xref: /netbsd-src/sys/dev/marvell/if_gfe.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: if_gfe.c,v 1.49 2018/06/26 06:48:01 msaitoh Exp $	*/
2 
3 /*
4  * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed for the NetBSD Project by
18  *      Allegro Networks, Inc., and Wasabi Systems, Inc.
19  * 4. The name of Allegro Networks, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27  * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30  * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * if_gfe.c -- GT ethernet MAC driver
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.49 2018/06/26 06:48:01 msaitoh Exp $");
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/bus.h>
51 #include <sys/callout.h>
52 #include <sys/device.h>
53 #include <sys/errno.h>
54 #include <sys/ioctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/socket.h>
58 
59 #include <uvm/uvm.h>
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #endif
69 #include <net/bpf.h>
70 #include <sys/rndsource.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/marvell/gtreg.h>
76 #include <dev/marvell/gtvar.h>
77 #include <dev/marvell/gtethreg.h>
78 #include <dev/marvell/if_gfevar.h>
79 #include <dev/marvell/marvellreg.h>
80 #include <dev/marvell/marvellvar.h>
81 
82 #include <prop/proplib.h>
83 
84 #include "locators.h"
85 
86 
87 #define	GE_READ(sc, reg) \
88 	bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
89 #define	GE_WRITE(sc, reg, v) \
90 	bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
91 
92 #define	GE_DEBUG
93 #if 0
94 #define	GE_NOHASH
95 #define	GE_NORX
96 #endif
97 
98 #ifdef GE_DEBUG
99 #define	GE_DPRINTF(sc, a)					\
100 	do {							\
101 		if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG)	\
102 			printf a;				\
103 	} while (0 /* CONSTCOND */)
104 #define	GE_FUNC_ENTER(sc, func)	GE_DPRINTF(sc, ("[" func))
105 #define	GE_FUNC_EXIT(sc, str)	GE_DPRINTF(sc, (str "]"))
106 #else
107 #define	GE_DPRINTF(sc, a)	do { } while (0)
108 #define	GE_FUNC_ENTER(sc, func)	do { } while (0)
109 #define	GE_FUNC_EXIT(sc, str)	do { } while (0)
110 #endif
111 enum gfe_whack_op {
112 	GE_WHACK_START,		GE_WHACK_RESTART,
113 	GE_WHACK_CHANGE,	GE_WHACK_STOP
114 };
115 
116 enum gfe_hash_op {
117 	GE_HASH_ADD,		GE_HASH_REMOVE,
118 };
119 
120 #if 1
121 #define	htogt32(a)		htobe32(a)
122 #define	gt32toh(a)		be32toh(a)
123 #else
124 #define	htogt32(a)		htole32(a)
125 #define	gt32toh(a)		le32toh(a)
126 #endif
127 
128 #define GE_RXDSYNC(sc, rxq, n, ops) \
129 	bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
130 	    (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
131 	    (ops))
132 #define	GE_RXDPRESYNC(sc, rxq, n) \
133 	GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
134 #define	GE_RXDPOSTSYNC(sc, rxq, n) \
135 	GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
136 
137 #define GE_TXDSYNC(sc, txq, n, ops) \
138 	bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
139 	    (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
140 	    (ops))
141 #define	GE_TXDPRESYNC(sc, txq, n) \
142 	GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
143 #define	GE_TXDPOSTSYNC(sc, txq, n) \
144 	GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
145 
146 #define	STATIC
147 
148 
149 STATIC int gfec_match(device_t, cfdata_t, void *);
150 STATIC void gfec_attach(device_t, device_t, void *);
151 
152 STATIC int gfec_print(void *, const char *);
153 STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
154 
155 STATIC int gfec_enet_phy(device_t, int);
156 STATIC int gfec_mii_read(device_t, int, int);
157 STATIC void gfec_mii_write(device_t, int, int, int);
158 STATIC void gfec_mii_statchg(struct ifnet *);
159 
160 STATIC int gfe_match(device_t, cfdata_t, void *);
161 STATIC void gfe_attach(device_t, device_t, void *);
162 
163 STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
164 	size_t, int);
165 STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
166 
167 STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
168 STATIC void gfe_ifstart(struct ifnet *);
169 STATIC void gfe_ifwatchdog(struct ifnet *);
170 
171 STATIC void gfe_tick(void *arg);
172 
173 STATIC void gfe_tx_restart(void *);
174 STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
175 STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
176 STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
177 STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
178 STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
179 STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
180 
181 STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
182 STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
183 STATIC int gfe_rx_prime(struct gfe_softc *);
184 STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
185 STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
186 STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
187 STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
188 
189 STATIC int gfe_intr(void *);
190 
191 STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
192 
193 STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
194 STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
195 	enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
196 STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
197 	u_long);
198 STATIC int gfe_hash_fill(struct gfe_softc *);
199 STATIC int gfe_hash_alloc(struct gfe_softc *);
200 
201 
202 CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
203     gfec_match, gfec_attach, NULL, NULL);
204 CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
205     gfe_match, gfe_attach, NULL, NULL);
206 
207 
208 /* ARGSUSED */
209 int
210 gfec_match(device_t parent, cfdata_t cf, void *aux)
211 {
212 	struct marvell_attach_args *mva = aux;
213 
214 	if (strcmp(mva->mva_name, cf->cf_name) != 0)
215 		return 0;
216 	if (mva->mva_offset == MVA_OFFSET_DEFAULT)
217 		return 0;
218 
219 	mva->mva_size = ETHC_SIZE;
220 	return 1;
221 }
222 
223 /* ARGSUSED */
224 void
225 gfec_attach(device_t parent, device_t self, void *aux)
226 {
227 	struct gfec_softc *sc = device_private(self);
228 	struct marvell_attach_args *mva = aux, gfea;
229 	static int gfe_irqs[] = { 32, 33, 34 };
230 	int i;
231 
232 	aprint_naive("\n");
233 	aprint_normal(": Ethernet Controller\n");
234 
235 	sc->sc_dev = self;
236 	sc->sc_iot = mva->mva_iot;
237 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
238 	    mva->mva_size, &sc->sc_ioh)) {
239 		aprint_error_dev(self, "Cannot map registers\n");
240 		return;
241 	}
242 
243 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
244 
245 	for (i = 0; i < ETH_NUM; i++) {
246 		gfea.mva_name = "gfe";
247 		gfea.mva_model = mva->mva_model;
248 		gfea.mva_iot = sc->sc_iot;
249 		gfea.mva_ioh = sc->sc_ioh;
250 		gfea.mva_unit = i;
251 		gfea.mva_dmat = mva->mva_dmat;
252 		gfea.mva_irq = gfe_irqs[i];
253 		config_found_sm_loc(sc->sc_dev, "gfec", NULL, &gfea,
254 		    gfec_print, gfec_search);
255 	}
256 }
257 
258 int
259 gfec_print(void *aux, const char *pnp)
260 {
261 	struct marvell_attach_args *gfea = aux;
262 
263 	if (pnp)
264 		aprint_normal("%s at %s port %d",
265 		    gfea->mva_name, pnp, gfea->mva_unit);
266 	else {
267 		if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
268 			aprint_normal(" port %d", gfea->mva_unit);
269 		if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
270 			aprint_normal(" irq %d", gfea->mva_irq);
271 	}
272 	return UNCONF;
273 }
274 
275 /* ARGSUSED */
276 int
277 gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
278 {
279 	struct marvell_attach_args *gfea = aux;
280 
281 	if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
282 	    cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
283 		gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
284 
285 	return config_match(parent, cf, aux);
286 }
287 
288 int
289 gfec_enet_phy(device_t dev, int unit)
290 {
291 	struct gfec_softc *sc = device_private(dev);
292 	uint32_t epar;
293 
294 	epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
295 	return ETH_EPAR_PhyAD_GET(epar, unit);
296 }
297 
298 int
299 gfec_mii_read(device_t dev, int phy, int reg)
300 {
301 	struct gfec_softc *csc = device_private(device_parent(dev));
302 	uint32_t data;
303 	int count = 10000;
304 
305 	mutex_enter(&csc->sc_mtx);
306 
307 	do {
308 		DELAY(10);
309 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
310 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
311 
312 	if (count == 0) {
313 		aprint_error_dev(dev,
314 		    "mii read for phy %d reg %d busied out\n", phy, reg);
315 		mutex_exit(&csc->sc_mtx);
316 		return ETH_ESMIR_Value_GET(data);
317 	}
318 
319 	bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
320 	    ETH_ESMIR_READ(phy, reg));
321 
322 	count = 10000;
323 	do {
324 		DELAY(10);
325 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
326 	} while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
327 
328 	mutex_exit(&csc->sc_mtx);
329 
330 	if (count == 0)
331 		aprint_error_dev(dev,
332 		    "mii read for phy %d reg %d timed out\n", phy, reg);
333 #if defined(GTMIIDEBUG)
334 	aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
335 	    phy, reg, data, ETH_ESMIR_Value_GET(data));
336 #endif
337 	return ETH_ESMIR_Value_GET(data);
338 }
339 
340 void
341 gfec_mii_write (device_t dev, int phy, int reg, int value)
342 {
343 	struct gfec_softc *csc = device_private(device_parent(dev));
344 	uint32_t data;
345 	int count = 10000;
346 
347 	mutex_enter(&csc->sc_mtx);
348 
349 	do {
350 		DELAY(10);
351 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
352 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
353 
354 	if (count == 0) {
355 		aprint_error_dev(dev,
356 		    "mii write for phy %d reg %d busied out (busy)\n",
357 		    phy, reg);
358 		mutex_exit(&csc->sc_mtx);
359 		return;
360 	}
361 
362 	bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
363 	    ETH_ESMIR_WRITE(phy, reg, value));
364 
365 	count = 10000;
366 	do {
367 		DELAY(10);
368 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
369 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
370 
371 	mutex_exit(&csc->sc_mtx);
372 
373 	if (count == 0)
374 		aprint_error_dev(dev,
375 		    "mii write for phy %d reg %d timed out\n", phy, reg);
376 #if defined(GTMIIDEBUG)
377 	aprint_normal_dev(dev, "mii_write(%d, %d, %#x)\n", phy, reg, value);
378 #endif
379 }
380 
381 void
382 gfec_mii_statchg(struct ifnet *ifp)
383 {
384 	/* struct gfe_softc *sc = ifp->if_softc; */
385 	/* do nothing? */
386 }
387 
388 /* ARGSUSED */
389 int
390 gfe_match(device_t parent, cfdata_t cf, void *aux)
391 {
392 
393 	return 1;
394 }
395 
396 /* ARGSUSED */
397 void
398 gfe_attach(device_t parent, device_t self, void *aux)
399 {
400 	struct marvell_attach_args *mva = aux;
401 	struct gfe_softc * const sc = device_private(self);
402 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
403 	uint32_t sdcr;
404 	int phyaddr, error;
405 	prop_data_t ea;
406 	uint8_t enaddr[6];
407 
408 	aprint_naive("\n");
409 	aprint_normal(": Ethernet Controller\n");
410 
411 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
412 	    mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
413 		aprint_error_dev(self, "failed to map registers\n");
414 		return;
415 	}
416 	sc->sc_dev = self;
417 	sc->sc_memt = mva->mva_iot;
418 	sc->sc_dmat = mva->mva_dmat;
419 	sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
420 	    ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
421 
422 	callout_init(&sc->sc_co, 0);
423 
424 	phyaddr = gfec_enet_phy(parent, sc->sc_macno);
425 
426 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
427 	if (ea != NULL) {
428 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
429 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
430 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
431 	}
432 
433 	sc->sc_pcr = GE_READ(sc, ETH_EPCR);
434 	sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
435 	sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
436 
437 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
438 
439 #if defined(DEBUG)
440 	printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
441 #endif
442 
443 	sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
444 	if (device_cfdata(self)->cf_flags & 1) {
445 		aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
446 		sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
447 	} else {
448 		aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
449 		sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
450 	}
451 	if (device_cfdata(self)->cf_flags & 2)
452 		sc->sc_flags |= GE_NOFREE;
453 	/* Set Max Frame Length is 1536 */
454 	sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
455 	sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
456 	sc->sc_max_frame_length = 1536;
457 
458 	if (sc->sc_pcr & ETH_EPCR_EN) {
459 		int tries = 1000;
460 		/*
461 		 * Abort transmitter and receiver and wait for them to quiese
462 		 */
463 		GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
464 		do {
465 			delay(100);
466 			if (tries-- <= 0) {
467 				aprint_error_dev(self, "Abort TX/RX failed\n");
468 				break;
469 			}
470 		} while (GE_READ(sc, ETH_ESDCMR) &
471 		    (ETH_ESDCMR_AR | ETH_ESDCMR_AT));
472 	}
473 
474 	sc->sc_pcr &=
475 	    ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
476 
477 #if defined(DEBUG)
478 	printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
479 #endif
480 
481 	/*
482 	 * Now turn off the GT.  If it didn't quiese, too ***ing bad.
483 	 */
484 	GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
485 	GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
486 	sdcr = GE_READ(sc, ETH_ESDCR);
487 	ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
488 	sdcr |= ETH_ESDCR_RIFB;
489 	GE_WRITE(sc, ETH_ESDCR, sdcr);
490 
491 	sc->sc_mii.mii_ifp = ifp;
492 	sc->sc_mii.mii_readreg = gfec_mii_read;
493 	sc->sc_mii.mii_writereg = gfec_mii_write;
494 	sc->sc_mii.mii_statchg = gfec_mii_statchg;
495 
496 	sc->sc_ec.ec_mii = &sc->sc_mii;
497 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
498 		ether_mediastatus);
499 
500 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, phyaddr,
501 		MII_OFFSET_ANY, MIIF_NOISOLATE);
502 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
503 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
504 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
505 	} else {
506 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
507 	}
508 
509 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
510 	ifp->if_softc = sc;
511 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
512 #if 0
513 	ifp->if_flags |= IFF_DEBUG;
514 #endif
515 	ifp->if_ioctl = gfe_ifioctl;
516 	ifp->if_start = gfe_ifstart;
517 	ifp->if_watchdog = gfe_ifwatchdog;
518 
519 	if (sc->sc_flags & GE_NOFREE) {
520 		error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
521 		if (!error)
522 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
523 		if (!error)
524 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
525 		if (!error)
526 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
527 		if (!error)
528 			error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
529 		if (!error)
530 			error = gfe_hash_alloc(sc);
531 		if (error)
532 			aprint_error_dev(self,
533 			    "failed to allocate resources: %d\n", error);
534 	}
535 
536 	if_attach(ifp);
537 	ether_ifattach(ifp, enaddr);
538 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
539 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
540 	    RND_FLAG_DEFAULT);
541 	marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
542 }
543 
544 int
545 gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
546 	size_t size, int flags)
547 {
548 	int error = 0;
549 	GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
550 
551 	KASSERT(gdm->gdm_kva == NULL);
552 	gdm->gdm_size = size;
553 	gdm->gdm_maxsegs = maxsegs;
554 
555 	error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
556 	    gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
557 	    BUS_DMA_NOWAIT);
558 	if (error)
559 		goto fail;
560 
561 	error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
562 	    gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
563 	if (error)
564 		goto fail;
565 
566 	error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
567 	    gdm->gdm_size, 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &gdm->gdm_map);
568 	if (error)
569 		goto fail;
570 
571 	error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
572 	    gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
573 	if (error)
574 		goto fail;
575 
576 	/* invalidate from cache */
577 	bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
578 	    BUS_DMASYNC_PREREAD);
579 fail:
580 	if (error) {
581 		gfe_dmamem_free(sc, gdm);
582 		GE_DPRINTF(sc, (":err=%d", error));
583 	}
584 	GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
585 	    gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
586 	    gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
587 	GE_FUNC_EXIT(sc, "");
588 	return error;
589 }
590 
591 void
592 gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
593 {
594 	GE_FUNC_ENTER(sc, "gfe_dmamem_free");
595 	if (gdm->gdm_map)
596 		bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
597 	if (gdm->gdm_kva)
598 		bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
599 	if (gdm->gdm_nsegs > 0)
600 		bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
601 	gdm->gdm_map = NULL;
602 	gdm->gdm_kva = NULL;
603 	gdm->gdm_nsegs = 0;
604 	GE_FUNC_EXIT(sc, "");
605 }
606 
607 int
608 gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
609 {
610 	struct gfe_softc * const sc = ifp->if_softc;
611 	struct ifreq *ifr = (struct ifreq *) data;
612 	struct ifaddr *ifa = (struct ifaddr *) data;
613 	int s, error = 0;
614 
615 	GE_FUNC_ENTER(sc, "gfe_ifioctl");
616 	s = splnet();
617 
618 	switch (cmd) {
619 	case SIOCINITIFADDR:
620 		ifp->if_flags |= IFF_UP;
621 		error = gfe_whack(sc, GE_WHACK_START);
622 		switch (ifa->ifa_addr->sa_family) {
623 #ifdef INET
624 		case AF_INET:
625 			if (error == 0)
626 				arp_ifinit(ifp, ifa);
627 			break;
628 #endif
629 		default:
630 			break;
631 		}
632 		break;
633 
634 	case SIOCSIFFLAGS:
635 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
636 			break;
637 		/* XXX re-use ether_ioctl() */
638 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
639 		case IFF_UP|IFF_RUNNING:/* active->active, update */
640 			error = gfe_whack(sc, GE_WHACK_CHANGE);
641 			break;
642 		case IFF_RUNNING:	/* not up, so we stop */
643 			error = gfe_whack(sc, GE_WHACK_STOP);
644 			break;
645 		case IFF_UP:		/* not running, so we start */
646 			error = gfe_whack(sc, GE_WHACK_START);
647 			break;
648 		case 0:			/* idle->idle: do nothing */
649 			break;
650 		}
651 		break;
652 
653 	case SIOCSIFMEDIA:
654 	case SIOCGIFMEDIA:
655 	case SIOCADDMULTI:
656 	case SIOCDELMULTI:
657 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
658 			if (ifp->if_flags & IFF_RUNNING)
659 				error = gfe_whack(sc, GE_WHACK_CHANGE);
660 			else
661 				error = 0;
662 		}
663 		break;
664 
665 	case SIOCSIFMTU:
666 		if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
667 			error = EINVAL;
668 			break;
669 		}
670 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
671 			error = 0;
672 		break;
673 
674 	default:
675 		error = ether_ioctl(ifp, cmd, data);
676 		break;
677 	}
678 	splx(s);
679 	GE_FUNC_EXIT(sc, "");
680 	return error;
681 }
682 
683 void
684 gfe_ifstart(struct ifnet *ifp)
685 {
686 	struct gfe_softc * const sc = ifp->if_softc;
687 	struct mbuf *m;
688 
689 	GE_FUNC_ENTER(sc, "gfe_ifstart");
690 
691 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
692 		GE_FUNC_EXIT(sc, "$");
693 		return;
694 	}
695 
696 	for (;;) {
697 		IF_DEQUEUE(&ifp->if_snd, m);
698 		if (m == NULL) {
699 			ifp->if_flags &= ~IFF_OACTIVE;
700 			GE_FUNC_EXIT(sc, "");
701 			return;
702 		}
703 
704 		/*
705 		 * No space in the pending queue?  try later.
706 		 */
707 		if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
708 			break;
709 
710 		/*
711 		 * Try to enqueue a mbuf to the device. If that fails, we
712 		 * can always try to map the next mbuf.
713 		 */
714 		IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
715 		GE_DPRINTF(sc, (">"));
716 #ifndef GE_NOTX
717 		(void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
718 #endif
719 	}
720 
721 	/*
722 	 * Attempt to queue the mbuf for send failed.
723 	 */
724 	IF_PREPEND(&ifp->if_snd, m);
725 	ifp->if_flags |= IFF_OACTIVE;
726 	GE_FUNC_EXIT(sc, "%%");
727 }
728 
729 void
730 gfe_ifwatchdog(struct ifnet *ifp)
731 {
732 	struct gfe_softc * const sc = ifp->if_softc;
733 	struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
734 
735 	GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
736 	aprint_error_dev(sc->sc_dev, "device timeout");
737 	if (ifp->if_flags & IFF_RUNNING) {
738 		uint32_t curtxdnum;
739 
740 		curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
741 		    txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
742 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
743 		GE_TXDPOSTSYNC(sc, txq, curtxdnum);
744 		aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
745 		    txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
746 		    txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
747 		    GE_READ(sc, ETH_EICR));
748 		GE_TXDPRESYNC(sc, txq, txq->txq_fi);
749 		GE_TXDPRESYNC(sc, txq, curtxdnum);
750 	}
751 	aprint_error("\n");
752 	ifp->if_oerrors++;
753 	(void) gfe_whack(sc, GE_WHACK_RESTART);
754 	GE_FUNC_EXIT(sc, "");
755 }
756 
757 int
758 gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
759 {
760 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
761 	int error;
762 
763 	GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
764 	GE_DPRINTF(sc, ("(%d)", rxprio));
765 
766 	error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
767 	    GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
768 	if (error) {
769 		GE_FUNC_EXIT(sc, "!!");
770 		return error;
771 	}
772 
773 	error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
774 	    GE_RXBUF_MEMSIZE, 0);
775 	if (error) {
776 		GE_FUNC_EXIT(sc, "!!!");
777 		return error;
778 	}
779 	GE_FUNC_EXIT(sc, "");
780 	return error;
781 }
782 
783 int
784 gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
785 {
786 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
787 	volatile struct gt_eth_desc *rxd;
788 	const bus_dma_segment_t *ds;
789 	int idx;
790 	bus_addr_t nxtaddr;
791 	bus_size_t boff;
792 
793 	GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
794 	GE_DPRINTF(sc, ("(%d)", rxprio));
795 
796 	if ((sc->sc_flags & GE_NOFREE) == 0) {
797 		int error = gfe_rx_rxqalloc(sc, rxprio);
798 		if (error) {
799 			GE_FUNC_EXIT(sc, "!");
800 			return error;
801 		}
802 	} else {
803 		KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
804 		KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
805 	}
806 
807 	memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
808 
809 	rxq->rxq_descs =
810 	    (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
811 	rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
812 	rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
813 	rxq->rxq_fi = 0;
814 	rxq->rxq_active = GE_RXDESC_MAX;
815 	boff = 0;
816 	ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
817 	nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
818 	for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
819 	    idx++, rxd++, nxtaddr += sizeof(*rxd)) {
820 		rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
821 		rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
822 		rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
823 		/*
824 		 * update the nxtptr to point to the next txd.
825 		 */
826 		if (idx == GE_RXDESC_MAX - 1)
827 			nxtaddr = rxq->rxq_desc_busaddr;
828 		rxd->ed_nxtptr = htogt32(nxtaddr);
829 		boff += GE_RXBUF_SIZE;
830 		if (boff == ds->ds_len) {
831 			ds++;
832 			boff = 0;
833 		}
834 	}
835 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
836 			rxq->rxq_desc_mem.gdm_map->dm_mapsize,
837 			BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
838 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
839 			rxq->rxq_buf_mem.gdm_map->dm_mapsize,
840 			BUS_DMASYNC_PREREAD);
841 
842 	rxq->rxq_intrbits = ETH_IR_RxBuffer|ETH_IR_RxError;
843 	switch (rxprio) {
844 	case GE_RXPRIO_HI:
845 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_3|ETH_IR_RxError_3;
846 		rxq->rxq_efrdp = ETH_EFRDP3;
847 		rxq->rxq_ecrdp = ETH_ECRDP3;
848 		break;
849 	case GE_RXPRIO_MEDHI:
850 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_2|ETH_IR_RxError_2;
851 		rxq->rxq_efrdp = ETH_EFRDP2;
852 		rxq->rxq_ecrdp = ETH_ECRDP2;
853 		break;
854 	case GE_RXPRIO_MEDLO:
855 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_1|ETH_IR_RxError_1;
856 		rxq->rxq_efrdp = ETH_EFRDP1;
857 		rxq->rxq_ecrdp = ETH_ECRDP1;
858 		break;
859 	case GE_RXPRIO_LO:
860 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_0|ETH_IR_RxError_0;
861 		rxq->rxq_efrdp = ETH_EFRDP0;
862 		rxq->rxq_ecrdp = ETH_ECRDP0;
863 		break;
864 	}
865 	GE_FUNC_EXIT(sc, "");
866 	return 0;
867 }
868 
869 void
870 gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
871 {
872 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
873 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
874 	struct mbuf *m = rxq->rxq_curpkt;
875 
876 	GE_FUNC_ENTER(sc, "gfe_rx_get");
877 	GE_DPRINTF(sc, ("(%d)", rxprio));
878 
879 	while (rxq->rxq_active > 0) {
880 		volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
881 		struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
882 		const struct ether_header *eh;
883 		unsigned int cmdsts;
884 		size_t buflen;
885 
886 		GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
887 		cmdsts = gt32toh(rxd->ed_cmdsts);
888 		GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
889 		rxq->rxq_cmdsts = cmdsts;
890 		/*
891 		 * Sometimes the GE "forgets" to reset the ownership bit.
892 		 * But if the length has been rewritten, the packet is ours
893 		 * so pretend the O bit is set.
894 		 */
895 		buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
896 		if ((cmdsts & RX_CMD_O) && buflen == 0) {
897 			GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
898 			break;
899 		}
900 
901 		/*
902 		 * If this is not a single buffer packet with no errors
903 		 * or for some reason it's bigger than our frame size,
904 		 * ignore it and go to the next packet.
905 		 */
906 		if ((cmdsts & (RX_CMD_F|RX_CMD_L|RX_STS_ES)) !=
907 							(RX_CMD_F|RX_CMD_L) ||
908 		    buflen > sc->sc_max_frame_length) {
909 			GE_DPRINTF(sc, ("!"));
910 			--rxq->rxq_active;
911 			ifp->if_ipackets++;
912 			ifp->if_ierrors++;
913 			goto give_it_back;
914 		}
915 
916 		/* CRC is included with the packet; trim it off. */
917 		buflen -= ETHER_CRC_LEN;
918 
919 		if (m == NULL) {
920 			MGETHDR(m, M_DONTWAIT, MT_DATA);
921 			if (m == NULL) {
922 				GE_DPRINTF(sc, ("?"));
923 				break;
924 			}
925 		}
926 		if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
927 			MCLGET(m, M_DONTWAIT);
928 			if ((m->m_flags & M_EXT) == 0) {
929 				GE_DPRINTF(sc, ("?"));
930 				break;
931 			}
932 		}
933 		m->m_data += 2;
934 		m->m_len = 0;
935 		m->m_pkthdr.len = 0;
936 		m_set_rcvif(m, ifp);
937 		rxq->rxq_cmdsts = cmdsts;
938 		--rxq->rxq_active;
939 
940 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
941 		    rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
942 
943 		KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
944 		memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
945 		m->m_len = buflen;
946 		m->m_pkthdr.len = buflen;
947 
948 		eh = (const struct ether_header *) m->m_data;
949 		if ((ifp->if_flags & IFF_PROMISC) ||
950 		    (rxq->rxq_cmdsts & RX_STS_M) == 0 ||
951 		    (rxq->rxq_cmdsts & RX_STS_HE) ||
952 		    (eh->ether_dhost[0] & 1) != 0 ||
953 		    memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
954 							ETHER_ADDR_LEN) == 0) {
955 			if_percpuq_enqueue(ifp->if_percpuq, m);
956 			m = NULL;
957 			GE_DPRINTF(sc, (">"));
958 		} else {
959 			m->m_len = 0;
960 			m->m_pkthdr.len = 0;
961 			GE_DPRINTF(sc, ("+"));
962 		}
963 		rxq->rxq_cmdsts = 0;
964 
965 	   give_it_back:
966 		rxd->ed_lencnt &= ~0xffff;	/* zero out length */
967 		rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
968 #if 0
969 		GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
970 		    rxq->rxq_fi,
971 		    ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
972 		    ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
973 #endif
974 		GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
975 		if (++rxq->rxq_fi == GE_RXDESC_MAX)
976 			rxq->rxq_fi = 0;
977 		rxq->rxq_active++;
978 	}
979 	rxq->rxq_curpkt = m;
980 	GE_FUNC_EXIT(sc, "");
981 }
982 
983 uint32_t
984 gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
985 {
986 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
987 	struct gfe_rxqueue *rxq;
988 	uint32_t rxbits;
989 #define	RXPRIO_DECODER	0xffffaa50
990 	GE_FUNC_ENTER(sc, "gfe_rx_process");
991 
992 	rxbits = ETH_IR_RxBuffer_GET(cause);
993 	while (rxbits) {
994 		enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
995 		GE_DPRINTF(sc, ("%1x", rxbits));
996 		rxbits &= ~(1 << rxprio);
997 		gfe_rx_get(sc, rxprio);
998 	}
999 
1000 	rxbits = ETH_IR_RxError_GET(cause);
1001 	while (rxbits) {
1002 		enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1003 		uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
1004 		int idx;
1005 		rxbits &= ~(1 << rxprio);
1006 		rxq = &sc->sc_rxq[rxprio];
1007 		sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
1008 		intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
1009 		if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
1010 			sc->sc_tickflags |= GE_TICK_RX_RESTART;
1011 			callout_reset(&sc->sc_co, 1, gfe_tick, sc);
1012 		}
1013 		ifp->if_ierrors++;
1014 		GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
1015 		    device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
1016 		memset(masks, 0, sizeof(masks));
1017 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1018 		    0, rxq->rxq_desc_mem.gdm_size,
1019 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1020 		for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
1021 			volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
1022 
1023 			if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
1024 				masks[idx/32] |= 1 << (idx & 31);
1025 		}
1026 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1027 		    0, rxq->rxq_desc_mem.gdm_size,
1028 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1029 #if defined(DEBUG)
1030 		printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
1031 		    device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
1032 		    rxq->rxq_cmdsts, masks[0], masks[1]);
1033 #endif
1034 	}
1035 	if ((intrmask & ETH_IR_RxBits) == 0)
1036 		intrmask &= ~(ETH_IR_RxBuffer|ETH_IR_RxError);
1037 
1038 	GE_FUNC_EXIT(sc, "");
1039 	return intrmask;
1040 }
1041 
1042 int
1043 gfe_rx_prime(struct gfe_softc *sc)
1044 {
1045 	struct gfe_rxqueue *rxq;
1046 	int error;
1047 
1048 	GE_FUNC_ENTER(sc, "gfe_rx_prime");
1049 
1050 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
1051 	if (error)
1052 		goto bail;
1053 	rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1054 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1055 		GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1056 		GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1057 	}
1058 	sc->sc_intrmask |= rxq->rxq_intrbits;
1059 
1060 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
1061 	if (error)
1062 		goto bail;
1063 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1064 		rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1065 		GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1066 		GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1067 		sc->sc_intrmask |= rxq->rxq_intrbits;
1068 	}
1069 
1070 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
1071 	if (error)
1072 		goto bail;
1073 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1074 		rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1075 		GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1076 		GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1077 		sc->sc_intrmask |= rxq->rxq_intrbits;
1078 	}
1079 
1080 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
1081 	if (error)
1082 		goto bail;
1083 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1084 		rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1085 		GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1086 		GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1087 		sc->sc_intrmask |= rxq->rxq_intrbits;
1088 	}
1089 
1090   bail:
1091 	GE_FUNC_EXIT(sc, "");
1092 	return error;
1093 }
1094 
1095 void
1096 gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
1097 {
1098 	struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
1099 	GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
1100 	if (rxq == NULL) {
1101 		GE_FUNC_EXIT(sc, "");
1102 		return;
1103 	}
1104 
1105 	if (rxq->rxq_curpkt)
1106 		m_freem(rxq->rxq_curpkt);
1107 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1108 		gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
1109 		gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
1110 	}
1111 	GE_FUNC_EXIT(sc, "");
1112 }
1113 
1114 void
1115 gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1116 {
1117 	GE_FUNC_ENTER(sc, "gfe_rx_stop");
1118 	sc->sc_flags &= ~GE_RXACTIVE;
1119 	sc->sc_idlemask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1120 	sc->sc_intrmask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1121 	GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1122 	GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
1123 	do {
1124 		delay(10);
1125 	} while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
1126 	gfe_rx_cleanup(sc, GE_RXPRIO_HI);
1127 	gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
1128 	gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
1129 	gfe_rx_cleanup(sc, GE_RXPRIO_LO);
1130 	GE_FUNC_EXIT(sc, "");
1131 }
1132 
1133 void
1134 gfe_tick(void *arg)
1135 {
1136 	struct gfe_softc * const sc = arg;
1137 	uint32_t intrmask;
1138 	unsigned int tickflags;
1139 	int s;
1140 
1141 	GE_FUNC_ENTER(sc, "gfe_tick");
1142 
1143 	s = splnet();
1144 
1145 	tickflags = sc->sc_tickflags;
1146 	sc->sc_tickflags = 0;
1147 	intrmask = sc->sc_intrmask;
1148 	if (tickflags & GE_TICK_TX_IFSTART)
1149 		gfe_ifstart(&sc->sc_ec.ec_if);
1150 	if (tickflags & GE_TICK_RX_RESTART) {
1151 		intrmask |= sc->sc_idlemask;
1152 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_3|ETH_IR_RxError_3)) {
1153 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1154 			rxq->rxq_fi = 0;
1155 			GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1156 			GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1157 		}
1158 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_2|ETH_IR_RxError_2)) {
1159 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1160 			rxq->rxq_fi = 0;
1161 			GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1162 			GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1163 		}
1164 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_1|ETH_IR_RxError_1)) {
1165 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1166 			rxq->rxq_fi = 0;
1167 			GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1168 			GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1169 		}
1170 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_0|ETH_IR_RxError_0)) {
1171 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1172 			rxq->rxq_fi = 0;
1173 			GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1174 			GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1175 		}
1176 		sc->sc_idlemask = 0;
1177 	}
1178 	if (intrmask != sc->sc_intrmask) {
1179 		sc->sc_intrmask = intrmask;
1180 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1181 	}
1182 	gfe_intr(sc);
1183 	splx(s);
1184 
1185 	GE_FUNC_EXIT(sc, "");
1186 }
1187 
1188 int
1189 gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
1190 {
1191 	const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1192 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
1193 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1194 	volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
1195 	uint32_t intrmask = sc->sc_intrmask;
1196 	size_t buflen;
1197 	struct mbuf *m;
1198 
1199 	GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
1200 
1201 	/*
1202 	 * Anything in the pending queue to enqueue?  if not, punt. Likewise
1203 	 * if the txq is not yet created.
1204 	 * otherwise grab its dmamap.
1205 	 */
1206 	if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
1207 		GE_FUNC_EXIT(sc, "-");
1208 		return 0;
1209 	}
1210 
1211 	/*
1212 	 * Have we [over]consumed our limit of descriptors?
1213 	 * Do we have enough free descriptors?
1214 	 */
1215 	if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
1216 		volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
1217 		uint32_t cmdsts;
1218 		size_t pktlen;
1219 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1220 		cmdsts = gt32toh(txd2->ed_cmdsts);
1221 		if (cmdsts & TX_CMD_O) {
1222 			int nextin;
1223 			/*
1224 			 * Sometime the Discovery forgets to update the
1225 			 * last descriptor.  See if we own the descriptor
1226 			 * after it (since we know we've turned that to
1227 			 * the discovery and if we owned it, the Discovery
1228 			 * gave it back).  If we do, we know the Discovery
1229 			 * gave back this one but forgot to mark it as ours.
1230 			 */
1231 			nextin = txq->txq_fi + 1;
1232 			if (nextin == GE_TXDESC_MAX)
1233 				nextin = 0;
1234 			GE_TXDPOSTSYNC(sc, txq, nextin);
1235 			if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1236 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1237 				GE_TXDPRESYNC(sc, txq, nextin);
1238 				GE_FUNC_EXIT(sc, "@");
1239 				return 0;
1240 			}
1241 #ifdef DEBUG
1242 			printf("%s: txenqueue: transmitter resynced at %d\n",
1243 			    device_xname(sc->sc_dev), txq->txq_fi);
1244 #endif
1245 		}
1246 		if (++txq->txq_fi == GE_TXDESC_MAX)
1247 			txq->txq_fi = 0;
1248 		txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
1249 		pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
1250 		txq->txq_inptr += roundup(pktlen, dcache_line_size);
1251 		txq->txq_nactive--;
1252 
1253 		/* statistics */
1254 		ifp->if_opackets++;
1255 		if (cmdsts & TX_STS_ES)
1256 			ifp->if_oerrors++;
1257 		GE_DPRINTF(sc, ("%%"));
1258 	}
1259 
1260 	buflen = roundup(m->m_pkthdr.len, dcache_line_size);
1261 
1262 	/*
1263 	 * If this packet would wrap around the end of the buffer, reset back
1264 	 * to the beginning.
1265 	 */
1266 	if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
1267 		txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
1268 		txq->txq_outptr = 0;
1269 	}
1270 
1271 	/*
1272 	 * Make sure the output packet doesn't run over the beginning of
1273 	 * what we've already given the GT.
1274 	 */
1275 	if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
1276 	    txq->txq_outptr + buflen > txq->txq_inptr) {
1277 		intrmask |= txq->txq_intrbits &
1278 		    (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow);
1279 		if (sc->sc_intrmask != intrmask) {
1280 			sc->sc_intrmask = intrmask;
1281 			GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1282 		}
1283 		GE_FUNC_EXIT(sc, "#");
1284 		return 0;
1285 	}
1286 
1287 	/*
1288 	 * The end-of-list descriptor we put on last time is the starting point
1289 	 * for this packet.  The GT is supposed to terminate list processing on
1290 	 * a NULL nxtptr but that currently is broken so a CPU-owned descriptor
1291 	 * must terminate the list.
1292 	 */
1293 	intrmask = sc->sc_intrmask;
1294 
1295 	m_copydata(m, 0, m->m_pkthdr.len,
1296 	    (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
1297 	bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1298 	    txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
1299 	txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
1300 	txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
1301 	GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1302 
1303 	/*
1304 	 * Request a buffer interrupt every 2/3 of the way thru the transmit
1305 	 * buffer.
1306 	 */
1307 	txq->txq_ei_gapcount += buflen;
1308 	if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
1309 		txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST|TX_CMD_EI);
1310 		txq->txq_ei_gapcount = 0;
1311 	} else {
1312 		txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST);
1313 	}
1314 #if 0
1315 	GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
1316 	    ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1317 	    ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1318 #endif
1319 	GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1320 
1321 	txq->txq_outptr += buflen;
1322 	/*
1323 	 * Tell the SDMA engine to "Fetch!"
1324 	 */
1325 	GE_WRITE(sc, ETH_ESDCMR,
1326 		 txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH|ETH_ESDCMR_TXDL));
1327 
1328 	GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
1329 
1330 	/*
1331 	 * Update the last out appropriately.
1332 	 */
1333 	txq->txq_nactive++;
1334 	if (++txq->txq_lo == GE_TXDESC_MAX)
1335 		txq->txq_lo = 0;
1336 
1337 	/*
1338 	 * Move mbuf from the pending queue to the snd queue.
1339 	 */
1340 	IF_DEQUEUE(&txq->txq_pendq, m);
1341 	bpf_mtap(ifp, m, BPF_D_OUT);
1342 	m_freem(m);
1343 	ifp->if_flags &= ~IFF_OACTIVE;
1344 
1345 	/*
1346 	 * Since we have put an item into the packet queue, we now want
1347 	 * an interrupt when the transmit queue finishes processing the
1348 	 * list.  But only update the mask if needs changing.
1349 	 */
1350 	intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow);
1351 	if (sc->sc_intrmask != intrmask) {
1352 		sc->sc_intrmask = intrmask;
1353 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1354 	}
1355 	if (ifp->if_timer == 0)
1356 		ifp->if_timer = 5;
1357 	GE_FUNC_EXIT(sc, "*");
1358 	return 1;
1359 }
1360 
1361 uint32_t
1362 gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
1363 {
1364 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1365 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
1366 
1367 	GE_FUNC_ENTER(sc, "gfe_tx_done");
1368 
1369 	if (txq == NULL) {
1370 		GE_FUNC_EXIT(sc, "");
1371 		return intrmask;
1372 	}
1373 
1374 	while (txq->txq_nactive > 0) {
1375 		const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1376 		volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
1377 		uint32_t cmdsts;
1378 		size_t pktlen;
1379 
1380 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1381 		if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
1382 			int nextin;
1383 
1384 			if (txq->txq_nactive == 1) {
1385 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1386 				GE_FUNC_EXIT(sc, "");
1387 				return intrmask;
1388 			}
1389 			/*
1390 			 * Sometimes the Discovery forgets to update the
1391 			 * ownership bit in the descriptor.  See if we own the
1392 			 * descriptor after it (since we know we've turned
1393 			 * that to the Discovery and if we own it now then the
1394 			 * Discovery gave it back).  If we do, we know the
1395 			 * Discovery gave back this one but forgot to mark it
1396 			 * as ours.
1397 			 */
1398 			nextin = txq->txq_fi + 1;
1399 			if (nextin == GE_TXDESC_MAX)
1400 				nextin = 0;
1401 			GE_TXDPOSTSYNC(sc, txq, nextin);
1402 			if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1403 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1404 				GE_TXDPRESYNC(sc, txq, nextin);
1405 				GE_FUNC_EXIT(sc, "");
1406 				return intrmask;
1407 			}
1408 #ifdef DEBUG
1409 			printf("%s: txdone: transmitter resynced at %d\n",
1410 			    device_xname(sc->sc_dev), txq->txq_fi);
1411 #endif
1412 		}
1413 #if 0
1414 		GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
1415 		    txq->txq_lo,
1416 		    ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1417 		    ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1418 #endif
1419 		GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
1420 		if (++txq->txq_fi == GE_TXDESC_MAX)
1421 			txq->txq_fi = 0;
1422 		txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
1423 		pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
1424 		bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1425 		    txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
1426 		txq->txq_inptr += roundup(pktlen, dcache_line_size);
1427 
1428 		/* statistics */
1429 		ifp->if_opackets++;
1430 		if (cmdsts & TX_STS_ES)
1431 			ifp->if_oerrors++;
1432 
1433 		/* txd->ed_bufptr = 0; */
1434 
1435 		ifp->if_timer = 5;
1436 		--txq->txq_nactive;
1437 	}
1438 	if (txq->txq_nactive != 0)
1439 		panic("%s: transmit fifo%d empty but active count (%d) > 0!",
1440 		    device_xname(sc->sc_dev), txprio, txq->txq_nactive);
1441 	ifp->if_timer = 0;
1442 	intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow));
1443 	intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow));
1444 	GE_FUNC_EXIT(sc, "");
1445 	return intrmask;
1446 }
1447 
1448 int
1449 gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
1450 {
1451 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1452 	int error;
1453 
1454 	GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
1455 
1456 	error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
1457 	    GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
1458 	if (error) {
1459 		GE_FUNC_EXIT(sc, "");
1460 		return error;
1461 	}
1462 	error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
1463 	if (error) {
1464 		gfe_dmamem_free(sc, &txq->txq_desc_mem);
1465 		GE_FUNC_EXIT(sc, "");
1466 		return error;
1467 	}
1468 	GE_FUNC_EXIT(sc, "");
1469 	return 0;
1470 }
1471 
1472 int
1473 gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
1474 {
1475 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1476 	volatile struct gt_eth_desc *txd;
1477 	unsigned int i;
1478 	bus_addr_t addr;
1479 
1480 	GE_FUNC_ENTER(sc, "gfe_tx_start");
1481 
1482 	sc->sc_intrmask &=
1483 	    ~(ETH_IR_TxEndHigh		|
1484 	      ETH_IR_TxBufferHigh	|
1485 	      ETH_IR_TxEndLow		|
1486 	      ETH_IR_TxBufferLow);
1487 
1488 	if (sc->sc_flags & GE_NOFREE) {
1489 		KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
1490 		KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
1491 	} else {
1492 		int error = gfe_tx_txqalloc(sc, txprio);
1493 		if (error) {
1494 			GE_FUNC_EXIT(sc, "!");
1495 			return error;
1496 		}
1497 	}
1498 
1499 	txq->txq_descs =
1500 	    (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
1501 	txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
1502 	txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
1503 
1504 	txq->txq_pendq.ifq_maxlen = 10;
1505 	txq->txq_ei_gapcount = 0;
1506 	txq->txq_nactive = 0;
1507 	txq->txq_fi = 0;
1508 	txq->txq_lo = 0;
1509 	txq->txq_inptr = GE_TXBUF_SIZE;
1510 	txq->txq_outptr = 0;
1511 	for (i = 0, txd = txq->txq_descs,
1512 	    addr = txq->txq_desc_busaddr + sizeof(*txd);
1513 	    i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
1514 		/*
1515 		 * update the nxtptr to point to the next txd.
1516 		 */
1517 		txd->ed_cmdsts = 0;
1518 		txd->ed_nxtptr = htogt32(addr);
1519 	}
1520 	txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
1521 	    htogt32(txq->txq_desc_busaddr);
1522 	bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
1523 	    GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1524 
1525 	switch (txprio) {
1526 	case GE_TXPRIO_HI:
1527 		txq->txq_intrbits = ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh;
1528 		txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
1529 		txq->txq_epsrbits = ETH_EPSR_TxHigh;
1530 		txq->txq_ectdp = ETH_ECTDP1;
1531 		GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
1532 		break;
1533 
1534 	case GE_TXPRIO_LO:
1535 		txq->txq_intrbits = ETH_IR_TxEndLow|ETH_IR_TxBufferLow;
1536 		txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
1537 		txq->txq_epsrbits = ETH_EPSR_TxLow;
1538 		txq->txq_ectdp = ETH_ECTDP0;
1539 		GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
1540 		break;
1541 
1542 	case GE_TXPRIO_NONE:
1543 		break;
1544 	}
1545 #if 0
1546 	GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
1547 	GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
1548 	GE_DPRINTF(sc, (")"));
1549 #endif
1550 
1551 	/*
1552 	 * If we are restarting, there may be packets in the pending queue
1553 	 * waiting to be enqueued.  Try enqueuing packets from both priority
1554 	 * queues until the pending queue is empty or there no room for them
1555 	 * on the device.
1556 	 */
1557 	while (gfe_tx_enqueue(sc, txprio))
1558 		continue;
1559 
1560 	GE_FUNC_EXIT(sc, "");
1561 	return 0;
1562 }
1563 
1564 void
1565 gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
1566 {
1567 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1568 
1569 	GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
1570 	if (txq == NULL) {
1571 		GE_FUNC_EXIT(sc, "");
1572 		return;
1573 	}
1574 
1575 	if (!flush) {
1576 		GE_FUNC_EXIT(sc, "");
1577 		return;
1578 	}
1579 
1580 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1581 		gfe_dmamem_free(sc, &txq->txq_desc_mem);
1582 		gfe_dmamem_free(sc, &txq->txq_buf_mem);
1583 	}
1584 	GE_FUNC_EXIT(sc, "-F");
1585 }
1586 
1587 void
1588 gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1589 {
1590 	GE_FUNC_ENTER(sc, "gfe_tx_stop");
1591 
1592 	GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH|ETH_ESDCMR_STDL);
1593 
1594 	sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
1595 	sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
1596 	sc->sc_intrmask &=
1597 	    ~(ETH_IR_TxEndHigh		|
1598 	      ETH_IR_TxBufferHigh	|
1599 	      ETH_IR_TxEndLow		|
1600 	      ETH_IR_TxBufferLow);
1601 
1602 	gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
1603 	gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
1604 
1605 	sc->sc_ec.ec_if.if_timer = 0;
1606 	GE_FUNC_EXIT(sc, "");
1607 }
1608 
1609 int
1610 gfe_intr(void *arg)
1611 {
1612 	struct gfe_softc * const sc = arg;
1613 	uint32_t cause;
1614 	uint32_t intrmask = sc->sc_intrmask;
1615 	int claim = 0;
1616 	int cnt;
1617 
1618 	GE_FUNC_ENTER(sc, "gfe_intr");
1619 
1620 	for (cnt = 0; cnt < 4; cnt++) {
1621 		if (sc->sc_intrmask != intrmask) {
1622 			sc->sc_intrmask = intrmask;
1623 			GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1624 		}
1625 		cause = GE_READ(sc, ETH_EICR);
1626 		cause &= sc->sc_intrmask;
1627 		GE_DPRINTF(sc, (".%#x", cause));
1628 		if (cause == 0)
1629 			break;
1630 
1631 		claim = 1;
1632 
1633 		GE_WRITE(sc, ETH_EICR, ~cause);
1634 #ifndef GE_NORX
1635 		if (cause & (ETH_IR_RxBuffer|ETH_IR_RxError))
1636 			intrmask = gfe_rx_process(sc, cause, intrmask);
1637 #endif
1638 
1639 #ifndef GE_NOTX
1640 		if (cause & (ETH_IR_TxBufferHigh|ETH_IR_TxEndHigh))
1641 			intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
1642 		if (cause & (ETH_IR_TxBufferLow|ETH_IR_TxEndLow))
1643 			intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
1644 #endif
1645 		if (cause & ETH_IR_MIIPhySTC) {
1646 			sc->sc_flags |= GE_PHYSTSCHG;
1647 			/* intrmask &= ~ETH_IR_MIIPhySTC; */
1648 		}
1649 	}
1650 
1651 	while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
1652 		continue;
1653 	while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
1654 		continue;
1655 
1656 	GE_FUNC_EXIT(sc, "");
1657 	return claim;
1658 }
1659 
1660 int
1661 gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
1662 {
1663 	int error = 0;
1664 	GE_FUNC_ENTER(sc, "gfe_whack");
1665 
1666 	switch (op) {
1667 	case GE_WHACK_RESTART:
1668 #ifndef GE_NOTX
1669 		gfe_tx_stop(sc, op);
1670 #endif
1671 		/* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
1672 		/* FALLTHROUGH */
1673 	case GE_WHACK_START:
1674 #ifndef GE_NOHASH
1675 		if (error == 0 && sc->sc_hashtable == NULL) {
1676 			error = gfe_hash_alloc(sc);
1677 			if (error)
1678 				break;
1679 		}
1680 		if (op != GE_WHACK_RESTART)
1681 			gfe_hash_fill(sc);
1682 #endif
1683 #ifndef GE_NORX
1684 		if (op != GE_WHACK_RESTART) {
1685 			error = gfe_rx_prime(sc);
1686 			if (error)
1687 				break;
1688 		}
1689 #endif
1690 #ifndef GE_NOTX
1691 		error = gfe_tx_start(sc, GE_TXPRIO_HI);
1692 		if (error)
1693 			break;
1694 #endif
1695 		sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
1696 		GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1697 		GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
1698 		GE_WRITE(sc, ETH_EICR, 0);
1699 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1700 #ifndef GE_NOHASH
1701 		GE_WRITE(sc, ETH_EHTPR,
1702 		    sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
1703 #endif
1704 #ifndef GE_NORX
1705 		GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
1706 		sc->sc_flags |= GE_RXACTIVE;
1707 #endif
1708 		/* FALLTHROUGH */
1709 	case GE_WHACK_CHANGE:
1710 		GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
1711 		    GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
1712 		GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1713 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1714 		gfe_ifstart(&sc->sc_ec.ec_if);
1715 		GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
1716 		    GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
1717 		GE_FUNC_EXIT(sc, "");
1718 		return error;
1719 	case GE_WHACK_STOP:
1720 		break;
1721 	}
1722 
1723 #ifdef GE_DEBUG
1724 	if (error)
1725 		GE_DPRINTF(sc, (" failed: %d\n", error));
1726 #endif
1727 	GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1728 	GE_WRITE(sc, ETH_EIMR, 0);
1729 	sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
1730 #ifndef GE_NOTX
1731 	gfe_tx_stop(sc, GE_WHACK_STOP);
1732 #endif
1733 #ifndef GE_NORX
1734 	gfe_rx_stop(sc, GE_WHACK_STOP);
1735 #endif
1736 #ifndef GE_NOHASH
1737 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1738 		gfe_dmamem_free(sc, &sc->sc_hash_mem);
1739 		sc->sc_hashtable = NULL;
1740 	}
1741 #endif
1742 
1743 	GE_FUNC_EXIT(sc, "");
1744 	return error;
1745 }
1746 
1747 int
1748 gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
1749 {
1750 	uint32_t w0, add0, add1;
1751 	uint32_t result;
1752 
1753 	GE_FUNC_ENTER(sc, "gfe_hash_compute");
1754 	add0 = ((uint32_t) eaddr[5] <<  0) |
1755 	       ((uint32_t) eaddr[4] <<  8) |
1756 	       ((uint32_t) eaddr[3] << 16);
1757 
1758 	add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
1759 	add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
1760 	add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
1761 
1762 	add1 = ((uint32_t) eaddr[2] <<  0) |
1763 	       ((uint32_t) eaddr[1] <<  8) |
1764 	       ((uint32_t) eaddr[0] << 16);
1765 
1766 	add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
1767 	add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
1768 	add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
1769 
1770 	GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
1771 	/*
1772 	 * hashResult is the 15 bits Hash entry address.
1773 	 * ethernetADD is a 48 bit number, which is derived from the Ethernet
1774 	 *	MAC address, by nibble swapping in every byte (i.e MAC address
1775 	 *	of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
1776 	 */
1777 
1778 	if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
1779 		/*
1780 		 * hashResult[14:0] = hashFunc0(ethernetADD[47:0])
1781 		 *
1782 		 * hashFunc0 calculates the hashResult in the following manner:
1783 		 *   hashResult[ 8:0] = ethernetADD[14:8,1,0]
1784 		 *		XOR ethernetADD[23:15] XOR ethernetADD[32:24]
1785 		 */
1786 		result = (add0 & 3) | ((add0 >> 6) & ~3);
1787 		result ^= (add0 >> 15) ^ (add1 >>  0);
1788 		result &= 0x1ff;
1789 		/*
1790 		 *   hashResult[14:9] = ethernetADD[7:2]
1791 		 */
1792 		result |= (add0 & ~3) << 7;	/* excess bits will be masked */
1793 		GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
1794 	} else {
1795 #define	TRIBITFLIP	073516240	/* yes its in octal */
1796 		/*
1797 		 * hashResult[14:0] = hashFunc1(ethernetADD[47:0])
1798 		 *
1799 		 * hashFunc1 calculates the hashResult in the following manner:
1800 		 *   hashResult[08:00] = ethernetADD[06:14]
1801 		 *		XOR ethernetADD[15:23] XOR ethernetADD[24:32]
1802 		 */
1803 		w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
1804 		/*
1805 		 * Now bitswap those 9 bits
1806 		 */
1807 		result = 0;
1808 		result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
1809 		result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
1810 		result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
1811 
1812 		/*
1813 		 *   hashResult[14:09] = ethernetADD[00:05]
1814 		 */
1815 		result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
1816 		result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
1817 		GE_DPRINTF(sc, ("1(%#x)", result));
1818 	}
1819 	GE_FUNC_EXIT(sc, "");
1820 	return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
1821 }
1822 
1823 int
1824 gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
1825 	enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
1826 {
1827 	uint64_t he;
1828 	uint64_t *maybe_he_p = NULL;
1829 	int limit;
1830 	int hash;
1831 	int maybe_hash = 0;
1832 
1833 	GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
1834 
1835 	hash = gfe_hash_compute(sc, eaddr);
1836 
1837 	if (sc->sc_hashtable == NULL) {
1838 		panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
1839 			__LINE__);
1840 	}
1841 
1842 	/*
1843 	 * Assume we are going to insert so create the hash entry we
1844 	 * are going to insert.  We also use it to match entries we
1845 	 * will be removing.
1846 	 */
1847 	he = ((uint64_t) eaddr[5] << 43) |
1848 	     ((uint64_t) eaddr[4] << 35) |
1849 	     ((uint64_t) eaddr[3] << 27) |
1850 	     ((uint64_t) eaddr[2] << 19) |
1851 	     ((uint64_t) eaddr[1] << 11) |
1852 	     ((uint64_t) eaddr[0] <<  3) |
1853 	     HSH_PRIO_INS(prio) | HSH_V | HSH_R;
1854 
1855 	/*
1856 	 * The GT will search upto 12 entries for a hit, so we must mimic that.
1857 	 */
1858 	hash &= sc->sc_hashmask / sizeof(he);
1859 	for (limit = HSH_LIMIT; limit > 0 ; --limit) {
1860 		/*
1861 		 * Does the GT wrap at the end, stop at the, or overrun the
1862 		 * end?  Assume it wraps for now.  Stash a copy of the
1863 		 * current hash entry.
1864 		 */
1865 		uint64_t *he_p = &sc->sc_hashtable[hash];
1866 		uint64_t thishe = *he_p;
1867 
1868 		/*
1869 		 * If the hash entry isn't valid, that break the chain.  And
1870 		 * this entry a good candidate for reuse.
1871 		 */
1872 		if ((thishe & HSH_V) == 0) {
1873 			maybe_he_p = he_p;
1874 			break;
1875 		}
1876 
1877 		/*
1878 		 * If the hash entry has the same address we are looking for
1879 		 * then ...  if we are removing and the skip bit is set, its
1880 		 * already been removed.  if are adding and the skip bit is
1881 		 * clear, then its already added.  In either return EBUSY
1882 		 * indicating the op has already been done.  Otherwise flip
1883 		 * the skip bit and return 0.
1884 		 */
1885 		if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
1886 			if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
1887 			    ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
1888 				return EBUSY;
1889 			*he_p = thishe ^ HSH_S;
1890 			bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1891 			    hash * sizeof(he), sizeof(he),
1892 			    BUS_DMASYNC_PREWRITE);
1893 			GE_FUNC_EXIT(sc, "^");
1894 			return 0;
1895 		}
1896 
1897 		/*
1898 		 * If we haven't found a slot for the entry and this entry
1899 		 * is currently being skipped, return this entry.
1900 		 */
1901 		if (maybe_he_p == NULL && (thishe & HSH_S)) {
1902 			maybe_he_p = he_p;
1903 			maybe_hash = hash;
1904 		}
1905 
1906 		hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
1907 	}
1908 
1909 	/*
1910 	 * If we got here, then there was no entry to remove.
1911 	 */
1912 	if (op == GE_HASH_REMOVE) {
1913 		GE_FUNC_EXIT(sc, "?");
1914 		return ENOENT;
1915 	}
1916 
1917 	/*
1918 	 * If we couldn't find a slot, return an error.
1919 	 */
1920 	if (maybe_he_p == NULL) {
1921 		GE_FUNC_EXIT(sc, "!");
1922 		return ENOSPC;
1923 	}
1924 
1925 	/* Update the entry.
1926 	 */
1927 	*maybe_he_p = he;
1928 	bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1929 	    maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
1930 	GE_FUNC_EXIT(sc, "+");
1931 	return 0;
1932 }
1933 
1934 int
1935 gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
1936 		  u_long cmd)
1937 {
1938 	struct gfe_softc *sc = ec->ec_if.if_softc;
1939 	int error;
1940 	enum gfe_hash_op op;
1941 	enum gfe_rxprio prio;
1942 
1943 	GE_FUNC_ENTER(sc, "hash_multichg");
1944 	/*
1945 	 * Is this a wildcard entry?  If so and its being removed, recompute.
1946 	 */
1947 	if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1948 		if (cmd == SIOCDELMULTI) {
1949 			GE_FUNC_EXIT(sc, "");
1950 			return ENETRESET;
1951 		}
1952 
1953 		/*
1954 		 * Switch in
1955 		 */
1956 		sc->sc_flags |= GE_ALLMULTI;
1957 		if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
1958 			sc->sc_pcr |= ETH_EPCR_PM;
1959 			GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1960 			GE_FUNC_EXIT(sc, "");
1961 			return 0;
1962 		}
1963 		GE_FUNC_EXIT(sc, "");
1964 		return ENETRESET;
1965 	}
1966 
1967 	prio = GE_RXPRIO_MEDLO;
1968 	op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
1969 
1970 	if (sc->sc_hashtable == NULL) {
1971 		GE_FUNC_EXIT(sc, "");
1972 		return 0;
1973 	}
1974 
1975 	error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
1976 	if (error == EBUSY) {
1977 		aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
1978 		   cmd == SIOCDELMULTI ? "remove" : "add",
1979 		   ether_sprintf(enm->enm_addrlo));
1980 		GE_FUNC_EXIT(sc, "");
1981 		return 0;
1982 	}
1983 
1984 	if (error == ENOENT) {
1985 		aprint_error_dev(sc->sc_dev,
1986 		    "multichg: failed to remove %s: not in table\n",
1987 		    ether_sprintf(enm->enm_addrlo));
1988 		GE_FUNC_EXIT(sc, "");
1989 		return 0;
1990 	}
1991 
1992 	if (error == ENOSPC) {
1993 		aprint_error_dev(sc->sc_dev, "multichg:"
1994 		    " failed to add %s: no space; regenerating table\n",
1995 		    ether_sprintf(enm->enm_addrlo));
1996 		GE_FUNC_EXIT(sc, "");
1997 		return ENETRESET;
1998 	}
1999 	GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
2000 	    device_xname(sc->sc_dev),
2001 	    cmd == SIOCDELMULTI ? "remove" : "add",
2002 	    ether_sprintf(enm->enm_addrlo)));
2003 	GE_FUNC_EXIT(sc, "");
2004 	return 0;
2005 }
2006 
2007 int
2008 gfe_hash_fill(struct gfe_softc *sc)
2009 {
2010 	struct ether_multistep step;
2011 	struct ether_multi *enm;
2012 	int error;
2013 
2014 	GE_FUNC_ENTER(sc, "gfe_hash_fill");
2015 
2016 	error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
2017 	    CLLADDR(sc->sc_ec.ec_if.if_sadl));
2018 	if (error) {
2019 		GE_FUNC_EXIT(sc, "!");
2020 		return error;
2021 	}
2022 
2023 	sc->sc_flags &= ~GE_ALLMULTI;
2024 	if ((sc->sc_ec.ec_if.if_flags & IFF_PROMISC) == 0)
2025 		sc->sc_pcr &= ~ETH_EPCR_PM;
2026 	ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
2027 	while (enm != NULL) {
2028 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2029 			sc->sc_flags |= GE_ALLMULTI;
2030 			sc->sc_pcr |= ETH_EPCR_PM;
2031 		} else {
2032 			error = gfe_hash_entry_op(sc, GE_HASH_ADD,
2033 			    GE_RXPRIO_MEDLO, enm->enm_addrlo);
2034 			if (error == ENOSPC)
2035 				break;
2036 		}
2037 		ETHER_NEXT_MULTI(step, enm);
2038 	}
2039 
2040 	GE_FUNC_EXIT(sc, "");
2041 	return error;
2042 }
2043 
2044 int
2045 gfe_hash_alloc(struct gfe_softc *sc)
2046 {
2047 	int error;
2048 	GE_FUNC_ENTER(sc, "gfe_hash_alloc");
2049 	sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
2050 	error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
2051 	    BUS_DMA_NOCACHE);
2052 	if (error) {
2053 		aprint_error_dev(sc->sc_dev,
2054 		    "failed to allocate %d bytes for hash table: %d\n",
2055 		    sc->sc_hashmask + 1, error);
2056 		GE_FUNC_EXIT(sc, "");
2057 		return error;
2058 	}
2059 	sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
2060 	memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
2061 	bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
2062 	    0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
2063 	GE_FUNC_EXIT(sc, "");
2064 	return 0;
2065 }
2066