp.colormask);
133 	const vaddr_t origva = va - coloroff;
134 
135 	uvm_km_free(kernel_map, origva, PAGE_SIZE + coloroff, UVM_KMF_VAONLY);
136 #else
137 	KASSERT(dev_mem_addr == va);
138 #endif
139 }
140 
141 /*
142  * dev_kmem_readwrite: helper for DEV_MEM (/dev/mem) case of R/W.
143  */
144 static int
145 dev_mem_readwrite(struct uio *uio, struct iovec *iov)
146 {
147 	paddr_t paddr;
148 	vaddr_t vaddr;
149 	vm_prot_t prot;
150 	size_t len, offset;
151 	bool have_direct;
152 	int error;
153 
154 	/* Check for wrap around. */
155 	if ((intptr_t)uio->uio_offset != uio->uio_offset) {
156 		return EFAULT;
157 	}
158 	paddr = uio->uio_offset & ~PAGE_MASK;
159 	prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
160 	error = mm_md_physacc(paddr, prot);
161 	if (error) {
162 		return error;
163 	}
164 	offset = uio->uio_offset & PAGE_MASK;
165 	len = MIN(uio->uio_resid, PAGE_SIZE - offset);
166 
167 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_PHYS
168 	/* Is physical address directly mapped?  Return VA. */
169 	have_direct = mm_md_direct_mapped_phys(paddr, &vaddr);
170 #else
171 	vaddr = 0;
172 	have_direct = false;
173 #endif
174 	if (!have_direct) {
175 		/* Get a special virtual address. */
176 		const vaddr_t va = dev_mem_getva(paddr);
177 
178 		/* Map selected KVA to physical address. */
179 		mutex_enter(&dev_mem_lock);
180 		pmap_kenter_pa(va, paddr, prot, 0);
181 		pmap_update(pmap_kernel());
182 
183 		/* Perform I/O. */
184 		vaddr = va + offset;
185 		error = uiomove((void *)vaddr, len, uio);
186 
187 		/* Unmap, flush before unlock. */
188 		pmap_kremove(va, PAGE_SIZE);
189 		pmap_update(pmap_kernel());
190 		mutex_exit(&dev_mem_lock);
191 
192 		/* "Release" the virtual address. */
193 		dev_mem_relva(paddr, va);
194 	} else {
195 		/* Direct map, just perform I/O. */
196 		vaddr += offset;
197 		error = uiomove((void *)vaddr, len, uio);
198 	}
199 	return error;
200 }
201 
202 /*
203  * dev_kmem_readwrite: helper for DEV_KMEM (/dev/kmem) case of R/W.
204  */
205 static int
206 dev_kmem_readwrite(struct uio *uio, struct iovec *iov)
207 {
208 	void *addr;
209 	size_t len, offset;
210 	vm_prot_t prot;
211 	int error;
212 	bool md_kva;
213 
214 	/* Check for wrap around. */
215 	addr = (void *)(intptr_t)uio->uio_offset;
216 	if ((uintptr_t)addr != uio->uio_offset) {
217 		return EFAULT;
218 	}
219 	/*
220 	 * Handle non-page aligned offset.
221 	 * Otherwise, we operate in page-by-page basis.
222 	 */
223 	offset = uio->uio_offset & PAGE_MASK;
224 	len = MIN(uio->uio_resid, PAGE_SIZE - offset);
225 	prot = (uio->uio_rw == UIO_WRITE) ? VM_PROT_WRITE : VM_PROT_READ;
226 
227 	md_kva = false;
228 
229 #ifdef __HAVE_MM_MD_DIRECT_MAPPED_IO
230 	paddr_t paddr;
231 	/* MD case: is this is a directly mapped address? */
232 	if (mm_md_direct_mapped_io(addr, &paddr)) {
233 		/* If so, validate physical address. */
234 		error = mm_md_physacc(paddr, prot);
235 		if (error) {
236 			return error;
237 		}
238 		md_kva = true;
239 	}
240 #endif
241 	if (!md_kva) {
242 		bool checked = false;
243 
244 #ifdef __HAVE_MM_MD_KERNACC
245 		/* MD check for the address. */
246 		error = mm_md_kernacc(addr, prot, &checked);
247 		if (error) {
248 			return error;
249 		}
250 #endif
251 		/* UVM check for the address (unless MD indicated to not). */
252 		if (!checked && !uvm_kernacc(addr, len, prot)) {
253 			return EFAULT;
254 		}
255 	}
256 	error = uiomove(addr, len, uio);
257 	return error;
258 }
259 
260 /*
261  * dev_zero_readwrite: helper for DEV_ZERO (/dev/null) case of R/W.
262  */
263 static inline int
264 dev_zero_readwrite(struct uio *uio, struct iovec *iov)
265 {
266 	size_t len;
267 
268 	/* Nothing to do for the write case. */
269 	if (uio->uio_rw == UIO_WRITE) {
270 		uio->uio_resid = 0;
271 		return 0;
272 	}
273 	/*
274 	 * Read in page-by-page basis, caller will continue.
275 	 * Cut appropriately for a single/last-iteration cases.
276 	 */
277 	len = MIN(iov->iov_len, PAGE_SIZE);
278 	return uiomove(dev_zero_page, len, uio);
279 }
280 
281 /*
282  * mm_readwrite: general memory R/W function.
283  */
284 static int
285 mm_readwrite(dev_t dev, struct uio *uio, int flags)
286 {
287 	struct iovec *iov;
288 	int error;
289 
290 #ifdef __HAVE_MM_MD_READWRITE
291 	/* If defined - there are extra MD cases. */
292 	switch (minor(dev)) {
293 	case DEV_MEM:
294 	case DEV_KMEM:
295 	case DEV_NULL:
296 	case DEV_ZERO:
297 #if defined(COMPAT_16) && defined(__arm)
298 	case _DEV_ZERO_oARM:
299 #endif
300 		break;
301 	default:
302 		return mm_md_readwrite(dev, uio);
303 	}
304 #endif
305 	error = 0;
306 	while (uio->uio_resid > 0 && error == 0) {
307 		iov = uio->uio_iov;
308 		if (iov->iov_len == 0) {
309 			/* Processed; next I/O vector. */
310 			uio->uio_iov++;
311 			uio->uio_iovcnt--;
312 			KASSERT(uio->uio_iovcnt >= 0);
313 			continue;
314 		}
315 		/* Helper functions will process in page-by-page basis. */
316 		switch (minor(dev)) {
317 		case DEV_MEM:
318 			error = dev_mem_readwrite(uio, iov);
319 			break;
320 		case DEV_KMEM:
321 			error = dev_kmem_readwrite(uio, iov);
322 			break;
323 		case DEV_NULL:
324 			if (uio->uio_rw == UIO_WRITE) {
325 				uio->uio_resid = 0;
326 			}
327 			/* Break directly out of the loop. */
328 			return 0;
329 #if defined(COMPAT_16) && defined(__arm)
330 		case _DEV_ZERO_oARM:
331 #endif
332 		case DEV_ZERO:
333 			error = dev_zero_readwrite(uio, iov);
334 			break;
335 		default:
336 			error = ENXIO;
337 			break;
338 		}
339 	}
340 	return error;
341 }
342 
343 /*
344  * mm_mmap: general mmap() handler.
345  */
346 static paddr_t
347 mm_mmap(dev_t dev, off_t off, int acc)
348 {
349 	vm_prot_t prot;
350 
351 #ifdef __HAVE_MM_MD_MMAP
352 	/* If defined - there are extra mmap() MD cases. */
353 	switch (minor(dev)) {
354 	case DEV_MEM:
355 	case DEV_KMEM:
356 	case DEV_NULL:
357 #if defined(COMPAT_16) && defined(__arm)
358 	case _DEV_ZERO_oARM:
359 #endif
360 	case DEV_ZERO:
361 		break;
362 	default:
363 		return mm_md_mmap(dev, off, acc);
364 	}
365 #endif
366 	/*
367 	 * /dev/null does not make sense, /dev/kmem is volatile and
368 	 * /dev/zero is handled in mmap already.
369 	 */
370 	if (minor(dev) != DEV_MEM) {
371 		return -1;
372 	}
373 
374 	prot = 0;
375 	if (acc & PROT_EXEC)
376 		prot |= VM_PROT_EXECUTE;
377 	if (acc & PROT_READ)
378 		prot |= VM_PROT_READ;
379 	if (acc & PROT_WRITE)
380 		prot |= VM_PROT_WRITE;
381 
382 	/* Validate the physical address. */
383 	if (mm_md_physacc(off, prot) != 0) {
384 		return -1;
385 	}
386 	return off >> PGSHIFT;
387 }
388 
389 static int
390 mm_ioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
391 {
392 
393 	switch (cmd) {
394 	case FIONBIO:
395 		/* We never block anyway. */
396 		return 0;
397 
398 	case FIOSETOWN:
399 	case FIOGETOWN:
400 	case TIOCGPGRP:
401 	case TIOCSPGRP:
402 	case TIOCGETA:
403 		return ENOTTY;
404 
405 	case FIOASYNC:
406 		if ((*(int *)data) == 0) {
407 			return 0;
408 		}
409 		/* FALLTHROUGH */
410 	default:
411 		return EOPNOTSUPP;
412 	}
413 }
414