xref: /netbsd-src/sys/dev/marvell/if_mvxpe.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /*	$NetBSD: if_mvxpe.c,v 1.12 2016/02/13 08:05:06 hikaru Exp $	*/
2 /*
3  * Copyright (c) 2015 Internet Initiative Japan Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.12 2016/02/13 08:05:06 hikaru Exp $");
29 
30 #include "opt_multiprocessor.h"
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/callout.h>
35 #include <sys/device.h>
36 #include <sys/endian.h>
37 #include <sys/errno.h>
38 #include <sys/evcnt.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/mutex.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
45 #include <sys/rndsource.h>
46 
47 #include <net/if.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/bpf.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58 
59 #include <dev/marvell/marvellreg.h>
60 #include <dev/marvell/marvellvar.h>
61 #include <dev/marvell/mvxpbmvar.h>
62 #include <dev/marvell/if_mvxpereg.h>
63 #include <dev/marvell/if_mvxpevar.h>
64 
65 #include "locators.h"
66 
67 #if BYTE_ORDER == BIG_ENDIAN
68 #error "BIG ENDIAN not supported"
69 #endif
70 
71 #ifdef MVXPE_DEBUG
72 #define STATIC /* nothing */
73 #else
74 #define STATIC static
75 #endif
76 
77 /* autoconf(9) */
78 STATIC int mvxpe_match(device_t, struct cfdata *, void *);
79 STATIC void mvxpe_attach(device_t, device_t, void *);
80 STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
81 CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
82     mvxpe_match, mvxpe_attach, NULL, NULL);
83 STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
84 STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
85 
86 /* MII */
87 STATIC int mvxpe_miibus_readreg(device_t, int, int);
88 STATIC void mvxpe_miibus_writereg(device_t, int, int, int);
89 STATIC void mvxpe_miibus_statchg(struct ifnet *);
90 
91 /* Addres Decoding Window */
92 STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
93 
94 /* Device Register Initialization */
95 STATIC int mvxpe_initreg(struct ifnet *);
96 
97 /* Descriptor Ring Control for each of queues */
98 STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
99 STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
100 STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
101 STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
102 STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
103 STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
104 STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
105 
106 /* Rx/Tx Queue Control */
107 STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
108 STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
109 STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
110 STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
111 STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
112 STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
113 STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
114 STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
115 
116 /* Interrupt Handlers */
117 STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
118 STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
119 STATIC int mvxpe_rxtxth_intr(void *);
120 STATIC int mvxpe_misc_intr(void *);
121 STATIC int mvxpe_rxtx_intr(void *);
122 STATIC void mvxpe_tick(void *);
123 
124 /* struct ifnet and mii callbacks*/
125 STATIC void mvxpe_start(struct ifnet *);
126 STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
127 STATIC int mvxpe_init(struct ifnet *);
128 STATIC void mvxpe_stop(struct ifnet *, int);
129 STATIC void mvxpe_watchdog(struct ifnet *);
130 STATIC int mvxpe_ifflags_cb(struct ethercom *);
131 STATIC int mvxpe_mediachange(struct ifnet *);
132 STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
133 
134 /* Link State Notify */
135 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
136 STATIC void mvxpe_linkup(struct mvxpe_softc *);
137 STATIC void mvxpe_linkdown(struct mvxpe_softc *);
138 STATIC void mvxpe_linkreset(struct mvxpe_softc *);
139 
140 /* Tx Subroutines */
141 STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
142 STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
143 STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
144     struct mvxpe_tx_desc *, struct mbuf *);
145 STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
146 STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
147 
148 /* Rx Subroutines */
149 STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
150 STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
151 STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
152 STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
153 STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
154 STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
155 STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
156     struct mvxpe_rx_desc *, struct mbuf *);
157 
158 /* MAC address filter */
159 STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
160 STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
161 
162 /* sysctl(9) */
163 STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
164 STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
165 STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
166 STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
167 STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
168 
169 /* MIB */
170 STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
171 STATIC void mvxpe_update_mib(struct mvxpe_softc *);
172 
173 /* for Debug */
174 STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
175 STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
176 
177 STATIC int mvxpe_root_num;
178 STATIC kmutex_t mii_mutex;
179 STATIC int mii_init = 0;
180 #ifdef MVXPE_DEBUG
181 STATIC int mvxpe_debug = MVXPE_DEBUG;
182 #endif
183 
184 /*
185  * List of MIB register and names
186  */
187 STATIC struct mvxpe_mib_def {
188 	uint32_t regnum;
189 	int reg64;
190 	const char *sysctl_name;
191 	const char *desc;
192 	int ext;
193 #define MVXPE_MIBEXT_IF_OERRORS	1
194 #define MVXPE_MIBEXT_IF_IERRORS	2
195 #define MVXPE_MIBEXT_IF_COLLISIONS	3
196 } mvxpe_mib_list[] = {
197 	{MVXPE_MIB_RX_GOOD_OCT, 1,	"rx_good_oct",
198 	    "Good Octets Rx", 0},
199 	{MVXPE_MIB_RX_BAD_OCT, 0,	"rx_bad_oct",
200 	    "Bad  Octets Rx", 0},
201 	{MVXPE_MIB_TX_MAC_TRNS_ERR, 0,	"tx_mac_err",
202 	    "MAC Transmit Error", MVXPE_MIBEXT_IF_OERRORS},
203 	{MVXPE_MIB_RX_GOOD_FRAME, 0,	"rx_good_frame",
204 	    "Good Frames Rx", 0},
205 	{MVXPE_MIB_RX_BAD_FRAME, 0,	"rx_bad_frame",
206 	    "Bad Frames Rx", 0},
207 	{MVXPE_MIB_RX_BCAST_FRAME, 0,	"rx_bcast_frame",
208 	    "Broadcast Frames Rx", 0},
209 	{MVXPE_MIB_RX_MCAST_FRAME, 0,	"rx_mcast_frame",
210 	    "Multicast Frames Rx", 0},
211 	{MVXPE_MIB_RX_FRAME64_OCT, 0,	"rx_frame_1_64",
212 	    "Frame Size    1 -   64", 0},
213 	{MVXPE_MIB_RX_FRAME127_OCT, 0,	"rx_frame_65_127",
214 	    "Frame Size   65 -  127", 0},
215 	{MVXPE_MIB_RX_FRAME255_OCT, 0,	"rx_frame_128_255",
216 	    "Frame Size  128 -  255", 0},
217 	{MVXPE_MIB_RX_FRAME511_OCT, 0,	"rx_frame_256_511",
218 	    "Frame Size  256 -  511"},
219 	{MVXPE_MIB_RX_FRAME1023_OCT, 0,	"rx_frame_512_1023",
220 	    "Frame Size  512 - 1023", 0},
221 	{MVXPE_MIB_RX_FRAMEMAX_OCT, 0,	"rx_fame_1024_max",
222 	    "Frame Size 1024 -  Max", 0},
223 	{MVXPE_MIB_TX_GOOD_OCT, 1,	"tx_good_oct",
224 	    "Good Octets Tx", 0},
225 	{MVXPE_MIB_TX_GOOD_FRAME, 0,	"tx_good_frame",
226 	    "Good Frames Tx", 0},
227 	{MVXPE_MIB_TX_EXCES_COL, 0,	"tx_exces_collision",
228 	    "Excessive Collision", MVXPE_MIBEXT_IF_OERRORS},
229 	{MVXPE_MIB_TX_MCAST_FRAME, 0,	"tx_mcast_frame",
230 	    "Multicast Frames Tx"},
231 	{MVXPE_MIB_TX_BCAST_FRAME, 0,	"tx_bcast_frame",
232 	    "Broadcast Frames Tx"},
233 	{MVXPE_MIB_TX_MAC_CTL_ERR, 0,	"tx_mac_err",
234 	    "Unknown MAC Control", 0},
235 	{MVXPE_MIB_FC_SENT, 0,		"fc_tx",
236 	    "Flow Control Tx", 0},
237 	{MVXPE_MIB_FC_GOOD, 0,		"fc_rx_good",
238 	    "Good Flow Control Rx", 0},
239 	{MVXPE_MIB_FC_BAD, 0,		"fc_rx_bad",
240 	    "Bad Flow Control Rx", 0},
241 	{MVXPE_MIB_PKT_UNDERSIZE, 0,	"pkt_undersize",
242 	    "Undersized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
243 	{MVXPE_MIB_PKT_FRAGMENT, 0,	"pkt_fragment",
244 	    "Fragmented Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
245 	{MVXPE_MIB_PKT_OVERSIZE, 0,	"pkt_oversize",
246 	    "Oversized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
247 	{MVXPE_MIB_PKT_JABBER, 0,	"pkt_jabber",
248 	    "Jabber Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
249 	{MVXPE_MIB_MAC_RX_ERR, 0,	"mac_rx_err",
250 	    "MAC Rx Errors", MVXPE_MIBEXT_IF_IERRORS},
251 	{MVXPE_MIB_MAC_CRC_ERR, 0,	"mac_crc_err",
252 	    "MAC CRC Errors", MVXPE_MIBEXT_IF_IERRORS},
253 	{MVXPE_MIB_MAC_COL, 0,		"mac_collision",
254 	    "MAC Collision", MVXPE_MIBEXT_IF_COLLISIONS},
255 	{MVXPE_MIB_MAC_LATE_COL, 0,	"mac_late_collision",
256 	    "MAC Late Collision", MVXPE_MIBEXT_IF_OERRORS},
257 };
258 
259 /*
260  * autoconf(9)
261  */
262 /* ARGSUSED */
263 STATIC int
264 mvxpe_match(device_t parent, cfdata_t match, void *aux)
265 {
266 	struct marvell_attach_args *mva = aux;
267 	bus_size_t pv_off;
268 	uint32_t pv;
269 
270 	if (strcmp(mva->mva_name, match->cf_name) != 0)
271 		return 0;
272 	if (mva->mva_offset == MVA_OFFSET_DEFAULT)
273 		return 0;
274 
275 	/* check port version */
276 	pv_off = mva->mva_offset + MVXPE_PV;
277 	pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
278 	if (MVXPE_PV_GET_VERSION(pv) < 0x10)
279 		return 0; /* old version is not supported */
280 
281 	return 1;
282 }
283 
284 /* ARGSUSED */
285 STATIC void
286 mvxpe_attach(device_t parent, device_t self, void *aux)
287 {
288 	struct mvxpe_softc *sc = device_private(self);
289 	struct mii_softc *mii;
290 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
291 	struct marvell_attach_args *mva = aux;
292 	prop_dictionary_t dict;
293 	prop_data_t enaddrp = NULL;
294 	uint32_t phyaddr, maddrh, maddrl;
295 	uint8_t enaddr[ETHER_ADDR_LEN];
296 	int q;
297 
298 	aprint_naive("\n");
299 	aprint_normal(": Marvell ARMADA GbE Controller\n");
300 	memset(sc, 0, sizeof(*sc));
301 	sc->sc_dev = self;
302 	sc->sc_port = mva->mva_unit;
303 	sc->sc_iot = mva->mva_iot;
304 	sc->sc_dmat = mva->mva_dmat;
305 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
306 	callout_init(&sc->sc_tick_ch, 0);
307 	callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
308 
309 	/*
310 	 * BUS space
311 	 */
312 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
313 	    mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
314 		aprint_error_dev(self, "Cannot map registers\n");
315 		goto fail;
316 	}
317 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
318 	    mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
319 	    &sc->sc_mibh)) {
320 		aprint_error_dev(self,
321 		    "Cannot map destination address filter registers\n");
322 		goto fail;
323 	}
324 	sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
325 	aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
326 
327 	/*
328 	 * Buffer Manager(BM) subsystem.
329 	 */
330 	sc->sc_bm = mvxpbm_device(mva);
331 	if (sc->sc_bm == NULL) {
332 		aprint_error_dev(self, "no Buffer Manager.\n");
333 		goto fail;
334 	}
335 	aprint_normal_dev(self,
336 	    "Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
337 	aprint_normal_dev(sc->sc_dev,
338 	    "%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
339 	    mvxpbm_buf_size(sc->sc_bm) / 1024,
340 	    mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
341 
342 	/*
343 	 * make sure DMA engines are in reset state
344 	 */
345 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
346 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
347 
348 	/*
349 	 * Address decoding window
350 	 */
351 	mvxpe_wininit(sc, mva->mva_tags);
352 
353 	/*
354 	 * MAC address
355 	 */
356 	dict = device_properties(self);
357 	if (dict)
358 		enaddrp = prop_dictionary_get(dict, "mac-address");
359 	if (enaddrp) {
360 		memcpy(enaddr, prop_data_data_nocopy(enaddrp), ETHER_ADDR_LEN);
361 		maddrh  = enaddr[0] << 24;
362 		maddrh |= enaddr[1] << 16;
363 		maddrh |= enaddr[2] << 8;
364 		maddrh |= enaddr[3];
365 		maddrl  = enaddr[4] << 8;
366 		maddrl |= enaddr[5];
367 		MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
368 		MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
369 	}
370 	else {
371 		/*
372 		 * even if enaddr is not found in dictionary,
373 		 * the port may be initialized by IPL program such as U-BOOT.
374 		 */
375 		maddrh = MVXPE_READ(sc, MVXPE_MACAH);
376 		maddrl = MVXPE_READ(sc, MVXPE_MACAL);
377 		if ((maddrh | maddrl) == 0) {
378 			aprint_error_dev(self, "No Ethernet address\n");
379 			return;
380 		}
381 	}
382 	sc->sc_enaddr[0] = maddrh >> 24;
383 	sc->sc_enaddr[1] = maddrh >> 16;
384 	sc->sc_enaddr[2] = maddrh >> 8;
385 	sc->sc_enaddr[3] = maddrh >> 0;
386 	sc->sc_enaddr[4] = maddrl >> 8;
387 	sc->sc_enaddr[5] = maddrl >> 0;
388 	aprint_normal_dev(self, "Ethernet address %s\n",
389 	    ether_sprintf(sc->sc_enaddr));
390 
391 	/*
392 	 * Register interrupt handlers
393 	 * XXX: handle Ethernet unit intr. and Error intr.
394 	 */
395 	mvxpe_disable_intr(sc);
396 	marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
397 
398 	/*
399 	 * MIB buffer allocation
400 	 */
401 	sc->sc_sysctl_mib_size =
402 	    __arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
403 	sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_NOSLEEP);
404 	if (sc->sc_sysctl_mib == NULL)
405 		goto fail;
406 	memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
407 
408 	/*
409 	 * Device DMA Buffer allocation
410 	 */
411 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
412 		if (mvxpe_ring_alloc_queue(sc, q) != 0)
413 			goto fail;
414 		mvxpe_ring_init_queue(sc, q);
415 	}
416 
417 	/*
418 	 * We can support 802.1Q VLAN-sized frames and jumbo
419 	 * Ethernet frames.
420 	 */
421 	sc->sc_ethercom.ec_capabilities |=
422 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
423 	ifp->if_softc = sc;
424 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
425 	ifp->if_start = mvxpe_start;
426 	ifp->if_ioctl = mvxpe_ioctl;
427 	ifp->if_init = mvxpe_init;
428 	ifp->if_stop = mvxpe_stop;
429 	ifp->if_watchdog = mvxpe_watchdog;
430 
431 	/*
432 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
433 	 */
434 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
435 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
436 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
437 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
438 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
439 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
440 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
441 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
442 	ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
443 	ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
444 
445 	/*
446 	 * Initialize struct ifnet
447 	 */
448 	IFQ_SET_MAXLEN(&ifp->if_snd, max(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
449 	IFQ_SET_READY(&ifp->if_snd);
450 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
451 
452 	/*
453 	 * Enable DMA engines and Initiazlie Device Regisers.
454 	 */
455 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
456 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
457 	MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
458 	mvxpe_sc_lock(sc); /* XXX */
459 	mvxpe_filter_setup(sc);
460 	mvxpe_sc_unlock(sc);
461 	mvxpe_initreg(ifp);
462 
463 	/*
464 	 * Now MAC is working, setup MII.
465 	 */
466 	if (mii_init == 0) {
467 		/*
468 		 * MII bus is shared by all MACs and all PHYs in SoC.
469 		 * serializing the bus access should be safe.
470 		 */
471 		mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
472 		mii_init = 1;
473 	}
474 	sc->sc_mii.mii_ifp = ifp;
475 	sc->sc_mii.mii_readreg = mvxpe_miibus_readreg;
476 	sc->sc_mii.mii_writereg = mvxpe_miibus_writereg;
477 	sc->sc_mii.mii_statchg = mvxpe_miibus_statchg;
478 
479 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
480 	ifmedia_init(&sc->sc_mii.mii_media, 0,
481 	    mvxpe_mediachange, mvxpe_mediastatus);
482 	/*
483 	 * XXX: phy addressing highly depends on Board Design.
484 	 * we assume phyaddress == MAC unit number here,
485 	 * but some boards may not.
486 	 */
487 	mii_attach(self, &sc->sc_mii, 0xffffffff,
488 	    MII_PHY_ANY, sc->sc_dev->dv_unit, 0);
489 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
490 	if (mii == NULL) {
491 		aprint_error_dev(self, "no PHY found!\n");
492 		ifmedia_add(&sc->sc_mii.mii_media,
493 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
494 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
495 	} else {
496 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
497 		phyaddr = MVXPE_PHYADDR_PHYAD(mii->mii_phy);
498 		MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
499 		DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
500 	}
501 
502 	/*
503 	 * Call MI attach routines.
504 	 */
505 	if_attach(ifp);
506 
507 	ether_ifattach(ifp, sc->sc_enaddr);
508 	ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
509 
510 	sysctl_mvxpe_init(sc);
511 	mvxpe_evcnt_attach(sc);
512 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
513 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
514 
515 	return;
516 
517 fail:
518 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
519 		mvxpe_ring_dealloc_queue(sc, q);
520 	if (sc->sc_sysctl_mib)
521 		kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
522 
523 	return;
524 }
525 
526 STATIC int
527 mvxpe_evcnt_attach(struct mvxpe_softc *sc)
528 {
529 #ifdef MVXPE_EVENT_COUNTERS
530 	int q;
531 
532 	/* Master Interrupt Handler */
533 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
534 	    NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
535 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
536 	    NULL, device_xname(sc->sc_dev), "RxTx Intr.");
537 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
538 	    NULL, device_xname(sc->sc_dev), "MISC Intr.");
539 
540 	/* RXTXTH Interrupt */
541 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
542 	    NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
543 
544 	/* MISC Interrupt */
545 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
546 	    NULL, device_xname(sc->sc_dev), "MISC phy status changed");
547 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
548 	    NULL, device_xname(sc->sc_dev), "MISC link status changed");
549 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
550 	    NULL, device_xname(sc->sc_dev), "MISC internal address error");
551 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
552 	    NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
553 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
554 	    NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
555 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
556 	    NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
557 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
558 	    NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
559 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
560 	    NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
561 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
562 	    NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
563 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
564 	    NULL, device_xname(sc->sc_dev), "MISC Tx resource erorr");
565 
566 	/* RxTx Interrupt */
567 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
568 	    NULL, device_xname(sc->sc_dev), "RxTx Rx resource erorr");
569 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
570 	    NULL, device_xname(sc->sc_dev), "RxTx Rx pakcet");
571 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
572 	    NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
573 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
574 	    NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
575 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
576 	    NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
577 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
578 	    NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
579 
580 	/* Link */
581 	evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
582 	    NULL, device_xname(sc->sc_dev), "link up");
583 	evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
584 	    NULL, device_xname(sc->sc_dev), "link down");
585 
586 	/* Rx Descriptor */
587 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
588 	    NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
589 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
590 	    NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
591 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
592 	    NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
593 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
594 	    NULL, device_xname(sc->sc_dev), "Rx resource error counter");
595 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
596 	    NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
597 
598 	/* Tx Descriptor */
599 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
600 	    NULL, device_xname(sc->sc_dev), "Tx late collision counter");
601 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
602 	    NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
603 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
604 	    NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
605 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
606 	    NULL, device_xname(sc->sc_dev), "Tx unkonwn erorr counter");
607 
608 	/* Status Registers */
609 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
610 	    NULL, device_xname(sc->sc_dev), "Rx discard counter");
611 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
612 	    NULL, device_xname(sc->sc_dev), "Rx overrun counter");
613 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
614 	    NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
615 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
616 	    NULL, device_xname(sc->sc_dev), "Tx dorpped counter");
617 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
618 	    NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
619 
620 	/* Device Driver Errors */
621 	evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
622 	    NULL, device_xname(sc->sc_dev), "watchdog timer expired");
623 	evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
624 	    NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
625 #define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
626 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
627 		static const char *rxq_desc[] = {
628 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
629 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
630 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
631 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
632 		};
633 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
634 		    NULL, device_xname(sc->sc_dev), rxq_desc[q]);
635 	}
636 #undef MVXPE_QUEUE_DESC
637 #define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
638 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
639 		static const char *txq_desc[] = {
640 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
641 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
642 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
643 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
644 		};
645 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
646 		    NULL, device_xname(sc->sc_dev), txq_desc[q]);
647 	}
648 #undef MVXPE_QUEUE_DESC
649 #define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
650 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
651 		static const char *rxqe_desc[] = {
652 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
653 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
654 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
655 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
656 		};
657 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
658 		    NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
659 	}
660 #undef MVXPE_QUEUE_DESC
661 #define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
662 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
663 		static const char *txqe_desc[] = {
664 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
665 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
666 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
667 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
668 		};
669 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
670 		    NULL, device_xname(sc->sc_dev), txqe_desc[q]);
671 	}
672 #undef MVXPE_QUEUE_DESC
673 
674 #endif /* MVXPE_EVENT_COUNTERS */
675 	return 0;
676 }
677 
678 STATIC void
679 mvxpe_sc_lock(struct mvxpe_softc *sc)
680 {
681 	mutex_enter(&sc->sc_mtx);
682 }
683 
684 STATIC void
685 mvxpe_sc_unlock(struct mvxpe_softc *sc)
686 {
687 	mutex_exit(&sc->sc_mtx);
688 }
689 
690 /*
691  * MII
692  */
693 STATIC int
694 mvxpe_miibus_readreg(device_t dev, int phy, int reg)
695 {
696 	struct mvxpe_softc *sc = device_private(dev);
697 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
698 	uint32_t smi, val;
699 	int i;
700 
701 	mutex_enter(&mii_mutex);
702 
703 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
704 		DELAY(1);
705 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
706 			break;
707 	}
708 	if (i == MVXPE_PHY_TIMEOUT) {
709 		aprint_error_ifnet(ifp, "SMI busy timeout\n");
710 		mutex_exit(&mii_mutex);
711 		return -1;
712 	}
713 
714 	smi =
715 	    MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
716 	MVXPE_WRITE(sc, MVXPE_SMI, smi);
717 
718 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
719 		DELAY(1);
720 		smi = MVXPE_READ(sc, MVXPE_SMI);
721 		if (smi & MVXPE_SMI_READVALID)
722 			break;
723 	}
724 
725 	mutex_exit(&mii_mutex);
726 
727 	DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
728 
729 	val = smi & MVXPE_SMI_DATA_MASK;
730 
731 	DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#x\n", phy, reg, val);
732 
733 	return val;
734 }
735 
736 STATIC void
737 mvxpe_miibus_writereg(device_t dev, int phy, int reg, int val)
738 {
739 	struct mvxpe_softc *sc = device_private(dev);
740 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
741 	uint32_t smi;
742 	int i;
743 
744 	DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#x\n", phy, reg, val);
745 
746 	mutex_enter(&mii_mutex);
747 
748 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
749 		DELAY(1);
750 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
751 			break;
752 	}
753 	if (i == MVXPE_PHY_TIMEOUT) {
754 		aprint_error_ifnet(ifp, "SMI busy timeout\n");
755 		mutex_exit(&mii_mutex);
756 		return;
757 	}
758 
759 	smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
760 	    MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
761 	MVXPE_WRITE(sc, MVXPE_SMI, smi);
762 
763 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
764 		DELAY(1);
765 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
766 			break;
767 	}
768 
769 	mutex_exit(&mii_mutex);
770 
771 	if (i == MVXPE_PHY_TIMEOUT)
772 		aprint_error_ifnet(ifp, "phy write timed out\n");
773 }
774 
775 STATIC void
776 mvxpe_miibus_statchg(struct ifnet *ifp)
777 {
778 
779 	/* nothing to do */
780 }
781 
782 /*
783  * Address Decoding Window
784  */
785 STATIC void
786 mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
787 {
788 	device_t pdev = device_parent(sc->sc_dev);
789 	uint64_t base;
790 	uint32_t en, ac, size;
791 	int window, target, attr, rv, i;
792 
793 	/* First disable all address decode windows */
794 	en = MVXPE_BARE_EN_MASK;
795 	MVXPE_WRITE(sc, MVXPE_BARE, en);
796 
797 	ac = 0;
798 	for (window = 0, i = 0;
799 	    tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
800 		rv = marvell_winparams_by_tag(pdev, tags[i],
801 		    &target, &attr, &base, &size);
802 		if (rv != 0 || size == 0)
803 			continue;
804 
805 		if (base > 0xffffffffULL) {
806 			if (window >= MVXPE_NREMAP) {
807 				aprint_error_dev(sc->sc_dev,
808 				    "can't remap window %d\n", window);
809 				continue;
810 			}
811 			MVXPE_WRITE(sc, MVXPE_HA(window),
812 			    (base >> 32) & 0xffffffff);
813 		}
814 
815 		MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
816 		    MVXPE_BASEADDR_TARGET(target)	|
817 		    MVXPE_BASEADDR_ATTR(attr)		|
818 		    MVXPE_BASEADDR_BASE(base));
819 		MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
820 
821 		DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
822 				window, base, size);
823 
824 		en &= ~(1 << window);
825 		/* set full access (r/w) */
826 		ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
827 		window++;
828 	}
829 	/* allow to access decode window */
830 	MVXPE_WRITE(sc, MVXPE_EPAP, ac);
831 
832 	MVXPE_WRITE(sc, MVXPE_BARE, en);
833 }
834 
835 /*
836  * Device Register Initialization
837  *  reset device registers to device driver default value.
838  *  the device is not enabled here.
839  */
840 STATIC int
841 mvxpe_initreg(struct ifnet *ifp)
842 {
843 	struct mvxpe_softc *sc = ifp->if_softc;
844 	int serdes = 0;
845 	uint32_t reg;
846 	int q, i;
847 
848 	DPRINTIFNET(ifp, 1, "initializing device register\n");
849 
850 	/* Init TX/RX Queue Registers */
851 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
852 		mvxpe_rx_lockq(sc, q);
853 		if (mvxpe_rx_queue_init(ifp, q) != 0) {
854 			aprint_error_ifnet(ifp,
855 			    "initialization failed: cannot initialize queue\n");
856 			mvxpe_rx_unlockq(sc, q);
857 			return ENOBUFS;
858 		}
859 		mvxpe_rx_unlockq(sc, q);
860 
861 		mvxpe_tx_lockq(sc, q);
862 		if (mvxpe_tx_queue_init(ifp, q) != 0) {
863 			aprint_error_ifnet(ifp,
864 			    "initialization failed: cannot initialize queue\n");
865 			mvxpe_tx_unlockq(sc, q);
866 			return ENOBUFS;
867 		}
868 		mvxpe_tx_unlockq(sc, q);
869 	}
870 
871 	/* Tx MTU Limit */
872 	MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
873 
874 	/* Check SGMII or SERDES(asume IPL/U-BOOT initialize this) */
875 	reg = MVXPE_READ(sc, MVXPE_PMACC0);
876 	if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
877 		serdes = 1;
878 
879 	/* Ethernet Unit Control */
880 	reg = MVXPE_READ(sc, MVXPE_EUC);
881 	reg |= MVXPE_EUC_POLLING;
882 	MVXPE_WRITE(sc, MVXPE_EUC, reg);
883 
884 	/* Auto Negotiation */
885 	reg  = MVXPE_PANC_MUSTSET;	/* must write 0x1 */
886 	reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
887 	reg |= MVXPE_PANC_ANSPEEDEN;	/* interface speed negotiation */
888 	reg |= MVXPE_PANC_ANDUPLEXEN;	/* negotiate duplex mode */
889 	if (serdes) {
890 		reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
891 		reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
892 		reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
893 	}
894 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
895 
896 	/* EEE: Low Power Idle */
897 	reg  = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
898 	reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
899 	MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
900 
901 	reg  = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
902 	MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
903 
904 	reg = MVXPE_LPIC2_MUSTSET;
905 	MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
906 
907 	/* Port MAC Control set 0 */
908 	reg  = MVXPE_PMACC0_MUSTSET;	/* must write 0x1 */
909 	reg &= ~MVXPE_PMACC0_PORTEN;	/* port is still disabled */
910 	reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
911 	if (serdes)
912 		reg |= MVXPE_PMACC0_PORTTYPE;
913 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
914 
915 	/* Port MAC Control set 1 is only used for loop-back test */
916 
917 	/* Port MAC Control set 2 */
918 	reg = MVXPE_READ(sc, MVXPE_PMACC2);
919 	reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
920 	reg |= MVXPE_PMACC2_MUSTSET;
921 	MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
922 
923 	/* Port MAC Control set 3 is used for IPG tune */
924 
925 	/* Port MAC Control set 4 is not used */
926 
927 	/* Port Configuration */
928 	/* Use queue 0 only */
929 	reg = MVXPE_READ(sc, MVXPE_PXC);
930 	reg &= ~(MVXPE_PXC_RXQ_MASK | MVXPE_PXC_RXQARP_MASK |
931 	    MVXPE_PXC_TCPQ_MASK | MVXPE_PXC_UDPQ_MASK | MVXPE_PXC_BPDUQ_MASK);
932 	MVXPE_WRITE(sc, MVXPE_PXC, reg);
933 
934 	/* Port Configuration Extended: enable Tx CRC generation */
935 	reg = MVXPE_READ(sc, MVXPE_PXCX);
936 	reg &= ~MVXPE_PXCX_TXCRCDIS;
937 	MVXPE_WRITE(sc, MVXPE_PXCX, reg);
938 
939 	/* clear MIB counter registers(clear by read) */
940 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
941 		MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
942 
943 	/* Set SDC register except IPGINT bits */
944 	reg  = MVXPE_SDC_RXBSZ_16_64BITWORDS;
945 	reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
946 	reg |= MVXPE_SDC_BLMR;
947 	reg |= MVXPE_SDC_BLMT;
948 	MVXPE_WRITE(sc, MVXPE_SDC, reg);
949 
950 	return 0;
951 }
952 
953 /*
954  * Descriptor Ring Controls for each of queues
955  */
956 STATIC void *
957 mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
958 {
959 	bus_dma_segment_t segs;
960 	void *kva = NULL;
961 	int nsegs;
962 
963 	/*
964 	 * Allocate the descriptor queues.
965 	 * struct mvxpe_ring_data contians array of descriptor per queue.
966 	 */
967 	if (bus_dmamem_alloc(sc->sc_dmat,
968 	    size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
969 		aprint_error_dev(sc->sc_dev,
970 		    "can't alloc device memory (%zu bytes)\n", size);
971 		return NULL;
972 	}
973 	if (bus_dmamem_map(sc->sc_dmat,
974 	    &segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
975 		aprint_error_dev(sc->sc_dev,
976 		    "can't map dma buffers (%zu bytes)\n", size);
977 		goto fail1;
978 	}
979 
980 	if (bus_dmamap_create(sc->sc_dmat,
981 	    size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
982 		aprint_error_dev(sc->sc_dev, "can't create dma map\n");
983 		goto fail2;
984 	}
985 	if (bus_dmamap_load(sc->sc_dmat,
986 	    *map, kva, size, NULL, BUS_DMA_NOWAIT)) {
987 		aprint_error_dev(sc->sc_dev, "can't load dma map\n");
988 		goto fail3;
989 	}
990 	memset(kva, 0, size);
991 	return kva;
992 
993 fail3:
994 	bus_dmamap_destroy(sc->sc_dmat, *map);
995 	memset(map, 0, sizeof(*map));
996 fail2:
997 	bus_dmamem_unmap(sc->sc_dmat, kva, size);
998 fail1:
999 	bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
1000 	return NULL;
1001 }
1002 
1003 STATIC int
1004 mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
1005 {
1006 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1007 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1008 
1009 	/*
1010 	 * MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
1011 	 * queue length. real queue length is limited by
1012 	 * sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
1013 	 *
1014 	 * because descriptor ring reallocation needs reprogramming of
1015 	 * DMA registers, we allocate enough descriptor for hard limit
1016 	 * of queue length.
1017 	 */
1018 	rx->rx_descriptors =
1019 	    mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
1020 		(sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
1021 	if (rx->rx_descriptors == NULL)
1022 		goto fail;
1023 
1024 	tx->tx_descriptors =
1025 	    mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
1026 		(sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
1027 	if (tx->tx_descriptors == NULL)
1028 		goto fail;
1029 
1030 	return 0;
1031 fail:
1032 	mvxpe_ring_dealloc_queue(sc, q);
1033 	aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
1034 	return ENOMEM;
1035 }
1036 
1037 STATIC void
1038 mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
1039 {
1040 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1041 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1042 	bus_dma_segment_t *segs;
1043 	bus_size_t size;
1044 	void *kva;
1045 	int nsegs;
1046 
1047 	/* Rx */
1048 	kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
1049 	if (kva) {
1050 		segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
1051 		nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
1052 		size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
1053 
1054 		bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1055 		bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1056 		bus_dmamem_unmap(sc->sc_dmat, kva, size);
1057 		bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1058 	}
1059 
1060 	/* Tx */
1061 	kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
1062 	if (kva) {
1063 		segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
1064 		nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
1065 		size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
1066 
1067 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1068 		bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1069 		bus_dmamem_unmap(sc->sc_dmat, kva, size);
1070 		bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1071 	}
1072 
1073 	/* Clear doungling pointers all */
1074 	memset(rx, 0, sizeof(*rx));
1075 	memset(tx, 0, sizeof(*tx));
1076 }
1077 
1078 STATIC void
1079 mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
1080 {
1081 	struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
1082 	struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
1083 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1084 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1085 	static const int rx_default_queue_len[] = {
1086 		MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
1087 		MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
1088 		MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
1089 		MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
1090 	};
1091 	static const int tx_default_queue_len[] = {
1092 		MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
1093 		MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
1094 		MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
1095 		MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
1096 	};
1097 	extern uint32_t mvTclk;
1098 	int i;
1099 
1100 	/* Rx handle */
1101 	for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1102 		MVXPE_RX_DESC(sc, q, i) = &rxd[i];
1103 		MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
1104 		MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1105 	}
1106 	mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1107 	rx->rx_dma = rx->rx_cpu = 0;
1108 	rx->rx_queue_len = rx_default_queue_len[q];
1109 	if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
1110 		rx->rx_queue_len = MVXPE_RX_RING_CNT;
1111 	rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
1112 	rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
1113 	rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
1114 
1115 	/* Tx handle */
1116 	for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1117 		MVXPE_TX_DESC(sc, q, i) = &txd[i];
1118 		MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
1119 		MVXPE_TX_MBUF(sc, q, i) = NULL;
1120 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1121 		if (bus_dmamap_create(sc->sc_dmat,
1122 		    mvxpbm_chunk_size(sc->sc_bm),
1123 		    MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
1124 		    BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
1125 		    &MVXPE_TX_MAP(sc, q, i))) {
1126 			aprint_error_dev(sc->sc_dev,
1127 			    "can't create dma map (tx ring %d)\n", i);
1128 		}
1129 	}
1130 	mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1131 	tx->tx_dma = tx->tx_cpu = 0;
1132 	tx->tx_queue_len = tx_default_queue_len[q];
1133 	if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
1134 		tx->tx_queue_len = MVXPE_TX_RING_CNT;
1135        	tx->tx_used = 0;
1136 	tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
1137 }
1138 
1139 STATIC void
1140 mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
1141 {
1142 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1143 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1144 	int i;
1145 
1146 	KASSERT_RX_MTX(sc, q);
1147 	KASSERT_TX_MTX(sc, q);
1148 
1149 	/* Rx handle */
1150 	for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1151 		if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
1152 			continue;
1153 		mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
1154 		MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1155 	}
1156 	rx->rx_dma = rx->rx_cpu = 0;
1157 
1158 	/* Tx handle */
1159 	for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1160 		if (MVXPE_TX_MBUF(sc, q, i) == NULL)
1161 			continue;
1162 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
1163 		m_freem(MVXPE_TX_MBUF(sc, q, i));
1164 		MVXPE_TX_MBUF(sc, q, i) = NULL;
1165 	}
1166 	tx->tx_dma = tx->tx_cpu = 0;
1167        	tx->tx_used = 0;
1168 }
1169 
1170 STATIC void
1171 mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1172 {
1173 	int wrap;
1174 
1175 	KASSERT_RX_MTX(sc, q);
1176 	KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
1177 	KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
1178 
1179 	wrap = (idx + count) - MVXPE_RX_RING_CNT;
1180 	if (wrap > 0) {
1181 		count -= wrap;
1182 		KASSERT(count > 0);
1183 		bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1184 		    0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
1185 	}
1186 	bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1187 	    MVXPE_RX_DESC_OFF(sc, q, idx),
1188 	    sizeof(struct mvxpe_rx_desc) * count, ops);
1189 }
1190 
1191 STATIC void
1192 mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1193 {
1194 	int wrap = 0;
1195 
1196 	KASSERT_TX_MTX(sc, q);
1197 	KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
1198 	KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
1199 
1200 	wrap = (idx + count) - MVXPE_TX_RING_CNT;
1201 	if (wrap > 0)  {
1202 		count -= wrap;
1203 		bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1204 		    0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
1205 	}
1206 	bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1207 	    MVXPE_TX_DESC_OFF(sc, q, idx),
1208 	    sizeof(struct mvxpe_tx_desc) * count, ops);
1209 }
1210 
1211 /*
1212  * Rx/Tx Queue Control
1213  */
1214 STATIC int
1215 mvxpe_rx_queue_init(struct ifnet *ifp, int q)
1216 {
1217 	struct mvxpe_softc *sc = ifp->if_softc;
1218 	uint32_t reg;
1219 
1220 	KASSERT_RX_MTX(sc, q);
1221 	KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
1222 
1223 	/* descriptor address */
1224 	MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
1225 
1226 	/* Rx buffer size and descriptor ring size */
1227 	reg  = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
1228 	reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
1229 	MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
1230 	DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
1231 	    q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
1232 
1233 	/* Rx packet offset address */
1234 	reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
1235 	MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
1236 	DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
1237 	    q, MVXPE_READ(sc, MVXPE_PRXC(q)));
1238 
1239 	/* Rx DMA SNOOP */
1240 	reg  = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
1241 	reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
1242 	MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
1243 
1244 	/* if DMA is not working, register is not updated */
1245 	KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
1246 	return 0;
1247 }
1248 
1249 STATIC int
1250 mvxpe_tx_queue_init(struct ifnet *ifp, int q)
1251 {
1252 	struct mvxpe_softc *sc = ifp->if_softc;
1253 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1254 	uint32_t reg;
1255 
1256 	KASSERT_TX_MTX(sc, q);
1257 	KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
1258 
1259 	/* descriptor address */
1260 	MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
1261 
1262 	/* Tx threshold, and descriptor ring size */
1263 	reg  = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1264 	reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
1265 	MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1266 	DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
1267 	    q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
1268 
1269 	/* if DMA is not working, register is not updated */
1270 	KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
1271 	return 0;
1272 }
1273 
1274 STATIC int
1275 mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
1276 {
1277 	struct mvxpe_softc *sc = ifp->if_softc;
1278 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1279 	uint32_t reg;
1280 
1281 	KASSERT_RX_MTX(sc, q);
1282 
1283 	/* Set Rx interrupt threshold */
1284 	reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1285 	reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
1286 	MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
1287 
1288 	reg  = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
1289 	MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1290 
1291 	/* Unmask RXTX_TH Intr. */
1292 	reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1293 	reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1294 	reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alart */
1295 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1296 
1297 	/* Enable Rx queue */
1298 	reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1299 	reg |= MVXPE_RQC_ENQ(q);
1300 	MVXPE_WRITE(sc, MVXPE_RQC, reg);
1301 
1302 	return 0;
1303 }
1304 
1305 STATIC int
1306 mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
1307 {
1308 	struct mvxpe_softc *sc = ifp->if_softc;
1309 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1310 	uint32_t reg;
1311 
1312 	KASSERT_TX_MTX(sc, q);
1313 
1314 	/* Set Tx interrupt threshold */
1315 	reg  = MVXPE_READ(sc, MVXPE_PTXDQS(q));
1316 	reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
1317 	reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1318 	MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1319 
1320 	/* Unmask RXTX_TH Intr. */
1321 	reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1322 	reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
1323 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1324 
1325 	/* Don't update MVXPE_TQC here, there is no packet yet. */
1326 	return 0;
1327 }
1328 
1329 STATIC void
1330 mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
1331 {
1332 	KASSERT(q >= 0);
1333 	KASSERT(q < MVXPE_QUEUE_SIZE);
1334 	mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
1335 }
1336 
1337 STATIC void
1338 mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
1339 {
1340 	KASSERT(q >= 0);
1341 	KASSERT(q < MVXPE_QUEUE_SIZE);
1342 	mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
1343 }
1344 
1345 STATIC void
1346 mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
1347 {
1348 	KASSERT(q >= 0);
1349 	KASSERT(q < MVXPE_QUEUE_SIZE);
1350 	mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
1351 }
1352 
1353 STATIC void
1354 mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
1355 {
1356 	KASSERT(q >= 0);
1357 	KASSERT(q < MVXPE_QUEUE_SIZE);
1358 	mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
1359 }
1360 
1361 /*
1362  * Interrupt Handlers
1363  */
1364 STATIC void
1365 mvxpe_disable_intr(struct mvxpe_softc *sc)
1366 {
1367 	MVXPE_WRITE(sc, MVXPE_EUIM, 0);
1368 	MVXPE_WRITE(sc, MVXPE_EUIC, 0);
1369 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
1370 	MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
1371 	MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
1372 	MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
1373 	MVXPE_WRITE(sc, MVXPE_PMIM, 0);
1374 	MVXPE_WRITE(sc, MVXPE_PMIC, 0);
1375 	MVXPE_WRITE(sc, MVXPE_PIE, 0);
1376 }
1377 
1378 STATIC void
1379 mvxpe_enable_intr(struct mvxpe_softc *sc)
1380 {
1381 	uint32_t reg;
1382 
1383 	/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1384 	reg  = MVXPE_READ(sc, MVXPE_PMIM);
1385 	reg |= MVXPE_PMI_PHYSTATUSCHNG;
1386 	reg |= MVXPE_PMI_LINKCHANGE;
1387 	reg |= MVXPE_PMI_IAE;
1388 	reg |= MVXPE_PMI_RXOVERRUN;
1389 	reg |= MVXPE_PMI_RXCRCERROR;
1390 	reg |= MVXPE_PMI_RXLARGEPACKET;
1391 	reg |= MVXPE_PMI_TXUNDRN;
1392 #if 0
1393 	/*
1394 	 * The device may raise false interrupts for SERDES even if the device
1395 	 * is not configured to use SERDES connection.
1396 	 */
1397 	reg |= MVXPE_PMI_PRBSERROR;
1398 	reg |= MVXPE_PMI_SRSE;
1399 #else
1400 	reg &= ~MVXPE_PMI_PRBSERROR;
1401 	reg &= ~MVXPE_PMI_SRSE;
1402 #endif
1403 	reg |= MVXPE_PMI_TREQ_MASK;
1404 	MVXPE_WRITE(sc, MVXPE_PMIM, reg);
1405 
1406 	/* Enable Summary Bit to check all interrupt cause. */
1407 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1408 	reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
1409 	reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
1410 	reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
1411 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1412 
1413 	/* Enable All Queue Interrupt */
1414 	reg  = MVXPE_READ(sc, MVXPE_PIE);
1415 	reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
1416 	reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
1417 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
1418 }
1419 
1420 STATIC int
1421 mvxpe_rxtxth_intr(void *arg)
1422 {
1423 	struct mvxpe_softc *sc = arg;
1424 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1425 	uint32_t ic, queues, datum = 0;
1426 
1427 	DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
1428 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
1429 
1430 	mvxpe_sc_lock(sc);
1431 	ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
1432 	if (ic == 0) {
1433 		mvxpe_sc_unlock(sc);
1434 		return 0;
1435 	}
1436 	MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
1437 	datum = datum ^ ic;
1438 
1439 	DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
1440 
1441 	/* ack maintance interrupt first */
1442 	if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
1443 		DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
1444 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
1445 	}
1446 	if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
1447 		DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
1448 		mvxpe_misc_intr(sc);
1449 	}
1450 	if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
1451 		DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
1452 		mvxpe_rxtx_intr(sc);
1453 	}
1454 	if (!(ifp->if_flags & IFF_RUNNING)) {
1455 		mvxpe_sc_unlock(sc);
1456 		return 1;
1457 	}
1458 
1459 	/* RxTxTH interrupt */
1460 	queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
1461 	if (queues) {
1462 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
1463 		mvxpe_rx(sc, queues);
1464 	}
1465 	queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
1466 	if (queues) {
1467 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
1468 		mvxpe_tx_complete(sc, queues);
1469 	}
1470 	queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
1471 	if (queues) {
1472 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
1473 		mvxpe_rx_refill(sc, queues);
1474 	}
1475 	mvxpe_sc_unlock(sc);
1476 
1477 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
1478 		mvxpe_start(ifp);
1479 
1480 	rnd_add_uint32(&sc->sc_rnd_source, datum);
1481 
1482 	return 1;
1483 }
1484 
1485 STATIC int
1486 mvxpe_misc_intr(void *arg)
1487 {
1488 	struct mvxpe_softc *sc = arg;
1489 #ifdef MVXPE_DEBUG
1490 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1491 #endif
1492 	uint32_t ic;
1493 	uint32_t datum = 0;
1494 	int claimed = 0;
1495 
1496 	DPRINTSC(sc, 2, "got MISC_INTR\n");
1497 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
1498 
1499 	KASSERT_SC_MTX(sc);
1500 
1501 	for (;;) {
1502 		ic = MVXPE_READ(sc, MVXPE_PMIC);
1503 		ic &= MVXPE_READ(sc, MVXPE_PMIM);
1504 		if (ic == 0)
1505 			break;
1506 		MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
1507 		datum = datum ^ ic;
1508 		claimed = 1;
1509 
1510 		DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
1511 		if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
1512 			DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
1513 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
1514 		}
1515 		if (ic & MVXPE_PMI_LINKCHANGE) {
1516 			DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
1517 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
1518 			mvxpe_linkupdate(sc);
1519 		}
1520 		if (ic & MVXPE_PMI_IAE) {
1521 			DPRINTIFNET(ifp, 2, "+IAE\n");
1522 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
1523 		}
1524 		if (ic & MVXPE_PMI_RXOVERRUN) {
1525 			DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
1526 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
1527 		}
1528 		if (ic & MVXPE_PMI_RXCRCERROR) {
1529 			DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
1530 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
1531 		}
1532 		if (ic & MVXPE_PMI_RXLARGEPACKET) {
1533 			DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
1534 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
1535 		}
1536 		if (ic & MVXPE_PMI_TXUNDRN) {
1537 			DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
1538 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
1539 		}
1540 		if (ic & MVXPE_PMI_PRBSERROR) {
1541 			DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
1542 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
1543 		}
1544 		if (ic & MVXPE_PMI_TREQ_MASK) {
1545 			DPRINTIFNET(ifp, 2, "+TREQ\n");
1546 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
1547 		}
1548 	}
1549 	if (datum)
1550 		rnd_add_uint32(&sc->sc_rnd_source, datum);
1551 
1552 	return claimed;
1553 }
1554 
1555 STATIC int
1556 mvxpe_rxtx_intr(void *arg)
1557 {
1558 	struct mvxpe_softc *sc = arg;
1559 #ifdef MVXPE_DEBUG
1560 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1561 #endif
1562 	uint32_t datum = 0;
1563 	uint32_t prxtxic;
1564 	int claimed = 0;
1565 
1566 	DPRINTSC(sc, 2, "got RXTX_Intr\n");
1567 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
1568 
1569 	KASSERT_SC_MTX(sc);
1570 
1571 	for (;;) {
1572 		prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
1573 		prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
1574 		if (prxtxic == 0)
1575 			break;
1576 		MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
1577 		datum = datum ^ prxtxic;
1578 		claimed = 1;
1579 
1580 		DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
1581 
1582 		if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
1583 			DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
1584 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
1585 		}
1586 		if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
1587 			DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
1588 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
1589 		}
1590 		if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
1591 			DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
1592 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
1593 		}
1594 		if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
1595 			DPRINTIFNET(ifp, 1, "PRXTXTHIC Sumary\n");
1596 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
1597 		}
1598 		if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
1599 			DPRINTIFNET(ifp, 1, "PTXERROR Sumary\n");
1600 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
1601 		}
1602 		if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
1603 			DPRINTIFNET(ifp, 1, "PMISCIC Sumary\n");
1604 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
1605 		}
1606 	}
1607 	if (datum)
1608 		rnd_add_uint32(&sc->sc_rnd_source, datum);
1609 
1610 	return claimed;
1611 }
1612 
1613 STATIC void
1614 mvxpe_tick(void *arg)
1615 {
1616 	struct mvxpe_softc *sc = arg;
1617 	struct mii_data *mii = &sc->sc_mii;
1618 
1619 	mvxpe_sc_lock(sc);
1620 
1621 	mii_tick(mii);
1622 	mii_pollstat(&sc->sc_mii);
1623 
1624 	/* read mib regisers(clear by read) */
1625 	mvxpe_update_mib(sc);
1626 
1627 	/* read counter registers(clear by read) */
1628 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
1629 	    MVXPE_READ(sc, MVXPE_PDFC));
1630 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
1631 	    MVXPE_READ(sc, MVXPE_POFC));
1632 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
1633 	    MVXPE_READ(sc, MVXPE_TXBADFCS));
1634 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
1635 	    MVXPE_READ(sc, MVXPE_TXDROPPED));
1636 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
1637 	    MVXPE_READ(sc, MVXPE_LPIC));
1638 
1639 	mvxpe_sc_unlock(sc);
1640 
1641 	callout_schedule(&sc->sc_tick_ch, hz);
1642 }
1643 
1644 
1645 /*
1646  * struct ifnet and mii callbacks
1647  */
1648 STATIC void
1649 mvxpe_start(struct ifnet *ifp)
1650 {
1651 	struct mvxpe_softc *sc = ifp->if_softc;
1652 	struct mbuf *m;
1653 	int q;
1654 
1655 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING) {
1656 		DPRINTIFNET(ifp, 1, "not running\n");
1657 		return;
1658 	}
1659 
1660 	mvxpe_sc_lock(sc);
1661 	if (!MVXPE_IS_LINKUP(sc)) {
1662 		/* If Link is DOWN, can't start TX */
1663 		DPRINTIFNET(ifp, 1, "link fail\n");
1664 		for (;;) {
1665 			/*
1666 			 * discard stale packets all.
1667 			 * these may confuse DAD, ARP or timer based protocols.
1668 			 */
1669 			IFQ_DEQUEUE(&ifp->if_snd, m);
1670 			if (m == NULL)
1671 				break;
1672 			m_freem(m);
1673 		}
1674 		mvxpe_sc_unlock(sc);
1675 		return;
1676 	}
1677 	for (;;) {
1678 		/*
1679 		 * don't use IFQ_POLL().
1680 		 * there is lock problem between IFQ_POLL and IFQ_DEQUEUE
1681 		 * on SMP enabled networking stack.
1682 		 */
1683 		IFQ_DEQUEUE(&ifp->if_snd, m);
1684 		if (m == NULL)
1685 			break;
1686 
1687 		q = mvxpe_tx_queue_select(sc, m);
1688 		if (q < 0)
1689 			break;
1690 		/* mutex is held in mvxpe_tx_queue_select() */
1691 
1692 		if (mvxpe_tx_queue(sc, m, q) != 0) {
1693 			DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
1694 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
1695 			mvxpe_tx_unlockq(sc, q);
1696 			break;
1697 		}
1698 		mvxpe_tx_unlockq(sc, q);
1699 		KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
1700 		KASSERT(sc->sc_tx_ring[q].tx_used <=
1701 		    sc->sc_tx_ring[q].tx_queue_len);
1702 		DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
1703 		sc->sc_tx_pending++;
1704 		ifp->if_opackets++;
1705 		ifp->if_timer = 1;
1706 		sc->sc_wdogsoft = 1;
1707 		bpf_mtap(ifp, m);
1708 	}
1709 	mvxpe_sc_unlock(sc);
1710 
1711 	return;
1712 }
1713 
1714 STATIC int
1715 mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1716 {
1717 	struct mvxpe_softc *sc = ifp->if_softc;
1718 	struct ifreq *ifr = data;
1719 	int error = 0;
1720 	int s;
1721 
1722 	switch (cmd) {
1723 	case SIOCGIFMEDIA:
1724 	case SIOCSIFMEDIA:
1725 		DPRINTIFNET(ifp, 2, "mvxpe_ioctl MEDIA\n");
1726 		s = splnet(); /* XXX: is there suitable mutex? */
1727 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1728 		splx(s);
1729 		break;
1730 	default:
1731 		DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
1732 		error = ether_ioctl(ifp, cmd, data);
1733 		if (error == ENETRESET) {
1734 			if (ifp->if_flags & IFF_RUNNING) {
1735 				mvxpe_sc_lock(sc);
1736 				mvxpe_filter_setup(sc);
1737 				mvxpe_sc_unlock(sc);
1738 			}
1739 			error = 0;
1740 		}
1741 		break;
1742 	}
1743 
1744 	return error;
1745 }
1746 
1747 STATIC int
1748 mvxpe_init(struct ifnet *ifp)
1749 {
1750 	struct mvxpe_softc *sc = ifp->if_softc;
1751 	struct mii_data *mii = &sc->sc_mii;
1752 	uint32_t reg;
1753 	int q;
1754 
1755 	mvxpe_sc_lock(sc);
1756 
1757 	/* Start DMA Engine */
1758 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
1759 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
1760 	MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
1761 
1762 	/* Enable port */
1763 	reg  = MVXPE_READ(sc, MVXPE_PMACC0);
1764 	reg |= MVXPE_PMACC0_PORTEN;
1765 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1766 
1767 	/* Link up */
1768 	mvxpe_linkup(sc);
1769 
1770 	/* Enable All Queue and interrupt of each Queue */
1771 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1772 		mvxpe_rx_lockq(sc, q);
1773 		mvxpe_rx_queue_enable(ifp, q);
1774 		mvxpe_rx_queue_refill(sc, q);
1775 		mvxpe_rx_unlockq(sc, q);
1776 
1777 		mvxpe_tx_lockq(sc, q);
1778 		mvxpe_tx_queue_enable(ifp, q);
1779 		mvxpe_tx_unlockq(sc, q);
1780 	}
1781 
1782 	/* Enable interrupt */
1783 	mvxpe_enable_intr(sc);
1784 
1785 	/* Set Counter */
1786 	callout_schedule(&sc->sc_tick_ch, hz);
1787 
1788 	/* Media check */
1789 	mii_mediachg(mii);
1790 
1791 	ifp->if_flags |= IFF_RUNNING;
1792 	ifp->if_flags &= ~IFF_OACTIVE;
1793 
1794 	mvxpe_sc_unlock(sc);
1795 	return 0;
1796 }
1797 
1798 /* ARGSUSED */
1799 STATIC void
1800 mvxpe_stop(struct ifnet *ifp, int disable)
1801 {
1802 	struct mvxpe_softc *sc = ifp->if_softc;
1803 	uint32_t reg;
1804 	int q, cnt;
1805 
1806 	DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
1807 
1808 	mvxpe_sc_lock(sc);
1809 
1810 	callout_stop(&sc->sc_tick_ch);
1811 
1812 	/* Link down */
1813 	mvxpe_linkdown(sc);
1814 
1815 	/* Disable Rx interrupt */
1816 	reg  = MVXPE_READ(sc, MVXPE_PIE);
1817 	reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
1818 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
1819 
1820 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1821 	reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
1822 	reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
1823 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1824 
1825 	/* Wait for all Rx activity to terminate. */
1826 	reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1827 	reg = MVXPE_RQC_DIS(reg);
1828 	MVXPE_WRITE(sc, MVXPE_RQC, reg);
1829 	cnt = 0;
1830 	do {
1831 		if (cnt >= RX_DISABLE_TIMEOUT) {
1832 			aprint_error_ifnet(ifp,
1833 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1834 			break;
1835 		}
1836 		cnt++;
1837 		reg = MVXPE_READ(sc, MVXPE_RQC);
1838 	} while (reg & MVXPE_RQC_EN_MASK);
1839 
1840 	/* Wait for all Tx activety to terminate. */
1841 	reg  = MVXPE_READ(sc, MVXPE_PIE);
1842 	reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
1843 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
1844 
1845 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1846 	reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
1847 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1848 
1849 	reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
1850 	reg = MVXPE_TQC_DIS(reg);
1851 	MVXPE_WRITE(sc, MVXPE_TQC, reg);
1852 	cnt = 0;
1853 	do {
1854 		if (cnt >= TX_DISABLE_TIMEOUT) {
1855 			aprint_error_ifnet(ifp,
1856 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1857 			break;
1858 		}
1859 		cnt++;
1860 		reg = MVXPE_READ(sc, MVXPE_TQC);
1861 	} while (reg & MVXPE_TQC_EN_MASK);
1862 
1863 	/* Wait for all Tx FIFO is empty */
1864 	cnt = 0;
1865 	do {
1866 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1867 			aprint_error_ifnet(ifp,
1868 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1869 			break;
1870 		}
1871 		cnt++;
1872 		reg = MVXPE_READ(sc, MVXPE_PS0);
1873 	} while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
1874 
1875 	/* Reset the MAC Port Enable bit */
1876 	reg = MVXPE_READ(sc, MVXPE_PMACC0);
1877 	reg &= ~MVXPE_PMACC0_PORTEN;
1878 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1879 
1880 	/* Disable each of queue */
1881 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1882 		struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1883 
1884 		mvxpe_rx_lockq(sc, q);
1885 		mvxpe_tx_lockq(sc, q);
1886 
1887 		/* Disable Rx packet buffer refill request */
1888 		reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1889 		reg |= MVXPE_PRXDQTH_NODT(0);
1890 		MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1891 
1892 		if (disable) {
1893 			/*
1894 			 * Hold Reset state of DMA Engine
1895 			 * (must write 0x0 to restart it)
1896 			 */
1897 			MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
1898 			MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
1899 			mvxpe_ring_flush_queue(sc, q);
1900 		}
1901 
1902 		mvxpe_tx_unlockq(sc, q);
1903 		mvxpe_rx_unlockq(sc, q);
1904 	}
1905 
1906 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1907 
1908 	mvxpe_sc_unlock(sc);
1909 }
1910 
1911 STATIC void
1912 mvxpe_watchdog(struct ifnet *ifp)
1913 {
1914 	struct mvxpe_softc *sc = ifp->if_softc;
1915 	int q;
1916 
1917 	mvxpe_sc_lock(sc);
1918 
1919 	/*
1920 	 * Reclaim first as there is a possibility of losing Tx completion
1921 	 * interrupts.
1922 	 */
1923 	mvxpe_tx_complete(sc, 0xff);
1924 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1925 		struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1926 
1927 		if (tx->tx_dma != tx->tx_cpu) {
1928 			if (sc->sc_wdogsoft) {
1929 				/*
1930 				 * There is race condition between CPU and DMA
1931 				 * engine. When DMA engine encounters queue end,
1932 				 * it clears MVXPE_TQC_ENQ bit.
1933 				 * XXX: how about enhanced mode?
1934 				 */
1935 				MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
1936 				ifp->if_timer = 5;
1937 				sc->sc_wdogsoft = 0;
1938 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
1939 			} else {
1940 				aprint_error_ifnet(ifp, "watchdog timeout\n");
1941 				ifp->if_oerrors++;
1942 				mvxpe_linkreset(sc);
1943 				mvxpe_sc_unlock(sc);
1944 
1945 				/* trigger reinitialize sequence */
1946 				mvxpe_stop(ifp, 1);
1947 				mvxpe_init(ifp);
1948 
1949 				mvxpe_sc_lock(sc);
1950 			}
1951 		}
1952 	}
1953 	mvxpe_sc_unlock(sc);
1954 }
1955 
1956 STATIC int
1957 mvxpe_ifflags_cb(struct ethercom *ec)
1958 {
1959 	struct ifnet *ifp = &ec->ec_if;
1960 	struct mvxpe_softc *sc = ifp->if_softc;
1961 	int change = ifp->if_flags ^ sc->sc_if_flags;
1962 
1963 	mvxpe_sc_lock(sc);
1964 
1965 	if (change != 0)
1966 		sc->sc_if_flags = ifp->if_flags;
1967 
1968 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0) {
1969 		mvxpe_sc_unlock(sc);
1970 		return ENETRESET;
1971 	}
1972 
1973 	if ((change & IFF_PROMISC) != 0)
1974 		mvxpe_filter_setup(sc);
1975 
1976 	if ((change & IFF_UP) != 0)
1977 		mvxpe_linkreset(sc);
1978 
1979 	mvxpe_sc_unlock(sc);
1980 	return 0;
1981 }
1982 
1983 STATIC int
1984 mvxpe_mediachange(struct ifnet *ifp)
1985 {
1986 	return ether_mediachange(ifp);
1987 }
1988 
1989 STATIC void
1990 mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1991 {
1992 	ether_mediastatus(ifp, ifmr);
1993 }
1994 
1995 /*
1996  * Link State Notify
1997  */
1998 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
1999 {
2000 	int linkup; /* bool */
2001 
2002 	KASSERT_SC_MTX(sc);
2003 
2004 	/* tell miibus */
2005 	mii_pollstat(&sc->sc_mii);
2006 
2007 	/* syslog */
2008 	linkup = MVXPE_IS_LINKUP(sc);
2009 	if (sc->sc_linkstate == linkup)
2010 		return;
2011 
2012 #ifdef DEBUG
2013 	log(LOG_DEBUG,
2014 	    "%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
2015 #endif
2016 	if (linkup)
2017 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
2018 	else
2019 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
2020 
2021 	sc->sc_linkstate = linkup;
2022 }
2023 
2024 STATIC void
2025 mvxpe_linkup(struct mvxpe_softc *sc)
2026 {
2027 	uint32_t reg;
2028 
2029 	KASSERT_SC_MTX(sc);
2030 
2031 	/* set EEE parameters */
2032 	reg = MVXPE_READ(sc, MVXPE_LPIC1);
2033 	if (sc->sc_cf.cf_lpi)
2034 		reg |= MVXPE_LPIC1_LPIRE;
2035 	else
2036 		reg &= ~MVXPE_LPIC1_LPIRE;
2037 	MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
2038 
2039 	/* set auto-negotiation parameters */
2040 	reg  = MVXPE_READ(sc, MVXPE_PANC);
2041 	if (sc->sc_cf.cf_fc) {
2042 		/* flow control negotiation */
2043 		reg |= MVXPE_PANC_PAUSEADV;
2044 		reg |= MVXPE_PANC_ANFCEN;
2045 	}
2046 	else {
2047 		reg &= ~MVXPE_PANC_PAUSEADV;
2048 		reg &= ~MVXPE_PANC_ANFCEN;
2049 	}
2050 	reg &= ~MVXPE_PANC_FORCELINKFAIL;
2051 	reg &= ~MVXPE_PANC_FORCELINKPASS;
2052 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
2053 
2054 	mii_mediachg(&sc->sc_mii);
2055 }
2056 
2057 STATIC void
2058 mvxpe_linkdown(struct mvxpe_softc *sc)
2059 {
2060 	struct mii_softc *mii;
2061 	uint32_t reg;
2062 
2063 	KASSERT_SC_MTX(sc);
2064 	return;
2065 
2066 	reg  = MVXPE_READ(sc, MVXPE_PANC);
2067 	reg |= MVXPE_PANC_FORCELINKFAIL;
2068 	reg &= MVXPE_PANC_FORCELINKPASS;
2069 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
2070 
2071 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2072 	if (mii)
2073 		mii_phy_down(mii);
2074 }
2075 
2076 STATIC void
2077 mvxpe_linkreset(struct mvxpe_softc *sc)
2078 {
2079 	struct mii_softc *mii;
2080 
2081 	KASSERT_SC_MTX(sc);
2082 
2083 	/* force reset PHY first */
2084 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2085 	if (mii)
2086 		mii_phy_reset(mii);
2087 
2088 	/* reinit MAC and PHY */
2089 	mvxpe_linkdown(sc);
2090 	if ((sc->sc_if_flags & IFF_UP) != 0)
2091 		mvxpe_linkup(sc);
2092 }
2093 
2094 /*
2095  * Tx Subroutines
2096  */
2097 STATIC int
2098 mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
2099 {
2100 	int q = 0;
2101 
2102 	/* XXX: get attribute from ALTQ framework? */
2103 	mvxpe_tx_lockq(sc, q);
2104 	return 0;
2105 }
2106 
2107 STATIC int
2108 mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
2109 {
2110 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2111 	bus_dma_segment_t *txsegs;
2112 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2113 	struct mvxpe_tx_desc *t = NULL;
2114 	uint32_t ptxsu;
2115 	int txnsegs;
2116 	int start, used;
2117 	int i;
2118 
2119 	KASSERT_TX_MTX(sc, q);
2120 	KASSERT(tx->tx_used >= 0);
2121 	KASSERT(tx->tx_used <= tx->tx_queue_len);
2122 
2123 	/* load mbuf using dmamap of 1st descriptor */
2124 	if (bus_dmamap_load_mbuf(sc->sc_dmat,
2125 	    MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
2126 		m_freem(m);
2127 		return ENOBUFS;
2128 	}
2129 	txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
2130 	txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
2131 	if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
2132 		/* we have no enough descriptors or mbuf is broken */
2133 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
2134 		m_freem(m);
2135 		return ENOBUFS;
2136 	}
2137 	DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
2138 	KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
2139 
2140 	/* remember mbuf using 1st descriptor */
2141 	MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
2142 	bus_dmamap_sync(sc->sc_dmat,
2143 	    MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
2144 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2145 
2146 	/* load to tx descriptors */
2147 	start = tx->tx_cpu;
2148 	used = 0;
2149 	for (i = 0; i < txnsegs; i++) {
2150 		if (__predict_false(txsegs[i].ds_len == 0))
2151 			continue;
2152 		t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
2153 		t->command = 0;
2154 		t->l4ichk = 0;
2155 		t->flags = 0;
2156 		if (i == 0) {
2157 			/* 1st descriptor */
2158 			t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
2159 			t->command |= MVXPE_TX_CMD_PADDING;
2160 			t->command |= MVXPE_TX_CMD_F;
2161 			mvxpe_tx_set_csumflag(ifp, t, m);
2162 		}
2163 		t->bufptr = txsegs[i].ds_addr;
2164 		t->bytecnt = txsegs[i].ds_len;
2165 		tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
2166 		tx->tx_used++;
2167 		used++;
2168 	}
2169 	/* t is last descriptor here */
2170 	KASSERT(t != NULL);
2171 	t->command |= MVXPE_TX_CMD_L;
2172 
2173 	DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
2174 #ifdef MVXPE_DEBUG
2175 	if (mvxpe_debug > 2)
2176 		for (i = start; i <= tx->tx_cpu; i++) {
2177 			t = MVXPE_TX_DESC(sc, q, i);
2178 			mvxpe_dump_txdesc(t, i);
2179 		}
2180 #endif
2181 	mvxpe_ring_sync_tx(sc, q, start, used,
2182 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2183 
2184 	while (used > 255) {
2185 		ptxsu = MVXPE_PTXSU_NOWD(255);
2186 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2187 		used -= 255;
2188 	}
2189 	if (used > 0) {
2190 		ptxsu = MVXPE_PTXSU_NOWD(used);
2191 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2192 	}
2193 	MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
2194 
2195 	DPRINTSC(sc, 2,
2196 	    "PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
2197 	DPRINTSC(sc, 2,
2198 	    "PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
2199 	DPRINTSC(sc, 2,
2200 	    "PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
2201 	DPRINTSC(sc, 2,
2202 	    "PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
2203 	DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
2204 	DPRINTIFNET(ifp, 2,
2205 	    "Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2206 	    tx->tx_cpu, tx->tx_dma, tx->tx_used);
2207 	return 0;
2208 }
2209 
2210 STATIC void
2211 mvxpe_tx_set_csumflag(struct ifnet *ifp,
2212     struct mvxpe_tx_desc *t, struct mbuf *m)
2213 {
2214 	struct ether_header *eh;
2215 	int csum_flags;
2216 	uint32_t iphl = 0, ipoff = 0;
2217 
2218 
2219        	csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
2220 
2221 	eh = mtod(m, struct ether_header *);
2222 	switch (htons(eh->ether_type)) {
2223 	case ETHERTYPE_IP:
2224 	case ETHERTYPE_IPV6:
2225 		ipoff = ETHER_HDR_LEN;
2226 		break;
2227 	case ETHERTYPE_VLAN:
2228 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2229 		break;
2230 	}
2231 
2232 	if (csum_flags & (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
2233 		iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2234 		t->command |= MVXPE_TX_CMD_L3_IP4;
2235 	}
2236 	else if (csum_flags & (M_CSUM_TCPv6|M_CSUM_UDPv6)) {
2237 		iphl = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
2238 		t->command |= MVXPE_TX_CMD_L3_IP6;
2239 	}
2240 	else {
2241 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2242 		return;
2243 	}
2244 
2245 
2246 	/* L3 */
2247 	if (csum_flags & M_CSUM_IPv4) {
2248 		t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
2249 	}
2250 
2251 	/* L4 */
2252 	if ((csum_flags &
2253 	    (M_CSUM_TCPv4|M_CSUM_UDPv4|M_CSUM_TCPv6|M_CSUM_UDPv6)) == 0) {
2254 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2255 	}
2256 	else if (csum_flags & M_CSUM_TCPv4) {
2257 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2258 		t->command |= MVXPE_TX_CMD_L4_TCP;
2259 	}
2260 	else if (csum_flags & M_CSUM_UDPv4) {
2261 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2262 		t->command |= MVXPE_TX_CMD_L4_UDP;
2263 	}
2264 	else if (csum_flags & M_CSUM_TCPv6) {
2265 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2266 		t->command |= MVXPE_TX_CMD_L4_TCP;
2267 	}
2268 	else if (csum_flags & M_CSUM_UDPv6) {
2269 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2270 		t->command |= MVXPE_TX_CMD_L4_UDP;
2271 	}
2272 
2273 	t->l4ichk = 0;
2274 	t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2275 	t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
2276 }
2277 
2278 STATIC void
2279 mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
2280 {
2281 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2282 	int q;
2283 
2284 	DPRINTSC(sc, 2, "tx completed.\n");
2285 
2286 	KASSERT_SC_MTX(sc);
2287 
2288 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2289 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2290 			continue;
2291 		mvxpe_tx_lockq(sc, q);
2292 		mvxpe_tx_queue_complete(sc, q);
2293 		mvxpe_tx_unlockq(sc, q);
2294 	}
2295 	KASSERT(sc->sc_tx_pending >= 0);
2296 	if (sc->sc_tx_pending == 0)
2297 		ifp->if_timer = 0;
2298 }
2299 
2300 STATIC void
2301 mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
2302 {
2303 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2304 	struct mvxpe_tx_desc *t;
2305 	uint32_t ptxs, ptxsu, ndesc;
2306 	int i;
2307 
2308 	KASSERT_TX_MTX(sc, q);
2309 
2310 	ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
2311 	ndesc = MVXPE_PTXS_GET_TBC(ptxs);
2312 	if (ndesc == 0)
2313 		return;
2314 
2315 	DPRINTSC(sc, 2,
2316 	    "tx complete queue %d, %d descriptors.\n", q, ndesc);
2317 
2318 	mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
2319 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2320 
2321 	for (i = 0; i < ndesc; i++) {
2322 		int error = 0;
2323 
2324 		t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
2325 		if (t->flags & MVXPE_TX_F_ES) {
2326 			DPRINTSC(sc, 1,
2327 			    "tx error queue %d desc %d\n",
2328 			    q, tx->tx_dma);
2329 			switch (t->flags & MVXPE_TX_F_EC_MASK) {
2330 			case MVXPE_TX_F_EC_LC:
2331 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
2332 				break;
2333 			case MVXPE_TX_F_EC_UR:
2334 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
2335 				break;
2336 			case MVXPE_TX_F_EC_RL:
2337 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
2338 				break;
2339 			default:
2340 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
2341 				break;
2342 			}
2343 			error = 1;
2344 		}
2345 		if (MVXPE_TX_MBUF(sc, q, tx->tx_dma) != NULL) {
2346 			KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
2347 			bus_dmamap_unload(sc->sc_dmat,
2348 			    MVXPE_TX_MAP(sc, q, tx->tx_dma));
2349 			m_freem(MVXPE_TX_MBUF(sc, q, tx->tx_dma));
2350 			MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
2351 			sc->sc_tx_pending--;
2352 		}
2353 		else
2354 			KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
2355 		tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
2356 		tx->tx_used--;
2357 		if (error)
2358 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
2359 		else
2360 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
2361 	}
2362 	KASSERT(tx->tx_used >= 0);
2363 	KASSERT(tx->tx_used <= tx->tx_queue_len);
2364 	while (ndesc > 255) {
2365 		ptxsu = MVXPE_PTXSU_NORB(255);
2366 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2367 		ndesc -= 255;
2368 	}
2369 	if (ndesc > 0) {
2370 		ptxsu = MVXPE_PTXSU_NORB(ndesc);
2371 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2372 	}
2373 	DPRINTSC(sc, 2,
2374 	    "Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2375 	    q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
2376 }
2377 
2378 /*
2379  * Rx Subroutines
2380  */
2381 STATIC void
2382 mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
2383 {
2384 	int q, npkt;
2385 
2386 	KASSERT_SC_MTX(sc);
2387 
2388 	while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
2389 		/* mutex is held by rx_queue_select */
2390 		mvxpe_rx_queue(sc, q, npkt);
2391 		mvxpe_rx_unlockq(sc, q);
2392 	}
2393 }
2394 
2395 STATIC void
2396 mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
2397 {
2398 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2399 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2400 	struct mvxpe_rx_desc *r;
2401 	struct mvxpbm_chunk *chunk;
2402 	struct mbuf *m;
2403 	uint32_t prxsu;
2404 	int error = 0;
2405 	int i;
2406 
2407 	KASSERT_RX_MTX(sc, q);
2408 
2409 	mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
2410 	    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2411 
2412 	for (i = 0; i < npkt; i++) {
2413 		/* get descriptor and packet */
2414 		chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
2415 		MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
2416 		r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
2417 		mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
2418 
2419 		/* check errors */
2420 		if (r->status & MVXPE_RX_ES) {
2421 			switch (r->status & MVXPE_RX_EC_MASK) {
2422 			case MVXPE_RX_EC_CE:
2423 				DPRINTIFNET(ifp, 1, "CRC error\n");
2424 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
2425 				break;
2426 			case MVXPE_RX_EC_OR:
2427 				DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
2428 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
2429 				break;
2430 			case MVXPE_RX_EC_MF:
2431 				DPRINTIFNET(ifp, 1, "Rx too large frame\n");
2432 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
2433 				break;
2434 			case MVXPE_RX_EC_RE:
2435 				DPRINTIFNET(ifp, 1, "Rx resource error\n");
2436 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
2437 				break;
2438 			}
2439 			error = 1;
2440 			goto rx_done;
2441 		}
2442 		if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
2443 			DPRINTIFNET(ifp, 1, "not support scatter buf\n");
2444 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
2445 			error = 1;
2446 			goto rx_done;
2447 		}
2448 
2449 		if (chunk == NULL) {
2450 			device_printf(sc->sc_dev,
2451 			    "got rx interrupt, but no chunk\n");
2452 			error = 1;
2453 			goto rx_done;
2454 		}
2455 
2456 		/* extract packet buffer */
2457 		if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
2458 			error = 1;
2459 			goto rx_done;
2460 		}
2461 		m = chunk->m;
2462 		m->m_pkthdr.rcvif = ifp;
2463 		m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
2464 		m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
2465 		mvxpe_rx_set_csumflag(ifp, r, m);
2466 		ifp->if_ipackets++;
2467 		bpf_mtap(ifp, m);
2468 		if_percpuq_enqueue(ifp->if_percpuq, m);
2469 		chunk = NULL; /* the BM chunk goes to networking stack now */
2470 rx_done:
2471 		if (chunk) {
2472 			/* rx error. just return the chunk to BM. */
2473 			mvxpbm_free_chunk(chunk);
2474 		}
2475 		if (error)
2476 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
2477 		else
2478 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
2479 		rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
2480 	}
2481 	/* DMA status update */
2482 	DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
2483 	while (npkt > 255) {
2484 		prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2485 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2486 		npkt -= 255;
2487 	}
2488 	if (npkt > 0) {
2489 		prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
2490 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2491 	}
2492 
2493 	DPRINTSC(sc, 2,
2494 	    "PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
2495 	DPRINTSC(sc, 2,
2496 	    "PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
2497 	DPRINTSC(sc, 2,
2498 	    "PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
2499 	DPRINTSC(sc, 2,
2500 	    "PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
2501 	DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
2502 	DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
2503 	    rx->rx_cpu, rx->rx_dma);
2504 }
2505 
2506 STATIC int
2507 mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
2508 {
2509 	uint32_t prxs, npkt;
2510 	int q;
2511 
2512 	KASSERT_SC_MTX(sc);
2513 	KASSERT(queue != NULL);
2514 	DPRINTSC(sc, 2, "selecting rx queue\n");
2515 
2516 	for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
2517 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2518 			continue;
2519 
2520 		prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2521 		npkt = MVXPE_PRXS_GET_ODC(prxs);
2522 		if (npkt == 0)
2523 			continue;
2524 
2525 		DPRINTSC(sc, 2,
2526 		    "queue %d selected: prxs=%#x, %u pakcet received.\n",
2527 		    q, prxs, npkt);
2528 		*queue = q;
2529 		mvxpe_rx_lockq(sc, q);
2530 		return npkt;
2531 	}
2532 
2533 	return 0;
2534 }
2535 
2536 STATIC void
2537 mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
2538 {
2539 	int q;
2540 
2541 	KASSERT_SC_MTX(sc);
2542 
2543 	/* XXX: check rx bit array */
2544 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2545 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2546 			continue;
2547 
2548 		mvxpe_rx_lockq(sc, q);
2549 		mvxpe_rx_queue_refill(sc, q);
2550 		mvxpe_rx_unlockq(sc, q);
2551 	}
2552 }
2553 
2554 STATIC void
2555 mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
2556 {
2557 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2558 	uint32_t prxs, prxsu, ndesc;
2559 	int idx, refill = 0;
2560 	int npkt;
2561 
2562 	KASSERT_RX_MTX(sc, q);
2563 
2564 	prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2565 	ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
2566 	refill = rx->rx_queue_len - ndesc;
2567 	if (refill <= 0)
2568 		return;
2569 	DPRINTPRXS(2, q);
2570 	DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
2571 
2572 	idx = rx->rx_cpu;
2573 	for (npkt = 0; npkt < refill; npkt++)
2574 		if (mvxpe_rx_queue_add(sc, q) != 0)
2575 			break;
2576 	DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
2577 	if (npkt == 0)
2578 		return;
2579 
2580 	mvxpe_ring_sync_rx(sc, q, idx, npkt,
2581 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2582 
2583 	while (npkt > 255) {
2584 		prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
2585 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2586 		npkt -= 255;
2587 	}
2588 	if (npkt > 0) {
2589 		prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
2590 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2591 	}
2592 	DPRINTPRXS(2, q);
2593 	return;
2594 }
2595 
2596 STATIC int
2597 mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
2598 {
2599 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2600 	struct mvxpe_rx_desc *r;
2601 	struct mvxpbm_chunk *chunk = NULL;
2602 
2603 	KASSERT_RX_MTX(sc, q);
2604 
2605 	/* Allocate the packet buffer */
2606 	chunk = mvxpbm_alloc(sc->sc_bm);
2607 	if (chunk == NULL) {
2608 		DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
2609 		return ENOBUFS;
2610 	}
2611 
2612 	/* Add the packet to descritor */
2613 	KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
2614 	MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
2615 	mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
2616 
2617 	r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
2618 	r->bufptr = chunk->buf_pa;
2619 	DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
2620 	rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
2621 	return 0;
2622 }
2623 
2624 STATIC void
2625 mvxpe_rx_set_csumflag(struct ifnet *ifp,
2626     struct mvxpe_rx_desc *r, struct mbuf *m0)
2627 {
2628 	uint32_t csum_flags = 0;
2629 
2630 	if ((r->status & (MVXPE_RX_IP_HEADER_OK|MVXPE_RX_L3_IP)) == 0)
2631 		return; /* not a IP packet */
2632 
2633 	/* L3 */
2634 	if (r->status & MVXPE_RX_L3_IP) {
2635 		csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
2636 		if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
2637 		    (csum_flags & M_CSUM_IPv4) != 0) {
2638 			csum_flags |= M_CSUM_IPv4_BAD;
2639 			goto finish;
2640 		}
2641 		else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
2642 			/*
2643 			 * r->l4chk has partial checksum of each framgment.
2644 			 * but there is no way to use it in NetBSD.
2645 			 */
2646 			return;
2647 		}
2648 	}
2649 
2650 	/* L4 */
2651 	switch (r->status & MVXPE_RX_L4_MASK) {
2652 	case MVXPE_RX_L4_TCP:
2653 		if (r->status & MVXPE_RX_L3_IP)
2654 			csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
2655 		else
2656 			csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
2657 		break;
2658 	case MVXPE_RX_L4_UDP:
2659 		if (r->status & MVXPE_RX_L3_IP)
2660 			csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
2661 		else
2662 			csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
2663 		break;
2664 	case MVXPE_RX_L4_OTH:
2665 	default:
2666 		break;
2667 	}
2668 	if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
2669 	    (M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2670 		csum_flags |= M_CSUM_TCP_UDP_BAD;
2671 finish:
2672 	m0->m_pkthdr.csum_flags = csum_flags;
2673 }
2674 
2675 /*
2676  * MAC address filter
2677  */
2678 STATIC uint8_t
2679 mvxpe_crc8(const uint8_t *data, size_t size)
2680 {
2681 	int bit;
2682 	uint8_t byte;
2683 	uint8_t crc = 0;
2684 	const uint8_t poly = 0x07;
2685 
2686 	while(size--)
2687 	  for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
2688 	    crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
2689 
2690 	return crc;
2691 }
2692 
2693 CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
2694 
2695 STATIC void
2696 mvxpe_filter_setup(struct mvxpe_softc *sc)
2697 {
2698 	struct ethercom *ec = &sc->sc_ethercom;
2699 	struct ifnet *ifp= &sc->sc_ethercom.ec_if;
2700 	struct ether_multi *enm;
2701 	struct ether_multistep step;
2702 	uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
2703 	uint32_t pxc;
2704 	int i;
2705 	const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
2706 
2707 	KASSERT_SC_MTX(sc);
2708 
2709 	memset(dfut, 0, sizeof(dfut));
2710 	memset(dfsmt, 0, sizeof(dfsmt));
2711 	memset(dfomt, 0, sizeof(dfomt));
2712 
2713 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
2714 		goto allmulti;
2715 	}
2716 
2717 	ETHER_FIRST_MULTI(step, ec, enm);
2718 	while (enm != NULL) {
2719 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2720 			/* ranges are complex and somewhat rare */
2721 			goto allmulti;
2722 		}
2723 		/* chip handles some IPv4 multicast specially */
2724 		if (memcmp(enm->enm_addrlo, special, 5) == 0) {
2725 			i = enm->enm_addrlo[5];
2726 			dfsmt[i>>2] |=
2727 			    MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2728 		} else {
2729 			i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
2730 			dfomt[i>>2] |=
2731 			    MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2732 		}
2733 
2734 		ETHER_NEXT_MULTI(step, enm);
2735 	}
2736 	goto set;
2737 
2738 allmulti:
2739 	if (ifp->if_flags & (IFF_ALLMULTI|IFF_PROMISC)) {
2740 		for (i = 0; i < MVXPE_NDFSMT; i++) {
2741 			dfsmt[i] = dfomt[i] =
2742 			    MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2743 			    MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2744 			    MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2745 			    MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2746 		}
2747 	}
2748 
2749 set:
2750 	pxc = MVXPE_READ(sc, MVXPE_PXC);
2751 	pxc &= ~MVXPE_PXC_UPM;
2752 	pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
2753 	if (ifp->if_flags & IFF_BROADCAST) {
2754 		pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
2755 	}
2756 	if (ifp->if_flags & IFF_PROMISC) {
2757 		pxc |= MVXPE_PXC_UPM;
2758 	}
2759 	MVXPE_WRITE(sc, MVXPE_PXC, pxc);
2760 
2761 	/* Set Destination Address Filter Unicast Table */
2762 	if (ifp->if_flags & IFF_PROMISC) {
2763 		/* pass all unicast addresses */
2764 		for (i = 0; i < MVXPE_NDFUT; i++) {
2765 			dfut[i] =
2766 			    MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2767 			    MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2768 			    MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2769 			    MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2770 		}
2771 	}
2772 	else {
2773 		i = sc->sc_enaddr[5] & 0xf;             /* last nibble */
2774 		dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2775 	}
2776 	MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
2777 
2778 	/* Set Destination Address Filter Multicast Tables */
2779 	MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
2780 	MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
2781 }
2782 
2783 /*
2784  * sysctl(9)
2785  */
2786 SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
2787 {
2788 	int rc;
2789 	const struct sysctlnode *node;
2790 
2791 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2792 	    0, CTLTYPE_NODE, "mvxpe",
2793 	    SYSCTL_DESCR("mvxpe interface controls"),
2794 	    NULL, 0, NULL, 0,
2795 	    CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2796 		goto err;
2797 	}
2798 
2799 	mvxpe_root_num = node->sysctl_num;
2800 	return;
2801 
2802 err:
2803 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2804 }
2805 
2806 STATIC int
2807 sysctl_read_mib(SYSCTLFN_ARGS)
2808 {
2809 	struct mvxpe_sysctl_mib *arg;
2810 	struct mvxpe_softc *sc;
2811 	struct sysctlnode node;
2812 	uint64_t val;
2813 	int err;
2814 
2815 	node = *rnode;
2816 	arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
2817 	if (arg == NULL)
2818 		return EINVAL;
2819 
2820 	sc = arg->sc;
2821 	if (sc == NULL)
2822 		return EINVAL;
2823 	if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
2824 		return EINVAL;
2825 
2826 	mvxpe_sc_lock(sc);
2827 	val = arg->counter;
2828 	mvxpe_sc_unlock(sc);
2829 
2830 	node.sysctl_data = &val;
2831 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
2832 	if (err)
2833 	       return err;
2834 	if (newp)
2835 		return EINVAL;
2836 
2837 	return 0;
2838 }
2839 
2840 
2841 STATIC int
2842 sysctl_clear_mib(SYSCTLFN_ARGS)
2843 {
2844 	struct mvxpe_softc *sc;
2845 	struct sysctlnode node;
2846 	int val;
2847 	int err;
2848 
2849 	node = *rnode;
2850 	sc = (struct mvxpe_softc *)rnode->sysctl_data;
2851 	if (sc == NULL)
2852 		return EINVAL;
2853 
2854 	val = 0;
2855 	node.sysctl_data = &val;
2856 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
2857 	if (err || newp == NULL)
2858 		return err;
2859 	if (val < 0 || val > 1)
2860 		return EINVAL;
2861 	if (val == 1) {
2862 		mvxpe_sc_lock(sc);
2863 		mvxpe_clear_mib(sc);
2864 		mvxpe_sc_unlock(sc);
2865 	}
2866 
2867 	return 0;
2868 }
2869 
2870 STATIC int
2871 sysctl_set_queue_length(SYSCTLFN_ARGS)
2872 {
2873 	struct mvxpe_sysctl_queue *arg;
2874 	struct mvxpe_rx_ring *rx = NULL;
2875 	struct mvxpe_tx_ring *tx = NULL;
2876 	struct mvxpe_softc *sc;
2877 	struct sysctlnode node;
2878 	uint32_t reg;
2879 	int val;
2880 	int err;
2881 
2882 	node = *rnode;
2883 
2884 	arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2885 	if (arg == NULL)
2886 		return EINVAL;
2887 	if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2888 		return EINVAL;
2889 	if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
2890 		return EINVAL;
2891 
2892 	sc = arg->sc;
2893 	if (sc == NULL)
2894 		return EINVAL;
2895 
2896 	/* read queue length */
2897 	mvxpe_sc_lock(sc);
2898 	switch (arg->rxtx) {
2899 	case  MVXPE_SYSCTL_RX:
2900 		mvxpe_rx_lockq(sc, arg->queue);
2901 		rx = MVXPE_RX_RING(sc, arg->queue);
2902 		val = rx->rx_queue_len;
2903 		mvxpe_rx_unlockq(sc, arg->queue);
2904 		break;
2905 	case  MVXPE_SYSCTL_TX:
2906 		mvxpe_tx_lockq(sc, arg->queue);
2907 		tx = MVXPE_TX_RING(sc, arg->queue);
2908 		val = tx->tx_queue_len;
2909 		mvxpe_tx_unlockq(sc, arg->queue);
2910 		break;
2911 	}
2912 
2913 	node.sysctl_data = &val;
2914 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
2915 	if (err || newp == NULL) {
2916 		mvxpe_sc_unlock(sc);
2917 		return err;
2918 	}
2919 
2920 	/* update queue length */
2921 	if (val < 8 || val > MVXPE_RX_RING_CNT) {
2922 		mvxpe_sc_unlock(sc);
2923 		return EINVAL;
2924 	}
2925 	switch (arg->rxtx) {
2926 	case  MVXPE_SYSCTL_RX:
2927 		mvxpe_rx_lockq(sc, arg->queue);
2928 		rx->rx_queue_len = val;
2929 		rx->rx_queue_th_received =
2930 		    rx->rx_queue_len / MVXPE_RXTH_RATIO;
2931 		rx->rx_queue_th_free =
2932 		    rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
2933 
2934 		reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
2935 		reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
2936 		MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
2937 
2938 		mvxpe_rx_unlockq(sc, arg->queue);
2939 		break;
2940 	case  MVXPE_SYSCTL_TX:
2941 		mvxpe_tx_lockq(sc, arg->queue);
2942 		tx->tx_queue_len = val;
2943 		tx->tx_queue_th_free =
2944 		    tx->tx_queue_len / MVXPE_TXTH_RATIO;
2945 
2946 		reg  = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
2947 		reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
2948 		MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
2949 
2950 		mvxpe_tx_unlockq(sc, arg->queue);
2951 		break;
2952 	}
2953 	mvxpe_sc_unlock(sc);
2954 
2955 	return 0;
2956 }
2957 
2958 STATIC int
2959 sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
2960 {
2961 	struct mvxpe_sysctl_queue *arg;
2962 	struct mvxpe_rx_ring *rx = NULL;
2963 	struct mvxpe_softc *sc;
2964 	struct sysctlnode node;
2965 	extern uint32_t mvTclk;
2966 	uint32_t reg, time_mvtclk;
2967 	int time_us;
2968 	int err;
2969 
2970 	node = *rnode;
2971 
2972 	arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2973 	if (arg == NULL)
2974 		return EINVAL;
2975 	if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2976 		return EINVAL;
2977 	if (arg->rxtx != MVXPE_SYSCTL_RX)
2978 		return EINVAL;
2979 
2980 	sc = arg->sc;
2981 	if (sc == NULL)
2982 		return EINVAL;
2983 
2984 	/* read queue length */
2985 	mvxpe_sc_lock(sc);
2986 	mvxpe_rx_lockq(sc, arg->queue);
2987 	rx = MVXPE_RX_RING(sc, arg->queue);
2988 	time_mvtclk = rx->rx_queue_th_time;
2989 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
2990 	node.sysctl_data = &time_us;
2991 	DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
2992 	    arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
2993 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
2994 	if (err || newp == NULL) {
2995 		mvxpe_rx_unlockq(sc, arg->queue);
2996 		mvxpe_sc_unlock(sc);
2997 		return err;
2998 	}
2999 
3000 	/* update queue length (0[sec] - 1[sec]) */
3001 	if (time_us < 0 || time_us > (1000 * 1000)) {
3002 		mvxpe_rx_unlockq(sc, arg->queue);
3003 		mvxpe_sc_unlock(sc);
3004 		return EINVAL;
3005 	}
3006 	time_mvtclk =
3007 	    (uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
3008 	rx->rx_queue_th_time = time_mvtclk;
3009 	reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
3010 	MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
3011 	DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
3012 	mvxpe_rx_unlockq(sc, arg->queue);
3013 	mvxpe_sc_unlock(sc);
3014 
3015 	return 0;
3016 }
3017 
3018 
3019 STATIC void
3020 sysctl_mvxpe_init(struct mvxpe_softc *sc)
3021 {
3022 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3023 	const struct sysctlnode *node;
3024 	int mvxpe_nodenum;
3025 	int mvxpe_mibnum;
3026 	int mvxpe_rxqueuenum;
3027 	int mvxpe_txqueuenum;
3028 	int q, i;
3029 
3030 	/* hw.mvxpe.mvxpe[unit] */
3031 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3032 	    0, CTLTYPE_NODE, ifp->if_xname,
3033 	    SYSCTL_DESCR("mvxpe per-controller controls"),
3034 	    NULL, 0, NULL, 0,
3035 	    CTL_HW, mvxpe_root_num, CTL_CREATE,
3036 	    CTL_EOL) != 0) {
3037 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3038 		return;
3039 	}
3040 	mvxpe_nodenum = node->sysctl_num;
3041 
3042 	/* hw.mvxpe.mvxpe[unit].mib */
3043 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3044 	    0, CTLTYPE_NODE, "mib",
3045 	    SYSCTL_DESCR("mvxpe per-controller MIB counters"),
3046 	    NULL, 0, NULL, 0,
3047 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3048 	    CTL_EOL) != 0) {
3049 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3050 		return;
3051 	}
3052 	mvxpe_mibnum = node->sysctl_num;
3053 
3054 	/* hw.mvxpe.mvxpe[unit].rx */
3055 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3056 	    0, CTLTYPE_NODE, "rx",
3057 	    SYSCTL_DESCR("Rx Queues"),
3058 	    NULL, 0, NULL, 0,
3059 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3060 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3061 		return;
3062 	}
3063 	mvxpe_rxqueuenum = node->sysctl_num;
3064 
3065 	/* hw.mvxpe.mvxpe[unit].tx */
3066 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3067 	    0, CTLTYPE_NODE, "tx",
3068 	    SYSCTL_DESCR("Tx Queues"),
3069 	    NULL, 0, NULL, 0,
3070 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3071 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3072 		return;
3073 	}
3074 	mvxpe_txqueuenum = node->sysctl_num;
3075 
3076 #ifdef MVXPE_DEBUG
3077 	/* hw.mvxpe.debug */
3078 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3079 	    CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
3080 	    SYSCTL_DESCR("mvxpe device driver debug control"),
3081 	    NULL, 0, &mvxpe_debug, 0,
3082 	    CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
3083 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3084 		return;
3085 	}
3086 #endif
3087 	/*
3088 	 * MIB access
3089 	 */
3090 	/* hw.mvxpe.mvxpe[unit].mib.<mibs> */
3091 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3092 		const char *name = mvxpe_mib_list[i].sysctl_name;
3093 		const char *desc = mvxpe_mib_list[i].desc;
3094 		struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
3095 
3096 		mib_arg->sc = sc;
3097 		mib_arg->index = i;
3098 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3099 		    CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
3100 		    sysctl_read_mib, 0, (void *)mib_arg, 0,
3101 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
3102 		    CTL_CREATE, CTL_EOL) != 0) {
3103 			aprint_normal_dev(sc->sc_dev,
3104 			    "couldn't create sysctl node\n");
3105 			break;
3106 		}
3107 	}
3108 
3109 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
3110 		struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
3111 		struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
3112 #define MVXPE_SYSCTL_NAME(num) "queue" # num
3113 		static const char *sysctl_queue_names[] = {
3114 			MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
3115 			MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
3116 			MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
3117 			MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
3118 		};
3119 #undef MVXPE_SYSCTL_NAME
3120 #ifdef SYSCTL_INCLUDE_DESCR
3121 #define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3122 		static const char *sysctl_queue_descrs[] = {
3123 			MVXPE_SYSCTL_DESCR(0), MVXPE_SYSCTL_DESCR(1),
3124 			MVXPE_SYSCTL_DESCR(2), MVXPE_SYSCTL_DESCR(3),
3125 			MVXPE_SYSCTL_DESCR(4), MVXPE_SYSCTL_DESCR(5),
3126 			MVXPE_SYSCTL_DESCR(6), MVXPE_SYSCTL_DESCR(7),
3127 		};
3128 #undef MVXPE_SYSCTL_DESCR
3129 #endif /* SYSCTL_INCLUDE_DESCR */
3130 		int mvxpe_curnum;
3131 
3132 		rxarg->sc = txarg->sc = sc;
3133 		rxarg->queue = txarg->queue = q;
3134 		rxarg->rxtx = MVXPE_SYSCTL_RX;
3135 		txarg->rxtx = MVXPE_SYSCTL_TX;
3136 
3137 		/* hw.mvxpe.mvxpe[unit].rx.[queue] */
3138 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3139 		    0, CTLTYPE_NODE,
3140 		    sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
3141 		    NULL, 0, NULL, 0,
3142 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3143 		    CTL_CREATE, CTL_EOL) != 0) {
3144 			aprint_normal_dev(sc->sc_dev,
3145 			    "couldn't create sysctl node\n");
3146 			break;
3147 		}
3148 		mvxpe_curnum = node->sysctl_num;
3149 
3150 		/* hw.mvxpe.mvxpe[unit].rx.[queue].length */
3151 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3152 		    CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3153 		    SYSCTL_DESCR("maximum length of the queue"),
3154 		    sysctl_set_queue_length, 0, (void *)rxarg, 0,
3155 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3156 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3157 			aprint_normal_dev(sc->sc_dev,
3158 			    "couldn't create sysctl node\n");
3159 			break;
3160 		}
3161 
3162 		/* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
3163 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3164 		    CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
3165 		    SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
3166 		    sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
3167 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3168 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3169 			aprint_normal_dev(sc->sc_dev,
3170 			    "couldn't create sysctl node\n");
3171 			break;
3172 		}
3173 
3174 		/* hw.mvxpe.mvxpe[unit].tx.[queue] */
3175 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3176 		    0, CTLTYPE_NODE,
3177 		    sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
3178 		    NULL, 0, NULL, 0,
3179 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3180 		    CTL_CREATE, CTL_EOL) != 0) {
3181 			aprint_normal_dev(sc->sc_dev,
3182 			    "couldn't create sysctl node\n");
3183 			break;
3184 		}
3185 		mvxpe_curnum = node->sysctl_num;
3186 
3187 		/* hw.mvxpe.mvxpe[unit].tx.length[queue] */
3188 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3189 		    CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3190 		    SYSCTL_DESCR("maximum length of the queue"),
3191 		    sysctl_set_queue_length, 0, (void *)txarg, 0,
3192 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3193 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3194 			aprint_normal_dev(sc->sc_dev,
3195 			    "couldn't create sysctl node\n");
3196 			break;
3197 		}
3198 	}
3199 
3200 	/* hw.mvxpe.mvxpe[unit].clear_mib */
3201 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3202 	    CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
3203 	    SYSCTL_DESCR("mvxpe device driver debug control"),
3204 	    sysctl_clear_mib, 0, (void *)sc, 0,
3205 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3206 	    CTL_EOL) != 0) {
3207 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3208 		return;
3209 	}
3210 
3211 }
3212 
3213 /*
3214  * MIB
3215  */
3216 STATIC void
3217 mvxpe_clear_mib(struct mvxpe_softc *sc)
3218 {
3219 	int i;
3220 
3221 	KASSERT_SC_MTX(sc);
3222 
3223 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3224 		if (mvxpe_mib_list[i].reg64)
3225 			MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
3226 		MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3227 		sc->sc_sysctl_mib[i].counter = 0;
3228 	}
3229 }
3230 
3231 STATIC void
3232 mvxpe_update_mib(struct mvxpe_softc *sc)
3233 {
3234 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3235 	int i;
3236 
3237 	KASSERT_SC_MTX(sc);
3238 
3239 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3240 		uint32_t val_hi;
3241 		uint32_t val_lo;
3242 		uint64_t val;
3243 
3244 		if (mvxpe_mib_list[i].reg64) {
3245 			/* XXX: implement bus_space_read_8() */
3246 			val_lo = MVXPE_READ_MIB(sc,
3247 			    (mvxpe_mib_list[i].regnum + 4));
3248 			val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3249 		}
3250 		else {
3251 			val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3252 			val_hi = 0;
3253 		}
3254 
3255 		if ((val_lo | val_hi) == 0)
3256 			continue;
3257 
3258 		val = ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
3259 		sc->sc_sysctl_mib[i].counter += val;
3260 
3261 		switch (mvxpe_mib_list[i].ext) {
3262 		case MVXPE_MIBEXT_IF_OERRORS:
3263 			ifp->if_oerrors += val;
3264 			break;
3265 		case MVXPE_MIBEXT_IF_IERRORS:
3266 			ifp->if_ierrors += val;
3267 			break;
3268 		case MVXPE_MIBEXT_IF_COLLISIONS:
3269 			ifp->if_collisions += val;
3270 			break;
3271 		default:
3272 			break;
3273 		}
3274 
3275 	}
3276 }
3277 
3278 /*
3279  * for Debug
3280  */
3281 STATIC void
3282 mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
3283 {
3284 #define DESC_PRINT(X)					\
3285 	if (X)						\
3286 		printf("txdesc[%d]." #X "=%#x\n", idx, X);
3287 
3288        DESC_PRINT(desc->command);
3289        DESC_PRINT(desc->l4ichk);
3290        DESC_PRINT(desc->bytecnt);
3291        DESC_PRINT(desc->bufptr);
3292        DESC_PRINT(desc->flags);
3293 #undef DESC_PRINT
3294 }
3295 
3296 STATIC void
3297 mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
3298 {
3299 #define DESC_PRINT(X)					\
3300 	if (X)						\
3301 		printf("rxdesc[%d]." #X "=%#x\n", idx, X);
3302 
3303        DESC_PRINT(desc->status);
3304        DESC_PRINT(desc->bytecnt);
3305        DESC_PRINT(desc->bufptr);
3306        DESC_PRINT(desc->l4chk);
3307 #undef DESC_PRINT
3308 }
3309