1 /* $NetBSD: if_gfe.c,v 1.61 2024/07/05 04:31:51 rin Exp $ */ 2 3 /* 4 * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed for the NetBSD Project by 18 * Allegro Networks, Inc., and Wasabi Systems, Inc. 19 * 4. The name of Allegro Networks, Inc. may not be used to endorse 20 * or promote products derived from this software without specific prior 21 * written permission. 22 * 5. The name of Wasabi Systems, Inc. may not be used to endorse 23 * or promote products derived from this software without specific prior 24 * written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND 27 * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, 28 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 29 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 30 * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC. 31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 37 * POSSIBILITY OF SUCH DAMAGE. 38 */ 39 40 /* 41 * if_gfe.c -- GT ethernet MAC driver 42 */ 43 44 #include <sys/cdefs.h> 45 __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.61 2024/07/05 04:31:51 rin Exp $"); 46 47 #include "opt_inet.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/callout.h> 52 #include <sys/device.h> 53 #include <sys/errno.h> 54 #include <sys/ioctl.h> 55 #include <sys/mbuf.h> 56 #include <sys/mutex.h> 57 #include <sys/socket.h> 58 59 #include <net/if.h> 60 #include <net/if_dl.h> 61 #include <net/if_ether.h> 62 #include <net/if_media.h> 63 64 #ifdef INET 65 #include <netinet/in.h> 66 #include <netinet/if_inarp.h> 67 #endif 68 #include <net/bpf.h> 69 #include <sys/rndsource.h> 70 71 #include <dev/mii/mii.h> 72 #include <dev/mii/miivar.h> 73 74 #include <dev/marvell/gtreg.h> 75 #include <dev/marvell/gtvar.h> 76 #include <dev/marvell/gtethreg.h> 77 #include <dev/marvell/if_gfevar.h> 78 #include <dev/marvell/marvellreg.h> 79 #include <dev/marvell/marvellvar.h> 80 81 #include <prop/proplib.h> 82 83 #include "locators.h" 84 85 86 #define GE_READ(sc, reg) \ 87 bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg)) 88 #define GE_WRITE(sc, reg, v) \ 89 bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v)) 90 91 #define GE_DEBUG 92 #if 0 93 #define GE_NOHASH 94 #define GE_NORX 95 #endif 96 97 #ifdef GE_DEBUG 98 #define GE_DPRINTF(sc, a) \ 99 do { \ 100 if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG) \ 101 printf a; \ 102 } while (0 /* CONSTCOND */) 103 #define GE_FUNC_ENTER(sc, func) GE_DPRINTF(sc, ("[" func)) 104 #define GE_FUNC_EXIT(sc, str) GE_DPRINTF(sc, (str "]")) 105 #else 106 #define GE_DPRINTF(sc, a) do { } while (0) 107 #define GE_FUNC_ENTER(sc, func) do { } while (0) 108 #define GE_FUNC_EXIT(sc, str) do { } while (0) 109 #endif 110 enum gfe_whack_op { 111 GE_WHACK_START, GE_WHACK_RESTART, 112 GE_WHACK_CHANGE, GE_WHACK_STOP 113 }; 114 115 enum gfe_hash_op { 116 GE_HASH_ADD, GE_HASH_REMOVE, 117 }; 118 119 #if 1 120 #define htogt32(a) htobe32(a) 121 #define gt32toh(a) be32toh(a) 122 #else 123 #define htogt32(a) htole32(a) 124 #define gt32toh(a) le32toh(a) 125 #endif 126 127 #define GE_RXDSYNC(sc, rxq, n, ops) \ 128 bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \ 129 (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \ 130 (ops)) 131 #define GE_RXDPRESYNC(sc, rxq, n) \ 132 GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE) 133 #define GE_RXDPOSTSYNC(sc, rxq, n) \ 134 GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE) 135 136 #define GE_TXDSYNC(sc, txq, n, ops) \ 137 bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \ 138 (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \ 139 (ops)) 140 #define GE_TXDPRESYNC(sc, txq, n) \ 141 GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE) 142 #define GE_TXDPOSTSYNC(sc, txq, n) \ 143 GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE) 144 145 #define STATIC 146 147 148 STATIC int gfec_match(device_t, cfdata_t, void *); 149 STATIC void gfec_attach(device_t, device_t, void *); 150 151 STATIC int gfec_print(void *, const char *); 152 STATIC int gfec_search(device_t, cfdata_t, const int *, void *); 153 154 STATIC int gfec_enet_phy(device_t, int); 155 STATIC int gfec_mii_read(device_t, int, int, uint16_t *); 156 STATIC int gfec_mii_write(device_t, int, int, uint16_t); 157 STATIC void gfec_mii_statchg(struct ifnet *); 158 159 STATIC int gfe_match(device_t, cfdata_t, void *); 160 STATIC void gfe_attach(device_t, device_t, void *); 161 162 STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int, 163 size_t, int); 164 STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *); 165 166 STATIC int gfe_ifioctl(struct ifnet *, u_long, void *); 167 STATIC void gfe_ifstart(struct ifnet *); 168 STATIC void gfe_ifwatchdog(struct ifnet *); 169 170 STATIC void gfe_tick(void *arg); 171 172 STATIC void gfe_tx_restart(void *); 173 STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio); 174 STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t); 175 STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int); 176 STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio); 177 STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio); 178 STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op); 179 180 STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio); 181 STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio); 182 STATIC int gfe_rx_prime(struct gfe_softc *); 183 STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t); 184 STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio); 185 STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio); 186 STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op); 187 188 STATIC int gfe_intr(void *); 189 190 STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op); 191 192 STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]); 193 STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op, 194 enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]); 195 STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *, 196 u_long); 197 STATIC int gfe_hash_fill(struct gfe_softc *); 198 STATIC int gfe_hash_alloc(struct gfe_softc *); 199 200 201 CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc), 202 gfec_match, gfec_attach, NULL, NULL); 203 CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc), 204 gfe_match, gfe_attach, NULL, NULL); 205 206 207 /* ARGSUSED */ 208 int 209 gfec_match(device_t parent, cfdata_t cf, void *aux) 210 { 211 struct marvell_attach_args *mva = aux; 212 213 if (strcmp(mva->mva_name, cf->cf_name) != 0) 214 return 0; 215 if (mva->mva_offset == MVA_OFFSET_DEFAULT) 216 return 0; 217 218 mva->mva_size = ETHC_SIZE; 219 return 1; 220 } 221 222 /* ARGSUSED */ 223 void 224 gfec_attach(device_t parent, device_t self, void *aux) 225 { 226 struct gfec_softc *sc = device_private(self); 227 struct marvell_attach_args *mva = aux, gfea; 228 static int gfe_irqs[] = { 32, 33, 34 }; 229 int i; 230 231 aprint_naive("\n"); 232 aprint_normal(": Ethernet Controller\n"); 233 234 sc->sc_dev = self; 235 sc->sc_iot = mva->mva_iot; 236 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset, 237 mva->mva_size, &sc->sc_ioh)) { 238 aprint_error_dev(self, "Cannot map registers\n"); 239 return; 240 } 241 242 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET); 243 244 for (i = 0; i < ETH_NUM; i++) { 245 gfea.mva_name = "gfe"; 246 gfea.mva_model = mva->mva_model; 247 gfea.mva_iot = sc->sc_iot; 248 gfea.mva_ioh = sc->sc_ioh; 249 gfea.mva_unit = i; 250 gfea.mva_dmat = mva->mva_dmat; 251 gfea.mva_irq = gfe_irqs[i]; 252 config_found(sc->sc_dev, &gfea, gfec_print, 253 CFARGS(.submatch = gfec_search)); 254 } 255 } 256 257 int 258 gfec_print(void *aux, const char *pnp) 259 { 260 struct marvell_attach_args *gfea = aux; 261 262 if (pnp) 263 aprint_normal("%s at %s port %d", 264 gfea->mva_name, pnp, gfea->mva_unit); 265 else { 266 if (gfea->mva_unit != GFECCF_PORT_DEFAULT) 267 aprint_normal(" port %d", gfea->mva_unit); 268 if (gfea->mva_irq != GFECCF_IRQ_DEFAULT) 269 aprint_normal(" irq %d", gfea->mva_irq); 270 } 271 return UNCONF; 272 } 273 274 /* ARGSUSED */ 275 int 276 gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux) 277 { 278 struct marvell_attach_args *gfea = aux; 279 280 if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit && 281 cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT) 282 gfea->mva_irq = cf->cf_loc[GFECCF_IRQ]; 283 284 return config_match(parent, cf, aux); 285 } 286 287 int 288 gfec_enet_phy(device_t dev, int unit) 289 { 290 struct gfec_softc *sc = device_private(dev); 291 uint32_t epar; 292 293 epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR); 294 return ETH_EPAR_PhyAD_GET(epar, unit); 295 } 296 297 int 298 gfec_mii_read(device_t dev, int phy, int reg, uint16_t *val) 299 { 300 struct gfec_softc *csc = device_private(device_parent(dev)); 301 uint32_t data; 302 int count = 10000; 303 304 mutex_enter(&csc->sc_mtx); 305 306 do { 307 DELAY(10); 308 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR); 309 } while ((data & ETH_ESMIR_Busy) && count-- > 0); 310 311 if (count == 0) { 312 aprint_error_dev(dev, 313 "mii read for phy %d reg %d busied out\n", phy, reg); 314 mutex_exit(&csc->sc_mtx); 315 return ETIMEDOUT; 316 } 317 318 bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR, 319 ETH_ESMIR_READ(phy, reg)); 320 321 count = 10000; 322 do { 323 DELAY(10); 324 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR); 325 } while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0); 326 327 mutex_exit(&csc->sc_mtx); 328 329 if (count == 0) { 330 aprint_error_dev(dev, 331 "mii read for phy %d reg %d timed out\n", phy, reg); 332 return ETIMEDOUT; 333 } 334 #if defined(GTMIIDEBUG) 335 aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n", 336 phy, reg, data, ETH_ESMIR_Value_GET(data)); 337 #endif 338 *val = ETH_ESMIR_Value_GET(data); 339 return 0; 340 } 341 342 int 343 gfec_mii_write(device_t dev, int phy, int reg, uint16_t value) 344 { 345 struct gfec_softc *csc = device_private(device_parent(dev)); 346 uint32_t data; 347 int count = 10000; 348 349 mutex_enter(&csc->sc_mtx); 350 351 do { 352 DELAY(10); 353 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR); 354 } while ((data & ETH_ESMIR_Busy) && count-- > 0); 355 356 if (count == 0) { 357 aprint_error_dev(dev, 358 "mii write for phy %d reg %d busied out (busy)\n", 359 phy, reg); 360 mutex_exit(&csc->sc_mtx); 361 return ETIMEDOUT; 362 } 363 364 bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR, 365 ETH_ESMIR_WRITE(phy, reg, value)); 366 367 count = 10000; 368 do { 369 DELAY(10); 370 data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR); 371 } while ((data & ETH_ESMIR_Busy) && count-- > 0); 372 373 mutex_exit(&csc->sc_mtx); 374 375 if (count == 0) { 376 aprint_error_dev(dev, 377 "mii write for phy %d reg %d timed out\n", phy, reg); 378 return ETIMEDOUT; 379 } 380 #if defined(GTMIIDEBUG) 381 aprint_normal_dev(dev, "mii_write(%d, %d, %#hx)\n", phy, reg, value); 382 #endif 383 return 0; 384 } 385 386 void 387 gfec_mii_statchg(struct ifnet *ifp) 388 { 389 /* struct gfe_softc *sc = ifp->if_softc; */ 390 /* do nothing? */ 391 } 392 393 /* ARGSUSED */ 394 int 395 gfe_match(device_t parent, cfdata_t cf, void *aux) 396 { 397 398 return 1; 399 } 400 401 /* ARGSUSED */ 402 void 403 gfe_attach(device_t parent, device_t self, void *aux) 404 { 405 struct marvell_attach_args *mva = aux; 406 struct gfe_softc * const sc = device_private(self); 407 struct ifnet * const ifp = &sc->sc_ec.ec_if; 408 struct mii_data * const mii = &sc->sc_mii; 409 uint32_t sdcr; 410 int phyaddr, error; 411 prop_data_t ea; 412 uint8_t enaddr[6]; 413 414 aprint_naive("\n"); 415 aprint_normal(": Ethernet Controller\n"); 416 417 if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, 418 mva->mva_offset, mva->mva_size, &sc->sc_memh)) { 419 aprint_error_dev(self, "failed to map registers\n"); 420 return; 421 } 422 sc->sc_dev = self; 423 sc->sc_memt = mva->mva_iot; 424 sc->sc_dmat = mva->mva_dmat; 425 sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 : 426 ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2); 427 428 callout_init(&sc->sc_co, 0); 429 430 phyaddr = gfec_enet_phy(parent, sc->sc_macno); 431 432 ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr"); 433 if (ea != NULL) { 434 KASSERT(prop_object_type(ea) == PROP_TYPE_DATA); 435 KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN); 436 memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN); 437 } 438 439 sc->sc_pcr = GE_READ(sc, ETH_EPCR); 440 sc->sc_pcxr = GE_READ(sc, ETH_EPCXR); 441 sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC; 442 443 aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr)); 444 445 #if defined(DEBUG) 446 printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr); 447 #endif 448 449 sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override; 450 if (device_cfdata(self)->cf_flags & 1) { 451 aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr); 452 sc->sc_pcxr |= ETH_EPCXR_RMIIEn; 453 } else { 454 aprint_normal_dev(self, "phy %d (mii)\n", phyaddr); 455 sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn; 456 } 457 if (device_cfdata(self)->cf_flags & 2) 458 sc->sc_flags |= GE_NOFREE; 459 /* Set Max Frame Length is 1536 */ 460 sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK); 461 sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536); 462 sc->sc_max_frame_length = 1536; 463 464 if (sc->sc_pcr & ETH_EPCR_EN) { 465 int tries = 1000; 466 /* 467 * Abort transmitter and receiver and wait for them to quiese 468 */ 469 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT); 470 do { 471 delay(100); 472 if (tries-- <= 0) { 473 aprint_error_dev(self, "Abort TX/RX failed\n"); 474 break; 475 } 476 } while (GE_READ(sc, ETH_ESDCMR) & 477 (ETH_ESDCMR_AR | ETH_ESDCMR_AT)); 478 } 479 480 sc->sc_pcr &= 481 ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF); 482 483 #if defined(DEBUG) 484 printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr); 485 #endif 486 487 /* 488 * Now turn off the GT. If it didn't quiese, too ***ing bad. 489 */ 490 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr); 491 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask); 492 sdcr = GE_READ(sc, ETH_ESDCR); 493 ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4); 494 sdcr |= ETH_ESDCR_RIFB; 495 GE_WRITE(sc, ETH_ESDCR, sdcr); 496 497 mii->mii_ifp = ifp; 498 mii->mii_readreg = gfec_mii_read; 499 mii->mii_writereg = gfec_mii_write; 500 mii->mii_statchg = gfec_mii_statchg; 501 502 sc->sc_ec.ec_mii = mii; 503 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus); 504 505 mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr, 506 MII_OFFSET_ANY, MIIF_NOISOLATE); 507 if (LIST_FIRST(&mii->mii_phys) == NULL) { 508 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL); 509 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE); 510 } else 511 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO); 512 513 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 514 ifp->if_softc = sc; 515 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 516 #if 0 517 ifp->if_flags |= IFF_DEBUG; 518 #endif 519 ifp->if_ioctl = gfe_ifioctl; 520 ifp->if_start = gfe_ifstart; 521 ifp->if_watchdog = gfe_ifwatchdog; 522 523 if (sc->sc_flags & GE_NOFREE) { 524 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI); 525 if (!error) 526 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI); 527 if (!error) 528 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO); 529 if (!error) 530 error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO); 531 if (!error) 532 error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI); 533 if (!error) 534 error = gfe_hash_alloc(sc); 535 if (error) 536 aprint_error_dev(self, 537 "failed to allocate resources: %d\n", error); 538 } 539 540 if_attach(ifp); 541 ether_ifattach(ifp, enaddr); 542 bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header)); 543 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET, 544 RND_FLAG_DEFAULT); 545 marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc); 546 } 547 548 int 549 gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs, 550 size_t size, int flags) 551 { 552 int error = 0; 553 GE_FUNC_ENTER(sc, "gfe_dmamem_alloc"); 554 555 KASSERT(gdm->gdm_kva == NULL); 556 gdm->gdm_size = size; 557 gdm->gdm_maxsegs = maxsegs; 558 559 error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE, 560 gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs, 561 BUS_DMA_NOWAIT); 562 if (error) 563 goto fail; 564 565 error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs, 566 gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT); 567 if (error) 568 goto fail; 569 570 error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs, 571 gdm->gdm_size, 0, BUS_DMA_ALLOCNOW |BUS_DMA_NOWAIT, &gdm->gdm_map); 572 if (error) 573 goto fail; 574 575 error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva, 576 gdm->gdm_size, NULL, BUS_DMA_NOWAIT); 577 if (error) 578 goto fail; 579 580 /* invalidate from cache */ 581 bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size, 582 BUS_DMASYNC_PREREAD); 583 fail: 584 if (error) { 585 gfe_dmamem_free(sc, gdm); 586 GE_DPRINTF(sc, (":err=%d", error)); 587 } 588 GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x", 589 gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs, 590 gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len)); 591 GE_FUNC_EXIT(sc, ""); 592 return error; 593 } 594 595 void 596 gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm) 597 { 598 GE_FUNC_ENTER(sc, "gfe_dmamem_free"); 599 if (gdm->gdm_map) 600 bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map); 601 if (gdm->gdm_kva) 602 bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size); 603 if (gdm->gdm_nsegs > 0) 604 bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs); 605 gdm->gdm_map = NULL; 606 gdm->gdm_kva = NULL; 607 gdm->gdm_nsegs = 0; 608 GE_FUNC_EXIT(sc, ""); 609 } 610 611 int 612 gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data) 613 { 614 struct gfe_softc * const sc = ifp->if_softc; 615 struct ifreq *ifr = (struct ifreq *) data; 616 struct ifaddr *ifa = (struct ifaddr *) data; 617 int s, error = 0; 618 619 GE_FUNC_ENTER(sc, "gfe_ifioctl"); 620 s = splnet(); 621 622 switch (cmd) { 623 case SIOCINITIFADDR: 624 ifp->if_flags |= IFF_UP; 625 error = gfe_whack(sc, GE_WHACK_START); 626 switch (ifa->ifa_addr->sa_family) { 627 #ifdef INET 628 case AF_INET: 629 if (error == 0) 630 arp_ifinit(ifp, ifa); 631 break; 632 #endif 633 default: 634 break; 635 } 636 break; 637 638 case SIOCSIFFLAGS: 639 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 640 break; 641 /* XXX re-use ether_ioctl() */ 642 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 643 case IFF_UP | IFF_RUNNING:/* active->active, update */ 644 error = gfe_whack(sc, GE_WHACK_CHANGE); 645 break; 646 case IFF_RUNNING: /* not up, so we stop */ 647 error = gfe_whack(sc, GE_WHACK_STOP); 648 break; 649 case IFF_UP: /* not running, so we start */ 650 error = gfe_whack(sc, GE_WHACK_START); 651 break; 652 case 0: /* idle->idle: do nothing */ 653 break; 654 } 655 break; 656 657 case SIOCSIFMTU: 658 if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) { 659 error = EINVAL; 660 break; 661 } 662 if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET) 663 error = 0; 664 break; 665 666 default: 667 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 668 if (ifp->if_flags & IFF_RUNNING) 669 error = gfe_whack(sc, GE_WHACK_CHANGE); 670 else 671 error = 0; 672 } 673 break; 674 } 675 splx(s); 676 GE_FUNC_EXIT(sc, ""); 677 return error; 678 } 679 680 void 681 gfe_ifstart(struct ifnet *ifp) 682 { 683 struct gfe_softc * const sc = ifp->if_softc; 684 struct mbuf *m; 685 686 GE_FUNC_ENTER(sc, "gfe_ifstart"); 687 688 if ((ifp->if_flags & IFF_RUNNING) == 0) { 689 GE_FUNC_EXIT(sc, "$"); 690 return; 691 } 692 693 for (;;) { 694 IF_POLL(&ifp->if_snd, m); 695 if (m == NULL) { 696 ifp->if_flags &= ~IFF_OACTIVE; 697 GE_FUNC_EXIT(sc, ""); 698 return; 699 } 700 701 /* 702 * No space in the pending queue? try later. 703 */ 704 if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq)) 705 break; 706 707 IF_DEQUEUE(&ifp->if_snd, m); 708 709 /* 710 * Try to enqueue a mbuf to the device. If that fails, we 711 * can always try to map the next mbuf. 712 */ 713 IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m); 714 GE_DPRINTF(sc, (">")); 715 #ifndef GE_NOTX 716 (void) gfe_tx_enqueue(sc, GE_TXPRIO_HI); 717 #endif 718 } 719 720 /* 721 * Attempt to queue the mbuf for send failed. 722 */ 723 ifp->if_flags |= IFF_OACTIVE; 724 GE_FUNC_EXIT(sc, "%%"); 725 } 726 727 void 728 gfe_ifwatchdog(struct ifnet *ifp) 729 { 730 struct gfe_softc * const sc = ifp->if_softc; 731 struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI]; 732 733 GE_FUNC_ENTER(sc, "gfe_ifwatchdog"); 734 aprint_error_dev(sc->sc_dev, "device timeout"); 735 if (ifp->if_flags & IFF_RUNNING) { 736 uint32_t curtxdnum; 737 738 curtxdnum = (GE_READ(sc, txq->txq_ectdp) - 739 txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]); 740 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi); 741 GE_TXDPOSTSYNC(sc, txq, curtxdnum); 742 aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ", 743 txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts, 744 txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts, 745 GE_READ(sc, ETH_EICR)); 746 GE_TXDPRESYNC(sc, txq, txq->txq_fi); 747 GE_TXDPRESYNC(sc, txq, curtxdnum); 748 } 749 aprint_error("\n"); 750 if_statinc(ifp, if_oerrors); 751 (void) gfe_whack(sc, GE_WHACK_RESTART); 752 GE_FUNC_EXIT(sc, ""); 753 } 754 755 int 756 gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio) 757 { 758 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio]; 759 int error; 760 761 GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc"); 762 GE_DPRINTF(sc, ("(%d)", rxprio)); 763 764 error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1, 765 GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE); 766 if (error) { 767 GE_FUNC_EXIT(sc, "!!"); 768 return error; 769 } 770 771 error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS, 772 GE_RXBUF_MEMSIZE, 0); 773 if (error) { 774 GE_FUNC_EXIT(sc, "!!!"); 775 return error; 776 } 777 GE_FUNC_EXIT(sc, ""); 778 return error; 779 } 780 781 int 782 gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio) 783 { 784 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio]; 785 volatile struct gt_eth_desc *rxd; 786 const bus_dma_segment_t *ds; 787 int idx; 788 bus_addr_t nxtaddr; 789 bus_size_t boff; 790 791 GE_FUNC_ENTER(sc, "gfe_rx_rxqinit"); 792 GE_DPRINTF(sc, ("(%d)", rxprio)); 793 794 if ((sc->sc_flags & GE_NOFREE) == 0) { 795 int error = gfe_rx_rxqalloc(sc, rxprio); 796 if (error) { 797 GE_FUNC_EXIT(sc, "!"); 798 return error; 799 } 800 } else { 801 KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL); 802 KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL); 803 } 804 805 memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE); 806 807 rxq->rxq_descs = 808 (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva; 809 rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr; 810 rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva; 811 rxq->rxq_fi = 0; 812 rxq->rxq_active = GE_RXDESC_MAX; 813 boff = 0; 814 ds = rxq->rxq_buf_mem.gdm_map->dm_segs; 815 nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd); 816 for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX; 817 idx++, rxd++, nxtaddr += sizeof(*rxd)) { 818 rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16); 819 rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI); 820 rxd->ed_bufptr = htogt32(ds->ds_addr + boff); 821 /* 822 * update the nxtptr to point to the next txd. 823 */ 824 if (idx == GE_RXDESC_MAX - 1) 825 nxtaddr = rxq->rxq_desc_busaddr; 826 rxd->ed_nxtptr = htogt32(nxtaddr); 827 boff += GE_RXBUF_SIZE; 828 if (boff == ds->ds_len) { 829 ds++; 830 boff = 0; 831 } 832 } 833 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0, 834 rxq->rxq_desc_mem.gdm_map->dm_mapsize, 835 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 836 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0, 837 rxq->rxq_buf_mem.gdm_map->dm_mapsize, 838 BUS_DMASYNC_PREREAD); 839 840 rxq->rxq_intrbits = ETH_IR_RxBuffer | ETH_IR_RxError; 841 switch (rxprio) { 842 case GE_RXPRIO_HI: 843 rxq->rxq_intrbits |= ETH_IR_RxBuffer_3 | ETH_IR_RxError_3; 844 rxq->rxq_efrdp = ETH_EFRDP3; 845 rxq->rxq_ecrdp = ETH_ECRDP3; 846 break; 847 case GE_RXPRIO_MEDHI: 848 rxq->rxq_intrbits |= ETH_IR_RxBuffer_2 | ETH_IR_RxError_2; 849 rxq->rxq_efrdp = ETH_EFRDP2; 850 rxq->rxq_ecrdp = ETH_ECRDP2; 851 break; 852 case GE_RXPRIO_MEDLO: 853 rxq->rxq_intrbits |= ETH_IR_RxBuffer_1 | ETH_IR_RxError_1; 854 rxq->rxq_efrdp = ETH_EFRDP1; 855 rxq->rxq_ecrdp = ETH_ECRDP1; 856 break; 857 case GE_RXPRIO_LO: 858 rxq->rxq_intrbits |= ETH_IR_RxBuffer_0 | ETH_IR_RxError_0; 859 rxq->rxq_efrdp = ETH_EFRDP0; 860 rxq->rxq_ecrdp = ETH_ECRDP0; 861 break; 862 } 863 GE_FUNC_EXIT(sc, ""); 864 return 0; 865 } 866 867 void 868 gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio) 869 { 870 struct ifnet * const ifp = &sc->sc_ec.ec_if; 871 struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio]; 872 struct mbuf *m = rxq->rxq_curpkt; 873 874 GE_FUNC_ENTER(sc, "gfe_rx_get"); 875 GE_DPRINTF(sc, ("(%d)", rxprio)); 876 877 while (rxq->rxq_active > 0) { 878 volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi]; 879 struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi]; 880 const struct ether_header *eh; 881 unsigned int cmdsts; 882 size_t buflen; 883 884 GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi); 885 cmdsts = gt32toh(rxd->ed_cmdsts); 886 GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts)); 887 rxq->rxq_cmdsts = cmdsts; 888 /* 889 * Sometimes the GE "forgets" to reset the ownership bit. 890 * But if the length has been rewritten, the packet is ours 891 * so pretend the O bit is set. 892 */ 893 buflen = gt32toh(rxd->ed_lencnt) & 0xffff; 894 if ((cmdsts & RX_CMD_O) && buflen == 0) { 895 GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi); 896 break; 897 } 898 899 /* 900 * If this is not a single buffer packet with no errors 901 * or for some reason it's bigger than our frame size, 902 * ignore it and go to the next packet. 903 */ 904 if ((cmdsts & (RX_CMD_F | RX_CMD_L | RX_STS_ES)) != 905 (RX_CMD_F | RX_CMD_L) || 906 (buflen > sc->sc_max_frame_length)) { 907 GE_DPRINTF(sc, ("!")); 908 --rxq->rxq_active; 909 if_statinc(ifp, if_ipackets); 910 if_statinc(ifp, if_ierrors); 911 goto give_it_back; 912 } 913 914 /* CRC is included with the packet; trim it off. */ 915 buflen -= ETHER_CRC_LEN; 916 917 if (m == NULL) { 918 MGETHDR(m, M_DONTWAIT, MT_DATA); 919 if (m == NULL) { 920 GE_DPRINTF(sc, ("?")); 921 break; 922 } 923 } 924 if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) { 925 MCLGET(m, M_DONTWAIT); 926 if ((m->m_flags & M_EXT) == 0) { 927 GE_DPRINTF(sc, ("?")); 928 break; 929 } 930 } 931 m->m_data += 2; 932 m->m_len = 0; 933 m->m_pkthdr.len = 0; 934 m_set_rcvif(m, ifp); 935 rxq->rxq_cmdsts = cmdsts; 936 --rxq->rxq_active; 937 938 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 939 rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD); 940 941 KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0); 942 memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen); 943 m->m_len = buflen; 944 m->m_pkthdr.len = buflen; 945 946 eh = (const struct ether_header *) m->m_data; 947 if ((ifp->if_flags & IFF_PROMISC) || 948 (rxq->rxq_cmdsts & RX_STS_M) == 0 || 949 (rxq->rxq_cmdsts & RX_STS_HE) || 950 (eh->ether_dhost[0] & 1) != 0 || 951 memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl), 952 ETHER_ADDR_LEN) == 0) { 953 if_percpuq_enqueue(ifp->if_percpuq, m); 954 m = NULL; 955 GE_DPRINTF(sc, (">")); 956 } else { 957 m->m_len = 0; 958 m->m_pkthdr.len = 0; 959 GE_DPRINTF(sc, ("+")); 960 } 961 rxq->rxq_cmdsts = 0; 962 963 give_it_back: 964 rxd->ed_lencnt &= ~0xffff; /* zero out length */ 965 rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI); 966 #if 0 967 GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", 968 rxq->rxq_fi, 969 ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1], 970 ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3])); 971 #endif 972 GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi); 973 if (++rxq->rxq_fi == GE_RXDESC_MAX) 974 rxq->rxq_fi = 0; 975 rxq->rxq_active++; 976 } 977 rxq->rxq_curpkt = m; 978 GE_FUNC_EXIT(sc, ""); 979 } 980 981 uint32_t 982 gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask) 983 { 984 struct ifnet * const ifp = &sc->sc_ec.ec_if; 985 struct gfe_rxqueue *rxq; 986 uint32_t rxbits; 987 #define RXPRIO_DECODER 0xffffaa50 988 GE_FUNC_ENTER(sc, "gfe_rx_process"); 989 990 rxbits = ETH_IR_RxBuffer_GET(cause); 991 while (rxbits) { 992 enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3; 993 GE_DPRINTF(sc, ("%1x", rxbits)); 994 rxbits &= ~(1 << rxprio); 995 gfe_rx_get(sc, rxprio); 996 } 997 998 rxbits = ETH_IR_RxError_GET(cause); 999 while (rxbits) { 1000 enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3; 1001 uint32_t masks[(GE_RXDESC_MAX + 31) / 32]; 1002 int idx; 1003 rxbits &= ~(1 << rxprio); 1004 rxq = &sc->sc_rxq[rxprio]; 1005 sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits); 1006 intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits); 1007 if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) { 1008 sc->sc_tickflags |= GE_TICK_RX_RESTART; 1009 callout_reset(&sc->sc_co, 1, gfe_tick, sc); 1010 } 1011 if_statinc(ifp, if_ierrors); 1012 GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n", 1013 device_xname(sc->sc_dev), rxprio, rxq->rxq_fi)); 1014 memset(masks, 0, sizeof(masks)); 1015 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 1016 0, rxq->rxq_desc_mem.gdm_size, 1017 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1018 for (idx = 0; idx < GE_RXDESC_MAX; idx++) { 1019 volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx]; 1020 1021 if (RX_CMD_O & gt32toh(rxd->ed_cmdsts)) 1022 masks[idx/32] |= 1 << (idx & 31); 1023 } 1024 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 1025 0, rxq->rxq_desc_mem.gdm_size, 1026 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1027 #if defined(DEBUG) 1028 printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n", 1029 device_xname(sc->sc_dev), rxprio, rxq->rxq_fi, 1030 rxq->rxq_cmdsts, masks[0], masks[1]); 1031 #endif 1032 } 1033 if ((intrmask & ETH_IR_RxBits) == 0) 1034 intrmask &= ~(ETH_IR_RxBuffer | ETH_IR_RxError); 1035 1036 GE_FUNC_EXIT(sc, ""); 1037 return intrmask; 1038 } 1039 1040 int 1041 gfe_rx_prime(struct gfe_softc *sc) 1042 { 1043 struct gfe_rxqueue *rxq; 1044 int error; 1045 1046 GE_FUNC_ENTER(sc, "gfe_rx_prime"); 1047 1048 error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI); 1049 if (error) 1050 goto bail; 1051 rxq = &sc->sc_rxq[GE_RXPRIO_HI]; 1052 if ((sc->sc_flags & GE_RXACTIVE) == 0) { 1053 GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr); 1054 GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr); 1055 } 1056 sc->sc_intrmask |= rxq->rxq_intrbits; 1057 1058 error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI); 1059 if (error) 1060 goto bail; 1061 if ((sc->sc_flags & GE_RXACTIVE) == 0) { 1062 rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI]; 1063 GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr); 1064 GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr); 1065 sc->sc_intrmask |= rxq->rxq_intrbits; 1066 } 1067 1068 error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO); 1069 if (error) 1070 goto bail; 1071 if ((sc->sc_flags & GE_RXACTIVE) == 0) { 1072 rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO]; 1073 GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr); 1074 GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr); 1075 sc->sc_intrmask |= rxq->rxq_intrbits; 1076 } 1077 1078 error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO); 1079 if (error) 1080 goto bail; 1081 if ((sc->sc_flags & GE_RXACTIVE) == 0) { 1082 rxq = &sc->sc_rxq[GE_RXPRIO_LO]; 1083 GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr); 1084 GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr); 1085 sc->sc_intrmask |= rxq->rxq_intrbits; 1086 } 1087 1088 bail: 1089 GE_FUNC_EXIT(sc, ""); 1090 return error; 1091 } 1092 1093 void 1094 gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio) 1095 { 1096 struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio]; 1097 GE_FUNC_ENTER(sc, "gfe_rx_cleanup"); 1098 if (rxq == NULL) { 1099 GE_FUNC_EXIT(sc, ""); 1100 return; 1101 } 1102 1103 m_freem(rxq->rxq_curpkt); 1104 if ((sc->sc_flags & GE_NOFREE) == 0) { 1105 gfe_dmamem_free(sc, &rxq->rxq_desc_mem); 1106 gfe_dmamem_free(sc, &rxq->rxq_buf_mem); 1107 } 1108 GE_FUNC_EXIT(sc, ""); 1109 } 1110 1111 void 1112 gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op) 1113 { 1114 GE_FUNC_ENTER(sc, "gfe_rx_stop"); 1115 sc->sc_flags &= ~GE_RXACTIVE; 1116 sc->sc_idlemask &= ~(ETH_IR_RxBits | ETH_IR_RxBuffer | ETH_IR_RxError); 1117 sc->sc_intrmask &= ~(ETH_IR_RxBits | ETH_IR_RxBuffer | ETH_IR_RxError); 1118 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask); 1119 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR); 1120 do { 1121 delay(10); 1122 } while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR); 1123 gfe_rx_cleanup(sc, GE_RXPRIO_HI); 1124 gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI); 1125 gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO); 1126 gfe_rx_cleanup(sc, GE_RXPRIO_LO); 1127 GE_FUNC_EXIT(sc, ""); 1128 } 1129 1130 void 1131 gfe_tick(void *arg) 1132 { 1133 struct gfe_softc * const sc = arg; 1134 uint32_t intrmask; 1135 unsigned int tickflags; 1136 int s; 1137 1138 GE_FUNC_ENTER(sc, "gfe_tick"); 1139 1140 s = splnet(); 1141 1142 tickflags = sc->sc_tickflags; 1143 sc->sc_tickflags = 0; 1144 intrmask = sc->sc_intrmask; 1145 if (tickflags & GE_TICK_TX_IFSTART) 1146 gfe_ifstart(&sc->sc_ec.ec_if); 1147 if (tickflags & GE_TICK_RX_RESTART) { 1148 intrmask |= sc->sc_idlemask; 1149 if (sc->sc_idlemask & (ETH_IR_RxBuffer_3 | ETH_IR_RxError_3)) { 1150 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI]; 1151 rxq->rxq_fi = 0; 1152 GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr); 1153 GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr); 1154 } 1155 if (sc->sc_idlemask & (ETH_IR_RxBuffer_2 | ETH_IR_RxError_2)) { 1156 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI]; 1157 rxq->rxq_fi = 0; 1158 GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr); 1159 GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr); 1160 } 1161 if (sc->sc_idlemask & (ETH_IR_RxBuffer_1 | ETH_IR_RxError_1)) { 1162 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO]; 1163 rxq->rxq_fi = 0; 1164 GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr); 1165 GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr); 1166 } 1167 if (sc->sc_idlemask & (ETH_IR_RxBuffer_0 | ETH_IR_RxError_0)) { 1168 struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO]; 1169 rxq->rxq_fi = 0; 1170 GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr); 1171 GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr); 1172 } 1173 sc->sc_idlemask = 0; 1174 } 1175 if (intrmask != sc->sc_intrmask) { 1176 sc->sc_intrmask = intrmask; 1177 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask); 1178 } 1179 gfe_intr(sc); 1180 splx(s); 1181 1182 GE_FUNC_EXIT(sc, ""); 1183 } 1184 1185 int 1186 gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio) 1187 { 1188 const int dcache_line_size = curcpu()->ci_ci.dcache_line_size; 1189 struct ifnet * const ifp = &sc->sc_ec.ec_if; 1190 struct gfe_txqueue * const txq = &sc->sc_txq[txprio]; 1191 volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo]; 1192 uint32_t intrmask = sc->sc_intrmask; 1193 size_t buflen; 1194 struct mbuf *m; 1195 1196 GE_FUNC_ENTER(sc, "gfe_tx_enqueue"); 1197 1198 /* 1199 * Anything in the pending queue to enqueue? if not, punt. Likewise 1200 * if the txq is not yet created. 1201 * otherwise grab its dmamap. 1202 */ 1203 if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) { 1204 GE_FUNC_EXIT(sc, "-"); 1205 return 0; 1206 } 1207 1208 /* 1209 * Have we [over]consumed our limit of descriptors? 1210 * Do we have enough free descriptors? 1211 */ 1212 if (GE_TXDESC_MAX == txq->txq_nactive + 2) { 1213 volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi]; 1214 uint32_t cmdsts; 1215 size_t pktlen; 1216 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi); 1217 cmdsts = gt32toh(txd2->ed_cmdsts); 1218 if (cmdsts & TX_CMD_O) { 1219 int nextin; 1220 /* 1221 * Sometime the Discovery forgets to update the 1222 * last descriptor. See if we own the descriptor 1223 * after it (since we know we've turned that to 1224 * the discovery and if we owned it, the Discovery 1225 * gave it back). If we do, we know the Discovery 1226 * gave back this one but forgot to mark it as ours. 1227 */ 1228 nextin = txq->txq_fi + 1; 1229 if (nextin == GE_TXDESC_MAX) 1230 nextin = 0; 1231 GE_TXDPOSTSYNC(sc, txq, nextin); 1232 if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) { 1233 GE_TXDPRESYNC(sc, txq, txq->txq_fi); 1234 GE_TXDPRESYNC(sc, txq, nextin); 1235 GE_FUNC_EXIT(sc, "@"); 1236 return 0; 1237 } 1238 #ifdef DEBUG 1239 printf("%s: txenqueue: transmitter resynced at %d\n", 1240 device_xname(sc->sc_dev), txq->txq_fi); 1241 #endif 1242 } 1243 if (++txq->txq_fi == GE_TXDESC_MAX) 1244 txq->txq_fi = 0; 1245 txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr; 1246 pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff; 1247 txq->txq_inptr += roundup(pktlen, dcache_line_size); 1248 txq->txq_nactive--; 1249 1250 /* statistics */ 1251 if_statinc(ifp, if_opackets); 1252 if (cmdsts & TX_STS_ES) 1253 if_statinc(ifp, if_oerrors); 1254 GE_DPRINTF(sc, ("%%")); 1255 } 1256 1257 buflen = roundup(m->m_pkthdr.len, dcache_line_size); 1258 1259 /* 1260 * If this packet would wrap around the end of the buffer, reset back 1261 * to the beginning. 1262 */ 1263 if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) { 1264 txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr; 1265 txq->txq_outptr = 0; 1266 } 1267 1268 /* 1269 * Make sure the output packet doesn't run over the beginning of 1270 * what we've already given the GT. 1271 */ 1272 if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr && 1273 txq->txq_outptr + buflen > txq->txq_inptr) { 1274 intrmask |= txq->txq_intrbits & 1275 (ETH_IR_TxBufferHigh | ETH_IR_TxBufferLow); 1276 if (sc->sc_intrmask != intrmask) { 1277 sc->sc_intrmask = intrmask; 1278 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask); 1279 } 1280 GE_FUNC_EXIT(sc, "#"); 1281 return 0; 1282 } 1283 1284 /* 1285 * The end-of-list descriptor we put on last time is the starting point 1286 * for this packet. The GT is supposed to terminate list processing on 1287 * a NULL nxtptr but that currently is broken so a CPU-owned descriptor 1288 * must terminate the list. 1289 */ 1290 intrmask = sc->sc_intrmask; 1291 1292 m_copydata(m, 0, m->m_pkthdr.len, 1293 (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr); 1294 bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map, 1295 txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE); 1296 txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr); 1297 txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16); 1298 GE_TXDPRESYNC(sc, txq, txq->txq_lo); 1299 1300 /* 1301 * Request a buffer interrupt every 2/3 of the way thru the transmit 1302 * buffer. 1303 */ 1304 txq->txq_ei_gapcount += buflen; 1305 if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) { 1306 txd->ed_cmdsts = htogt32(TX_CMD_FIRST |TX_CMD_LAST |TX_CMD_EI); 1307 txq->txq_ei_gapcount = 0; 1308 } else { 1309 txd->ed_cmdsts = htogt32(TX_CMD_FIRST | TX_CMD_LAST); 1310 } 1311 #if 0 1312 GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo, 1313 ((unsigned long *)txd)[0], ((unsigned long *)txd)[1], 1314 ((unsigned long *)txd)[2], ((unsigned long *)txd)[3])); 1315 #endif 1316 GE_TXDPRESYNC(sc, txq, txq->txq_lo); 1317 1318 txq->txq_outptr += buflen; 1319 /* 1320 * Tell the SDMA engine to "Fetch!" 1321 */ 1322 GE_WRITE(sc, ETH_ESDCMR, 1323 txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH | ETH_ESDCMR_TXDL)); 1324 1325 GE_DPRINTF(sc, ("(%d)", txq->txq_lo)); 1326 1327 /* 1328 * Update the last out appropriately. 1329 */ 1330 txq->txq_nactive++; 1331 if (++txq->txq_lo == GE_TXDESC_MAX) 1332 txq->txq_lo = 0; 1333 1334 /* 1335 * Move mbuf from the pending queue to the snd queue. 1336 */ 1337 IF_DEQUEUE(&txq->txq_pendq, m); 1338 bpf_mtap(ifp, m, BPF_D_OUT); 1339 m_freem(m); 1340 ifp->if_flags &= ~IFF_OACTIVE; 1341 1342 /* 1343 * Since we have put an item into the packet queue, we now want 1344 * an interrupt when the transmit queue finishes processing the 1345 * list. But only update the mask if needs changing. 1346 */ 1347 intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh | ETH_IR_TxEndLow); 1348 if (sc->sc_intrmask != intrmask) { 1349 sc->sc_intrmask = intrmask; 1350 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask); 1351 } 1352 if (ifp->if_timer == 0) 1353 ifp->if_timer = 5; 1354 GE_FUNC_EXIT(sc, "*"); 1355 return 1; 1356 } 1357 1358 uint32_t 1359 gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask) 1360 { 1361 struct gfe_txqueue * const txq = &sc->sc_txq[txprio]; 1362 struct ifnet * const ifp = &sc->sc_ec.ec_if; 1363 1364 GE_FUNC_ENTER(sc, "gfe_tx_done"); 1365 1366 if (txq == NULL) { 1367 GE_FUNC_EXIT(sc, ""); 1368 return intrmask; 1369 } 1370 1371 while (txq->txq_nactive > 0) { 1372 const int dcache_line_size = curcpu()->ci_ci.dcache_line_size; 1373 volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi]; 1374 uint32_t cmdsts; 1375 size_t pktlen; 1376 1377 GE_TXDPOSTSYNC(sc, txq, txq->txq_fi); 1378 if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) { 1379 int nextin; 1380 1381 if (txq->txq_nactive == 1) { 1382 GE_TXDPRESYNC(sc, txq, txq->txq_fi); 1383 GE_FUNC_EXIT(sc, ""); 1384 return intrmask; 1385 } 1386 /* 1387 * Sometimes the Discovery forgets to update the 1388 * ownership bit in the descriptor. See if we own the 1389 * descriptor after it (since we know we've turned 1390 * that to the Discovery and if we own it now then the 1391 * Discovery gave it back). If we do, we know the 1392 * Discovery gave back this one but forgot to mark it 1393 * as ours. 1394 */ 1395 nextin = txq->txq_fi + 1; 1396 if (nextin == GE_TXDESC_MAX) 1397 nextin = 0; 1398 GE_TXDPOSTSYNC(sc, txq, nextin); 1399 if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) { 1400 GE_TXDPRESYNC(sc, txq, txq->txq_fi); 1401 GE_TXDPRESYNC(sc, txq, nextin); 1402 GE_FUNC_EXIT(sc, ""); 1403 return intrmask; 1404 } 1405 #ifdef DEBUG 1406 printf("%s: txdone: transmitter resynced at %d\n", 1407 device_xname(sc->sc_dev), txq->txq_fi); 1408 #endif 1409 } 1410 #if 0 1411 GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)", 1412 txq->txq_lo, 1413 ((unsigned long *)txd)[0], ((unsigned long *)txd)[1], 1414 ((unsigned long *)txd)[2], ((unsigned long *)txd)[3])); 1415 #endif 1416 GE_DPRINTF(sc, ("(%d)", txq->txq_fi)); 1417 if (++txq->txq_fi == GE_TXDESC_MAX) 1418 txq->txq_fi = 0; 1419 txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr; 1420 pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff; 1421 bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map, 1422 txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE); 1423 txq->txq_inptr += roundup(pktlen, dcache_line_size); 1424 1425 /* statistics */ 1426 if_statinc(ifp, if_opackets); 1427 if (cmdsts & TX_STS_ES) 1428 if_statinc(ifp, if_oerrors); 1429 1430 /* txd->ed_bufptr = 0; */ 1431 1432 ifp->if_timer = 5; 1433 --txq->txq_nactive; 1434 } 1435 if (txq->txq_nactive != 0) 1436 panic("%s: transmit fifo%d empty but active count (%d) > 0!", 1437 device_xname(sc->sc_dev), txprio, txq->txq_nactive); 1438 ifp->if_timer = 0; 1439 intrmask &= 1440 ~(txq->txq_intrbits & (ETH_IR_TxEndHigh | ETH_IR_TxEndLow)); 1441 intrmask &= 1442 ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh | ETH_IR_TxBufferLow)); 1443 GE_FUNC_EXIT(sc, ""); 1444 return intrmask; 1445 } 1446 1447 int 1448 gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio) 1449 { 1450 struct gfe_txqueue * const txq = &sc->sc_txq[txprio]; 1451 int error; 1452 1453 GE_FUNC_ENTER(sc, "gfe_tx_txqalloc"); 1454 1455 error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1, 1456 GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE); 1457 if (error) { 1458 GE_FUNC_EXIT(sc, ""); 1459 return error; 1460 } 1461 error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0); 1462 if (error) { 1463 gfe_dmamem_free(sc, &txq->txq_desc_mem); 1464 GE_FUNC_EXIT(sc, ""); 1465 return error; 1466 } 1467 GE_FUNC_EXIT(sc, ""); 1468 return 0; 1469 } 1470 1471 int 1472 gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio) 1473 { 1474 struct gfe_txqueue * const txq = &sc->sc_txq[txprio]; 1475 volatile struct gt_eth_desc *txd; 1476 unsigned int i; 1477 bus_addr_t addr; 1478 1479 GE_FUNC_ENTER(sc, "gfe_tx_start"); 1480 1481 sc->sc_intrmask &= 1482 ~(ETH_IR_TxEndHigh | 1483 ETH_IR_TxBufferHigh | 1484 ETH_IR_TxEndLow | 1485 ETH_IR_TxBufferLow); 1486 1487 if (sc->sc_flags & GE_NOFREE) { 1488 KASSERT(txq->txq_desc_mem.gdm_kva != NULL); 1489 KASSERT(txq->txq_buf_mem.gdm_kva != NULL); 1490 } else { 1491 int error = gfe_tx_txqalloc(sc, txprio); 1492 if (error) { 1493 GE_FUNC_EXIT(sc, "!"); 1494 return error; 1495 } 1496 } 1497 1498 txq->txq_descs = 1499 (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva; 1500 txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr; 1501 txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr; 1502 1503 txq->txq_pendq.ifq_maxlen = 10; 1504 txq->txq_ei_gapcount = 0; 1505 txq->txq_nactive = 0; 1506 txq->txq_fi = 0; 1507 txq->txq_lo = 0; 1508 txq->txq_inptr = GE_TXBUF_SIZE; 1509 txq->txq_outptr = 0; 1510 for (i = 0, txd = txq->txq_descs, 1511 addr = txq->txq_desc_busaddr + sizeof(*txd); 1512 i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) { 1513 /* 1514 * update the nxtptr to point to the next txd. 1515 */ 1516 txd->ed_cmdsts = 0; 1517 txd->ed_nxtptr = htogt32(addr); 1518 } 1519 txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr = 1520 htogt32(txq->txq_desc_busaddr); 1521 bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0, 1522 GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1523 1524 switch (txprio) { 1525 case GE_TXPRIO_HI: 1526 txq->txq_intrbits = ETH_IR_TxEndHigh | ETH_IR_TxBufferHigh; 1527 txq->txq_esdcmrbits = ETH_ESDCMR_TXDH; 1528 txq->txq_epsrbits = ETH_EPSR_TxHigh; 1529 txq->txq_ectdp = ETH_ECTDP1; 1530 GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr); 1531 break; 1532 1533 case GE_TXPRIO_LO: 1534 txq->txq_intrbits = ETH_IR_TxEndLow | ETH_IR_TxBufferLow; 1535 txq->txq_esdcmrbits = ETH_ESDCMR_TXDL; 1536 txq->txq_epsrbits = ETH_EPSR_TxLow; 1537 txq->txq_ectdp = ETH_ECTDP0; 1538 GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr); 1539 break; 1540 1541 case GE_TXPRIO_NONE: 1542 break; 1543 } 1544 #if 0 1545 GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp)); 1546 GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr); 1547 GE_DPRINTF(sc, (")")); 1548 #endif 1549 1550 /* 1551 * If we are restarting, there may be packets in the pending queue 1552 * waiting to be enqueued. Try enqueuing packets from both priority 1553 * queues until the pending queue is empty or there no room for them 1554 * on the device. 1555 */ 1556 while (gfe_tx_enqueue(sc, txprio)) 1557 continue; 1558 1559 GE_FUNC_EXIT(sc, ""); 1560 return 0; 1561 } 1562 1563 void 1564 gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush) 1565 { 1566 struct gfe_txqueue * const txq = &sc->sc_txq[txprio]; 1567 1568 GE_FUNC_ENTER(sc, "gfe_tx_cleanup"); 1569 if (txq == NULL) { 1570 GE_FUNC_EXIT(sc, ""); 1571 return; 1572 } 1573 1574 if (!flush) { 1575 GE_FUNC_EXIT(sc, ""); 1576 return; 1577 } 1578 1579 if ((sc->sc_flags & GE_NOFREE) == 0) { 1580 gfe_dmamem_free(sc, &txq->txq_desc_mem); 1581 gfe_dmamem_free(sc, &txq->txq_buf_mem); 1582 } 1583 GE_FUNC_EXIT(sc, "-F"); 1584 } 1585 1586 void 1587 gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op) 1588 { 1589 GE_FUNC_ENTER(sc, "gfe_tx_stop"); 1590 1591 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH | ETH_ESDCMR_STDL); 1592 1593 sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask); 1594 sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask); 1595 sc->sc_intrmask &= 1596 ~(ETH_IR_TxEndHigh | 1597 ETH_IR_TxBufferHigh | 1598 ETH_IR_TxEndLow | 1599 ETH_IR_TxBufferLow); 1600 1601 gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP); 1602 gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP); 1603 1604 sc->sc_ec.ec_if.if_timer = 0; 1605 GE_FUNC_EXIT(sc, ""); 1606 } 1607 1608 int 1609 gfe_intr(void *arg) 1610 { 1611 struct gfe_softc * const sc = arg; 1612 uint32_t cause; 1613 uint32_t intrmask = sc->sc_intrmask; 1614 int claim = 0; 1615 int cnt; 1616 1617 GE_FUNC_ENTER(sc, "gfe_intr"); 1618 1619 for (cnt = 0; cnt < 4; cnt++) { 1620 if (sc->sc_intrmask != intrmask) { 1621 sc->sc_intrmask = intrmask; 1622 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask); 1623 } 1624 cause = GE_READ(sc, ETH_EICR); 1625 cause &= sc->sc_intrmask; 1626 GE_DPRINTF(sc, (".%#x", cause)); 1627 if (cause == 0) 1628 break; 1629 1630 claim = 1; 1631 1632 GE_WRITE(sc, ETH_EICR, ~cause); 1633 #ifndef GE_NORX 1634 if (cause & (ETH_IR_RxBuffer | ETH_IR_RxError)) 1635 intrmask = gfe_rx_process(sc, cause, intrmask); 1636 #endif 1637 1638 #ifndef GE_NOTX 1639 if (cause & (ETH_IR_TxBufferHigh | ETH_IR_TxEndHigh)) 1640 intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask); 1641 if (cause & (ETH_IR_TxBufferLow | ETH_IR_TxEndLow)) 1642 intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask); 1643 #endif 1644 if (cause & ETH_IR_MIIPhySTC) { 1645 sc->sc_flags |= GE_PHYSTSCHG; 1646 /* intrmask &= ~ETH_IR_MIIPhySTC; */ 1647 } 1648 } 1649 1650 while (gfe_tx_enqueue(sc, GE_TXPRIO_HI)) 1651 continue; 1652 while (gfe_tx_enqueue(sc, GE_TXPRIO_LO)) 1653 continue; 1654 1655 GE_FUNC_EXIT(sc, ""); 1656 return claim; 1657 } 1658 1659 int 1660 gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op) 1661 { 1662 int error = 0; 1663 GE_FUNC_ENTER(sc, "gfe_whack"); 1664 1665 switch (op) { 1666 case GE_WHACK_RESTART: 1667 #ifndef GE_NOTX 1668 gfe_tx_stop(sc, op); 1669 #endif 1670 /* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */ 1671 /* FALLTHROUGH */ 1672 case GE_WHACK_START: 1673 #ifndef GE_NOHASH 1674 if (error == 0 && sc->sc_hashtable == NULL) { 1675 error = gfe_hash_alloc(sc); 1676 if (error) 1677 break; 1678 } 1679 if (op != GE_WHACK_RESTART) 1680 gfe_hash_fill(sc); 1681 #endif 1682 #ifndef GE_NORX 1683 if (op != GE_WHACK_RESTART) { 1684 error = gfe_rx_prime(sc); 1685 if (error) 1686 break; 1687 } 1688 #endif 1689 #ifndef GE_NOTX 1690 error = gfe_tx_start(sc, GE_TXPRIO_HI); 1691 if (error) 1692 break; 1693 #endif 1694 sc->sc_ec.ec_if.if_flags |= IFF_RUNNING; 1695 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN); 1696 GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr); 1697 GE_WRITE(sc, ETH_EICR, 0); 1698 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask); 1699 #ifndef GE_NOHASH 1700 GE_WRITE(sc, ETH_EHTPR, 1701 sc->sc_hash_mem.gdm_map->dm_segs->ds_addr); 1702 #endif 1703 #ifndef GE_NORX 1704 GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD); 1705 sc->sc_flags |= GE_RXACTIVE; 1706 #endif 1707 /* FALLTHROUGH */ 1708 case GE_WHACK_CHANGE: 1709 GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)", 1710 GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR))); 1711 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN); 1712 GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask); 1713 gfe_ifstart(&sc->sc_ec.ec_if); 1714 GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)", 1715 GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1))); 1716 GE_FUNC_EXIT(sc, ""); 1717 return error; 1718 case GE_WHACK_STOP: 1719 break; 1720 } 1721 1722 #ifdef GE_DEBUG 1723 if (error) 1724 GE_DPRINTF(sc, (" failed: %d\n", error)); 1725 #endif 1726 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr); 1727 GE_WRITE(sc, ETH_EIMR, 0); 1728 sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; 1729 #ifndef GE_NOTX 1730 gfe_tx_stop(sc, GE_WHACK_STOP); 1731 #endif 1732 #ifndef GE_NORX 1733 gfe_rx_stop(sc, GE_WHACK_STOP); 1734 #endif 1735 #ifndef GE_NOHASH 1736 if ((sc->sc_flags & GE_NOFREE) == 0) { 1737 gfe_dmamem_free(sc, &sc->sc_hash_mem); 1738 sc->sc_hashtable = NULL; 1739 } 1740 #endif 1741 1742 GE_FUNC_EXIT(sc, ""); 1743 return error; 1744 } 1745 1746 int 1747 gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN]) 1748 { 1749 uint32_t w0, add0, add1; 1750 uint32_t result; 1751 1752 GE_FUNC_ENTER(sc, "gfe_hash_compute"); 1753 add0 = ((uint32_t) eaddr[5] << 0) | 1754 ((uint32_t) eaddr[4] << 8) | 1755 ((uint32_t) eaddr[3] << 16); 1756 1757 add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4); 1758 add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2); 1759 add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1); 1760 1761 add1 = ((uint32_t) eaddr[2] << 0) | 1762 ((uint32_t) eaddr[1] << 8) | 1763 ((uint32_t) eaddr[0] << 16); 1764 1765 add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4); 1766 add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2); 1767 add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1); 1768 1769 GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr))); 1770 /* 1771 * hashResult is the 15 bits Hash entry address. 1772 * ethernetADD is a 48 bit number, which is derived from the Ethernet 1773 * MAC address, by nibble swapping in every byte (i.e MAC address 1774 * of 0x123456789abc translates to ethernetADD of 0x21436587a9cb). 1775 */ 1776 1777 if ((sc->sc_pcr & ETH_EPCR_HM) == 0) { 1778 /* 1779 * hashResult[14:0] = hashFunc0(ethernetADD[47:0]) 1780 * 1781 * hashFunc0 calculates the hashResult in the following manner: 1782 * hashResult[ 8:0] = ethernetADD[14:8,1,0] 1783 * XOR ethernetADD[23:15] XOR ethernetADD[32:24] 1784 */ 1785 result = (add0 & 3) | ((add0 >> 6) & ~3); 1786 result ^= (add0 >> 15) ^ (add1 >> 0); 1787 result &= 0x1ff; 1788 /* 1789 * hashResult[14:9] = ethernetADD[7:2] 1790 */ 1791 result |= (add0 & ~3) << 7; /* excess bits will be masked */ 1792 GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff)); 1793 } else { 1794 #define TRIBITFLIP 073516240 /* yes its in octal */ 1795 /* 1796 * hashResult[14:0] = hashFunc1(ethernetADD[47:0]) 1797 * 1798 * hashFunc1 calculates the hashResult in the following manner: 1799 * hashResult[08:00] = ethernetADD[06:14] 1800 * XOR ethernetADD[15:23] XOR ethernetADD[24:32] 1801 */ 1802 w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff; 1803 /* 1804 * Now bitswap those 9 bits 1805 */ 1806 result = 0; 1807 result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6; 1808 result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3; 1809 result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0; 1810 1811 /* 1812 * hashResult[14:09] = ethernetADD[00:05] 1813 */ 1814 result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12; 1815 result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9; 1816 GE_DPRINTF(sc, ("1(%#x)", result)); 1817 } 1818 GE_FUNC_EXIT(sc, ""); 1819 return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff); 1820 } 1821 1822 int 1823 gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op, 1824 enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN]) 1825 { 1826 uint64_t he; 1827 uint64_t *maybe_he_p = NULL; 1828 int limit; 1829 int hash; 1830 int maybe_hash = 0; 1831 1832 GE_FUNC_ENTER(sc, "gfe_hash_entry_op"); 1833 1834 hash = gfe_hash_compute(sc, eaddr); 1835 1836 if (sc->sc_hashtable == NULL) { 1837 panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev), 1838 __LINE__); 1839 } 1840 1841 /* 1842 * Assume we are going to insert so create the hash entry we 1843 * are going to insert. We also use it to match entries we 1844 * will be removing. 1845 */ 1846 he = ((uint64_t) eaddr[5] << 43) | 1847 ((uint64_t) eaddr[4] << 35) | 1848 ((uint64_t) eaddr[3] << 27) | 1849 ((uint64_t) eaddr[2] << 19) | 1850 ((uint64_t) eaddr[1] << 11) | 1851 ((uint64_t) eaddr[0] << 3) | 1852 HSH_PRIO_INS(prio) | HSH_V | HSH_R; 1853 1854 /* 1855 * The GT will search upto 12 entries for a hit, so we must mimic that. 1856 */ 1857 hash &= sc->sc_hashmask / sizeof(he); 1858 for (limit = HSH_LIMIT; limit > 0 ; --limit) { 1859 /* 1860 * Does the GT wrap at the end, stop at the, or overrun the 1861 * end? Assume it wraps for now. Stash a copy of the 1862 * current hash entry. 1863 */ 1864 uint64_t *he_p = &sc->sc_hashtable[hash]; 1865 uint64_t thishe = *he_p; 1866 1867 /* 1868 * If the hash entry isn't valid, that break the chain. And 1869 * this entry a good candidate for reuse. 1870 */ 1871 if ((thishe & HSH_V) == 0) { 1872 maybe_he_p = he_p; 1873 break; 1874 } 1875 1876 /* 1877 * If the hash entry has the same address we are looking for 1878 * then ... if we are removing and the skip bit is set, its 1879 * already been removed. if are adding and the skip bit is 1880 * clear, then its already added. In either return EBUSY 1881 * indicating the op has already been done. Otherwise flip 1882 * the skip bit and return 0. 1883 */ 1884 if (((he ^ thishe) & HSH_ADDR_MASK) == 0) { 1885 if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) || 1886 ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0)) 1887 return EBUSY; 1888 *he_p = thishe ^ HSH_S; 1889 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map, 1890 hash * sizeof(he), sizeof(he), 1891 BUS_DMASYNC_PREWRITE); 1892 GE_FUNC_EXIT(sc, "^"); 1893 return 0; 1894 } 1895 1896 /* 1897 * If we haven't found a slot for the entry and this entry 1898 * is currently being skipped, return this entry. 1899 */ 1900 if (maybe_he_p == NULL && (thishe & HSH_S)) { 1901 maybe_he_p = he_p; 1902 maybe_hash = hash; 1903 } 1904 1905 hash = (hash + 1) & (sc->sc_hashmask / sizeof(he)); 1906 } 1907 1908 /* 1909 * If we got here, then there was no entry to remove. 1910 */ 1911 if (op == GE_HASH_REMOVE) { 1912 GE_FUNC_EXIT(sc, "?"); 1913 return ENOENT; 1914 } 1915 1916 /* 1917 * If we couldn't find a slot, return an error. 1918 */ 1919 if (maybe_he_p == NULL) { 1920 GE_FUNC_EXIT(sc, "!"); 1921 return ENOSPC; 1922 } 1923 1924 /* Update the entry. 1925 */ 1926 *maybe_he_p = he; 1927 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map, 1928 maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE); 1929 GE_FUNC_EXIT(sc, "+"); 1930 return 0; 1931 } 1932 1933 int 1934 gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm, 1935 u_long cmd) 1936 { 1937 struct gfe_softc *sc = ec->ec_if.if_softc; 1938 int error; 1939 enum gfe_hash_op op; 1940 enum gfe_rxprio prio; 1941 1942 GE_FUNC_ENTER(sc, "hash_multichg"); 1943 /* 1944 * Is this a wildcard entry? If so and its being removed, recompute. 1945 */ 1946 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) { 1947 if (cmd == SIOCDELMULTI) { 1948 GE_FUNC_EXIT(sc, ""); 1949 return ENETRESET; 1950 } 1951 1952 /* 1953 * Switch in 1954 */ 1955 sc->sc_flags |= GE_ALLMULTI; 1956 if ((sc->sc_pcr & ETH_EPCR_PM) == 0) { 1957 sc->sc_pcr |= ETH_EPCR_PM; 1958 GE_WRITE(sc, ETH_EPCR, sc->sc_pcr); 1959 GE_FUNC_EXIT(sc, ""); 1960 return 0; 1961 } 1962 GE_FUNC_EXIT(sc, ""); 1963 return ENETRESET; 1964 } 1965 1966 prio = GE_RXPRIO_MEDLO; 1967 op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD); 1968 1969 if (sc->sc_hashtable == NULL) { 1970 GE_FUNC_EXIT(sc, ""); 1971 return 0; 1972 } 1973 1974 error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo); 1975 if (error == EBUSY) { 1976 aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n", 1977 cmd == SIOCDELMULTI ? "remove" : "add", 1978 ether_sprintf(enm->enm_addrlo)); 1979 GE_FUNC_EXIT(sc, ""); 1980 return 0; 1981 } 1982 1983 if (error == ENOENT) { 1984 aprint_error_dev(sc->sc_dev, 1985 "multichg: failed to remove %s: not in table\n", 1986 ether_sprintf(enm->enm_addrlo)); 1987 GE_FUNC_EXIT(sc, ""); 1988 return 0; 1989 } 1990 1991 if (error == ENOSPC) { 1992 aprint_error_dev(sc->sc_dev, "multichg:" 1993 " failed to add %s: no space; regenerating table\n", 1994 ether_sprintf(enm->enm_addrlo)); 1995 GE_FUNC_EXIT(sc, ""); 1996 return ENETRESET; 1997 } 1998 GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n", 1999 device_xname(sc->sc_dev), 2000 cmd == SIOCDELMULTI ? "remove" : "add", 2001 ether_sprintf(enm->enm_addrlo))); 2002 GE_FUNC_EXIT(sc, ""); 2003 return 0; 2004 } 2005 2006 int 2007 gfe_hash_fill(struct gfe_softc *sc) 2008 { 2009 struct ethercom *ec = &sc->sc_ec; 2010 struct ether_multistep step; 2011 struct ether_multi *enm; 2012 int error; 2013 2014 GE_FUNC_ENTER(sc, "gfe_hash_fill"); 2015 2016 error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI, 2017 CLLADDR(ec->ec_if.if_sadl)); 2018 if (error) { 2019 GE_FUNC_EXIT(sc, "!"); 2020 return error; 2021 } 2022 2023 sc->sc_flags &= ~GE_ALLMULTI; 2024 if ((ec->ec_if.if_flags & IFF_PROMISC) == 0) 2025 sc->sc_pcr &= ~ETH_EPCR_PM; 2026 ETHER_LOCK(ec); 2027 ETHER_FIRST_MULTI(step, ec, enm); 2028 while (enm != NULL) { 2029 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2030 sc->sc_flags |= GE_ALLMULTI; 2031 sc->sc_pcr |= ETH_EPCR_PM; 2032 } else { 2033 error = gfe_hash_entry_op(sc, GE_HASH_ADD, 2034 GE_RXPRIO_MEDLO, enm->enm_addrlo); 2035 if (error == ENOSPC) 2036 break; 2037 } 2038 ETHER_NEXT_MULTI(step, enm); 2039 } 2040 ETHER_UNLOCK(ec); 2041 2042 GE_FUNC_EXIT(sc, ""); 2043 return error; 2044 } 2045 2046 int 2047 gfe_hash_alloc(struct gfe_softc *sc) 2048 { 2049 int error; 2050 GE_FUNC_ENTER(sc, "gfe_hash_alloc"); 2051 sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1; 2052 error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1, 2053 BUS_DMA_NOCACHE); 2054 if (error) { 2055 aprint_error_dev(sc->sc_dev, 2056 "failed to allocate %d bytes for hash table: %d\n", 2057 sc->sc_hashmask + 1, error); 2058 GE_FUNC_EXIT(sc, ""); 2059 return error; 2060 } 2061 sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva; 2062 memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1); 2063 bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map, 2064 0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE); 2065 GE_FUNC_EXIT(sc, ""); 2066 return 0; 2067 } 2068