xref: /netbsd-src/sys/dev/marvell/if_mvxpe.c (revision 53b02e147d4ed531c0d2a5ca9b3e8026ba3e99b5)
1 /*	$NetBSD: if_mvxpe.c,v 1.37 2021/12/05 07:57:38 msaitoh Exp $	*/
2 /*
3  * Copyright (c) 2015 Internet Initiative Japan Inc.
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
19  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
21  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
23  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  * POSSIBILITY OF SUCH DAMAGE.
26  */
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: if_mvxpe.c,v 1.37 2021/12/05 07:57:38 msaitoh Exp $");
29 
30 #include "opt_multiprocessor.h"
31 
32 #include <sys/param.h>
33 #include <sys/bus.h>
34 #include <sys/callout.h>
35 #include <sys/device.h>
36 #include <sys/endian.h>
37 #include <sys/errno.h>
38 #include <sys/evcnt.h>
39 #include <sys/kernel.h>
40 #include <sys/kmem.h>
41 #include <sys/mutex.h>
42 #include <sys/sockio.h>
43 #include <sys/sysctl.h>
44 #include <sys/syslog.h>
45 #include <sys/rndsource.h>
46 
47 #include <net/if.h>
48 #include <net/if_ether.h>
49 #include <net/if_media.h>
50 #include <net/bpf.h>
51 
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/ip.h>
55 
56 #include <dev/mii/mii.h>
57 #include <dev/mii/miivar.h>
58 
59 #include <dev/marvell/marvellreg.h>
60 #include <dev/marvell/marvellvar.h>
61 #include <dev/marvell/mvxpbmvar.h>
62 #include <dev/marvell/if_mvxpereg.h>
63 #include <dev/marvell/if_mvxpevar.h>
64 
65 #include "locators.h"
66 
67 #if BYTE_ORDER == BIG_ENDIAN
68 #error "BIG ENDIAN not supported"
69 #endif
70 
71 #ifdef MVXPE_DEBUG
72 #define STATIC /* nothing */
73 #else
74 #define STATIC static
75 #endif
76 
77 /* autoconf(9) */
78 STATIC int mvxpe_match(device_t, struct cfdata *, void *);
79 STATIC void mvxpe_attach(device_t, device_t, void *);
80 STATIC int mvxpe_evcnt_attach(struct mvxpe_softc *);
81 CFATTACH_DECL_NEW(mvxpe_mbus, sizeof(struct mvxpe_softc),
82     mvxpe_match, mvxpe_attach, NULL, NULL);
83 STATIC void mvxpe_sc_lock(struct mvxpe_softc *);
84 STATIC void mvxpe_sc_unlock(struct mvxpe_softc *);
85 
86 /* MII */
87 STATIC int mvxpe_miibus_readreg(device_t, int, int, uint16_t *);
88 STATIC int mvxpe_miibus_writereg(device_t, int, int, uint16_t);
89 STATIC void mvxpe_miibus_statchg(struct ifnet *);
90 
91 /* Address Decoding Window */
92 STATIC void mvxpe_wininit(struct mvxpe_softc *, enum marvell_tags *);
93 
94 /* Device Register Initialization */
95 STATIC int mvxpe_initreg(struct ifnet *);
96 
97 /* Descriptor Ring Control for each of queues */
98 STATIC void *mvxpe_dma_memalloc(struct mvxpe_softc *, bus_dmamap_t *, size_t);
99 STATIC int mvxpe_ring_alloc_queue(struct mvxpe_softc *, int);
100 STATIC void mvxpe_ring_dealloc_queue(struct mvxpe_softc *, int);
101 STATIC void mvxpe_ring_init_queue(struct mvxpe_softc *, int);
102 STATIC void mvxpe_ring_flush_queue(struct mvxpe_softc *, int);
103 STATIC void mvxpe_ring_sync_rx(struct mvxpe_softc *, int, int, int, int);
104 STATIC void mvxpe_ring_sync_tx(struct mvxpe_softc *, int, int, int, int);
105 
106 /* Rx/Tx Queue Control */
107 STATIC int mvxpe_rx_queue_init(struct ifnet *, int);
108 STATIC int mvxpe_tx_queue_init(struct ifnet *, int);
109 STATIC int mvxpe_rx_queue_enable(struct ifnet *, int);
110 STATIC int mvxpe_tx_queue_enable(struct ifnet *, int);
111 STATIC void mvxpe_rx_lockq(struct mvxpe_softc *, int);
112 STATIC void mvxpe_rx_unlockq(struct mvxpe_softc *, int);
113 STATIC void mvxpe_tx_lockq(struct mvxpe_softc *, int);
114 STATIC void mvxpe_tx_unlockq(struct mvxpe_softc *, int);
115 
116 /* Interrupt Handlers */
117 STATIC void mvxpe_disable_intr(struct mvxpe_softc *);
118 STATIC void mvxpe_enable_intr(struct mvxpe_softc *);
119 STATIC int mvxpe_rxtxth_intr(void *);
120 STATIC int mvxpe_misc_intr(void *);
121 STATIC int mvxpe_rxtx_intr(void *);
122 STATIC void mvxpe_tick(void *);
123 
124 /* struct ifnet and mii callbacks*/
125 STATIC void mvxpe_start(struct ifnet *);
126 STATIC int mvxpe_ioctl(struct ifnet *, u_long, void *);
127 STATIC int mvxpe_init(struct ifnet *);
128 STATIC void mvxpe_stop(struct ifnet *, int);
129 STATIC void mvxpe_watchdog(struct ifnet *);
130 STATIC int mvxpe_ifflags_cb(struct ethercom *);
131 STATIC int mvxpe_mediachange(struct ifnet *);
132 STATIC void mvxpe_mediastatus(struct ifnet *, struct ifmediareq *);
133 
134 /* Link State Notify */
135 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc);
136 STATIC void mvxpe_linkup(struct mvxpe_softc *);
137 STATIC void mvxpe_linkdown(struct mvxpe_softc *);
138 STATIC void mvxpe_linkreset(struct mvxpe_softc *);
139 
140 /* Tx Subroutines */
141 STATIC int mvxpe_tx_queue_select(struct mvxpe_softc *, struct mbuf *);
142 STATIC int mvxpe_tx_queue(struct mvxpe_softc *, struct mbuf *, int);
143 STATIC void mvxpe_tx_set_csumflag(struct ifnet *,
144     struct mvxpe_tx_desc *, struct mbuf *);
145 STATIC void mvxpe_tx_complete(struct mvxpe_softc *, uint32_t);
146 STATIC void mvxpe_tx_queue_complete(struct mvxpe_softc *, int);
147 
148 /* Rx Subroutines */
149 STATIC void mvxpe_rx(struct mvxpe_softc *, uint32_t);
150 STATIC void mvxpe_rx_queue(struct mvxpe_softc *, int, int);
151 STATIC int mvxpe_rx_queue_select(struct mvxpe_softc *, uint32_t, int *);
152 STATIC void mvxpe_rx_refill(struct mvxpe_softc *, uint32_t);
153 STATIC void mvxpe_rx_queue_refill(struct mvxpe_softc *, int);
154 STATIC int mvxpe_rx_queue_add(struct mvxpe_softc *, int);
155 STATIC void mvxpe_rx_set_csumflag(struct ifnet *,
156     struct mvxpe_rx_desc *, struct mbuf *);
157 
158 /* MAC address filter */
159 STATIC uint8_t mvxpe_crc8(const uint8_t *, size_t);
160 STATIC void mvxpe_filter_setup(struct mvxpe_softc *);
161 
162 /* sysctl(9) */
163 STATIC int sysctl_read_mib(SYSCTLFN_PROTO);
164 STATIC int sysctl_clear_mib(SYSCTLFN_PROTO);
165 STATIC int sysctl_set_queue_length(SYSCTLFN_PROTO);
166 STATIC int sysctl_set_queue_rxthtime(SYSCTLFN_PROTO);
167 STATIC void sysctl_mvxpe_init(struct mvxpe_softc *);
168 
169 /* MIB */
170 STATIC void mvxpe_clear_mib(struct mvxpe_softc *);
171 STATIC void mvxpe_update_mib(struct mvxpe_softc *);
172 
173 /* for Debug */
174 STATIC void mvxpe_dump_txdesc(struct mvxpe_tx_desc *, int) __attribute__((__unused__));
175 STATIC void mvxpe_dump_rxdesc(struct mvxpe_rx_desc *, int) __attribute__((__unused__));
176 
177 STATIC int mvxpe_root_num;
178 STATIC kmutex_t mii_mutex;
179 STATIC int mii_init = 0;
180 #ifdef MVXPE_DEBUG
181 STATIC int mvxpe_debug = MVXPE_DEBUG;
182 #endif
183 
184 /*
185  * List of MIB register and names
186  */
187 STATIC struct mvxpe_mib_def {
188 	uint32_t regnum;
189 	int reg64;
190 	const char *sysctl_name;
191 	const char *desc;
192 	int ext;
193 #define MVXPE_MIBEXT_IF_OERRORS	1
194 #define MVXPE_MIBEXT_IF_IERRORS	2
195 #define MVXPE_MIBEXT_IF_COLLISIONS	3
196 } mvxpe_mib_list[] = {
197 	{MVXPE_MIB_RX_GOOD_OCT, 1,	"rx_good_oct",
198 	    "Good Octets Rx", 0},
199 	{MVXPE_MIB_RX_BAD_OCT, 0,	"rx_bad_oct",
200 	    "Bad  Octets Rx", 0},
201 	{MVXPE_MIB_TX_MAC_TRNS_ERR, 0,	"tx_mac_err",
202 	    "MAC Transmit Error", MVXPE_MIBEXT_IF_OERRORS},
203 	{MVXPE_MIB_RX_GOOD_FRAME, 0,	"rx_good_frame",
204 	    "Good Frames Rx", 0},
205 	{MVXPE_MIB_RX_BAD_FRAME, 0,	"rx_bad_frame",
206 	    "Bad Frames Rx", 0},
207 	{MVXPE_MIB_RX_BCAST_FRAME, 0,	"rx_bcast_frame",
208 	    "Broadcast Frames Rx", 0},
209 	{MVXPE_MIB_RX_MCAST_FRAME, 0,	"rx_mcast_frame",
210 	    "Multicast Frames Rx", 0},
211 	{MVXPE_MIB_RX_FRAME64_OCT, 0,	"rx_frame_1_64",
212 	    "Frame Size    1 -   64", 0},
213 	{MVXPE_MIB_RX_FRAME127_OCT, 0,	"rx_frame_65_127",
214 	    "Frame Size   65 -  127", 0},
215 	{MVXPE_MIB_RX_FRAME255_OCT, 0,	"rx_frame_128_255",
216 	    "Frame Size  128 -  255", 0},
217 	{MVXPE_MIB_RX_FRAME511_OCT, 0,	"rx_frame_256_511",
218 	    "Frame Size  256 -  511"},
219 	{MVXPE_MIB_RX_FRAME1023_OCT, 0,	"rx_frame_512_1023",
220 	    "Frame Size  512 - 1023", 0},
221 	{MVXPE_MIB_RX_FRAMEMAX_OCT, 0,	"rx_frame_1024_max",
222 	    "Frame Size 1024 -  Max", 0},
223 	{MVXPE_MIB_TX_GOOD_OCT, 1,	"tx_good_oct",
224 	    "Good Octets Tx", 0},
225 	{MVXPE_MIB_TX_GOOD_FRAME, 0,	"tx_good_frame",
226 	    "Good Frames Tx", 0},
227 	{MVXPE_MIB_TX_EXCES_COL, 0,	"tx_exces_collision",
228 	    "Excessive Collision", MVXPE_MIBEXT_IF_OERRORS},
229 	{MVXPE_MIB_TX_MCAST_FRAME, 0,	"tx_mcast_frame",
230 	    "Multicast Frames Tx"},
231 	{MVXPE_MIB_TX_BCAST_FRAME, 0,	"tx_bcast_frame",
232 	    "Broadcast Frames Tx"},
233 	{MVXPE_MIB_TX_MAC_CTL_ERR, 0,	"tx_mac_err",
234 	    "Unknown MAC Control", 0},
235 	{MVXPE_MIB_FC_SENT, 0,		"fc_tx",
236 	    "Flow Control Tx", 0},
237 	{MVXPE_MIB_FC_GOOD, 0,		"fc_rx_good",
238 	    "Good Flow Control Rx", 0},
239 	{MVXPE_MIB_FC_BAD, 0,		"fc_rx_bad",
240 	    "Bad Flow Control Rx", 0},
241 	{MVXPE_MIB_PKT_UNDERSIZE, 0,	"pkt_undersize",
242 	    "Undersized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
243 	{MVXPE_MIB_PKT_FRAGMENT, 0,	"pkt_fragment",
244 	    "Fragmented Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
245 	{MVXPE_MIB_PKT_OVERSIZE, 0,	"pkt_oversize",
246 	    "Oversized Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
247 	{MVXPE_MIB_PKT_JABBER, 0,	"pkt_jabber",
248 	    "Jabber Packets Rx", MVXPE_MIBEXT_IF_IERRORS},
249 	{MVXPE_MIB_MAC_RX_ERR, 0,	"mac_rx_err",
250 	    "MAC Rx Errors", MVXPE_MIBEXT_IF_IERRORS},
251 	{MVXPE_MIB_MAC_CRC_ERR, 0,	"mac_crc_err",
252 	    "MAC CRC Errors", MVXPE_MIBEXT_IF_IERRORS},
253 	{MVXPE_MIB_MAC_COL, 0,		"mac_collision",
254 	    "MAC Collision", MVXPE_MIBEXT_IF_COLLISIONS},
255 	{MVXPE_MIB_MAC_LATE_COL, 0,	"mac_late_collision",
256 	    "MAC Late Collision", MVXPE_MIBEXT_IF_OERRORS},
257 };
258 
259 /*
260  * autoconf(9)
261  */
262 /* ARGSUSED */
263 STATIC int
264 mvxpe_match(device_t parent, cfdata_t match, void *aux)
265 {
266 	struct marvell_attach_args *mva = aux;
267 	bus_size_t pv_off;
268 	uint32_t pv;
269 
270 	if (strcmp(mva->mva_name, match->cf_name) != 0)
271 		return 0;
272 	if (mva->mva_offset == MVA_OFFSET_DEFAULT)
273 		return 0;
274 
275 	/* check port version */
276 	pv_off = mva->mva_offset + MVXPE_PV;
277 	pv = bus_space_read_4(mva->mva_iot, mva->mva_ioh, pv_off);
278 	if (MVXPE_PV_GET_VERSION(pv) < 0x10)
279 		return 0; /* old version is not supported */
280 
281 	return 1;
282 }
283 
284 /* ARGSUSED */
285 STATIC void
286 mvxpe_attach(device_t parent, device_t self, void *aux)
287 {
288 	struct mvxpe_softc *sc = device_private(self);
289 	struct mii_softc *child;
290 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
291 	struct mii_data * const mii = &sc->sc_mii;
292 	struct marvell_attach_args *mva = aux;
293 	prop_dictionary_t dict;
294 	prop_data_t enaddrp = NULL;
295 	uint32_t phyaddr, maddrh, maddrl;
296 	uint8_t enaddr[ETHER_ADDR_LEN];
297 	int q;
298 
299 	aprint_naive("\n");
300 	aprint_normal(": Marvell ARMADA GbE Controller\n");
301 	memset(sc, 0, sizeof(*sc));
302 	sc->sc_dev = self;
303 	sc->sc_port = mva->mva_unit;
304 	sc->sc_iot = mva->mva_iot;
305 	sc->sc_dmat = mva->mva_dmat;
306 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
307 	callout_init(&sc->sc_tick_ch, 0);
308 	callout_setfunc(&sc->sc_tick_ch, mvxpe_tick, sc);
309 
310 	/*
311 	 * BUS space
312 	 */
313 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
314 	    mva->mva_offset, mva->mva_size, &sc->sc_ioh)) {
315 		aprint_error_dev(self, "Cannot map registers\n");
316 		goto fail;
317 	}
318 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
319 	    mva->mva_offset + MVXPE_PORTMIB_BASE, MVXPE_PORTMIB_SIZE,
320 	    &sc->sc_mibh)) {
321 		aprint_error_dev(self,
322 		    "Cannot map destination address filter registers\n");
323 		goto fail;
324 	}
325 	sc->sc_version = MVXPE_READ(sc, MVXPE_PV);
326 	aprint_normal_dev(self, "Port Version %#x\n", sc->sc_version);
327 
328 	/*
329 	 * Buffer Manager(BM) subsystem.
330 	 */
331 	sc->sc_bm = mvxpbm_device(mva);
332 	if (sc->sc_bm == NULL) {
333 		aprint_error_dev(self, "no Buffer Manager.\n");
334 		goto fail;
335 	}
336 	aprint_normal_dev(self,
337 	    "Using Buffer Manager: %s\n", mvxpbm_xname(sc->sc_bm));
338 	aprint_normal_dev(sc->sc_dev,
339 	    "%zu kbytes managed buffer, %zu bytes * %u entries allocated.\n",
340 	    mvxpbm_buf_size(sc->sc_bm) / 1024,
341 	    mvxpbm_chunk_size(sc->sc_bm), mvxpbm_chunk_count(sc->sc_bm));
342 
343 	/*
344 	 * make sure DMA engines are in reset state
345 	 */
346 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
347 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
348 
349 	/*
350 	 * Address decoding window
351 	 */
352 	mvxpe_wininit(sc, mva->mva_tags);
353 
354 	/*
355 	 * MAC address
356 	 */
357 	dict = device_properties(self);
358 	if (dict)
359 		enaddrp = prop_dictionary_get(dict, "mac-address");
360 	if (enaddrp) {
361 		memcpy(enaddr, prop_data_data_nocopy(enaddrp), ETHER_ADDR_LEN);
362 		maddrh  = enaddr[0] << 24;
363 		maddrh |= enaddr[1] << 16;
364 		maddrh |= enaddr[2] << 8;
365 		maddrh |= enaddr[3];
366 		maddrl  = enaddr[4] << 8;
367 		maddrl |= enaddr[5];
368 		MVXPE_WRITE(sc, MVXPE_MACAH, maddrh);
369 		MVXPE_WRITE(sc, MVXPE_MACAL, maddrl);
370 	}
371 	else {
372 		/*
373 		 * even if enaddr is not found in dictionary,
374 		 * the port may be initialized by IPL program such as U-BOOT.
375 		 */
376 		maddrh = MVXPE_READ(sc, MVXPE_MACAH);
377 		maddrl = MVXPE_READ(sc, MVXPE_MACAL);
378 		if ((maddrh | maddrl) == 0) {
379 			aprint_error_dev(self, "No Ethernet address\n");
380 			return;
381 		}
382 	}
383 	sc->sc_enaddr[0] = maddrh >> 24;
384 	sc->sc_enaddr[1] = maddrh >> 16;
385 	sc->sc_enaddr[2] = maddrh >> 8;
386 	sc->sc_enaddr[3] = maddrh >> 0;
387 	sc->sc_enaddr[4] = maddrl >> 8;
388 	sc->sc_enaddr[5] = maddrl >> 0;
389 	aprint_normal_dev(self, "Ethernet address %s\n",
390 	    ether_sprintf(sc->sc_enaddr));
391 
392 	/*
393 	 * Register interrupt handlers
394 	 * XXX: handle Ethernet unit intr. and Error intr.
395 	 */
396 	mvxpe_disable_intr(sc);
397 	marvell_intr_establish(mva->mva_irq, IPL_NET, mvxpe_rxtxth_intr, sc);
398 
399 	/*
400 	 * MIB buffer allocation
401 	 */
402 	sc->sc_sysctl_mib_size =
403 	    __arraycount(mvxpe_mib_list) * sizeof(struct mvxpe_sysctl_mib);
404 	sc->sc_sysctl_mib = kmem_alloc(sc->sc_sysctl_mib_size, KM_SLEEP);
405 	memset(sc->sc_sysctl_mib, 0, sc->sc_sysctl_mib_size);
406 
407 	/*
408 	 * Device DMA Buffer allocation
409 	 */
410 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
411 		if (mvxpe_ring_alloc_queue(sc, q) != 0)
412 			goto fail;
413 		mvxpe_ring_init_queue(sc, q);
414 	}
415 
416 	/*
417 	 * We can support 802.1Q VLAN-sized frames and jumbo
418 	 * Ethernet frames.
419 	 */
420 	sc->sc_ethercom.ec_capabilities |=
421 	    ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
422 	ifp->if_softc = sc;
423 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
424 	ifp->if_start = mvxpe_start;
425 	ifp->if_ioctl = mvxpe_ioctl;
426 	ifp->if_init = mvxpe_init;
427 	ifp->if_stop = mvxpe_stop;
428 	ifp->if_watchdog = mvxpe_watchdog;
429 
430 	/*
431 	 * We can do IPv4/TCPv4/UDPv4/TCPv6/UDPv6 checksums in hardware.
432 	 */
433 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx;
434 	ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx;
435 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
436 	ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
437 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Tx;
438 	ifp->if_capabilities |= IFCAP_CSUM_UDPv4_Rx;
439 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Tx;
440 	ifp->if_capabilities |= IFCAP_CSUM_TCPv6_Rx;
441 	ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Tx;
442 	ifp->if_capabilities |= IFCAP_CSUM_UDPv6_Rx;
443 
444 	/*
445 	 * Initialize struct ifnet
446 	 */
447 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(MVXPE_TX_RING_CNT - 1, IFQ_MAXLEN));
448 	IFQ_SET_READY(&ifp->if_snd);
449 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), sizeof(ifp->if_xname));
450 
451 	/*
452 	 * Enable DMA engines and Initiazlie Device Registers.
453 	 */
454 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
455 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
456 	MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
457 	mvxpe_sc_lock(sc); /* XXX */
458 	mvxpe_filter_setup(sc);
459 	mvxpe_sc_unlock(sc);
460 	mvxpe_initreg(ifp);
461 
462 	/*
463 	 * Now MAC is working, setup MII.
464 	 */
465 	if (mii_init == 0) {
466 		/*
467 		 * MII bus is shared by all MACs and all PHYs in SoC.
468 		 * serializing the bus access should be safe.
469 		 */
470 		mutex_init(&mii_mutex, MUTEX_DEFAULT, IPL_NET);
471 		mii_init = 1;
472 	}
473 	mii->mii_ifp = ifp;
474 	mii->mii_readreg = mvxpe_miibus_readreg;
475 	mii->mii_writereg = mvxpe_miibus_writereg;
476 	mii->mii_statchg = mvxpe_miibus_statchg;
477 
478 	sc->sc_ethercom.ec_mii = mii;
479 	ifmedia_init(&mii->mii_media, 0, mvxpe_mediachange, mvxpe_mediastatus);
480 	/*
481 	 * XXX: phy addressing highly depends on Board Design.
482 	 * we assume phyaddress == MAC unit number here,
483 	 * but some boards may not.
484 	 */
485 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, sc->sc_dev->dv_unit, 0);
486 	child = LIST_FIRST(&mii->mii_phys);
487 	if (child == NULL) {
488 		aprint_error_dev(self, "no PHY found!\n");
489 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
490 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
491 	} else {
492 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
493 		phyaddr = MVXPE_PHYADDR_PHYAD(child->mii_phy);
494 		MVXPE_WRITE(sc, MVXPE_PHYADDR, phyaddr);
495 		DPRINTSC(sc, 1, "PHYADDR: %#x\n", MVXPE_READ(sc, MVXPE_PHYADDR));
496 	}
497 
498 	/*
499 	 * Call MI attach routines.
500 	 */
501 	if_attach(ifp);
502 	if_deferred_start_init(ifp, NULL);
503 
504 	ether_ifattach(ifp, sc->sc_enaddr);
505 	ether_set_ifflags_cb(&sc->sc_ethercom, mvxpe_ifflags_cb);
506 
507 	sysctl_mvxpe_init(sc);
508 	mvxpe_evcnt_attach(sc);
509 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
510 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
511 
512 	return;
513 
514 fail:
515 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++)
516 		mvxpe_ring_dealloc_queue(sc, q);
517 	if (sc->sc_sysctl_mib)
518 		kmem_free(sc->sc_sysctl_mib, sc->sc_sysctl_mib_size);
519 
520 	return;
521 }
522 
523 STATIC int
524 mvxpe_evcnt_attach(struct mvxpe_softc *sc)
525 {
526 #ifdef MVXPE_EVENT_COUNTERS
527 	int q;
528 
529 	/* Master Interrupt Handler */
530 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtxth, EVCNT_TYPE_INTR,
531 	    NULL, device_xname(sc->sc_dev), "RxTxTH Intr.");
532 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_rxtx, EVCNT_TYPE_INTR,
533 	    NULL, device_xname(sc->sc_dev), "RxTx Intr.");
534 	evcnt_attach_dynamic(&sc->sc_ev.ev_i_misc, EVCNT_TYPE_INTR,
535 	    NULL, device_xname(sc->sc_dev), "MISC Intr.");
536 
537 	/* RXTXTH Interrupt */
538 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtxth_txerr, EVCNT_TYPE_INTR,
539 	    NULL, device_xname(sc->sc_dev), "RxTxTH Tx error summary");
540 
541 	/* MISC Interrupt */
542 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_phystatuschng, EVCNT_TYPE_INTR,
543 	    NULL, device_xname(sc->sc_dev), "MISC phy status changed");
544 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_linkchange, EVCNT_TYPE_INTR,
545 	    NULL, device_xname(sc->sc_dev), "MISC link status changed");
546 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_iae, EVCNT_TYPE_INTR,
547 	    NULL, device_xname(sc->sc_dev), "MISC internal address error");
548 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxoverrun, EVCNT_TYPE_INTR,
549 	    NULL, device_xname(sc->sc_dev), "MISC Rx FIFO overrun");
550 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxcrc, EVCNT_TYPE_INTR,
551 	    NULL, device_xname(sc->sc_dev), "MISC Rx CRC error");
552 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_rxlargepacket, EVCNT_TYPE_INTR,
553 	    NULL, device_xname(sc->sc_dev), "MISC Rx too large frame");
554 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txunderrun, EVCNT_TYPE_INTR,
555 	    NULL, device_xname(sc->sc_dev), "MISC Tx FIFO underrun");
556 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_prbserr, EVCNT_TYPE_INTR,
557 	    NULL, device_xname(sc->sc_dev), "MISC SERDES loopback test err");
558 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_srse, EVCNT_TYPE_INTR,
559 	    NULL, device_xname(sc->sc_dev), "MISC SERDES sync error");
560 	evcnt_attach_dynamic(&sc->sc_ev.ev_misc_txreq, EVCNT_TYPE_INTR,
561 	    NULL, device_xname(sc->sc_dev), "MISC Tx resource error");
562 
563 	/* RxTx Interrupt */
564 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rreq, EVCNT_TYPE_INTR,
565 	    NULL, device_xname(sc->sc_dev), "RxTx Rx resource error");
566 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rpq, EVCNT_TYPE_INTR,
567 	    NULL, device_xname(sc->sc_dev), "RxTx Rx packet");
568 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_tbrq, EVCNT_TYPE_INTR,
569 	    NULL, device_xname(sc->sc_dev), "RxTx Tx complete");
570 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_rxtxth, EVCNT_TYPE_INTR,
571 	    NULL, device_xname(sc->sc_dev), "RxTx RxTxTH summary");
572 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_txerr, EVCNT_TYPE_INTR,
573 	    NULL, device_xname(sc->sc_dev), "RxTx Tx error summary");
574 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxtx_misc, EVCNT_TYPE_INTR,
575 	    NULL, device_xname(sc->sc_dev), "RxTx MISC summary");
576 
577 	/* Link */
578 	evcnt_attach_dynamic(&sc->sc_ev.ev_link_up, EVCNT_TYPE_MISC,
579 	    NULL, device_xname(sc->sc_dev), "link up");
580 	evcnt_attach_dynamic(&sc->sc_ev.ev_link_down, EVCNT_TYPE_MISC,
581 	    NULL, device_xname(sc->sc_dev), "link down");
582 
583 	/* Rx Descriptor */
584 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_ce, EVCNT_TYPE_MISC,
585 	    NULL, device_xname(sc->sc_dev), "Rx CRC error counter");
586 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_or, EVCNT_TYPE_MISC,
587 	    NULL, device_xname(sc->sc_dev), "Rx FIFO overrun counter");
588 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_mf, EVCNT_TYPE_MISC,
589 	    NULL, device_xname(sc->sc_dev), "Rx too large frame counter");
590 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_re, EVCNT_TYPE_MISC,
591 	    NULL, device_xname(sc->sc_dev), "Rx resource error counter");
592 	evcnt_attach_dynamic(&sc->sc_ev.ev_rxd_scat, EVCNT_TYPE_MISC,
593 	    NULL, device_xname(sc->sc_dev), "Rx unexpected scatter bufs");
594 
595 	/* Tx Descriptor */
596 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_lc, EVCNT_TYPE_MISC,
597 	    NULL, device_xname(sc->sc_dev), "Tx late collision counter");
598 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_rl, EVCNT_TYPE_MISC,
599 	    NULL, device_xname(sc->sc_dev), "Tx excess. collision counter");
600 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_ur, EVCNT_TYPE_MISC,
601 	    NULL, device_xname(sc->sc_dev), "Tx FIFO underrun counter");
602 	evcnt_attach_dynamic(&sc->sc_ev.ev_txd_oth, EVCNT_TYPE_MISC,
603 	    NULL, device_xname(sc->sc_dev), "Tx unknown error counter");
604 
605 	/* Status Registers */
606 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pdfc, EVCNT_TYPE_MISC,
607 	    NULL, device_xname(sc->sc_dev), "Rx discard counter");
608 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_pofc, EVCNT_TYPE_MISC,
609 	    NULL, device_xname(sc->sc_dev), "Rx overrun counter");
610 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txbadfcs, EVCNT_TYPE_MISC,
611 	    NULL, device_xname(sc->sc_dev), "Tx bad FCS counter");
612 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_txdropped, EVCNT_TYPE_MISC,
613 	    NULL, device_xname(sc->sc_dev), "Tx dropped counter");
614 	evcnt_attach_dynamic(&sc->sc_ev.ev_reg_lpic, EVCNT_TYPE_MISC,
615 	    NULL, device_xname(sc->sc_dev), "LP_IDLE counter");
616 
617 	/* Device Driver Errors */
618 	evcnt_attach_dynamic(&sc->sc_ev.ev_drv_wdogsoft, EVCNT_TYPE_MISC,
619 	    NULL, device_xname(sc->sc_dev), "watchdog timer expired");
620 	evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txerr, EVCNT_TYPE_MISC,
621 	    NULL, device_xname(sc->sc_dev), "Tx descriptor alloc failed");
622 #define MVXPE_QUEUE_DESC(q) "Rx success in queue " # q
623 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
624 		static const char *rxq_desc[] = {
625 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
626 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
627 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
628 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
629 		};
630 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxq[q], EVCNT_TYPE_MISC,
631 		    NULL, device_xname(sc->sc_dev), rxq_desc[q]);
632 	}
633 #undef MVXPE_QUEUE_DESC
634 #define MVXPE_QUEUE_DESC(q) "Tx success in queue " # q
635 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
636 		static const char *txq_desc[] = {
637 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
638 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
639 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
640 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
641 		};
642 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txq[q], EVCNT_TYPE_MISC,
643 		    NULL, device_xname(sc->sc_dev), txq_desc[q]);
644 	}
645 #undef MVXPE_QUEUE_DESC
646 #define MVXPE_QUEUE_DESC(q) "Rx error in queue " # q
647 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
648 		static const char *rxqe_desc[] = {
649 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
650 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
651 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
652 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
653 		};
654 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_rxqe[q], EVCNT_TYPE_MISC,
655 		    NULL, device_xname(sc->sc_dev), rxqe_desc[q]);
656 	}
657 #undef MVXPE_QUEUE_DESC
658 #define MVXPE_QUEUE_DESC(q) "Tx error in queue " # q
659 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
660 		static const char *txqe_desc[] = {
661 			MVXPE_QUEUE_DESC(0), MVXPE_QUEUE_DESC(1),
662 			MVXPE_QUEUE_DESC(2), MVXPE_QUEUE_DESC(3),
663 			MVXPE_QUEUE_DESC(4), MVXPE_QUEUE_DESC(5),
664 			MVXPE_QUEUE_DESC(6), MVXPE_QUEUE_DESC(7),
665 		};
666 		evcnt_attach_dynamic(&sc->sc_ev.ev_drv_txqe[q], EVCNT_TYPE_MISC,
667 		    NULL, device_xname(sc->sc_dev), txqe_desc[q]);
668 	}
669 #undef MVXPE_QUEUE_DESC
670 
671 #endif /* MVXPE_EVENT_COUNTERS */
672 	return 0;
673 }
674 
675 STATIC void
676 mvxpe_sc_lock(struct mvxpe_softc *sc)
677 {
678 	mutex_enter(&sc->sc_mtx);
679 }
680 
681 STATIC void
682 mvxpe_sc_unlock(struct mvxpe_softc *sc)
683 {
684 	mutex_exit(&sc->sc_mtx);
685 }
686 
687 /*
688  * MII
689  */
690 STATIC int
691 mvxpe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
692 {
693 	struct mvxpe_softc *sc = device_private(dev);
694 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
695 	uint32_t smi;
696 	int i, rv = 0;
697 
698 	mutex_enter(&mii_mutex);
699 
700 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
701 		DELAY(1);
702 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
703 			break;
704 	}
705 	if (i == MVXPE_PHY_TIMEOUT) {
706 		aprint_error_ifnet(ifp, "SMI busy timeout\n");
707 		rv = ETIMEDOUT;
708 		goto out;
709 	}
710 
711 	smi =
712 	    MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) | MVXPE_SMI_OPCODE_READ;
713 	MVXPE_WRITE(sc, MVXPE_SMI, smi);
714 
715 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
716 		DELAY(1);
717 		smi = MVXPE_READ(sc, MVXPE_SMI);
718 		if (smi & MVXPE_SMI_READVALID) {
719 			*val = smi & MVXPE_SMI_DATA_MASK;
720 			break;
721 		}
722 	}
723 	DPRINTDEV(dev, 9, "i=%d, timeout=%d\n", i, MVXPE_PHY_TIMEOUT);
724 	if (i >= MVXPE_PHY_TIMEOUT)
725 		rv = ETIMEDOUT;
726 
727 out:
728 	mutex_exit(&mii_mutex);
729 
730 	DPRINTDEV(dev, 9, "phy=%d, reg=%#x, val=%#hx\n", phy, reg, *val);
731 
732 	return rv;
733 }
734 
735 STATIC int
736 mvxpe_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
737 {
738 	struct mvxpe_softc *sc = device_private(dev);
739 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
740 	uint32_t smi;
741 	int i, rv = 0;
742 
743 	DPRINTDEV(dev, 9, "phy=%d reg=%#x val=%#hx\n", phy, reg, val);
744 
745 	mutex_enter(&mii_mutex);
746 
747 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
748 		DELAY(1);
749 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
750 			break;
751 	}
752 	if (i == MVXPE_PHY_TIMEOUT) {
753 		aprint_error_ifnet(ifp, "SMI busy timeout\n");
754 		rv = ETIMEDOUT;
755 		goto out;
756 	}
757 
758 	smi = MVXPE_SMI_PHYAD(phy) | MVXPE_SMI_REGAD(reg) |
759 	    MVXPE_SMI_OPCODE_WRITE | (val & MVXPE_SMI_DATA_MASK);
760 	MVXPE_WRITE(sc, MVXPE_SMI, smi);
761 
762 	for (i = 0; i < MVXPE_PHY_TIMEOUT; i++) {
763 		DELAY(1);
764 		if (!(MVXPE_READ(sc, MVXPE_SMI) & MVXPE_SMI_BUSY))
765 			break;
766 	}
767 
768 	if (i == MVXPE_PHY_TIMEOUT) {
769 		aprint_error_ifnet(ifp, "phy write timed out\n");
770 		rv = ETIMEDOUT;
771 	}
772 
773 out:
774 	mutex_exit(&mii_mutex);
775 
776 	return rv;
777 }
778 
779 STATIC void
780 mvxpe_miibus_statchg(struct ifnet *ifp)
781 {
782 
783 	/* nothing to do */
784 }
785 
786 /*
787  * Address Decoding Window
788  */
789 STATIC void
790 mvxpe_wininit(struct mvxpe_softc *sc, enum marvell_tags *tags)
791 {
792 	device_t pdev = device_parent(sc->sc_dev);
793 	uint64_t base;
794 	uint32_t en, ac, size;
795 	int window, target, attr, rv, i;
796 
797 	/* First disable all address decode windows */
798 	en = MVXPE_BARE_EN_MASK;
799 	MVXPE_WRITE(sc, MVXPE_BARE, en);
800 
801 	ac = 0;
802 	for (window = 0, i = 0;
803 	    tags[i] != MARVELL_TAG_UNDEFINED && window < MVXPE_NWINDOW; i++) {
804 		rv = marvell_winparams_by_tag(pdev, tags[i],
805 		    &target, &attr, &base, &size);
806 		if (rv != 0 || size == 0)
807 			continue;
808 
809 		if (base > 0xffffffffULL) {
810 			if (window >= MVXPE_NREMAP) {
811 				aprint_error_dev(sc->sc_dev,
812 				    "can't remap window %d\n", window);
813 				continue;
814 			}
815 			MVXPE_WRITE(sc, MVXPE_HA(window),
816 			    (base >> 32) & 0xffffffff);
817 		}
818 
819 		MVXPE_WRITE(sc, MVXPE_BASEADDR(window),
820 		    MVXPE_BASEADDR_TARGET(target)	|
821 		    MVXPE_BASEADDR_ATTR(attr)		|
822 		    MVXPE_BASEADDR_BASE(base));
823 		MVXPE_WRITE(sc, MVXPE_S(window), MVXPE_S_SIZE(size));
824 
825 		DPRINTSC(sc, 1, "Window %d Base 0x%016llx: Size 0x%08x\n",
826 				window, base, size);
827 
828 		en &= ~(1 << window);
829 		/* set full access (r/w) */
830 		ac |= MVXPE_EPAP_EPAR(window, MVXPE_EPAP_AC_FA);
831 		window++;
832 	}
833 	/* allow to access decode window */
834 	MVXPE_WRITE(sc, MVXPE_EPAP, ac);
835 
836 	MVXPE_WRITE(sc, MVXPE_BARE, en);
837 }
838 
839 /*
840  * Device Register Initialization
841  *  reset device registers to device driver default value.
842  *  the device is not enabled here.
843  */
844 STATIC int
845 mvxpe_initreg(struct ifnet *ifp)
846 {
847 	struct mvxpe_softc *sc = ifp->if_softc;
848 	int serdes = 0;
849 	uint32_t reg;
850 	int q, i;
851 
852 	DPRINTIFNET(ifp, 1, "initializing device register\n");
853 
854 	/* Init TX/RX Queue Registers */
855 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
856 		mvxpe_rx_lockq(sc, q);
857 		if (mvxpe_rx_queue_init(ifp, q) != 0) {
858 			aprint_error_ifnet(ifp,
859 			    "initialization failed: cannot initialize queue\n");
860 			mvxpe_rx_unlockq(sc, q);
861 			return ENOBUFS;
862 		}
863 		mvxpe_rx_unlockq(sc, q);
864 
865 		mvxpe_tx_lockq(sc, q);
866 		if (mvxpe_tx_queue_init(ifp, q) != 0) {
867 			aprint_error_ifnet(ifp,
868 			    "initialization failed: cannot initialize queue\n");
869 			mvxpe_tx_unlockq(sc, q);
870 			return ENOBUFS;
871 		}
872 		mvxpe_tx_unlockq(sc, q);
873 	}
874 
875 	/* Tx MTU Limit */
876 	MVXPE_WRITE(sc, MVXPE_TXMTU, MVXPE_MTU);
877 
878 	/* Check SGMII or SERDES(assume IPL/U-BOOT initialize this) */
879 	reg = MVXPE_READ(sc, MVXPE_PMACC0);
880 	if ((reg & MVXPE_PMACC0_PORTTYPE) != 0)
881 		serdes = 1;
882 
883 	/* Ethernet Unit Control */
884 	reg = MVXPE_READ(sc, MVXPE_EUC);
885 	reg |= MVXPE_EUC_POLLING;
886 	MVXPE_WRITE(sc, MVXPE_EUC, reg);
887 
888 	/* Auto Negotiation */
889 	reg  = MVXPE_PANC_MUSTSET;	/* must write 0x1 */
890 	reg |= MVXPE_PANC_FORCELINKFAIL;/* force link state down */
891 	reg |= MVXPE_PANC_ANSPEEDEN;	/* interface speed negotiation */
892 	reg |= MVXPE_PANC_ANDUPLEXEN;	/* negotiate duplex mode */
893 	if (serdes) {
894 		reg |= MVXPE_PANC_INBANDANEN; /* In Band negotiation */
895 		reg |= MVXPE_PANC_INBANDANBYPASSEN; /* bypass negotiation */
896 		reg |= MVXPE_PANC_SETFULLDX; /* set full-duplex on failure */
897 	}
898 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
899 
900 	/* EEE: Low Power Idle */
901 	reg  = MVXPE_LPIC0_LILIMIT(MVXPE_LPI_LI);
902 	reg |= MVXPE_LPIC0_TSLIMIT(MVXPE_LPI_TS);
903 	MVXPE_WRITE(sc, MVXPE_LPIC0, reg);
904 
905 	reg  = MVXPE_LPIC1_TWLIMIT(MVXPE_LPI_TS);
906 	MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
907 
908 	reg = MVXPE_LPIC2_MUSTSET;
909 	MVXPE_WRITE(sc, MVXPE_LPIC2, reg);
910 
911 	/* Port MAC Control set 0 */
912 	reg  = MVXPE_PMACC0_MUSTSET;	/* must write 0x1 */
913 	reg &= ~MVXPE_PMACC0_PORTEN;	/* port is still disabled */
914 	reg |= MVXPE_PMACC0_FRAMESIZELIMIT(MVXPE_MRU);
915 	if (serdes)
916 		reg |= MVXPE_PMACC0_PORTTYPE;
917 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
918 
919 	/* Port MAC Control set 1 is only used for loop-back test */
920 
921 	/* Port MAC Control set 2 */
922 	reg = MVXPE_READ(sc, MVXPE_PMACC2);
923 	reg &= (MVXPE_PMACC2_PCSEN | MVXPE_PMACC2_RGMIIEN);
924 	reg |= MVXPE_PMACC2_MUSTSET;
925 	MVXPE_WRITE(sc, MVXPE_PMACC2, reg);
926 
927 	/* Port MAC Control set 3 is used for IPG tune */
928 
929 	/* Port MAC Control set 4 is not used */
930 
931 	/* Port Configuration */
932 	/* Use queue 0 only */
933 	reg = MVXPE_READ(sc, MVXPE_PXC);
934 	reg &= ~(MVXPE_PXC_RXQ_MASK | MVXPE_PXC_RXQARP_MASK |
935 	    MVXPE_PXC_TCPQ_MASK | MVXPE_PXC_UDPQ_MASK | MVXPE_PXC_BPDUQ_MASK);
936 	MVXPE_WRITE(sc, MVXPE_PXC, reg);
937 
938 	/* Port Configuration Extended: enable Tx CRC generation */
939 	reg = MVXPE_READ(sc, MVXPE_PXCX);
940 	reg &= ~MVXPE_PXCX_TXCRCDIS;
941 	MVXPE_WRITE(sc, MVXPE_PXCX, reg);
942 
943 	/* clear MIB counter registers(clear by read) */
944 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++)
945 		MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum));
946 
947 	/* Set SDC register except IPGINT bits */
948 	reg  = MVXPE_SDC_RXBSZ_16_64BITWORDS;
949 	reg |= MVXPE_SDC_TXBSZ_16_64BITWORDS;
950 	reg |= MVXPE_SDC_BLMR;
951 	reg |= MVXPE_SDC_BLMT;
952 	MVXPE_WRITE(sc, MVXPE_SDC, reg);
953 
954 	return 0;
955 }
956 
957 /*
958  * Descriptor Ring Controls for each of queues
959  */
960 STATIC void *
961 mvxpe_dma_memalloc(struct mvxpe_softc *sc, bus_dmamap_t *map, size_t size)
962 {
963 	bus_dma_segment_t segs;
964 	void *kva = NULL;
965 	int nsegs;
966 
967 	/*
968 	 * Allocate the descriptor queues.
969 	 * struct mvxpe_ring_data contians array of descriptor per queue.
970 	 */
971 	if (bus_dmamem_alloc(sc->sc_dmat,
972 	    size, PAGE_SIZE, 0, &segs, 1, &nsegs, BUS_DMA_NOWAIT)) {
973 		aprint_error_dev(sc->sc_dev,
974 		    "can't alloc device memory (%zu bytes)\n", size);
975 		return NULL;
976 	}
977 	if (bus_dmamem_map(sc->sc_dmat,
978 	    &segs, nsegs, size, &kva, BUS_DMA_NOWAIT)) {
979 		aprint_error_dev(sc->sc_dev,
980 		    "can't map dma buffers (%zu bytes)\n", size);
981 		goto fail1;
982 	}
983 
984 	if (bus_dmamap_create(sc->sc_dmat,
985 	    size, 1, size, 0, BUS_DMA_NOWAIT, map)) {
986 		aprint_error_dev(sc->sc_dev, "can't create dma map\n");
987 		goto fail2;
988 	}
989 	if (bus_dmamap_load(sc->sc_dmat,
990 	    *map, kva, size, NULL, BUS_DMA_NOWAIT)) {
991 		aprint_error_dev(sc->sc_dev, "can't load dma map\n");
992 		goto fail3;
993 	}
994 	memset(kva, 0, size);
995 	return kva;
996 
997 fail3:
998 	bus_dmamap_destroy(sc->sc_dmat, *map);
999 	memset(map, 0, sizeof(*map));
1000 fail2:
1001 	bus_dmamem_unmap(sc->sc_dmat, kva, size);
1002 fail1:
1003 	bus_dmamem_free(sc->sc_dmat, &segs, nsegs);
1004 	return NULL;
1005 }
1006 
1007 STATIC int
1008 mvxpe_ring_alloc_queue(struct mvxpe_softc *sc, int q)
1009 {
1010 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1011 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1012 
1013 	/*
1014 	 * MVXPE_RX_RING_CNT and MVXPE_TX_RING_CNT is a hard limit of
1015 	 * queue length. real queue length is limited by
1016 	 * sc->sc_rx_ring[q].rx_queue_len and sc->sc_tx_ring[q].tx_queue_len.
1017 	 *
1018 	 * because descriptor ring reallocation needs reprogramming of
1019 	 * DMA registers, we allocate enough descriptor for hard limit
1020 	 * of queue length.
1021 	 */
1022 	rx->rx_descriptors =
1023 	    mvxpe_dma_memalloc(sc, &rx->rx_descriptors_map,
1024 		(sizeof(struct mvxpe_rx_desc) * MVXPE_RX_RING_CNT));
1025 	if (rx->rx_descriptors == NULL)
1026 		goto fail;
1027 
1028 	tx->tx_descriptors =
1029 	    mvxpe_dma_memalloc(sc, &tx->tx_descriptors_map,
1030 		(sizeof(struct mvxpe_tx_desc) * MVXPE_TX_RING_CNT));
1031 	if (tx->tx_descriptors == NULL)
1032 		goto fail;
1033 
1034 	return 0;
1035 fail:
1036 	mvxpe_ring_dealloc_queue(sc, q);
1037 	aprint_error_dev(sc->sc_dev, "DMA Ring buffer allocation failure.\n");
1038 	return ENOMEM;
1039 }
1040 
1041 STATIC void
1042 mvxpe_ring_dealloc_queue(struct mvxpe_softc *sc, int q)
1043 {
1044 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1045 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1046 	bus_dma_segment_t *segs;
1047 	bus_size_t size;
1048 	void *kva;
1049 	int nsegs;
1050 
1051 	/* Rx */
1052 	kva = (void *)MVXPE_RX_RING_MEM_VA(sc, q);
1053 	if (kva) {
1054 		segs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_segs;
1055 		nsegs = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_nsegs;
1056 		size = MVXPE_RX_RING_MEM_MAP(sc, q)->dm_mapsize;
1057 
1058 		bus_dmamap_unload(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1059 		bus_dmamap_destroy(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q));
1060 		bus_dmamem_unmap(sc->sc_dmat, kva, size);
1061 		bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1062 	}
1063 
1064 	/* Tx */
1065 	kva = (void *)MVXPE_TX_RING_MEM_VA(sc, q);
1066 	if (kva) {
1067 		segs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_segs;
1068 		nsegs = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_nsegs;
1069 		size = MVXPE_TX_RING_MEM_MAP(sc, q)->dm_mapsize;
1070 
1071 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1072 		bus_dmamap_destroy(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q));
1073 		bus_dmamem_unmap(sc->sc_dmat, kva, size);
1074 		bus_dmamem_free(sc->sc_dmat, segs, nsegs);
1075 	}
1076 
1077 	/* Clear doungling pointers all */
1078 	memset(rx, 0, sizeof(*rx));
1079 	memset(tx, 0, sizeof(*tx));
1080 }
1081 
1082 STATIC void
1083 mvxpe_ring_init_queue(struct mvxpe_softc *sc, int q)
1084 {
1085 	struct mvxpe_rx_desc *rxd = MVXPE_RX_RING_MEM_VA(sc, q);
1086 	struct mvxpe_tx_desc *txd = MVXPE_TX_RING_MEM_VA(sc, q);
1087 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1088 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1089 	static const int rx_default_queue_len[] = {
1090 		MVXPE_RX_QUEUE_LIMIT_0, MVXPE_RX_QUEUE_LIMIT_1,
1091 		MVXPE_RX_QUEUE_LIMIT_2, MVXPE_RX_QUEUE_LIMIT_3,
1092 		MVXPE_RX_QUEUE_LIMIT_4, MVXPE_RX_QUEUE_LIMIT_5,
1093 		MVXPE_RX_QUEUE_LIMIT_6, MVXPE_RX_QUEUE_LIMIT_7,
1094 	};
1095 	static const int tx_default_queue_len[] = {
1096 		MVXPE_TX_QUEUE_LIMIT_0, MVXPE_TX_QUEUE_LIMIT_1,
1097 		MVXPE_TX_QUEUE_LIMIT_2, MVXPE_TX_QUEUE_LIMIT_3,
1098 		MVXPE_TX_QUEUE_LIMIT_4, MVXPE_TX_QUEUE_LIMIT_5,
1099 		MVXPE_TX_QUEUE_LIMIT_6, MVXPE_TX_QUEUE_LIMIT_7,
1100 	};
1101 	extern uint32_t mvTclk;
1102 	int i;
1103 
1104 	/* Rx handle */
1105 	for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1106 		MVXPE_RX_DESC(sc, q, i) = &rxd[i];
1107 		MVXPE_RX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_rx_desc) * i;
1108 		MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1109 	}
1110 	mutex_init(&rx->rx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1111 	rx->rx_dma = rx->rx_cpu = 0;
1112 	rx->rx_queue_len = rx_default_queue_len[q];
1113 	if (rx->rx_queue_len > MVXPE_RX_RING_CNT)
1114 		rx->rx_queue_len = MVXPE_RX_RING_CNT;
1115 	rx->rx_queue_th_received = rx->rx_queue_len / MVXPE_RXTH_RATIO;
1116 	rx->rx_queue_th_free = rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
1117 	rx->rx_queue_th_time = (mvTclk / 1000) / 2; /* 0.5 [ms] */
1118 
1119 	/* Tx handle */
1120 	for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1121 		MVXPE_TX_DESC(sc, q, i) = &txd[i];
1122 		MVXPE_TX_DESC_OFF(sc, q, i) = sizeof(struct mvxpe_tx_desc) * i;
1123 		MVXPE_TX_MBUF(sc, q, i) = NULL;
1124 		/* Tx handle needs DMA map for busdma_load_mbuf() */
1125 		if (bus_dmamap_create(sc->sc_dmat,
1126 		    mvxpbm_chunk_size(sc->sc_bm),
1127 		    MVXPE_TX_SEGLIMIT, mvxpbm_chunk_size(sc->sc_bm), 0,
1128 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1129 		    &MVXPE_TX_MAP(sc, q, i))) {
1130 			aprint_error_dev(sc->sc_dev,
1131 			    "can't create dma map (tx ring %d)\n", i);
1132 		}
1133 	}
1134 	mutex_init(&tx->tx_ring_mtx, MUTEX_DEFAULT, IPL_NET);
1135 	tx->tx_dma = tx->tx_cpu = 0;
1136 	tx->tx_queue_len = tx_default_queue_len[q];
1137 	if (tx->tx_queue_len > MVXPE_TX_RING_CNT)
1138 		tx->tx_queue_len = MVXPE_TX_RING_CNT;
1139 	tx->tx_used = 0;
1140 	tx->tx_queue_th_free = tx->tx_queue_len / MVXPE_TXTH_RATIO;
1141 }
1142 
1143 STATIC void
1144 mvxpe_ring_flush_queue(struct mvxpe_softc *sc, int q)
1145 {
1146 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1147 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1148 	struct mbuf *m;
1149 	int i;
1150 
1151 	KASSERT_RX_MTX(sc, q);
1152 	KASSERT_TX_MTX(sc, q);
1153 
1154 	/* Rx handle */
1155 	for (i = 0; i < MVXPE_RX_RING_CNT; i++) {
1156 		if (MVXPE_RX_PKTBUF(sc, q, i) == NULL)
1157 			continue;
1158 		mvxpbm_free_chunk(MVXPE_RX_PKTBUF(sc, q, i));
1159 		MVXPE_RX_PKTBUF(sc, q, i) = NULL;
1160 	}
1161 	rx->rx_dma = rx->rx_cpu = 0;
1162 
1163 	/* Tx handle */
1164 	for (i = 0; i < MVXPE_TX_RING_CNT; i++) {
1165 		m = MVXPE_TX_MBUF(sc, q, i);
1166 		if (m == NULL)
1167 			continue;
1168 		MVXPE_TX_MBUF(sc, q, i) = NULL;
1169 		bus_dmamap_sync(sc->sc_dmat,
1170 		    MVXPE_TX_MAP(sc, q, i), 0, m->m_pkthdr.len,
1171 		    BUS_DMASYNC_POSTWRITE);
1172 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, i));
1173 		m_freem(m);
1174 	}
1175 	tx->tx_dma = tx->tx_cpu = 0;
1176 	tx->tx_used = 0;
1177 }
1178 
1179 STATIC void
1180 mvxpe_ring_sync_rx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1181 {
1182 	int wrap;
1183 
1184 	KASSERT_RX_MTX(sc, q);
1185 	KASSERT(count > 0 && count <= MVXPE_RX_RING_CNT);
1186 	KASSERT(idx >= 0 && idx < MVXPE_RX_RING_CNT);
1187 
1188 	wrap = (idx + count) - MVXPE_RX_RING_CNT;
1189 	if (wrap > 0) {
1190 		count -= wrap;
1191 		KASSERT(count > 0);
1192 		bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1193 		    0, sizeof(struct mvxpe_rx_desc) * wrap, ops);
1194 	}
1195 	bus_dmamap_sync(sc->sc_dmat, MVXPE_RX_RING_MEM_MAP(sc, q),
1196 	    MVXPE_RX_DESC_OFF(sc, q, idx),
1197 	    sizeof(struct mvxpe_rx_desc) * count, ops);
1198 }
1199 
1200 STATIC void
1201 mvxpe_ring_sync_tx(struct mvxpe_softc *sc, int q, int idx, int count, int ops)
1202 {
1203 	int wrap = 0;
1204 
1205 	KASSERT_TX_MTX(sc, q);
1206 	KASSERT(count > 0 && count <= MVXPE_TX_RING_CNT);
1207 	KASSERT(idx >= 0 && idx < MVXPE_TX_RING_CNT);
1208 
1209 	wrap = (idx + count) - MVXPE_TX_RING_CNT;
1210 	if (wrap > 0) {
1211 		count -= wrap;
1212 		bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1213 		    0, sizeof(struct mvxpe_tx_desc) * wrap, ops);
1214 	}
1215 	bus_dmamap_sync(sc->sc_dmat, MVXPE_TX_RING_MEM_MAP(sc, q),
1216 	    MVXPE_TX_DESC_OFF(sc, q, idx),
1217 	    sizeof(struct mvxpe_tx_desc) * count, ops);
1218 }
1219 
1220 /*
1221  * Rx/Tx Queue Control
1222  */
1223 STATIC int
1224 mvxpe_rx_queue_init(struct ifnet *ifp, int q)
1225 {
1226 	struct mvxpe_softc *sc = ifp->if_softc;
1227 	uint32_t reg;
1228 
1229 	KASSERT_RX_MTX(sc, q);
1230 	KASSERT(MVXPE_RX_RING_MEM_PA(sc, q) != 0);
1231 
1232 	/* descriptor address */
1233 	MVXPE_WRITE(sc, MVXPE_PRXDQA(q), MVXPE_RX_RING_MEM_PA(sc, q));
1234 
1235 	/* Rx buffer size and descriptor ring size */
1236 	reg  = MVXPE_PRXDQS_BUFFERSIZE(mvxpbm_chunk_size(sc->sc_bm) >> 3);
1237 	reg |= MVXPE_PRXDQS_DESCRIPTORSQUEUESIZE(MVXPE_RX_RING_CNT);
1238 	MVXPE_WRITE(sc, MVXPE_PRXDQS(q), reg);
1239 	DPRINTIFNET(ifp, 1, "PRXDQS(%d): %#x\n",
1240 	    q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
1241 
1242 	/* Rx packet offset address */
1243 	reg = MVXPE_PRXC_PACKETOFFSET(mvxpbm_packet_offset(sc->sc_bm) >> 3);
1244 	MVXPE_WRITE(sc, MVXPE_PRXC(q), reg);
1245 	DPRINTIFNET(ifp, 1, "PRXC(%d): %#x\n",
1246 	    q, MVXPE_READ(sc, MVXPE_PRXC(q)));
1247 
1248 	/* Rx DMA SNOOP */
1249 	reg  = MVXPE_PRXSNP_SNOOPNOOFBYTES(MVXPE_MRU);
1250 	reg |= MVXPE_PRXSNP_L2DEPOSITNOOFBYTES(MVXPE_MRU);
1251 	MVXPE_WRITE(sc, MVXPE_PRXSNP(q), reg);
1252 
1253 	/* if DMA is not working, register is not updated */
1254 	KASSERT(MVXPE_READ(sc, MVXPE_PRXDQA(q)) == MVXPE_RX_RING_MEM_PA(sc, q));
1255 	return 0;
1256 }
1257 
1258 STATIC int
1259 mvxpe_tx_queue_init(struct ifnet *ifp, int q)
1260 {
1261 	struct mvxpe_softc *sc = ifp->if_softc;
1262 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1263 	uint32_t reg;
1264 
1265 	KASSERT_TX_MTX(sc, q);
1266 	KASSERT(MVXPE_TX_RING_MEM_PA(sc, q) != 0);
1267 
1268 	/* descriptor address */
1269 	MVXPE_WRITE(sc, MVXPE_PTXDQA(q), MVXPE_TX_RING_MEM_PA(sc, q));
1270 
1271 	/* Tx threshold, and descriptor ring size */
1272 	reg  = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1273 	reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
1274 	MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1275 	DPRINTIFNET(ifp, 1, "PTXDQS(%d): %#x\n",
1276 	    q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
1277 
1278 	/* if DMA is not working, register is not updated */
1279 	KASSERT(MVXPE_READ(sc, MVXPE_PTXDQA(q)) == MVXPE_TX_RING_MEM_PA(sc, q));
1280 	return 0;
1281 }
1282 
1283 STATIC int
1284 mvxpe_rx_queue_enable(struct ifnet *ifp, int q)
1285 {
1286 	struct mvxpe_softc *sc = ifp->if_softc;
1287 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1288 	uint32_t reg;
1289 
1290 	KASSERT_RX_MTX(sc, q);
1291 
1292 	/* Set Rx interrupt threshold */
1293 	reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1294 	reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
1295 	MVXPE_WRITE(sc, MVXPE_PRXDQTH(q), reg);
1296 
1297 	reg  = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
1298 	MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1299 
1300 	/* Unmask RXTX_TH Intr. */
1301 	reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1302 	reg |= MVXPE_PRXTXTI_RBICTAPQ(q); /* Rx Buffer Interrupt Coalese */
1303 	reg |= MVXPE_PRXTXTI_RDTAQ(q); /* Rx Descriptor Alart */
1304 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1305 
1306 	/* Enable Rx queue */
1307 	reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1308 	reg |= MVXPE_RQC_ENQ(q);
1309 	MVXPE_WRITE(sc, MVXPE_RQC, reg);
1310 
1311 	return 0;
1312 }
1313 
1314 STATIC int
1315 mvxpe_tx_queue_enable(struct ifnet *ifp, int q)
1316 {
1317 	struct mvxpe_softc *sc = ifp->if_softc;
1318 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1319 	uint32_t reg;
1320 
1321 	KASSERT_TX_MTX(sc, q);
1322 
1323 	/* Set Tx interrupt threshold */
1324 	reg  = MVXPE_READ(sc, MVXPE_PTXDQS(q));
1325 	reg &= ~MVXPE_PTXDQS_TBT_MASK; /* keep queue size */
1326 	reg |= MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
1327 	MVXPE_WRITE(sc, MVXPE_PTXDQS(q), reg);
1328 
1329 	/* Unmask RXTX_TH Intr. */
1330 	reg = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1331 	reg |= MVXPE_PRXTXTI_TBTCQ(q); /* Tx Threshold cross */
1332 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1333 
1334 	/* Don't update MVXPE_TQC here, there is no packet yet. */
1335 	return 0;
1336 }
1337 
1338 STATIC void
1339 mvxpe_rx_lockq(struct mvxpe_softc *sc, int q)
1340 {
1341 	KASSERT(q >= 0);
1342 	KASSERT(q < MVXPE_QUEUE_SIZE);
1343 	mutex_enter(&sc->sc_rx_ring[q].rx_ring_mtx);
1344 }
1345 
1346 STATIC void
1347 mvxpe_rx_unlockq(struct mvxpe_softc *sc, int q)
1348 {
1349 	KASSERT(q >= 0);
1350 	KASSERT(q < MVXPE_QUEUE_SIZE);
1351 	mutex_exit(&sc->sc_rx_ring[q].rx_ring_mtx);
1352 }
1353 
1354 STATIC void
1355 mvxpe_tx_lockq(struct mvxpe_softc *sc, int q)
1356 {
1357 	KASSERT(q >= 0);
1358 	KASSERT(q < MVXPE_QUEUE_SIZE);
1359 	mutex_enter(&sc->sc_tx_ring[q].tx_ring_mtx);
1360 }
1361 
1362 STATIC void
1363 mvxpe_tx_unlockq(struct mvxpe_softc *sc, int q)
1364 {
1365 	KASSERT(q >= 0);
1366 	KASSERT(q < MVXPE_QUEUE_SIZE);
1367 	mutex_exit(&sc->sc_tx_ring[q].tx_ring_mtx);
1368 }
1369 
1370 /*
1371  * Interrupt Handlers
1372  */
1373 STATIC void
1374 mvxpe_disable_intr(struct mvxpe_softc *sc)
1375 {
1376 	MVXPE_WRITE(sc, MVXPE_EUIM, 0);
1377 	MVXPE_WRITE(sc, MVXPE_EUIC, 0);
1378 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, 0);
1379 	MVXPE_WRITE(sc, MVXPE_PRXTXTIC, 0);
1380 	MVXPE_WRITE(sc, MVXPE_PRXTXIM, 0);
1381 	MVXPE_WRITE(sc, MVXPE_PRXTXIC, 0);
1382 	MVXPE_WRITE(sc, MVXPE_PMIM, 0);
1383 	MVXPE_WRITE(sc, MVXPE_PMIC, 0);
1384 	MVXPE_WRITE(sc, MVXPE_PIE, 0);
1385 }
1386 
1387 STATIC void
1388 mvxpe_enable_intr(struct mvxpe_softc *sc)
1389 {
1390 	uint32_t reg;
1391 
1392 	/* Enable Port MISC Intr. (via RXTX_TH_Summary bit) */
1393 	reg  = MVXPE_READ(sc, MVXPE_PMIM);
1394 	reg |= MVXPE_PMI_PHYSTATUSCHNG;
1395 	reg |= MVXPE_PMI_LINKCHANGE;
1396 	reg |= MVXPE_PMI_IAE;
1397 	reg |= MVXPE_PMI_RXOVERRUN;
1398 	reg |= MVXPE_PMI_RXCRCERROR;
1399 	reg |= MVXPE_PMI_RXLARGEPACKET;
1400 	reg |= MVXPE_PMI_TXUNDRN;
1401 #if 0
1402 	/*
1403 	 * The device may raise false interrupts for SERDES even if the device
1404 	 * is not configured to use SERDES connection.
1405 	 */
1406 	reg |= MVXPE_PMI_PRBSERROR;
1407 	reg |= MVXPE_PMI_SRSE;
1408 #else
1409 	reg &= ~MVXPE_PMI_PRBSERROR;
1410 	reg &= ~MVXPE_PMI_SRSE;
1411 #endif
1412 	reg |= MVXPE_PMI_TREQ_MASK;
1413 	MVXPE_WRITE(sc, MVXPE_PMIM, reg);
1414 
1415 	/* Enable Summary Bit to check all interrupt cause. */
1416 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1417 	reg |= MVXPE_PRXTXTI_PMISCICSUMMARY;
1418 	reg |= MVXPE_PRXTXTI_PTXERRORSUMMARY;
1419 	reg |= MVXPE_PRXTXTI_PRXTXICSUMMARY;
1420 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1421 
1422 	/* Enable All Queue Interrupt */
1423 	reg  = MVXPE_READ(sc, MVXPE_PIE);
1424 	reg |= MVXPE_PIE_RXPKTINTRPTENB_MASK;
1425 	reg |= MVXPE_PIE_TXPKTINTRPTENB_MASK;
1426 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
1427 }
1428 
1429 STATIC int
1430 mvxpe_rxtxth_intr(void *arg)
1431 {
1432 	struct mvxpe_softc *sc = arg;
1433 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1434 	uint32_t ic, queues, datum = 0;
1435 
1436 	DPRINTSC(sc, 2, "got RXTX_TH_Intr\n");
1437 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtxth);
1438 
1439 	mvxpe_sc_lock(sc);
1440 	ic = MVXPE_READ(sc, MVXPE_PRXTXTIC);
1441 	if (ic == 0) {
1442 		mvxpe_sc_unlock(sc);
1443 		return 0;
1444 	}
1445 	MVXPE_WRITE(sc, MVXPE_PRXTXTIC, ~ic);
1446 	datum = datum ^ ic;
1447 
1448 	DPRINTIFNET(ifp, 2, "PRXTXTIC: %#x\n", ic);
1449 
1450 	/* ack maintance interrupt first */
1451 	if (ic & MVXPE_PRXTXTI_PTXERRORSUMMARY) {
1452 		DPRINTIFNET(ifp, 1, "PRXTXTIC: +PTXERRORSUMMARY\n");
1453 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtxth_txerr);
1454 	}
1455 	if ((ic & MVXPE_PRXTXTI_PMISCICSUMMARY)) {
1456 		DPRINTIFNET(ifp, 2, "PTXTXTIC: +PMISCICSUMMARY\n");
1457 		mvxpe_misc_intr(sc);
1458 	}
1459 	if (ic & MVXPE_PRXTXTI_PRXTXICSUMMARY) {
1460 		DPRINTIFNET(ifp, 2, "PTXTXTIC: +PRXTXICSUMMARY\n");
1461 		mvxpe_rxtx_intr(sc);
1462 	}
1463 	if (!(ifp->if_flags & IFF_RUNNING)) {
1464 		mvxpe_sc_unlock(sc);
1465 		return 1;
1466 	}
1467 
1468 	/* RxTxTH interrupt */
1469 	queues = MVXPE_PRXTXTI_GET_RBICTAPQ(ic);
1470 	if (queues) {
1471 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +RXEOF\n");
1472 		mvxpe_rx(sc, queues);
1473 	}
1474 	queues = MVXPE_PRXTXTI_GET_TBTCQ(ic);
1475 	if (queues) {
1476 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +TBTCQ\n");
1477 		mvxpe_tx_complete(sc, queues);
1478 	}
1479 	queues = MVXPE_PRXTXTI_GET_RDTAQ(ic);
1480 	if (queues) {
1481 		DPRINTIFNET(ifp, 2, "PRXTXTIC: +RDTAQ\n");
1482 		mvxpe_rx_refill(sc, queues);
1483 	}
1484 	mvxpe_sc_unlock(sc);
1485 
1486 	if_schedule_deferred_start(ifp);
1487 
1488 	rnd_add_uint32(&sc->sc_rnd_source, datum);
1489 
1490 	return 1;
1491 }
1492 
1493 STATIC int
1494 mvxpe_misc_intr(void *arg)
1495 {
1496 	struct mvxpe_softc *sc = arg;
1497 #ifdef MVXPE_DEBUG
1498 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1499 #endif
1500 	uint32_t ic;
1501 	uint32_t datum = 0;
1502 	int claimed = 0;
1503 
1504 	DPRINTSC(sc, 2, "got MISC_INTR\n");
1505 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_misc);
1506 
1507 	KASSERT_SC_MTX(sc);
1508 
1509 	for (;;) {
1510 		ic = MVXPE_READ(sc, MVXPE_PMIC);
1511 		ic &= MVXPE_READ(sc, MVXPE_PMIM);
1512 		if (ic == 0)
1513 			break;
1514 		MVXPE_WRITE(sc, MVXPE_PMIC, ~ic);
1515 		datum = datum ^ ic;
1516 		claimed = 1;
1517 
1518 		DPRINTIFNET(ifp, 2, "PMIC=%#x\n", ic);
1519 		if (ic & MVXPE_PMI_PHYSTATUSCHNG) {
1520 			DPRINTIFNET(ifp, 2, "+PHYSTATUSCHNG\n");
1521 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_phystatuschng);
1522 		}
1523 		if (ic & MVXPE_PMI_LINKCHANGE) {
1524 			DPRINTIFNET(ifp, 2, "+LINKCHANGE\n");
1525 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_linkchange);
1526 			mvxpe_linkupdate(sc);
1527 		}
1528 		if (ic & MVXPE_PMI_IAE) {
1529 			DPRINTIFNET(ifp, 2, "+IAE\n");
1530 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_iae);
1531 		}
1532 		if (ic & MVXPE_PMI_RXOVERRUN) {
1533 			DPRINTIFNET(ifp, 2, "+RXOVERRUN\n");
1534 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxoverrun);
1535 		}
1536 		if (ic & MVXPE_PMI_RXCRCERROR) {
1537 			DPRINTIFNET(ifp, 2, "+RXCRCERROR\n");
1538 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxcrc);
1539 		}
1540 		if (ic & MVXPE_PMI_RXLARGEPACKET) {
1541 			DPRINTIFNET(ifp, 2, "+RXLARGEPACKET\n");
1542 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_rxlargepacket);
1543 		}
1544 		if (ic & MVXPE_PMI_TXUNDRN) {
1545 			DPRINTIFNET(ifp, 2, "+TXUNDRN\n");
1546 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txunderrun);
1547 		}
1548 		if (ic & MVXPE_PMI_PRBSERROR) {
1549 			DPRINTIFNET(ifp, 2, "+PRBSERROR\n");
1550 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_prbserr);
1551 		}
1552 		if (ic & MVXPE_PMI_TREQ_MASK) {
1553 			DPRINTIFNET(ifp, 2, "+TREQ\n");
1554 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_misc_txreq);
1555 		}
1556 	}
1557 	if (datum)
1558 		rnd_add_uint32(&sc->sc_rnd_source, datum);
1559 
1560 	return claimed;
1561 }
1562 
1563 STATIC int
1564 mvxpe_rxtx_intr(void *arg)
1565 {
1566 	struct mvxpe_softc *sc = arg;
1567 #ifdef MVXPE_DEBUG
1568 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1569 #endif
1570 	uint32_t datum = 0;
1571 	uint32_t prxtxic;
1572 	int claimed = 0;
1573 
1574 	DPRINTSC(sc, 2, "got RXTX_Intr\n");
1575 	MVXPE_EVCNT_INCR(&sc->sc_ev.ev_i_rxtx);
1576 
1577 	KASSERT_SC_MTX(sc);
1578 
1579 	for (;;) {
1580 		prxtxic = MVXPE_READ(sc, MVXPE_PRXTXIC);
1581 		prxtxic &= MVXPE_READ(sc, MVXPE_PRXTXIM);
1582 		if (prxtxic == 0)
1583 			break;
1584 		MVXPE_WRITE(sc, MVXPE_PRXTXIC, ~prxtxic);
1585 		datum = datum ^ prxtxic;
1586 		claimed = 1;
1587 
1588 		DPRINTSC(sc, 2, "PRXTXIC: %#x\n", prxtxic);
1589 
1590 		if (prxtxic & MVXPE_PRXTXI_RREQ_MASK) {
1591 			DPRINTIFNET(ifp, 1, "Rx Resource Error.\n");
1592 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rreq);
1593 		}
1594 		if (prxtxic & MVXPE_PRXTXI_RPQ_MASK) {
1595 			DPRINTIFNET(ifp, 1, "Rx Packet in Queue.\n");
1596 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rpq);
1597 		}
1598 		if (prxtxic & MVXPE_PRXTXI_TBRQ_MASK) {
1599 			DPRINTIFNET(ifp, 1, "Tx Buffer Return.\n");
1600 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_tbrq);
1601 		}
1602 		if (prxtxic & MVXPE_PRXTXI_PRXTXTHICSUMMARY) {
1603 			DPRINTIFNET(ifp, 1, "PRXTXTHIC Summary\n");
1604 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_rxtxth);
1605 		}
1606 		if (prxtxic & MVXPE_PRXTXI_PTXERRORSUMMARY) {
1607 			DPRINTIFNET(ifp, 1, "PTXERROR Summary\n");
1608 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_txerr);
1609 		}
1610 		if (prxtxic & MVXPE_PRXTXI_PMISCICSUMMARY) {
1611 			DPRINTIFNET(ifp, 1, "PMISCIC Summary\n");
1612 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxtx_misc);
1613 		}
1614 	}
1615 	if (datum)
1616 		rnd_add_uint32(&sc->sc_rnd_source, datum);
1617 
1618 	return claimed;
1619 }
1620 
1621 STATIC void
1622 mvxpe_tick(void *arg)
1623 {
1624 	struct mvxpe_softc *sc = arg;
1625 	struct mii_data *mii = &sc->sc_mii;
1626 
1627 	mvxpe_sc_lock(sc);
1628 
1629 	mii_tick(mii);
1630 	mii_pollstat(&sc->sc_mii);
1631 
1632 	/* read mib registers(clear by read) */
1633 	mvxpe_update_mib(sc);
1634 
1635 	/* read counter registers(clear by read) */
1636 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pdfc,
1637 	    MVXPE_READ(sc, MVXPE_PDFC));
1638 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_pofc,
1639 	    MVXPE_READ(sc, MVXPE_POFC));
1640 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txbadfcs,
1641 	    MVXPE_READ(sc, MVXPE_TXBADFCS));
1642 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_txdropped,
1643 	    MVXPE_READ(sc, MVXPE_TXDROPPED));
1644 	MVXPE_EVCNT_ADD(&sc->sc_ev.ev_reg_lpic,
1645 	    MVXPE_READ(sc, MVXPE_LPIC));
1646 
1647 	mvxpe_sc_unlock(sc);
1648 
1649 	callout_schedule(&sc->sc_tick_ch, hz);
1650 }
1651 
1652 
1653 /*
1654  * struct ifnet and mii callbacks
1655  */
1656 STATIC void
1657 mvxpe_start(struct ifnet *ifp)
1658 {
1659 	struct mvxpe_softc *sc = ifp->if_softc;
1660 	struct mbuf *m;
1661 	int q;
1662 
1663 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) {
1664 		DPRINTIFNET(ifp, 1, "not running\n");
1665 		return;
1666 	}
1667 
1668 	mvxpe_sc_lock(sc);
1669 	if (!MVXPE_IS_LINKUP(sc)) {
1670 		/* If Link is DOWN, can't start TX */
1671 		DPRINTIFNET(ifp, 1, "link fail\n");
1672 		for (;;) {
1673 			/*
1674 			 * discard stale packets all.
1675 			 * these may confuse DAD, ARP or timer based protocols.
1676 			 */
1677 			IFQ_DEQUEUE(&ifp->if_snd, m);
1678 			if (m == NULL)
1679 				break;
1680 			m_freem(m);
1681 		}
1682 		mvxpe_sc_unlock(sc);
1683 		return;
1684 	}
1685 	for (;;) {
1686 		/*
1687 		 * don't use IFQ_POLL().
1688 		 * there is lock problem between IFQ_POLL and IFQ_DEQUEUE
1689 		 * on SMP enabled networking stack.
1690 		 */
1691 		IFQ_DEQUEUE(&ifp->if_snd, m);
1692 		if (m == NULL)
1693 			break;
1694 
1695 		q = mvxpe_tx_queue_select(sc, m);
1696 		if (q < 0)
1697 			break;
1698 		/* mutex is held in mvxpe_tx_queue_select() */
1699 
1700 		if (mvxpe_tx_queue(sc, m, q) != 0) {
1701 			DPRINTIFNET(ifp, 1, "cannot add packet to tx ring\n");
1702 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txerr);
1703 			mvxpe_tx_unlockq(sc, q);
1704 			break;
1705 		}
1706 		mvxpe_tx_unlockq(sc, q);
1707 		KASSERT(sc->sc_tx_ring[q].tx_used >= 0);
1708 		KASSERT(sc->sc_tx_ring[q].tx_used <=
1709 		    sc->sc_tx_ring[q].tx_queue_len);
1710 		DPRINTIFNET(ifp, 1, "a packet is added to tx ring\n");
1711 		sc->sc_tx_pending++;
1712 		if_statinc(ifp, if_opackets);
1713 		ifp->if_timer = 1;
1714 		sc->sc_wdogsoft = 1;
1715 		bpf_mtap(ifp, m, BPF_D_OUT);
1716 	}
1717 	mvxpe_sc_unlock(sc);
1718 
1719 	return;
1720 }
1721 
1722 STATIC int
1723 mvxpe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1724 {
1725 	struct mvxpe_softc *sc = ifp->if_softc;
1726 	int error = 0;
1727 
1728 	switch (cmd) {
1729 	default:
1730 		DPRINTIFNET(ifp, 2, "mvxpe_ioctl ETHER\n");
1731 		error = ether_ioctl(ifp, cmd, data);
1732 		if (error == ENETRESET) {
1733 			if (ifp->if_flags & IFF_RUNNING) {
1734 				mvxpe_sc_lock(sc);
1735 				mvxpe_filter_setup(sc);
1736 				mvxpe_sc_unlock(sc);
1737 			}
1738 			error = 0;
1739 		}
1740 		break;
1741 	}
1742 
1743 	return error;
1744 }
1745 
1746 STATIC int
1747 mvxpe_init(struct ifnet *ifp)
1748 {
1749 	struct mvxpe_softc *sc = ifp->if_softc;
1750 	struct mii_data *mii = &sc->sc_mii;
1751 	uint32_t reg;
1752 	int q;
1753 
1754 	mvxpe_sc_lock(sc);
1755 
1756 	/* Start DMA Engine */
1757 	MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000000);
1758 	MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000000);
1759 	MVXPE_WRITE(sc, MVXPE_PACC, MVXPE_PACC_ACCELERATIONMODE_EDM);
1760 
1761 	/* Enable port */
1762 	reg  = MVXPE_READ(sc, MVXPE_PMACC0);
1763 	reg |= MVXPE_PMACC0_PORTEN;
1764 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1765 
1766 	/* Link up */
1767 	mvxpe_linkup(sc);
1768 
1769 	/* Enable All Queue and interrupt of each Queue */
1770 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1771 		mvxpe_rx_lockq(sc, q);
1772 		mvxpe_rx_queue_enable(ifp, q);
1773 		mvxpe_rx_queue_refill(sc, q);
1774 		mvxpe_rx_unlockq(sc, q);
1775 
1776 		mvxpe_tx_lockq(sc, q);
1777 		mvxpe_tx_queue_enable(ifp, q);
1778 		mvxpe_tx_unlockq(sc, q);
1779 	}
1780 
1781 	/* Enable interrupt */
1782 	mvxpe_enable_intr(sc);
1783 
1784 	/* Set Counter */
1785 	callout_schedule(&sc->sc_tick_ch, hz);
1786 
1787 	/* Media check */
1788 	mii_mediachg(mii);
1789 
1790 	ifp->if_flags |= IFF_RUNNING;
1791 	ifp->if_flags &= ~IFF_OACTIVE;
1792 
1793 	mvxpe_sc_unlock(sc);
1794 	return 0;
1795 }
1796 
1797 /* ARGSUSED */
1798 STATIC void
1799 mvxpe_stop(struct ifnet *ifp, int disable)
1800 {
1801 	struct mvxpe_softc *sc = ifp->if_softc;
1802 	uint32_t reg;
1803 	int q, cnt;
1804 
1805 	DPRINTIFNET(ifp, 1, "stop device dma and interrupts.\n");
1806 
1807 	mvxpe_sc_lock(sc);
1808 
1809 	callout_stop(&sc->sc_tick_ch);
1810 
1811 	/* Link down */
1812 	mvxpe_linkdown(sc);
1813 
1814 	/* Disable Rx interrupt */
1815 	reg  = MVXPE_READ(sc, MVXPE_PIE);
1816 	reg &= ~MVXPE_PIE_RXPKTINTRPTENB_MASK;
1817 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
1818 
1819 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1820 	reg &= ~MVXPE_PRXTXTI_RBICTAPQ_MASK;
1821 	reg &= ~MVXPE_PRXTXTI_RDTAQ_MASK;
1822 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1823 
1824 	/* Wait for all Rx activity to terminate. */
1825 	reg = MVXPE_READ(sc, MVXPE_RQC) & MVXPE_RQC_EN_MASK;
1826 	reg = MVXPE_RQC_DIS(reg);
1827 	MVXPE_WRITE(sc, MVXPE_RQC, reg);
1828 	cnt = 0;
1829 	do {
1830 		if (cnt >= RX_DISABLE_TIMEOUT) {
1831 			aprint_error_ifnet(ifp,
1832 			    "timeout for RX stopped. rqc 0x%x\n", reg);
1833 			break;
1834 		}
1835 		cnt++;
1836 		reg = MVXPE_READ(sc, MVXPE_RQC);
1837 	} while (reg & MVXPE_RQC_EN_MASK);
1838 
1839 	/* Wait for all Tx activety to terminate. */
1840 	reg  = MVXPE_READ(sc, MVXPE_PIE);
1841 	reg &= ~MVXPE_PIE_TXPKTINTRPTENB_MASK;
1842 	MVXPE_WRITE(sc, MVXPE_PIE, reg);
1843 
1844 	reg  = MVXPE_READ(sc, MVXPE_PRXTXTIM);
1845 	reg &= ~MVXPE_PRXTXTI_TBTCQ_MASK;
1846 	MVXPE_WRITE(sc, MVXPE_PRXTXTIM, reg);
1847 
1848 	reg = MVXPE_READ(sc, MVXPE_TQC) & MVXPE_TQC_EN_MASK;
1849 	reg = MVXPE_TQC_DIS(reg);
1850 	MVXPE_WRITE(sc, MVXPE_TQC, reg);
1851 	cnt = 0;
1852 	do {
1853 		if (cnt >= TX_DISABLE_TIMEOUT) {
1854 			aprint_error_ifnet(ifp,
1855 			    "timeout for TX stopped. tqc 0x%x\n", reg);
1856 			break;
1857 		}
1858 		cnt++;
1859 		reg = MVXPE_READ(sc, MVXPE_TQC);
1860 	} while (reg & MVXPE_TQC_EN_MASK);
1861 
1862 	/* Wait for all Tx FIFO is empty */
1863 	cnt = 0;
1864 	do {
1865 		if (cnt >= TX_FIFO_EMPTY_TIMEOUT) {
1866 			aprint_error_ifnet(ifp,
1867 			    "timeout for TX FIFO drained. ps0 0x%x\n", reg);
1868 			break;
1869 		}
1870 		cnt++;
1871 		reg = MVXPE_READ(sc, MVXPE_PS0);
1872 	} while (!(reg & MVXPE_PS0_TXFIFOEMP) && (reg & MVXPE_PS0_TXINPROG));
1873 
1874 	/* Reset the MAC Port Enable bit */
1875 	reg = MVXPE_READ(sc, MVXPE_PMACC0);
1876 	reg &= ~MVXPE_PMACC0_PORTEN;
1877 	MVXPE_WRITE(sc, MVXPE_PMACC0, reg);
1878 
1879 	/* Disable each of queue */
1880 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1881 		struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
1882 
1883 		mvxpe_rx_lockq(sc, q);
1884 		mvxpe_tx_lockq(sc, q);
1885 
1886 		/* Disable Rx packet buffer refill request */
1887 		reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
1888 		reg |= MVXPE_PRXDQTH_NODT(0);
1889 		MVXPE_WRITE(sc, MVXPE_PRXITTH(q), reg);
1890 
1891 		if (disable) {
1892 			/*
1893 			 * Hold Reset state of DMA Engine
1894 			 * (must write 0x0 to restart it)
1895 			 */
1896 			MVXPE_WRITE(sc, MVXPE_PRXINIT, 0x00000001);
1897 			MVXPE_WRITE(sc, MVXPE_PTXINIT, 0x00000001);
1898 			mvxpe_ring_flush_queue(sc, q);
1899 		}
1900 
1901 		mvxpe_tx_unlockq(sc, q);
1902 		mvxpe_rx_unlockq(sc, q);
1903 	}
1904 
1905 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1906 
1907 	mvxpe_sc_unlock(sc);
1908 }
1909 
1910 STATIC void
1911 mvxpe_watchdog(struct ifnet *ifp)
1912 {
1913 	struct mvxpe_softc *sc = ifp->if_softc;
1914 	int q;
1915 
1916 	mvxpe_sc_lock(sc);
1917 
1918 	/*
1919 	 * Reclaim first as there is a possibility of losing Tx completion
1920 	 * interrupts.
1921 	 */
1922 	mvxpe_tx_complete(sc, 0xff);
1923 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
1924 		struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
1925 
1926 		if (tx->tx_dma != tx->tx_cpu) {
1927 			if (sc->sc_wdogsoft) {
1928 				/*
1929 				 * There is race condition between CPU and DMA
1930 				 * engine. When DMA engine encounters queue end,
1931 				 * it clears MVXPE_TQC_ENQ bit.
1932 				 * XXX: how about enhanced mode?
1933 				 */
1934 				MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
1935 				ifp->if_timer = 5;
1936 				sc->sc_wdogsoft = 0;
1937 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_wdogsoft);
1938 			} else {
1939 				aprint_error_ifnet(ifp, "watchdog timeout\n");
1940 				if_statinc(ifp, if_oerrors);
1941 				mvxpe_linkreset(sc);
1942 				mvxpe_sc_unlock(sc);
1943 
1944 				/* trigger reinitialize sequence */
1945 				mvxpe_stop(ifp, 1);
1946 				mvxpe_init(ifp);
1947 
1948 				mvxpe_sc_lock(sc);
1949 			}
1950 		}
1951 	}
1952 	mvxpe_sc_unlock(sc);
1953 }
1954 
1955 STATIC int
1956 mvxpe_ifflags_cb(struct ethercom *ec)
1957 {
1958 	struct ifnet *ifp = &ec->ec_if;
1959 	struct mvxpe_softc *sc = ifp->if_softc;
1960 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
1961 
1962 	mvxpe_sc_lock(sc);
1963 
1964 	if (change != 0)
1965 		sc->sc_if_flags = ifp->if_flags;
1966 
1967 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
1968 		mvxpe_sc_unlock(sc);
1969 		return ENETRESET;
1970 	}
1971 
1972 	if ((change & IFF_PROMISC) != 0)
1973 		mvxpe_filter_setup(sc);
1974 
1975 	if ((change & IFF_UP) != 0)
1976 		mvxpe_linkreset(sc);
1977 
1978 	mvxpe_sc_unlock(sc);
1979 	return 0;
1980 }
1981 
1982 STATIC int
1983 mvxpe_mediachange(struct ifnet *ifp)
1984 {
1985 	return ether_mediachange(ifp);
1986 }
1987 
1988 STATIC void
1989 mvxpe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1990 {
1991 	ether_mediastatus(ifp, ifmr);
1992 }
1993 
1994 /*
1995  * Link State Notify
1996  */
1997 STATIC void mvxpe_linkupdate(struct mvxpe_softc *sc)
1998 {
1999 	int linkup; /* bool */
2000 
2001 	KASSERT_SC_MTX(sc);
2002 
2003 	/* tell miibus */
2004 	mii_pollstat(&sc->sc_mii);
2005 
2006 	/* syslog */
2007 	linkup = MVXPE_IS_LINKUP(sc);
2008 	if (sc->sc_linkstate == linkup)
2009 		return;
2010 
2011 #ifdef DEBUG
2012 	log(LOG_DEBUG,
2013 	    "%s: link %s\n", device_xname(sc->sc_dev), linkup ? "up" : "down");
2014 #endif
2015 	if (linkup)
2016 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_up);
2017 	else
2018 		MVXPE_EVCNT_INCR(&sc->sc_ev.ev_link_down);
2019 
2020 	sc->sc_linkstate = linkup;
2021 }
2022 
2023 STATIC void
2024 mvxpe_linkup(struct mvxpe_softc *sc)
2025 {
2026 	uint32_t reg;
2027 
2028 	KASSERT_SC_MTX(sc);
2029 
2030 	/* set EEE parameters */
2031 	reg = MVXPE_READ(sc, MVXPE_LPIC1);
2032 	if (sc->sc_cf.cf_lpi)
2033 		reg |= MVXPE_LPIC1_LPIRE;
2034 	else
2035 		reg &= ~MVXPE_LPIC1_LPIRE;
2036 	MVXPE_WRITE(sc, MVXPE_LPIC1, reg);
2037 
2038 	/* set auto-negotiation parameters */
2039 	reg  = MVXPE_READ(sc, MVXPE_PANC);
2040 	if (sc->sc_cf.cf_fc) {
2041 		/* flow control negotiation */
2042 		reg |= MVXPE_PANC_PAUSEADV;
2043 		reg |= MVXPE_PANC_ANFCEN;
2044 	}
2045 	else {
2046 		reg &= ~MVXPE_PANC_PAUSEADV;
2047 		reg &= ~MVXPE_PANC_ANFCEN;
2048 	}
2049 	reg &= ~MVXPE_PANC_FORCELINKFAIL;
2050 	reg &= ~MVXPE_PANC_FORCELINKPASS;
2051 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
2052 
2053 	mii_mediachg(&sc->sc_mii);
2054 }
2055 
2056 STATIC void
2057 mvxpe_linkdown(struct mvxpe_softc *sc)
2058 {
2059 	struct mii_softc *mii;
2060 	uint32_t reg;
2061 
2062 	KASSERT_SC_MTX(sc);
2063 	return;
2064 
2065 	reg  = MVXPE_READ(sc, MVXPE_PANC);
2066 	reg |= MVXPE_PANC_FORCELINKFAIL;
2067 	reg &= MVXPE_PANC_FORCELINKPASS;
2068 	MVXPE_WRITE(sc, MVXPE_PANC, reg);
2069 
2070 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2071 	if (mii)
2072 		mii_phy_down(mii);
2073 }
2074 
2075 STATIC void
2076 mvxpe_linkreset(struct mvxpe_softc *sc)
2077 {
2078 	struct mii_softc *mii;
2079 
2080 	KASSERT_SC_MTX(sc);
2081 
2082 	/* force reset PHY first */
2083 	mii = LIST_FIRST(&sc->sc_mii.mii_phys);
2084 	if (mii)
2085 		mii_phy_reset(mii);
2086 
2087 	/* reinit MAC and PHY */
2088 	mvxpe_linkdown(sc);
2089 	if ((sc->sc_if_flags & IFF_UP) != 0)
2090 		mvxpe_linkup(sc);
2091 }
2092 
2093 /*
2094  * Tx Subroutines
2095  */
2096 STATIC int
2097 mvxpe_tx_queue_select(struct mvxpe_softc *sc, struct mbuf *m)
2098 {
2099 	int q = 0;
2100 
2101 	/* XXX: get attribute from ALTQ framework? */
2102 	mvxpe_tx_lockq(sc, q);
2103 	return 0;
2104 }
2105 
2106 STATIC int
2107 mvxpe_tx_queue(struct mvxpe_softc *sc, struct mbuf *m, int q)
2108 {
2109 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2110 	bus_dma_segment_t *txsegs;
2111 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2112 	struct mvxpe_tx_desc *t = NULL;
2113 	uint32_t ptxsu;
2114 	int txnsegs;
2115 	int start, used;
2116 	int i;
2117 
2118 	KASSERT_TX_MTX(sc, q);
2119 	KASSERT(tx->tx_used >= 0);
2120 	KASSERT(tx->tx_used <= tx->tx_queue_len);
2121 
2122 	/* load mbuf using dmamap of 1st descriptor */
2123 	if (bus_dmamap_load_mbuf(sc->sc_dmat,
2124 	    MVXPE_TX_MAP(sc, q, tx->tx_cpu), m, BUS_DMA_NOWAIT) != 0) {
2125 		m_freem(m);
2126 		return ENOBUFS;
2127 	}
2128 	txsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_segs;
2129 	txnsegs = MVXPE_TX_MAP(sc, q, tx->tx_cpu)->dm_nsegs;
2130 	if (txnsegs <= 0 || (txnsegs + tx->tx_used) > tx->tx_queue_len) {
2131 		/* we have no enough descriptors or mbuf is broken */
2132 		bus_dmamap_unload(sc->sc_dmat, MVXPE_TX_MAP(sc, q, tx->tx_cpu));
2133 		m_freem(m);
2134 		return ENOBUFS;
2135 	}
2136 	DPRINTSC(sc, 2, "send packet %p descriptor %d\n", m, tx->tx_cpu);
2137 	KASSERT(MVXPE_TX_MBUF(sc, q, tx->tx_cpu) == NULL);
2138 
2139 	/* remember mbuf using 1st descriptor */
2140 	MVXPE_TX_MBUF(sc, q, tx->tx_cpu) = m;
2141 	bus_dmamap_sync(sc->sc_dmat,
2142 	    MVXPE_TX_MAP(sc, q, tx->tx_cpu), 0, m->m_pkthdr.len,
2143 	    BUS_DMASYNC_PREWRITE);
2144 
2145 	/* load to tx descriptors */
2146 	start = tx->tx_cpu;
2147 	used = 0;
2148 	for (i = 0; i < txnsegs; i++) {
2149 		if (__predict_false(txsegs[i].ds_len == 0))
2150 			continue;
2151 		t = MVXPE_TX_DESC(sc, q, tx->tx_cpu);
2152 		t->command = 0;
2153 		t->l4ichk = 0;
2154 		t->flags = 0;
2155 		if (i == 0) {
2156 			/* 1st descriptor */
2157 			t->command |= MVXPE_TX_CMD_W_PACKET_OFFSET(0);
2158 			t->command |= MVXPE_TX_CMD_PADDING;
2159 			t->command |= MVXPE_TX_CMD_F;
2160 			mvxpe_tx_set_csumflag(ifp, t, m);
2161 		}
2162 		t->bufptr = txsegs[i].ds_addr;
2163 		t->bytecnt = txsegs[i].ds_len;
2164 		tx->tx_cpu = tx_counter_adv(tx->tx_cpu, 1);
2165 		tx->tx_used++;
2166 		used++;
2167 	}
2168 	/* t is last descriptor here */
2169 	KASSERT(t != NULL);
2170 	t->command |= MVXPE_TX_CMD_L;
2171 
2172 	DPRINTSC(sc, 2, "queue %d, %d descriptors used\n", q, used);
2173 #ifdef MVXPE_DEBUG
2174 	if (mvxpe_debug > 2)
2175 		for (i = start; i <= tx->tx_cpu; i++) {
2176 			t = MVXPE_TX_DESC(sc, q, i);
2177 			mvxpe_dump_txdesc(t, i);
2178 		}
2179 #endif
2180 	mvxpe_ring_sync_tx(sc, q, start, used,
2181 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2182 
2183 	while (used > 255) {
2184 		ptxsu = MVXPE_PTXSU_NOWD(255);
2185 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2186 		used -= 255;
2187 	}
2188 	if (used > 0) {
2189 		ptxsu = MVXPE_PTXSU_NOWD(used);
2190 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2191 	}
2192 	MVXPE_WRITE(sc, MVXPE_TQC, MVXPE_TQC_ENQ(q));
2193 
2194 	DPRINTSC(sc, 2,
2195 	    "PTXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQA(q)));
2196 	DPRINTSC(sc, 2,
2197 	    "PTXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXDQS(q)));
2198 	DPRINTSC(sc, 2,
2199 	    "PTXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PTXS(q)));
2200 	DPRINTSC(sc, 2,
2201 	    "PTXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PTXDI(q)));
2202 	DPRINTSC(sc, 2, "TQC: %#x\n", MVXPE_READ(sc, MVXPE_TQC));
2203 	DPRINTIFNET(ifp, 2,
2204 	    "Tx: tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2205 	    tx->tx_cpu, tx->tx_dma, tx->tx_used);
2206 	return 0;
2207 }
2208 
2209 STATIC void
2210 mvxpe_tx_set_csumflag(struct ifnet *ifp,
2211     struct mvxpe_tx_desc *t, struct mbuf *m)
2212 {
2213 	struct ether_header *eh;
2214 	int csum_flags;
2215 	uint32_t iphl = 0, ipoff = 0;
2216 
2217 	csum_flags = ifp->if_csum_flags_tx & m->m_pkthdr.csum_flags;
2218 
2219 	eh = mtod(m, struct ether_header *);
2220 	switch (htons(eh->ether_type)) {
2221 	case ETHERTYPE_IP:
2222 	case ETHERTYPE_IPV6:
2223 		ipoff = ETHER_HDR_LEN;
2224 		break;
2225 	case ETHERTYPE_VLAN:
2226 		ipoff = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
2227 		break;
2228 	}
2229 
2230 	if (csum_flags & (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
2231 		iphl = M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
2232 		t->command |= MVXPE_TX_CMD_L3_IP4;
2233 	}
2234 	else if (csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) {
2235 		iphl = M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
2236 		t->command |= MVXPE_TX_CMD_L3_IP6;
2237 	}
2238 	else {
2239 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2240 		return;
2241 	}
2242 
2243 
2244 	/* L3 */
2245 	if (csum_flags & M_CSUM_IPv4) {
2246 		t->command |= MVXPE_TX_CMD_IP4_CHECKSUM;
2247 	}
2248 
2249 	/* L4 */
2250 	if ((csum_flags &
2251 	    (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0) {
2252 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NONE;
2253 	}
2254 	else if (csum_flags & M_CSUM_TCPv4) {
2255 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2256 		t->command |= MVXPE_TX_CMD_L4_TCP;
2257 	}
2258 	else if (csum_flags & M_CSUM_UDPv4) {
2259 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2260 		t->command |= MVXPE_TX_CMD_L4_UDP;
2261 	}
2262 	else if (csum_flags & M_CSUM_TCPv6) {
2263 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2264 		t->command |= MVXPE_TX_CMD_L4_TCP;
2265 	}
2266 	else if (csum_flags & M_CSUM_UDPv6) {
2267 		t->command |= MVXPE_TX_CMD_L4_CHECKSUM_NOFRAG;
2268 		t->command |= MVXPE_TX_CMD_L4_UDP;
2269 	}
2270 
2271 	t->l4ichk = 0;
2272 	t->command |= MVXPE_TX_CMD_IP_HEADER_LEN(iphl >> 2);
2273 	t->command |= MVXPE_TX_CMD_L3_OFFSET(ipoff);
2274 }
2275 
2276 STATIC void
2277 mvxpe_tx_complete(struct mvxpe_softc *sc, uint32_t queues)
2278 {
2279 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2280 	int q;
2281 
2282 	DPRINTSC(sc, 2, "tx completed.\n");
2283 
2284 	KASSERT_SC_MTX(sc);
2285 
2286 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2287 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2288 			continue;
2289 		mvxpe_tx_lockq(sc, q);
2290 		mvxpe_tx_queue_complete(sc, q);
2291 		mvxpe_tx_unlockq(sc, q);
2292 	}
2293 	KASSERT(sc->sc_tx_pending >= 0);
2294 	if (sc->sc_tx_pending == 0)
2295 		ifp->if_timer = 0;
2296 }
2297 
2298 STATIC void
2299 mvxpe_tx_queue_complete(struct mvxpe_softc *sc, int q)
2300 {
2301 	struct mvxpe_tx_ring *tx = MVXPE_TX_RING(sc, q);
2302 	struct mvxpe_tx_desc *t;
2303 	struct mbuf *m;
2304 	uint32_t ptxs, ptxsu, ndesc;
2305 	int i;
2306 
2307 	KASSERT_TX_MTX(sc, q);
2308 
2309 	ptxs = MVXPE_READ(sc, MVXPE_PTXS(q));
2310 	ndesc = MVXPE_PTXS_GET_TBC(ptxs);
2311 	if (ndesc == 0)
2312 		return;
2313 
2314 	DPRINTSC(sc, 2,
2315 	    "tx complete queue %d, %d descriptors.\n", q, ndesc);
2316 
2317 	mvxpe_ring_sync_tx(sc, q, tx->tx_dma, ndesc,
2318 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2319 
2320 	for (i = 0; i < ndesc; i++) {
2321 		int error = 0;
2322 
2323 		t = MVXPE_TX_DESC(sc, q, tx->tx_dma);
2324 		if (t->flags & MVXPE_TX_F_ES) {
2325 			DPRINTSC(sc, 1,
2326 			    "tx error queue %d desc %d\n",
2327 			    q, tx->tx_dma);
2328 			switch (t->flags & MVXPE_TX_F_EC_MASK) {
2329 			case MVXPE_TX_F_EC_LC:
2330 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_lc);
2331 				break;
2332 			case MVXPE_TX_F_EC_UR:
2333 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_ur);
2334 				break;
2335 			case MVXPE_TX_F_EC_RL:
2336 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_rl);
2337 				break;
2338 			default:
2339 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_txd_oth);
2340 				break;
2341 			}
2342 			error = 1;
2343 		}
2344 		m = MVXPE_TX_MBUF(sc, q, tx->tx_dma);
2345 		if (m != NULL) {
2346 			KASSERT((t->command & MVXPE_TX_CMD_F) != 0);
2347 			MVXPE_TX_MBUF(sc, q, tx->tx_dma) = NULL;
2348 			bus_dmamap_sync(sc->sc_dmat,
2349 			    MVXPE_TX_MAP(sc, q, tx->tx_dma), 0, m->m_pkthdr.len,
2350 			    BUS_DMASYNC_POSTWRITE);
2351 			bus_dmamap_unload(sc->sc_dmat,
2352 			    MVXPE_TX_MAP(sc, q, tx->tx_dma));
2353 			m_freem(m);
2354 			sc->sc_tx_pending--;
2355 		}
2356 		else
2357 			KASSERT((t->flags & MVXPE_TX_CMD_F) == 0);
2358 		tx->tx_dma = tx_counter_adv(tx->tx_dma, 1);
2359 		tx->tx_used--;
2360 		if (error)
2361 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txqe[q]);
2362 		else
2363 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_txq[q]);
2364 	}
2365 	KASSERT(tx->tx_used >= 0);
2366 	KASSERT(tx->tx_used <= tx->tx_queue_len);
2367 	while (ndesc > 255) {
2368 		ptxsu = MVXPE_PTXSU_NORB(255);
2369 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2370 		ndesc -= 255;
2371 	}
2372 	if (ndesc > 0) {
2373 		ptxsu = MVXPE_PTXSU_NORB(ndesc);
2374 		MVXPE_WRITE(sc, MVXPE_PTXSU(q), ptxsu);
2375 	}
2376 	DPRINTSC(sc, 2,
2377 	    "Tx complete q %d, tx_cpu = %d, tx_dma = %d, tx_used = %d\n",
2378 	    q, tx->tx_cpu, tx->tx_dma, tx->tx_used);
2379 }
2380 
2381 /*
2382  * Rx Subroutines
2383  */
2384 STATIC void
2385 mvxpe_rx(struct mvxpe_softc *sc, uint32_t queues)
2386 {
2387 	int q, npkt;
2388 
2389 	KASSERT_SC_MTX(sc);
2390 
2391 	while ( (npkt = mvxpe_rx_queue_select(sc, queues, &q))) {
2392 		/* mutex is held by rx_queue_select */
2393 		mvxpe_rx_queue(sc, q, npkt);
2394 		mvxpe_rx_unlockq(sc, q);
2395 	}
2396 }
2397 
2398 STATIC void
2399 mvxpe_rx_queue(struct mvxpe_softc *sc, int q, int npkt)
2400 {
2401 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2402 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2403 	struct mvxpe_rx_desc *r;
2404 	struct mvxpbm_chunk *chunk;
2405 	struct mbuf *m;
2406 	uint32_t prxsu;
2407 	int error = 0;
2408 	int i;
2409 
2410 	KASSERT_RX_MTX(sc, q);
2411 
2412 	mvxpe_ring_sync_rx(sc, q, rx->rx_dma, npkt,
2413 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2414 
2415 	for (i = 0; i < npkt; i++) {
2416 		/* get descriptor and packet */
2417 		chunk = MVXPE_RX_PKTBUF(sc, q, rx->rx_dma);
2418 		MVXPE_RX_PKTBUF(sc, q, rx->rx_dma) = NULL;
2419 		r = MVXPE_RX_DESC(sc, q, rx->rx_dma);
2420 		mvxpbm_dmamap_sync(chunk, r->bytecnt, BUS_DMASYNC_POSTREAD);
2421 
2422 		/* check errors */
2423 		if (r->status & MVXPE_RX_ES) {
2424 			switch (r->status & MVXPE_RX_EC_MASK) {
2425 			case MVXPE_RX_EC_CE:
2426 				DPRINTIFNET(ifp, 1, "CRC error\n");
2427 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_ce);
2428 				break;
2429 			case MVXPE_RX_EC_OR:
2430 				DPRINTIFNET(ifp, 1, "Rx FIFO overrun\n");
2431 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_or);
2432 				break;
2433 			case MVXPE_RX_EC_MF:
2434 				DPRINTIFNET(ifp, 1, "Rx too large frame\n");
2435 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_mf);
2436 				break;
2437 			case MVXPE_RX_EC_RE:
2438 				DPRINTIFNET(ifp, 1, "Rx resource error\n");
2439 				MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_re);
2440 				break;
2441 			}
2442 			error = 1;
2443 			goto rx_done;
2444 		}
2445 		if (!(r->status & MVXPE_RX_F) || !(r->status & MVXPE_RX_L)) {
2446 			DPRINTIFNET(ifp, 1, "not support scatter buf\n");
2447 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_rxd_scat);
2448 			error = 1;
2449 			goto rx_done;
2450 		}
2451 
2452 		if (chunk == NULL) {
2453 			device_printf(sc->sc_dev,
2454 			    "got rx interrupt, but no chunk\n");
2455 			error = 1;
2456 			goto rx_done;
2457 		}
2458 
2459 		/* extract packet buffer */
2460 		if (mvxpbm_init_mbuf_hdr(chunk) != 0) {
2461 			error = 1;
2462 			goto rx_done;
2463 		}
2464 		m = chunk->m;
2465 		m_set_rcvif(m, ifp);
2466 		m->m_pkthdr.len = m->m_len = r->bytecnt - ETHER_CRC_LEN;
2467 		m_adj(m, MVXPE_HWHEADER_SIZE); /* strip MH */
2468 		mvxpe_rx_set_csumflag(ifp, r, m);
2469 		if_percpuq_enqueue(ifp->if_percpuq, m);
2470 		chunk = NULL; /* the BM chunk goes to networking stack now */
2471 rx_done:
2472 		if (chunk) {
2473 			/* rx error. just return the chunk to BM. */
2474 			mvxpbm_free_chunk(chunk);
2475 		}
2476 		if (error)
2477 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxqe[q]);
2478 		else
2479 			MVXPE_EVCNT_INCR(&sc->sc_ev.ev_drv_rxq[q]);
2480 		rx->rx_dma = rx_counter_adv(rx->rx_dma, 1);
2481 	}
2482 	/* DMA status update */
2483 	DPRINTSC(sc, 2, "%d packets received from queue %d\n", npkt, q);
2484 	while (npkt > 255) {
2485 		prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(255);
2486 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2487 		npkt -= 255;
2488 	}
2489 	if (npkt > 0) {
2490 		prxsu = MVXPE_PRXSU_NOOFPROCESSEDDESCRIPTORS(npkt);
2491 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2492 	}
2493 
2494 	DPRINTSC(sc, 2,
2495 	    "PRXDQA: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQA(q)));
2496 	DPRINTSC(sc, 2,
2497 	    "PRXDQS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXDQS(q)));
2498 	DPRINTSC(sc, 2,
2499 	    "PRXS: queue %d, %#x\n", q, MVXPE_READ(sc, MVXPE_PRXS(q)));
2500 	DPRINTSC(sc, 2,
2501 	    "PRXDI: queue %d, %d\n", q, MVXPE_READ(sc, MVXPE_PRXDI(q)));
2502 	DPRINTSC(sc, 2, "RQC: %#x\n", MVXPE_READ(sc, MVXPE_RQC));
2503 	DPRINTIFNET(ifp, 2, "Rx: rx_cpu = %d, rx_dma = %d\n",
2504 	    rx->rx_cpu, rx->rx_dma);
2505 }
2506 
2507 STATIC int
2508 mvxpe_rx_queue_select(struct mvxpe_softc *sc, uint32_t queues, int *queue)
2509 {
2510 	uint32_t prxs, npkt;
2511 	int q;
2512 
2513 	KASSERT_SC_MTX(sc);
2514 	KASSERT(queue != NULL);
2515 	DPRINTSC(sc, 2, "selecting rx queue\n");
2516 
2517 	for (q = MVXPE_QUEUE_SIZE - 1; q >= 0; q--) {
2518 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2519 			continue;
2520 
2521 		prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2522 		npkt = MVXPE_PRXS_GET_ODC(prxs);
2523 		if (npkt == 0)
2524 			continue;
2525 
2526 		DPRINTSC(sc, 2,
2527 		    "queue %d selected: prxs=%#x, %u packet received.\n",
2528 		    q, prxs, npkt);
2529 		*queue = q;
2530 		mvxpe_rx_lockq(sc, q);
2531 		return npkt;
2532 	}
2533 
2534 	return 0;
2535 }
2536 
2537 STATIC void
2538 mvxpe_rx_refill(struct mvxpe_softc *sc, uint32_t queues)
2539 {
2540 	int q;
2541 
2542 	KASSERT_SC_MTX(sc);
2543 
2544 	/* XXX: check rx bit array */
2545 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
2546 		if (!MVXPE_IS_QUEUE_BUSY(queues, q))
2547 			continue;
2548 
2549 		mvxpe_rx_lockq(sc, q);
2550 		mvxpe_rx_queue_refill(sc, q);
2551 		mvxpe_rx_unlockq(sc, q);
2552 	}
2553 }
2554 
2555 STATIC void
2556 mvxpe_rx_queue_refill(struct mvxpe_softc *sc, int q)
2557 {
2558 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2559 	uint32_t prxs, prxsu, ndesc;
2560 	int idx, refill = 0;
2561 	int npkt;
2562 
2563 	KASSERT_RX_MTX(sc, q);
2564 
2565 	prxs = MVXPE_READ(sc, MVXPE_PRXS(q));
2566 	ndesc = MVXPE_PRXS_GET_NODC(prxs) + MVXPE_PRXS_GET_ODC(prxs);
2567 	refill = rx->rx_queue_len - ndesc;
2568 	if (refill <= 0)
2569 		return;
2570 	DPRINTPRXS(2, q);
2571 	DPRINTSC(sc, 2, "%d buffers to refill.\n", refill);
2572 
2573 	idx = rx->rx_cpu;
2574 	for (npkt = 0; npkt < refill; npkt++)
2575 		if (mvxpe_rx_queue_add(sc, q) != 0)
2576 			break;
2577 	DPRINTSC(sc, 2, "queue %d, %d buffer refilled.\n", q, npkt);
2578 	if (npkt == 0)
2579 		return;
2580 
2581 	mvxpe_ring_sync_rx(sc, q, idx, npkt,
2582 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2583 
2584 	while (npkt > 255) {
2585 		prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(255);
2586 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2587 		npkt -= 255;
2588 	}
2589 	if (npkt > 0) {
2590 		prxsu = MVXPE_PRXSU_NOOFNEWDESCRIPTORS(npkt);
2591 		MVXPE_WRITE(sc, MVXPE_PRXSU(q), prxsu);
2592 	}
2593 	DPRINTPRXS(2, q);
2594 	return;
2595 }
2596 
2597 STATIC int
2598 mvxpe_rx_queue_add(struct mvxpe_softc *sc, int q)
2599 {
2600 	struct mvxpe_rx_ring *rx = MVXPE_RX_RING(sc, q);
2601 	struct mvxpe_rx_desc *r;
2602 	struct mvxpbm_chunk *chunk = NULL;
2603 
2604 	KASSERT_RX_MTX(sc, q);
2605 
2606 	/* Allocate the packet buffer */
2607 	chunk = mvxpbm_alloc(sc->sc_bm);
2608 	if (chunk == NULL) {
2609 		DPRINTSC(sc, 1, "BM chunk allocation failed.\n");
2610 		return ENOBUFS;
2611 	}
2612 
2613 	/* Add the packet to descritor */
2614 	KASSERT(MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) == NULL);
2615 	MVXPE_RX_PKTBUF(sc, q, rx->rx_cpu) = chunk;
2616 	mvxpbm_dmamap_sync(chunk, BM_SYNC_ALL, BUS_DMASYNC_PREREAD);
2617 
2618 	r = MVXPE_RX_DESC(sc, q, rx->rx_cpu);
2619 	r->bufptr = chunk->buf_pa;
2620 	DPRINTSC(sc, 9, "chunk added to index %d\n", rx->rx_cpu);
2621 	rx->rx_cpu = rx_counter_adv(rx->rx_cpu, 1);
2622 	return 0;
2623 }
2624 
2625 STATIC void
2626 mvxpe_rx_set_csumflag(struct ifnet *ifp,
2627     struct mvxpe_rx_desc *r, struct mbuf *m0)
2628 {
2629 	uint32_t csum_flags = 0;
2630 
2631 	if ((r->status & (MVXPE_RX_IP_HEADER_OK | MVXPE_RX_L3_IP)) == 0)
2632 		return; /* not a IP packet */
2633 
2634 	/* L3 */
2635 	if (r->status & MVXPE_RX_L3_IP) {
2636 		csum_flags |= M_CSUM_IPv4 & ifp->if_csum_flags_rx;
2637 		if ((r->status & MVXPE_RX_IP_HEADER_OK) == 0 &&
2638 		    (csum_flags & M_CSUM_IPv4) != 0) {
2639 			csum_flags |= M_CSUM_IPv4_BAD;
2640 			goto finish;
2641 		}
2642 		else if (r->status & MVXPE_RX_IPV4_FRAGMENT) {
2643 			/*
2644 			 * r->l4chk has partial checksum of each framgment.
2645 			 * but there is no way to use it in NetBSD.
2646 			 */
2647 			return;
2648 		}
2649 	}
2650 
2651 	/* L4 */
2652 	switch (r->status & MVXPE_RX_L4_MASK) {
2653 	case MVXPE_RX_L4_TCP:
2654 		if (r->status & MVXPE_RX_L3_IP)
2655 			csum_flags |= M_CSUM_TCPv4 & ifp->if_csum_flags_rx;
2656 		else
2657 			csum_flags |= M_CSUM_TCPv6 & ifp->if_csum_flags_rx;
2658 		break;
2659 	case MVXPE_RX_L4_UDP:
2660 		if (r->status & MVXPE_RX_L3_IP)
2661 			csum_flags |= M_CSUM_UDPv4 & ifp->if_csum_flags_rx;
2662 		else
2663 			csum_flags |= M_CSUM_UDPv6 & ifp->if_csum_flags_rx;
2664 		break;
2665 	case MVXPE_RX_L4_OTH:
2666 	default:
2667 		break;
2668 	}
2669 	if ((r->status & MVXPE_RX_L4_CHECKSUM_OK) == 0 && (csum_flags &
2670 	    (M_CSUM_TCPv4 | M_CSUM_TCPv6 | M_CSUM_UDPv4 | M_CSUM_UDPv6)) != 0)
2671 		csum_flags |= M_CSUM_TCP_UDP_BAD;
2672 finish:
2673 	m0->m_pkthdr.csum_flags = csum_flags;
2674 }
2675 
2676 /*
2677  * MAC address filter
2678  */
2679 STATIC uint8_t
2680 mvxpe_crc8(const uint8_t *data, size_t size)
2681 {
2682 	int bit;
2683 	uint8_t byte;
2684 	uint8_t crc = 0;
2685 	const uint8_t poly = 0x07;
2686 
2687 	while (size--)
2688 	  for (byte = *data++, bit = NBBY-1; bit >= 0; bit--)
2689 	    crc = (crc << 1) ^ ((((crc >> 7) ^ (byte >> bit)) & 1) ? poly : 0);
2690 
2691 	return crc;
2692 }
2693 
2694 CTASSERT(MVXPE_NDFSMT == MVXPE_NDFOMT);
2695 
2696 STATIC void
2697 mvxpe_filter_setup(struct mvxpe_softc *sc)
2698 {
2699 	struct ethercom *ec = &sc->sc_ethercom;
2700 	struct ifnet *ifp= &sc->sc_ethercom.ec_if;
2701 	struct ether_multi *enm;
2702 	struct ether_multistep step;
2703 	uint32_t dfut[MVXPE_NDFUT], dfsmt[MVXPE_NDFSMT], dfomt[MVXPE_NDFOMT];
2704 	uint32_t pxc;
2705 	int i;
2706 	const uint8_t special[ETHER_ADDR_LEN] = {0x01,0x00,0x5e,0x00,0x00,0x00};
2707 
2708 	KASSERT_SC_MTX(sc);
2709 
2710 	memset(dfut, 0, sizeof(dfut));
2711 	memset(dfsmt, 0, sizeof(dfsmt));
2712 	memset(dfomt, 0, sizeof(dfomt));
2713 
2714 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
2715 		goto allmulti;
2716 	}
2717 
2718 	ETHER_LOCK(ec);
2719 	ETHER_FIRST_MULTI(step, ec, enm);
2720 	while (enm != NULL) {
2721 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2722 			/* ranges are complex and somewhat rare */
2723 			ETHER_UNLOCK(ec);
2724 			goto allmulti;
2725 		}
2726 		/* chip handles some IPv4 multicast specially */
2727 		if (memcmp(enm->enm_addrlo, special, 5) == 0) {
2728 			i = enm->enm_addrlo[5];
2729 			dfsmt[i>>2] |=
2730 			    MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2731 		} else {
2732 			i = mvxpe_crc8(enm->enm_addrlo, ETHER_ADDR_LEN);
2733 			dfomt[i>>2] |=
2734 			    MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2735 		}
2736 
2737 		ETHER_NEXT_MULTI(step, enm);
2738 	}
2739 	ETHER_UNLOCK(ec);
2740 	goto set;
2741 
2742 allmulti:
2743 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
2744 		for (i = 0; i < MVXPE_NDFSMT; i++) {
2745 			dfsmt[i] = dfomt[i] =
2746 			    MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2747 			    MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2748 			    MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2749 			    MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2750 		}
2751 	}
2752 
2753 set:
2754 	pxc = MVXPE_READ(sc, MVXPE_PXC);
2755 	pxc &= ~MVXPE_PXC_UPM;
2756 	pxc |= MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP;
2757 	if (ifp->if_flags & IFF_BROADCAST) {
2758 		pxc &= ~(MVXPE_PXC_RB | MVXPE_PXC_RBIP | MVXPE_PXC_RBARP);
2759 	}
2760 	if (ifp->if_flags & IFF_PROMISC) {
2761 		pxc |= MVXPE_PXC_UPM;
2762 	}
2763 	MVXPE_WRITE(sc, MVXPE_PXC, pxc);
2764 
2765 	/* Set Destination Address Filter Unicast Table */
2766 	if (ifp->if_flags & IFF_PROMISC) {
2767 		/* pass all unicast addresses */
2768 		for (i = 0; i < MVXPE_NDFUT; i++) {
2769 			dfut[i] =
2770 			    MVXPE_DF(0, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2771 			    MVXPE_DF(1, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2772 			    MVXPE_DF(2, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS) |
2773 			    MVXPE_DF(3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2774 		}
2775 	}
2776 	else {
2777 		i = sc->sc_enaddr[5] & 0xf;		/* last nibble */
2778 		dfut[i>>2] = MVXPE_DF(i&3, MVXPE_DF_QUEUE(0) | MVXPE_DF_PASS);
2779 	}
2780 	MVXPE_WRITE_REGION(sc, MVXPE_DFUT(0), dfut, MVXPE_NDFUT);
2781 
2782 	/* Set Destination Address Filter Multicast Tables */
2783 	MVXPE_WRITE_REGION(sc, MVXPE_DFSMT(0), dfsmt, MVXPE_NDFSMT);
2784 	MVXPE_WRITE_REGION(sc, MVXPE_DFOMT(0), dfomt, MVXPE_NDFOMT);
2785 }
2786 
2787 /*
2788  * sysctl(9)
2789  */
2790 SYSCTL_SETUP(sysctl_mvxpe, "sysctl mvxpe subtree setup")
2791 {
2792 	int rc;
2793 	const struct sysctlnode *node;
2794 
2795 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2796 	    0, CTLTYPE_NODE, "mvxpe",
2797 	    SYSCTL_DESCR("mvxpe interface controls"),
2798 	    NULL, 0, NULL, 0,
2799 	    CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2800 		goto err;
2801 	}
2802 
2803 	mvxpe_root_num = node->sysctl_num;
2804 	return;
2805 
2806 err:
2807 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2808 }
2809 
2810 STATIC int
2811 sysctl_read_mib(SYSCTLFN_ARGS)
2812 {
2813 	struct mvxpe_sysctl_mib *arg;
2814 	struct mvxpe_softc *sc;
2815 	struct sysctlnode node;
2816 	uint64_t val;
2817 	int err;
2818 
2819 	node = *rnode;
2820 	arg = (struct mvxpe_sysctl_mib *)rnode->sysctl_data;
2821 	if (arg == NULL)
2822 		return EINVAL;
2823 
2824 	sc = arg->sc;
2825 	if (sc == NULL)
2826 		return EINVAL;
2827 	if (arg->index < 0 || arg->index > __arraycount(mvxpe_mib_list))
2828 		return EINVAL;
2829 
2830 	mvxpe_sc_lock(sc);
2831 	val = arg->counter;
2832 	mvxpe_sc_unlock(sc);
2833 
2834 	node.sysctl_data = &val;
2835 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
2836 	if (err)
2837 	       return err;
2838 	if (newp)
2839 		return EINVAL;
2840 
2841 	return 0;
2842 }
2843 
2844 
2845 STATIC int
2846 sysctl_clear_mib(SYSCTLFN_ARGS)
2847 {
2848 	struct mvxpe_softc *sc;
2849 	struct sysctlnode node;
2850 	int val;
2851 	int err;
2852 
2853 	node = *rnode;
2854 	sc = (struct mvxpe_softc *)rnode->sysctl_data;
2855 	if (sc == NULL)
2856 		return EINVAL;
2857 
2858 	val = 0;
2859 	node.sysctl_data = &val;
2860 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
2861 	if (err || newp == NULL)
2862 		return err;
2863 	if (val < 0 || val > 1)
2864 		return EINVAL;
2865 	if (val == 1) {
2866 		mvxpe_sc_lock(sc);
2867 		mvxpe_clear_mib(sc);
2868 		mvxpe_sc_unlock(sc);
2869 	}
2870 
2871 	return 0;
2872 }
2873 
2874 STATIC int
2875 sysctl_set_queue_length(SYSCTLFN_ARGS)
2876 {
2877 	struct mvxpe_sysctl_queue *arg;
2878 	struct mvxpe_rx_ring *rx = NULL;
2879 	struct mvxpe_tx_ring *tx = NULL;
2880 	struct mvxpe_softc *sc;
2881 	struct sysctlnode node;
2882 	uint32_t reg;
2883 	int val;
2884 	int err;
2885 
2886 	node = *rnode;
2887 
2888 	arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2889 	if (arg == NULL)
2890 		return EINVAL;
2891 	if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2892 		return EINVAL;
2893 	if (arg->rxtx != MVXPE_SYSCTL_RX && arg->rxtx != MVXPE_SYSCTL_TX)
2894 		return EINVAL;
2895 
2896 	sc = arg->sc;
2897 	if (sc == NULL)
2898 		return EINVAL;
2899 
2900 	/* read queue length */
2901 	mvxpe_sc_lock(sc);
2902 	switch (arg->rxtx) {
2903 	case  MVXPE_SYSCTL_RX:
2904 		mvxpe_rx_lockq(sc, arg->queue);
2905 		rx = MVXPE_RX_RING(sc, arg->queue);
2906 		val = rx->rx_queue_len;
2907 		mvxpe_rx_unlockq(sc, arg->queue);
2908 		break;
2909 	case  MVXPE_SYSCTL_TX:
2910 		mvxpe_tx_lockq(sc, arg->queue);
2911 		tx = MVXPE_TX_RING(sc, arg->queue);
2912 		val = tx->tx_queue_len;
2913 		mvxpe_tx_unlockq(sc, arg->queue);
2914 		break;
2915 	}
2916 
2917 	node.sysctl_data = &val;
2918 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
2919 	if (err || newp == NULL) {
2920 		mvxpe_sc_unlock(sc);
2921 		return err;
2922 	}
2923 
2924 	/* update queue length */
2925 	if (val < 8 || val > MVXPE_RX_RING_CNT) {
2926 		mvxpe_sc_unlock(sc);
2927 		return EINVAL;
2928 	}
2929 	switch (arg->rxtx) {
2930 	case  MVXPE_SYSCTL_RX:
2931 		mvxpe_rx_lockq(sc, arg->queue);
2932 		rx->rx_queue_len = val;
2933 		rx->rx_queue_th_received =
2934 		    rx->rx_queue_len / MVXPE_RXTH_RATIO;
2935 		rx->rx_queue_th_free =
2936 		    rx->rx_queue_len / MVXPE_RXTH_REFILL_RATIO;
2937 
2938 		reg  = MVXPE_PRXDQTH_ODT(rx->rx_queue_th_received);
2939 		reg |= MVXPE_PRXDQTH_NODT(rx->rx_queue_th_free);
2940 		MVXPE_WRITE(sc, MVXPE_PRXDQTH(arg->queue), reg);
2941 
2942 		mvxpe_rx_unlockq(sc, arg->queue);
2943 		break;
2944 	case  MVXPE_SYSCTL_TX:
2945 		mvxpe_tx_lockq(sc, arg->queue);
2946 		tx->tx_queue_len = val;
2947 		tx->tx_queue_th_free =
2948 		    tx->tx_queue_len / MVXPE_TXTH_RATIO;
2949 
2950 		reg  = MVXPE_PTXDQS_TBT(tx->tx_queue_th_free);
2951 		reg |= MVXPE_PTXDQS_DQS(MVXPE_TX_RING_CNT);
2952 		MVXPE_WRITE(sc, MVXPE_PTXDQS(arg->queue), reg);
2953 
2954 		mvxpe_tx_unlockq(sc, arg->queue);
2955 		break;
2956 	}
2957 	mvxpe_sc_unlock(sc);
2958 
2959 	return 0;
2960 }
2961 
2962 STATIC int
2963 sysctl_set_queue_rxthtime(SYSCTLFN_ARGS)
2964 {
2965 	struct mvxpe_sysctl_queue *arg;
2966 	struct mvxpe_rx_ring *rx = NULL;
2967 	struct mvxpe_softc *sc;
2968 	struct sysctlnode node;
2969 	extern uint32_t mvTclk;
2970 	uint32_t reg, time_mvtclk;
2971 	int time_us;
2972 	int err;
2973 
2974 	node = *rnode;
2975 
2976 	arg = (struct mvxpe_sysctl_queue *)rnode->sysctl_data;
2977 	if (arg == NULL)
2978 		return EINVAL;
2979 	if (arg->queue < 0 || arg->queue > MVXPE_RX_RING_CNT)
2980 		return EINVAL;
2981 	if (arg->rxtx != MVXPE_SYSCTL_RX)
2982 		return EINVAL;
2983 
2984 	sc = arg->sc;
2985 	if (sc == NULL)
2986 		return EINVAL;
2987 
2988 	/* read queue length */
2989 	mvxpe_sc_lock(sc);
2990 	mvxpe_rx_lockq(sc, arg->queue);
2991 	rx = MVXPE_RX_RING(sc, arg->queue);
2992 	time_mvtclk = rx->rx_queue_th_time;
2993 	time_us = ((uint64_t)time_mvtclk * 1000ULL * 1000ULL) / mvTclk;
2994 	node.sysctl_data = &time_us;
2995 	DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n",
2996 	    arg->queue, MVXPE_READ(sc, MVXPE_PRXITTH(arg->queue)));
2997 	err = sysctl_lookup(SYSCTLFN_CALL(&node));
2998 	if (err || newp == NULL) {
2999 		mvxpe_rx_unlockq(sc, arg->queue);
3000 		mvxpe_sc_unlock(sc);
3001 		return err;
3002 	}
3003 
3004 	/* update queue length (0[sec] - 1[sec]) */
3005 	if (time_us < 0 || time_us > (1000 * 1000)) {
3006 		mvxpe_rx_unlockq(sc, arg->queue);
3007 		mvxpe_sc_unlock(sc);
3008 		return EINVAL;
3009 	}
3010 	time_mvtclk =
3011 	    (uint64_t)mvTclk * (uint64_t)time_us / (1000ULL * 1000ULL);
3012 	rx->rx_queue_th_time = time_mvtclk;
3013 	reg = MVXPE_PRXITTH_RITT(rx->rx_queue_th_time);
3014 	MVXPE_WRITE(sc, MVXPE_PRXITTH(arg->queue), reg);
3015 	DPRINTSC(sc, 1, "RXITTH(%d) => %#x\n", arg->queue, reg);
3016 	mvxpe_rx_unlockq(sc, arg->queue);
3017 	mvxpe_sc_unlock(sc);
3018 
3019 	return 0;
3020 }
3021 
3022 
3023 STATIC void
3024 sysctl_mvxpe_init(struct mvxpe_softc *sc)
3025 {
3026 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3027 	const struct sysctlnode *node;
3028 	int mvxpe_nodenum;
3029 	int mvxpe_mibnum;
3030 	int mvxpe_rxqueuenum;
3031 	int mvxpe_txqueuenum;
3032 	int q, i;
3033 
3034 	/* hw.mvxpe.mvxpe[unit] */
3035 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3036 	    0, CTLTYPE_NODE, ifp->if_xname,
3037 	    SYSCTL_DESCR("mvxpe per-controller controls"),
3038 	    NULL, 0, NULL, 0,
3039 	    CTL_HW, mvxpe_root_num, CTL_CREATE,
3040 	    CTL_EOL) != 0) {
3041 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3042 		return;
3043 	}
3044 	mvxpe_nodenum = node->sysctl_num;
3045 
3046 	/* hw.mvxpe.mvxpe[unit].mib */
3047 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3048 	    0, CTLTYPE_NODE, "mib",
3049 	    SYSCTL_DESCR("mvxpe per-controller MIB counters"),
3050 	    NULL, 0, NULL, 0,
3051 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3052 	    CTL_EOL) != 0) {
3053 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3054 		return;
3055 	}
3056 	mvxpe_mibnum = node->sysctl_num;
3057 
3058 	/* hw.mvxpe.mvxpe[unit].rx */
3059 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3060 	    0, CTLTYPE_NODE, "rx",
3061 	    SYSCTL_DESCR("Rx Queues"),
3062 	    NULL, 0, NULL, 0,
3063 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3064 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3065 		return;
3066 	}
3067 	mvxpe_rxqueuenum = node->sysctl_num;
3068 
3069 	/* hw.mvxpe.mvxpe[unit].tx */
3070 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3071 	    0, CTLTYPE_NODE, "tx",
3072 	    SYSCTL_DESCR("Tx Queues"),
3073 	    NULL, 0, NULL, 0,
3074 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE, CTL_EOL) != 0) {
3075 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3076 		return;
3077 	}
3078 	mvxpe_txqueuenum = node->sysctl_num;
3079 
3080 #ifdef MVXPE_DEBUG
3081 	/* hw.mvxpe.debug */
3082 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3083 	    CTLFLAG_READWRITE, CTLTYPE_INT, "debug",
3084 	    SYSCTL_DESCR("mvxpe device driver debug control"),
3085 	    NULL, 0, &mvxpe_debug, 0,
3086 	    CTL_HW, mvxpe_root_num, CTL_CREATE, CTL_EOL) != 0) {
3087 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3088 		return;
3089 	}
3090 #endif
3091 	/*
3092 	 * MIB access
3093 	 */
3094 	/* hw.mvxpe.mvxpe[unit].mib.<mibs> */
3095 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3096 		const char *name = mvxpe_mib_list[i].sysctl_name;
3097 		const char *desc = mvxpe_mib_list[i].desc;
3098 		struct mvxpe_sysctl_mib *mib_arg = &sc->sc_sysctl_mib[i];
3099 
3100 		mib_arg->sc = sc;
3101 		mib_arg->index = i;
3102 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3103 		    CTLFLAG_READONLY, CTLTYPE_QUAD, name, desc,
3104 		    sysctl_read_mib, 0, (void *)mib_arg, 0,
3105 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_mibnum,
3106 		    CTL_CREATE, CTL_EOL) != 0) {
3107 			aprint_normal_dev(sc->sc_dev,
3108 			    "couldn't create sysctl node\n");
3109 			break;
3110 		}
3111 	}
3112 
3113 	for (q = 0; q < MVXPE_QUEUE_SIZE; q++) {
3114 		struct mvxpe_sysctl_queue *rxarg = &sc->sc_sysctl_rx_queue[q];
3115 		struct mvxpe_sysctl_queue *txarg = &sc->sc_sysctl_tx_queue[q];
3116 #define MVXPE_SYSCTL_NAME(num) "queue" # num
3117 		static const char *sysctl_queue_names[] = {
3118 			MVXPE_SYSCTL_NAME(0), MVXPE_SYSCTL_NAME(1),
3119 			MVXPE_SYSCTL_NAME(2), MVXPE_SYSCTL_NAME(3),
3120 			MVXPE_SYSCTL_NAME(4), MVXPE_SYSCTL_NAME(5),
3121 			MVXPE_SYSCTL_NAME(6), MVXPE_SYSCTL_NAME(7),
3122 		};
3123 #undef MVXPE_SYSCTL_NAME
3124 #ifdef SYSCTL_INCLUDE_DESCR
3125 #define MVXPE_SYSCTL_DESCR(num) "configuration parameters for queue " # num
3126 		static const char *sysctl_queue_descrs[] = {
3127 			MVXPE_SYSCTL_DESCR(0), MVXPE_SYSCTL_DESCR(1),
3128 			MVXPE_SYSCTL_DESCR(2), MVXPE_SYSCTL_DESCR(3),
3129 			MVXPE_SYSCTL_DESCR(4), MVXPE_SYSCTL_DESCR(5),
3130 			MVXPE_SYSCTL_DESCR(6), MVXPE_SYSCTL_DESCR(7),
3131 		};
3132 #undef MVXPE_SYSCTL_DESCR
3133 #endif /* SYSCTL_INCLUDE_DESCR */
3134 		int mvxpe_curnum;
3135 
3136 		rxarg->sc = txarg->sc = sc;
3137 		rxarg->queue = txarg->queue = q;
3138 		rxarg->rxtx = MVXPE_SYSCTL_RX;
3139 		txarg->rxtx = MVXPE_SYSCTL_TX;
3140 
3141 		/* hw.mvxpe.mvxpe[unit].rx.[queue] */
3142 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3143 		    0, CTLTYPE_NODE,
3144 		    sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descrs[q]),
3145 		    NULL, 0, NULL, 0,
3146 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3147 		    CTL_CREATE, CTL_EOL) != 0) {
3148 			aprint_normal_dev(sc->sc_dev,
3149 			    "couldn't create sysctl node\n");
3150 			break;
3151 		}
3152 		mvxpe_curnum = node->sysctl_num;
3153 
3154 		/* hw.mvxpe.mvxpe[unit].rx.[queue].length */
3155 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3156 		    CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3157 		    SYSCTL_DESCR("maximum length of the queue"),
3158 		    sysctl_set_queue_length, 0, (void *)rxarg, 0,
3159 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3160 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3161 			aprint_normal_dev(sc->sc_dev,
3162 			    "couldn't create sysctl node\n");
3163 			break;
3164 		}
3165 
3166 		/* hw.mvxpe.mvxpe[unit].rx.[queue].threshold_timer_us */
3167 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3168 		    CTLFLAG_READWRITE, CTLTYPE_INT, "threshold_timer_us",
3169 		    SYSCTL_DESCR("interrupt coalescing threshold timer [us]"),
3170 		    sysctl_set_queue_rxthtime, 0, (void *)rxarg, 0,
3171 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_rxqueuenum,
3172 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3173 			aprint_normal_dev(sc->sc_dev,
3174 			    "couldn't create sysctl node\n");
3175 			break;
3176 		}
3177 
3178 		/* hw.mvxpe.mvxpe[unit].tx.[queue] */
3179 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3180 		    0, CTLTYPE_NODE,
3181 		    sysctl_queue_names[q], SYSCTL_DESCR(sysctl_queue_descs[q]),
3182 		    NULL, 0, NULL, 0,
3183 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3184 		    CTL_CREATE, CTL_EOL) != 0) {
3185 			aprint_normal_dev(sc->sc_dev,
3186 			    "couldn't create sysctl node\n");
3187 			break;
3188 		}
3189 		mvxpe_curnum = node->sysctl_num;
3190 
3191 		/* hw.mvxpe.mvxpe[unit].tx.length[queue] */
3192 		if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3193 		    CTLFLAG_READWRITE, CTLTYPE_INT, "length",
3194 		    SYSCTL_DESCR("maximum length of the queue"),
3195 		    sysctl_set_queue_length, 0, (void *)txarg, 0,
3196 		    CTL_HW, mvxpe_root_num, mvxpe_nodenum, mvxpe_txqueuenum,
3197 		    mvxpe_curnum, CTL_CREATE, CTL_EOL) != 0) {
3198 			aprint_normal_dev(sc->sc_dev,
3199 			    "couldn't create sysctl node\n");
3200 			break;
3201 		}
3202 	}
3203 
3204 	/* hw.mvxpe.mvxpe[unit].clear_mib */
3205 	if (sysctl_createv(&sc->sc_mvxpe_clog, 0, NULL, &node,
3206 	    CTLFLAG_READWRITE, CTLTYPE_INT, "clear_mib",
3207 	    SYSCTL_DESCR("mvxpe device driver debug control"),
3208 	    sysctl_clear_mib, 0, (void *)sc, 0,
3209 	    CTL_HW, mvxpe_root_num, mvxpe_nodenum, CTL_CREATE,
3210 	    CTL_EOL) != 0) {
3211 		aprint_normal_dev(sc->sc_dev, "couldn't create sysctl node\n");
3212 		return;
3213 	}
3214 
3215 }
3216 
3217 /*
3218  * MIB
3219  */
3220 STATIC void
3221 mvxpe_clear_mib(struct mvxpe_softc *sc)
3222 {
3223 	int i;
3224 
3225 	KASSERT_SC_MTX(sc);
3226 
3227 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3228 		if (mvxpe_mib_list[i].reg64)
3229 			MVXPE_READ_MIB(sc, (mvxpe_mib_list[i].regnum + 4));
3230 		MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3231 		sc->sc_sysctl_mib[i].counter = 0;
3232 	}
3233 }
3234 
3235 STATIC void
3236 mvxpe_update_mib(struct mvxpe_softc *sc)
3237 {
3238 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
3239 	int i;
3240 
3241 	KASSERT_SC_MTX(sc);
3242 
3243 	for (i = 0; i < __arraycount(mvxpe_mib_list); i++) {
3244 		uint32_t val_hi;
3245 		uint32_t val_lo;
3246 		uint64_t val;
3247 
3248 		if (mvxpe_mib_list[i].reg64) {
3249 			/* XXX: implement bus_space_read_8() */
3250 			val_lo = MVXPE_READ_MIB(sc,
3251 			    (mvxpe_mib_list[i].regnum + 4));
3252 			val_hi = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3253 		}
3254 		else {
3255 			val_lo = MVXPE_READ_MIB(sc, mvxpe_mib_list[i].regnum);
3256 			val_hi = 0;
3257 		}
3258 
3259 		if ((val_lo | val_hi) == 0)
3260 			continue;
3261 
3262 		val = ((uint64_t)val_hi << 32) | (uint64_t)val_lo;
3263 		sc->sc_sysctl_mib[i].counter += val;
3264 
3265 		switch (mvxpe_mib_list[i].ext) {
3266 		case MVXPE_MIBEXT_IF_OERRORS:
3267 			if_statadd(ifp, if_oerrors,  val);
3268 			break;
3269 		case MVXPE_MIBEXT_IF_IERRORS:
3270 			if_statadd(ifp, if_ierrors,  val);
3271 			break;
3272 		case MVXPE_MIBEXT_IF_COLLISIONS:
3273 			if_statadd(ifp, if_collisions, val);
3274 			break;
3275 		default:
3276 			break;
3277 		}
3278 
3279 	}
3280 }
3281 
3282 /*
3283  * for Debug
3284  */
3285 STATIC void
3286 mvxpe_dump_txdesc(struct mvxpe_tx_desc *desc, int idx)
3287 {
3288 #define DESC_PRINT(X)					\
3289 	if (X)						\
3290 		printf("txdesc[%d]." #X "=%#x\n", idx, X);
3291 
3292        DESC_PRINT(desc->command);
3293        DESC_PRINT(desc->l4ichk);
3294        DESC_PRINT(desc->bytecnt);
3295        DESC_PRINT(desc->bufptr);
3296        DESC_PRINT(desc->flags);
3297 #undef DESC_PRINT
3298 }
3299 
3300 STATIC void
3301 mvxpe_dump_rxdesc(struct mvxpe_rx_desc *desc, int idx)
3302 {
3303 #define DESC_PRINT(X)					\
3304 	if (X)						\
3305 		printf("rxdesc[%d]." #X "=%#x\n", idx, X);
3306 
3307        DESC_PRINT(desc->status);
3308        DESC_PRINT(desc->bytecnt);
3309        DESC_PRINT(desc->bufptr);
3310        DESC_PRINT(desc->l4chk);
3311 #undef DESC_PRINT
3312 }
3313