xref: /netbsd-src/sys/dev/marvell/if_gfe.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: if_gfe.c,v 1.41 2012/07/22 14:32:59 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed for the NetBSD Project by
18  *      Allegro Networks, Inc., and Wasabi Systems, Inc.
19  * 4. The name of Allegro Networks, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27  * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30  * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * if_gfe.c -- GT ethernet MAC driver
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.41 2012/07/22 14:32:59 matt Exp $");
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/bus.h>
51 #include <sys/callout.h>
52 #include <sys/device.h>
53 #include <sys/errno.h>
54 #include <sys/ioctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/socket.h>
58 
59 #include <uvm/uvm.h>
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_ether.h>
63 #include <net/if_media.h>
64 
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/if_inarp.h>
68 #endif
69 #include <net/bpf.h>
70 #include <sys/rnd.h>
71 
72 #include <dev/mii/mii.h>
73 #include <dev/mii/miivar.h>
74 
75 #include <dev/marvell/gtreg.h>
76 #include <dev/marvell/gtvar.h>
77 #include <dev/marvell/gtethreg.h>
78 #include <dev/marvell/if_gfevar.h>
79 #include <dev/marvell/marvellreg.h>
80 #include <dev/marvell/marvellvar.h>
81 
82 #include <prop/proplib.h>
83 
84 #include "locators.h"
85 
86 
87 #define	GE_READ(sc, reg) \
88 	bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
89 #define	GE_WRITE(sc, reg, v) \
90 	bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
91 
92 #define	GE_DEBUG
93 #if 0
94 #define	GE_NOHASH
95 #define	GE_NORX
96 #endif
97 
98 #ifdef GE_DEBUG
99 #define	GE_DPRINTF(sc, a)					\
100 	do {							\
101 		if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG)	\
102 			printf a;				\
103 	} while (0 /* CONSTCOND */)
104 #define	GE_FUNC_ENTER(sc, func)	GE_DPRINTF(sc, ("[" func))
105 #define	GE_FUNC_EXIT(sc, str)	GE_DPRINTF(sc, (str "]"))
106 #else
107 #define	GE_DPRINTF(sc, a)	do { } while (0)
108 #define	GE_FUNC_ENTER(sc, func)	do { } while (0)
109 #define	GE_FUNC_EXIT(sc, str)	do { } while (0)
110 #endif
111 enum gfe_whack_op {
112 	GE_WHACK_START,		GE_WHACK_RESTART,
113 	GE_WHACK_CHANGE,	GE_WHACK_STOP
114 };
115 
116 enum gfe_hash_op {
117 	GE_HASH_ADD,		GE_HASH_REMOVE,
118 };
119 
120 #if 1
121 #define	htogt32(a)		htobe32(a)
122 #define	gt32toh(a)		be32toh(a)
123 #else
124 #define	htogt32(a)		htole32(a)
125 #define	gt32toh(a)		le32toh(a)
126 #endif
127 
128 #define GE_RXDSYNC(sc, rxq, n, ops) \
129 	bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
130 	    (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
131 	    (ops))
132 #define	GE_RXDPRESYNC(sc, rxq, n) \
133 	GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
134 #define	GE_RXDPOSTSYNC(sc, rxq, n) \
135 	GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
136 
137 #define GE_TXDSYNC(sc, txq, n, ops) \
138 	bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
139 	    (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
140 	    (ops))
141 #define	GE_TXDPRESYNC(sc, txq, n) \
142 	GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE)
143 #define	GE_TXDPOSTSYNC(sc, txq, n) \
144 	GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE)
145 
146 #define	STATIC
147 
148 
149 STATIC int gfec_match(device_t, cfdata_t, void *);
150 STATIC void gfec_attach(device_t, device_t, void *);
151 
152 STATIC int gfec_print(void *, const char *);
153 STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
154 
155 STATIC int gfec_enet_phy(device_t, int);
156 STATIC int gfec_mii_read(device_t, int, int);
157 STATIC void gfec_mii_write(device_t, int, int, int);
158 STATIC void gfec_mii_statchg(struct ifnet *);
159 
160 STATIC int gfe_match(device_t, cfdata_t, void *);
161 STATIC void gfe_attach(device_t, device_t, void *);
162 
163 STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
164 	size_t, int);
165 STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
166 
167 STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
168 STATIC void gfe_ifstart(struct ifnet *);
169 STATIC void gfe_ifwatchdog(struct ifnet *);
170 
171 STATIC void gfe_tick(void *arg);
172 
173 STATIC void gfe_tx_restart(void *);
174 STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
175 STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
176 STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
177 STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
178 STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
179 STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
180 
181 STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
182 STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
183 STATIC int gfe_rx_prime(struct gfe_softc *);
184 STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
185 STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
186 STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
187 STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
188 
189 STATIC int gfe_intr(void *);
190 
191 STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
192 
193 STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
194 STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
195 	enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
196 STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
197 	u_long);
198 STATIC int gfe_hash_fill(struct gfe_softc *);
199 STATIC int gfe_hash_alloc(struct gfe_softc *);
200 
201 
202 CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
203     gfec_match, gfec_attach, NULL, NULL);
204 CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
205     gfe_match, gfe_attach, NULL, NULL);
206 
207 
208 /* ARGSUSED */
209 int
210 gfec_match(device_t parent, cfdata_t cf, void *aux)
211 {
212 	struct marvell_attach_args *mva = aux;
213 
214 	if (strcmp(mva->mva_name, cf->cf_name) != 0)
215 		return 0;
216 	if (mva->mva_offset == MVA_OFFSET_DEFAULT)
217 		return 0;
218 
219 	mva->mva_size = ETHC_SIZE;
220 	return 1;
221 }
222 
223 /* ARGSUSED */
224 void
225 gfec_attach(device_t parent, device_t self, void *aux)
226 {
227 	struct gfec_softc *sc = device_private(self);
228 	struct marvell_attach_args *mva = aux, gfea;
229 	static int gfe_irqs[] = { 32, 33, 34 };
230 	int i;
231 
232 	aprint_naive("\n");
233 	aprint_normal(": Ethernet Controller\n");
234 
235 	sc->sc_dev = self;
236 	sc->sc_iot = mva->mva_iot;
237 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
238 	    mva->mva_size, &sc->sc_ioh)) {
239 		aprint_error_dev(self, "Cannot map registers\n");
240 		return;
241 	}
242 
243 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
244 
245 	for (i = 0; i < ETH_NUM; i++) {
246 		gfea.mva_name = "gfe";
247 		gfea.mva_model = mva->mva_model;
248 		gfea.mva_iot = sc->sc_iot;
249 		gfea.mva_ioh = sc->sc_ioh;
250 		gfea.mva_unit = i;
251 		gfea.mva_dmat = mva->mva_dmat;
252 		gfea.mva_irq = gfe_irqs[i];
253 		config_found_sm_loc(sc->sc_dev, "gfec", NULL, &gfea,
254 		    gfec_print, gfec_search);
255 	}
256 }
257 
258 int
259 gfec_print(void *aux, const char *pnp)
260 {
261 	struct marvell_attach_args *gfea = aux;
262 
263 	if (pnp)
264 		aprint_normal("%s at %s port %d",
265 		    gfea->mva_name, pnp, gfea->mva_unit);
266 	else {
267 		if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
268 			aprint_normal(" port %d", gfea->mva_unit);
269 		if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
270 			aprint_normal(" irq %d", gfea->mva_irq);
271 	}
272 	return UNCONF;
273 }
274 
275 /* ARGSUSED */
276 int
277 gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
278 {
279 	struct marvell_attach_args *gfea = aux;
280 
281 	if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
282 	    cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
283 		gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
284 
285 	return config_match(parent, cf, aux);
286 }
287 
288 int
289 gfec_enet_phy(device_t dev, int unit)
290 {
291 	struct gfec_softc *sc = device_private(dev);
292 	uint32_t epar;
293 
294 	epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
295 	return ETH_EPAR_PhyAD_GET(epar, unit);
296 }
297 
298 int
299 gfec_mii_read(device_t dev, int phy, int reg)
300 {
301 	struct gfec_softc *csc = device_private(device_parent(dev));
302 	uint32_t data;
303 	int count = 10000;
304 
305 	mutex_enter(&csc->sc_mtx);
306 
307 	do {
308 		DELAY(10);
309 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
310 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
311 
312 	if (count == 0) {
313 		aprint_error_dev(dev,
314 		    "mii read for phy %d reg %d busied out\n", phy, reg);
315 		mutex_exit(&csc->sc_mtx);
316 		return ETH_ESMIR_Value_GET(data);
317 	}
318 
319 	bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
320 	    ETH_ESMIR_READ(phy, reg));
321 
322 	count = 10000;
323 	do {
324 		DELAY(10);
325 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
326 	} while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
327 
328 	mutex_exit(&csc->sc_mtx);
329 
330 	if (count == 0)
331 		aprint_error_dev(dev,
332 		    "mii read for phy %d reg %d timed out\n", phy, reg);
333 #if defined(GTMIIDEBUG)
334 	aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
335 	    phy, reg, data, ETH_ESMIR_Value_GET(data));
336 #endif
337 	return ETH_ESMIR_Value_GET(data);
338 }
339 
340 void
341 gfec_mii_write (device_t dev, int phy, int reg, int value)
342 {
343 	struct gfec_softc *csc = device_private(device_parent(dev));
344 	uint32_t data;
345 	int count = 10000;
346 
347 	mutex_enter(&csc->sc_mtx);
348 
349 	do {
350 		DELAY(10);
351 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
352 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
353 
354 	if (count == 0) {
355 		aprint_error_dev(dev,
356 		    "mii write for phy %d reg %d busied out (busy)\n",
357 		    phy, reg);
358 		mutex_exit(&csc->sc_mtx);
359 		return;
360 	}
361 
362 	bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
363 	    ETH_ESMIR_WRITE(phy, reg, value));
364 
365 	count = 10000;
366 	do {
367 		DELAY(10);
368 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
369 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
370 
371 	mutex_exit(&csc->sc_mtx);
372 
373 	if (count == 0)
374 		aprint_error_dev(dev,
375 		    "mii write for phy %d reg %d timed out\n", phy, reg);
376 #if defined(GTMIIDEBUG)
377 	aprint_normal_dev(dev, "mii_write(%d, %d, %#x)\n", phy, reg, value);
378 #endif
379 }
380 
381 void
382 gfec_mii_statchg(struct ifnet *ifp)
383 {
384 	/* struct gfe_softc *sc = ifp->if_softc; */
385 	/* do nothing? */
386 }
387 
388 /* ARGSUSED */
389 int
390 gfe_match(device_t parent, cfdata_t cf, void *aux)
391 {
392 
393 	return 1;
394 }
395 
396 /* ARGSUSED */
397 void
398 gfe_attach(device_t parent, device_t self, void *aux)
399 {
400 	struct marvell_attach_args *mva = aux;
401 	struct gfe_softc * const sc = device_private(self);
402 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
403 	uint32_t sdcr;
404 	int phyaddr, error;
405 	prop_data_t ea;
406 	uint8_t enaddr[6];
407 
408 	aprint_naive("\n");
409 	aprint_normal(": Ethernet Controller\n");
410 
411 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
412 	    mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
413 		aprint_error_dev(self, "failed to map registers\n");
414 		return;
415 	}
416 	sc->sc_dev = self;
417 	sc->sc_memt = mva->mva_iot;
418 	sc->sc_dmat = mva->mva_dmat;
419 	sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
420 	    ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
421 
422 	callout_init(&sc->sc_co, 0);
423 
424 	phyaddr = gfec_enet_phy(parent, sc->sc_macno);
425 
426 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
427 	if (ea != NULL) {
428 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
429 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
430 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
431 	}
432 
433 	sc->sc_pcr = GE_READ(sc, ETH_EPCR);
434 	sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
435 	sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
436 
437 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
438 
439 #if defined(DEBUG)
440 	printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
441 #endif
442 
443 	sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
444 	if (device_cfdata(self)->cf_flags & 1) {
445 		aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
446 		sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
447 	} else {
448 		aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
449 		sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
450 	}
451 	if (device_cfdata(self)->cf_flags & 2)
452 		sc->sc_flags |= GE_NOFREE;
453 	/* Set Max Frame Length is 1536 */
454 	sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
455 	sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
456 	sc->sc_max_frame_length = 1536;
457 
458 	if (sc->sc_pcr & ETH_EPCR_EN) {
459 		int tries = 1000;
460 		/*
461 		 * Abort transmitter and receiver and wait for them to quiese
462 		 */
463 		GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
464 		do {
465 			delay(100);
466 			if (tries-- <= 0) {
467 				aprint_error_dev(self, "Abort TX/RX failed\n");
468 				break;
469 			}
470 		} while (GE_READ(sc, ETH_ESDCMR) &
471 		    (ETH_ESDCMR_AR | ETH_ESDCMR_AT));
472 	}
473 
474 	sc->sc_pcr &=
475 	    ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
476 
477 #if defined(DEBUG)
478 	printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
479 #endif
480 
481 	/*
482 	 * Now turn off the GT.  If it didn't quiese, too ***ing bad.
483 	 */
484 	GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
485 	GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
486 	sdcr = GE_READ(sc, ETH_ESDCR);
487 	ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
488 	sdcr |= ETH_ESDCR_RIFB;
489 	GE_WRITE(sc, ETH_ESDCR, sdcr);
490 
491 	sc->sc_mii.mii_ifp = ifp;
492 	sc->sc_mii.mii_readreg = gfec_mii_read;
493 	sc->sc_mii.mii_writereg = gfec_mii_write;
494 	sc->sc_mii.mii_statchg = gfec_mii_statchg;
495 
496 	sc->sc_ec.ec_mii = &sc->sc_mii;
497 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
498 		ether_mediastatus);
499 
500 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, phyaddr,
501 		MII_OFFSET_ANY, MIIF_NOISOLATE);
502 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
503 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
504 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
505 	} else {
506 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
507 	}
508 
509 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
510 	ifp->if_softc = sc;
511 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
512 #if 0
513 	ifp->if_flags |= IFF_DEBUG;
514 #endif
515 	ifp->if_ioctl = gfe_ifioctl;
516 	ifp->if_start = gfe_ifstart;
517 	ifp->if_watchdog = gfe_ifwatchdog;
518 
519 	if (sc->sc_flags & GE_NOFREE) {
520 		error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
521 		if (!error)
522 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
523 		if (!error)
524 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
525 		if (!error)
526 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
527 		if (!error)
528 			error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
529 		if (!error)
530 			error = gfe_hash_alloc(sc);
531 		if (error)
532 			aprint_error_dev(self,
533 			    "failed to allocate resources: %d\n", error);
534 	}
535 
536 	if_attach(ifp);
537 	ether_ifattach(ifp, enaddr);
538 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
539 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
540 	    0);
541 	marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
542 }
543 
544 int
545 gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
546 	size_t size, int flags)
547 {
548 	int error = 0;
549 	GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
550 
551 	KASSERT(gdm->gdm_kva == NULL);
552 	gdm->gdm_size = size;
553 	gdm->gdm_maxsegs = maxsegs;
554 
555 	error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
556 	    gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
557 	    BUS_DMA_NOWAIT);
558 	if (error)
559 		goto fail;
560 
561 	error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
562 	    gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
563 	if (error)
564 		goto fail;
565 
566 	error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
567 	    gdm->gdm_size, 0, BUS_DMA_ALLOCNOW|BUS_DMA_NOWAIT, &gdm->gdm_map);
568 	if (error)
569 		goto fail;
570 
571 	error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
572 	    gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
573 	if (error)
574 		goto fail;
575 
576 	/* invalidate from cache */
577 	bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
578 	    BUS_DMASYNC_PREREAD);
579 fail:
580 	if (error) {
581 		gfe_dmamem_free(sc, gdm);
582 		GE_DPRINTF(sc, (":err=%d", error));
583 	}
584 	GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
585 	    gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
586 	    gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
587 	GE_FUNC_EXIT(sc, "");
588 	return error;
589 }
590 
591 void
592 gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
593 {
594 	GE_FUNC_ENTER(sc, "gfe_dmamem_free");
595 	if (gdm->gdm_map)
596 		bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
597 	if (gdm->gdm_kva)
598 		bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
599 	if (gdm->gdm_nsegs > 0)
600 		bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
601 	gdm->gdm_map = NULL;
602 	gdm->gdm_kva = NULL;
603 	gdm->gdm_nsegs = 0;
604 	GE_FUNC_EXIT(sc, "");
605 }
606 
607 int
608 gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
609 {
610 	struct gfe_softc * const sc = ifp->if_softc;
611 	struct ifreq *ifr = (struct ifreq *) data;
612 	struct ifaddr *ifa = (struct ifaddr *) data;
613 	int s, error = 0;
614 
615 	GE_FUNC_ENTER(sc, "gfe_ifioctl");
616 	s = splnet();
617 
618 	switch (cmd) {
619 	case SIOCINITIFADDR:
620 		ifp->if_flags |= IFF_UP;
621 		error = gfe_whack(sc, GE_WHACK_START);
622 		switch (ifa->ifa_addr->sa_family) {
623 #ifdef INET
624 		case AF_INET:
625 			if (error == 0)
626 				arp_ifinit(ifp, ifa);
627 			break;
628 #endif
629 		default:
630 			break;
631 		}
632 		break;
633 
634 	case SIOCSIFFLAGS:
635 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
636 			break;
637 		/* XXX re-use ether_ioctl() */
638 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
639 		case IFF_UP|IFF_RUNNING:/* active->active, update */
640 			error = gfe_whack(sc, GE_WHACK_CHANGE);
641 			break;
642 		case IFF_RUNNING:	/* not up, so we stop */
643 			error = gfe_whack(sc, GE_WHACK_STOP);
644 			break;
645 		case IFF_UP:		/* not running, so we start */
646 			error = gfe_whack(sc, GE_WHACK_START);
647 			break;
648 		case 0:			/* idle->idle: do nothing */
649 			break;
650 		}
651 		break;
652 
653 	case SIOCSIFMEDIA:
654 	case SIOCGIFMEDIA:
655 	case SIOCADDMULTI:
656 	case SIOCDELMULTI:
657 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
658 			if (ifp->if_flags & IFF_RUNNING)
659 				error = gfe_whack(sc, GE_WHACK_CHANGE);
660 			else
661 				error = 0;
662 		}
663 		break;
664 
665 	case SIOCSIFMTU:
666 		if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
667 			error = EINVAL;
668 			break;
669 		}
670 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
671 			error = 0;
672 		break;
673 
674 	default:
675 		error = ether_ioctl(ifp, cmd, data);
676 		break;
677 	}
678 	splx(s);
679 	GE_FUNC_EXIT(sc, "");
680 	return error;
681 }
682 
683 void
684 gfe_ifstart(struct ifnet *ifp)
685 {
686 	struct gfe_softc * const sc = ifp->if_softc;
687 	struct mbuf *m;
688 
689 	GE_FUNC_ENTER(sc, "gfe_ifstart");
690 
691 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
692 		GE_FUNC_EXIT(sc, "$");
693 		return;
694 	}
695 
696 	for (;;) {
697 		IF_DEQUEUE(&ifp->if_snd, m);
698 		if (m == NULL) {
699 			ifp->if_flags &= ~IFF_OACTIVE;
700 			GE_FUNC_EXIT(sc, "");
701 			return;
702 		}
703 
704 		/*
705 		 * No space in the pending queue?  try later.
706 		 */
707 		if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
708 			break;
709 
710 		/*
711 		 * Try to enqueue a mbuf to the device. If that fails, we
712 		 * can always try to map the next mbuf.
713 		 */
714 		IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
715 		GE_DPRINTF(sc, (">"));
716 #ifndef GE_NOTX
717 		(void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
718 #endif
719 	}
720 
721 	/*
722 	 * Attempt to queue the mbuf for send failed.
723 	 */
724 	IF_PREPEND(&ifp->if_snd, m);
725 	ifp->if_flags |= IFF_OACTIVE;
726 	GE_FUNC_EXIT(sc, "%%");
727 }
728 
729 void
730 gfe_ifwatchdog(struct ifnet *ifp)
731 {
732 	struct gfe_softc * const sc = ifp->if_softc;
733 	struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
734 
735 	GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
736 	aprint_error_dev(sc->sc_dev, "device timeout");
737 	if (ifp->if_flags & IFF_RUNNING) {
738 		uint32_t curtxdnum;
739 
740 		curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
741 		    txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
742 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
743 		GE_TXDPOSTSYNC(sc, txq, curtxdnum);
744 		aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
745 		    txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
746 		    txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
747 		    GE_READ(sc, ETH_EICR));
748 		GE_TXDPRESYNC(sc, txq, txq->txq_fi);
749 		GE_TXDPRESYNC(sc, txq, curtxdnum);
750 	}
751 	aprint_error("\n");
752 	ifp->if_oerrors++;
753 	(void) gfe_whack(sc, GE_WHACK_RESTART);
754 	GE_FUNC_EXIT(sc, "");
755 }
756 
757 int
758 gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
759 {
760 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
761 	int error;
762 
763 	GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
764 	GE_DPRINTF(sc, ("(%d)", rxprio));
765 
766 	error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
767 	    GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
768 	if (error) {
769 		GE_FUNC_EXIT(sc, "!!");
770 		return error;
771 	}
772 
773 	error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
774 	    GE_RXBUF_MEMSIZE, 0);
775 	if (error) {
776 		GE_FUNC_EXIT(sc, "!!!");
777 		return error;
778 	}
779 	GE_FUNC_EXIT(sc, "");
780 	return error;
781 }
782 
783 int
784 gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
785 {
786 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
787 	volatile struct gt_eth_desc *rxd;
788 	const bus_dma_segment_t *ds;
789 	int idx;
790 	bus_addr_t nxtaddr;
791 	bus_size_t boff;
792 
793 	GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
794 	GE_DPRINTF(sc, ("(%d)", rxprio));
795 
796 	if ((sc->sc_flags & GE_NOFREE) == 0) {
797 		int error = gfe_rx_rxqalloc(sc, rxprio);
798 		if (error) {
799 			GE_FUNC_EXIT(sc, "!");
800 			return error;
801 		}
802 	} else {
803 		KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
804 		KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
805 	}
806 
807 	memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
808 
809 	rxq->rxq_descs =
810 	    (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
811 	rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
812 	rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
813 	rxq->rxq_fi = 0;
814 	rxq->rxq_active = GE_RXDESC_MAX;
815 	boff = 0;
816 	ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
817 	nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
818 	for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
819 	    idx++, nxtaddr += sizeof(*(++rxd))) {
820 		rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
821 		rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
822 		rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
823 		/*
824 		 * update the nxtptr to point to the next txd.
825 		 */
826 		if (idx == GE_RXDESC_MAX - 1)
827 			nxtaddr = rxq->rxq_desc_busaddr;
828 		rxd->ed_nxtptr = htogt32(nxtaddr);
829 		boff += GE_RXBUF_SIZE;
830 		if (boff == ds->ds_len) {
831 			ds++;
832 			boff = 0;
833 		}
834 	}
835 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
836 			rxq->rxq_desc_mem.gdm_map->dm_mapsize,
837 			BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
838 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
839 			rxq->rxq_buf_mem.gdm_map->dm_mapsize,
840 			BUS_DMASYNC_PREREAD);
841 
842 	rxq->rxq_intrbits = ETH_IR_RxBuffer|ETH_IR_RxError;
843 	switch (rxprio) {
844 	case GE_RXPRIO_HI:
845 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_3|ETH_IR_RxError_3;
846 		rxq->rxq_efrdp = ETH_EFRDP3;
847 		rxq->rxq_ecrdp = ETH_ECRDP3;
848 		break;
849 	case GE_RXPRIO_MEDHI:
850 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_2|ETH_IR_RxError_2;
851 		rxq->rxq_efrdp = ETH_EFRDP2;
852 		rxq->rxq_ecrdp = ETH_ECRDP2;
853 		break;
854 	case GE_RXPRIO_MEDLO:
855 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_1|ETH_IR_RxError_1;
856 		rxq->rxq_efrdp = ETH_EFRDP1;
857 		rxq->rxq_ecrdp = ETH_ECRDP1;
858 		break;
859 	case GE_RXPRIO_LO:
860 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_0|ETH_IR_RxError_0;
861 		rxq->rxq_efrdp = ETH_EFRDP0;
862 		rxq->rxq_ecrdp = ETH_ECRDP0;
863 		break;
864 	}
865 	GE_FUNC_EXIT(sc, "");
866 	return 0;
867 }
868 
869 void
870 gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
871 {
872 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
873 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
874 	struct mbuf *m = rxq->rxq_curpkt;
875 
876 	GE_FUNC_ENTER(sc, "gfe_rx_get");
877 	GE_DPRINTF(sc, ("(%d)", rxprio));
878 
879 	while (rxq->rxq_active > 0) {
880 		volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
881 		struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
882 		const struct ether_header *eh;
883 		unsigned int cmdsts;
884 		size_t buflen;
885 
886 		GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
887 		cmdsts = gt32toh(rxd->ed_cmdsts);
888 		GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
889 		rxq->rxq_cmdsts = cmdsts;
890 		/*
891 		 * Sometimes the GE "forgets" to reset the ownership bit.
892 		 * But if the length has been rewritten, the packet is ours
893 		 * so pretend the O bit is set.
894 		 */
895 		buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
896 		if ((cmdsts & RX_CMD_O) && buflen == 0) {
897 			GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
898 			break;
899 		}
900 
901 		/*
902 		 * If this is not a single buffer packet with no errors
903 		 * or for some reason it's bigger than our frame size,
904 		 * ignore it and go to the next packet.
905 		 */
906 		if ((cmdsts & (RX_CMD_F|RX_CMD_L|RX_STS_ES)) !=
907 							(RX_CMD_F|RX_CMD_L) ||
908 		    buflen > sc->sc_max_frame_length) {
909 			GE_DPRINTF(sc, ("!"));
910 			--rxq->rxq_active;
911 			ifp->if_ipackets++;
912 			ifp->if_ierrors++;
913 			goto give_it_back;
914 		}
915 
916 		/* CRC is included with the packet; trim it off. */
917 		buflen -= ETHER_CRC_LEN;
918 
919 		if (m == NULL) {
920 			MGETHDR(m, M_DONTWAIT, MT_DATA);
921 			if (m == NULL) {
922 				GE_DPRINTF(sc, ("?"));
923 				break;
924 			}
925 		}
926 		if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
927 			MCLGET(m, M_DONTWAIT);
928 			if ((m->m_flags & M_EXT) == 0) {
929 				GE_DPRINTF(sc, ("?"));
930 				break;
931 			}
932 		}
933 		m->m_data += 2;
934 		m->m_len = 0;
935 		m->m_pkthdr.len = 0;
936 		m->m_pkthdr.rcvif = ifp;
937 		rxq->rxq_cmdsts = cmdsts;
938 		--rxq->rxq_active;
939 
940 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
941 		    rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
942 
943 		KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
944 		memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
945 		m->m_len = buflen;
946 		m->m_pkthdr.len = buflen;
947 
948 		ifp->if_ipackets++;
949 		bpf_mtap(ifp, m);
950 
951 		eh = (const struct ether_header *) m->m_data;
952 		if ((ifp->if_flags & IFF_PROMISC) ||
953 		    (rxq->rxq_cmdsts & RX_STS_M) == 0 ||
954 		    (rxq->rxq_cmdsts & RX_STS_HE) ||
955 		    (eh->ether_dhost[0] & 1) != 0 ||
956 		    memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
957 							ETHER_ADDR_LEN) == 0) {
958 			(*ifp->if_input)(ifp, m);
959 			m = NULL;
960 			GE_DPRINTF(sc, (">"));
961 		} else {
962 			m->m_len = 0;
963 			m->m_pkthdr.len = 0;
964 			GE_DPRINTF(sc, ("+"));
965 		}
966 		rxq->rxq_cmdsts = 0;
967 
968 	   give_it_back:
969 		rxd->ed_lencnt &= ~0xffff;	/* zero out length */
970 		rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
971 #if 0
972 		GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
973 		    rxq->rxq_fi,
974 		    ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
975 		    ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
976 #endif
977 		GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
978 		if (++rxq->rxq_fi == GE_RXDESC_MAX)
979 			rxq->rxq_fi = 0;
980 		rxq->rxq_active++;
981 	}
982 	rxq->rxq_curpkt = m;
983 	GE_FUNC_EXIT(sc, "");
984 }
985 
986 uint32_t
987 gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
988 {
989 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
990 	struct gfe_rxqueue *rxq;
991 	uint32_t rxbits;
992 #define	RXPRIO_DECODER	0xffffaa50
993 	GE_FUNC_ENTER(sc, "gfe_rx_process");
994 
995 	rxbits = ETH_IR_RxBuffer_GET(cause);
996 	while (rxbits) {
997 		enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
998 		GE_DPRINTF(sc, ("%1x", rxbits));
999 		rxbits &= ~(1 << rxprio);
1000 		gfe_rx_get(sc, rxprio);
1001 	}
1002 
1003 	rxbits = ETH_IR_RxError_GET(cause);
1004 	while (rxbits) {
1005 		enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1006 		uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
1007 		int idx;
1008 		rxbits &= ~(1 << rxprio);
1009 		rxq = &sc->sc_rxq[rxprio];
1010 		sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
1011 		intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
1012 		if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
1013 			sc->sc_tickflags |= GE_TICK_RX_RESTART;
1014 			callout_reset(&sc->sc_co, 1, gfe_tick, sc);
1015 		}
1016 		ifp->if_ierrors++;
1017 		GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
1018 		    device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
1019 		memset(masks, 0, sizeof(masks));
1020 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1021 		    0, rxq->rxq_desc_mem.gdm_size,
1022 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1023 		for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
1024 			volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
1025 
1026 			if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
1027 				masks[idx/32] |= 1 << (idx & 31);
1028 		}
1029 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1030 		    0, rxq->rxq_desc_mem.gdm_size,
1031 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1032 #if defined(DEBUG)
1033 		printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
1034 		    device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
1035 		    rxq->rxq_cmdsts, masks[0], masks[1]);
1036 #endif
1037 	}
1038 	if ((intrmask & ETH_IR_RxBits) == 0)
1039 		intrmask &= ~(ETH_IR_RxBuffer|ETH_IR_RxError);
1040 
1041 	GE_FUNC_EXIT(sc, "");
1042 	return intrmask;
1043 }
1044 
1045 int
1046 gfe_rx_prime(struct gfe_softc *sc)
1047 {
1048 	struct gfe_rxqueue *rxq;
1049 	int error;
1050 
1051 	GE_FUNC_ENTER(sc, "gfe_rx_prime");
1052 
1053 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
1054 	if (error)
1055 		goto bail;
1056 	rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1057 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1058 		GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1059 		GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1060 	}
1061 	sc->sc_intrmask |= rxq->rxq_intrbits;
1062 
1063 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
1064 	if (error)
1065 		goto bail;
1066 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1067 		rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1068 		GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1069 		GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1070 		sc->sc_intrmask |= rxq->rxq_intrbits;
1071 	}
1072 
1073 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
1074 	if (error)
1075 		goto bail;
1076 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1077 		rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1078 		GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1079 		GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1080 		sc->sc_intrmask |= rxq->rxq_intrbits;
1081 	}
1082 
1083 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
1084 	if (error)
1085 		goto bail;
1086 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1087 		rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1088 		GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1089 		GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1090 		sc->sc_intrmask |= rxq->rxq_intrbits;
1091 	}
1092 
1093   bail:
1094 	GE_FUNC_EXIT(sc, "");
1095 	return error;
1096 }
1097 
1098 void
1099 gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
1100 {
1101 	struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
1102 	GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
1103 	if (rxq == NULL) {
1104 		GE_FUNC_EXIT(sc, "");
1105 		return;
1106 	}
1107 
1108 	if (rxq->rxq_curpkt)
1109 		m_freem(rxq->rxq_curpkt);
1110 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1111 		gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
1112 		gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
1113 	}
1114 	GE_FUNC_EXIT(sc, "");
1115 }
1116 
1117 void
1118 gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1119 {
1120 	GE_FUNC_ENTER(sc, "gfe_rx_stop");
1121 	sc->sc_flags &= ~GE_RXACTIVE;
1122 	sc->sc_idlemask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1123 	sc->sc_intrmask &= ~(ETH_IR_RxBits|ETH_IR_RxBuffer|ETH_IR_RxError);
1124 	GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1125 	GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
1126 	do {
1127 		delay(10);
1128 	} while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
1129 	gfe_rx_cleanup(sc, GE_RXPRIO_HI);
1130 	gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
1131 	gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
1132 	gfe_rx_cleanup(sc, GE_RXPRIO_LO);
1133 	GE_FUNC_EXIT(sc, "");
1134 }
1135 
1136 void
1137 gfe_tick(void *arg)
1138 {
1139 	struct gfe_softc * const sc = arg;
1140 	uint32_t intrmask;
1141 	unsigned int tickflags;
1142 	int s;
1143 
1144 	GE_FUNC_ENTER(sc, "gfe_tick");
1145 
1146 	s = splnet();
1147 
1148 	tickflags = sc->sc_tickflags;
1149 	sc->sc_tickflags = 0;
1150 	intrmask = sc->sc_intrmask;
1151 	if (tickflags & GE_TICK_TX_IFSTART)
1152 		gfe_ifstart(&sc->sc_ec.ec_if);
1153 	if (tickflags & GE_TICK_RX_RESTART) {
1154 		intrmask |= sc->sc_idlemask;
1155 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_3|ETH_IR_RxError_3)) {
1156 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1157 			rxq->rxq_fi = 0;
1158 			GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1159 			GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1160 		}
1161 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_2|ETH_IR_RxError_2)) {
1162 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1163 			rxq->rxq_fi = 0;
1164 			GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1165 			GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1166 		}
1167 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_1|ETH_IR_RxError_1)) {
1168 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1169 			rxq->rxq_fi = 0;
1170 			GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1171 			GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1172 		}
1173 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_0|ETH_IR_RxError_0)) {
1174 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1175 			rxq->rxq_fi = 0;
1176 			GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1177 			GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1178 		}
1179 		sc->sc_idlemask = 0;
1180 	}
1181 	if (intrmask != sc->sc_intrmask) {
1182 		sc->sc_intrmask = intrmask;
1183 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1184 	}
1185 	gfe_intr(sc);
1186 	splx(s);
1187 
1188 	GE_FUNC_EXIT(sc, "");
1189 }
1190 
1191 int
1192 gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
1193 {
1194 	const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1195 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
1196 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1197 	volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
1198 	uint32_t intrmask = sc->sc_intrmask;
1199 	size_t buflen;
1200 	struct mbuf *m;
1201 
1202 	GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
1203 
1204 	/*
1205 	 * Anything in the pending queue to enqueue?  if not, punt. Likewise
1206 	 * if the txq is not yet created.
1207 	 * otherwise grab its dmamap.
1208 	 */
1209 	if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
1210 		GE_FUNC_EXIT(sc, "-");
1211 		return 0;
1212 	}
1213 
1214 	/*
1215 	 * Have we [over]consumed our limit of descriptors?
1216 	 * Do we have enough free descriptors?
1217 	 */
1218 	if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
1219 		volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
1220 		uint32_t cmdsts;
1221 		size_t pktlen;
1222 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1223 		cmdsts = gt32toh(txd2->ed_cmdsts);
1224 		if (cmdsts & TX_CMD_O) {
1225 			int nextin;
1226 			/*
1227 			 * Sometime the Discovery forgets to update the
1228 			 * last descriptor.  See if we own the descriptor
1229 			 * after it (since we know we've turned that to
1230 			 * the discovery and if we owned it, the Discovery
1231 			 * gave it back).  If we do, we know the Discovery
1232 			 * gave back this one but forgot to mark it as ours.
1233 			 */
1234 			nextin = txq->txq_fi + 1;
1235 			if (nextin == GE_TXDESC_MAX)
1236 				nextin = 0;
1237 			GE_TXDPOSTSYNC(sc, txq, nextin);
1238 			if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1239 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1240 				GE_TXDPRESYNC(sc, txq, nextin);
1241 				GE_FUNC_EXIT(sc, "@");
1242 				return 0;
1243 			}
1244 #ifdef DEBUG
1245 			printf("%s: txenqueue: transmitter resynced at %d\n",
1246 			    device_xname(sc->sc_dev), txq->txq_fi);
1247 #endif
1248 		}
1249 		if (++txq->txq_fi == GE_TXDESC_MAX)
1250 			txq->txq_fi = 0;
1251 		txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
1252 		pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
1253 		txq->txq_inptr += roundup(pktlen, dcache_line_size);
1254 		txq->txq_nactive--;
1255 
1256 		/* statistics */
1257 		ifp->if_opackets++;
1258 		if (cmdsts & TX_STS_ES)
1259 			ifp->if_oerrors++;
1260 		GE_DPRINTF(sc, ("%%"));
1261 	}
1262 
1263 	buflen = roundup(m->m_pkthdr.len, dcache_line_size);
1264 
1265 	/*
1266 	 * If this packet would wrap around the end of the buffer, reset back
1267 	 * to the beginning.
1268 	 */
1269 	if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
1270 		txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
1271 		txq->txq_outptr = 0;
1272 	}
1273 
1274 	/*
1275 	 * Make sure the output packet doesn't run over the beginning of
1276 	 * what we've already given the GT.
1277 	 */
1278 	if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
1279 	    txq->txq_outptr + buflen > txq->txq_inptr) {
1280 		intrmask |= txq->txq_intrbits &
1281 		    (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow);
1282 		if (sc->sc_intrmask != intrmask) {
1283 			sc->sc_intrmask = intrmask;
1284 			GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1285 		}
1286 		GE_FUNC_EXIT(sc, "#");
1287 		return 0;
1288 	}
1289 
1290 	/*
1291 	 * The end-of-list descriptor we put on last time is the starting point
1292 	 * for this packet.  The GT is supposed to terminate list processing on
1293 	 * a NULL nxtptr but that currently is broken so a CPU-owned descriptor
1294 	 * must terminate the list.
1295 	 */
1296 	intrmask = sc->sc_intrmask;
1297 
1298 	m_copydata(m, 0, m->m_pkthdr.len,
1299 	    (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
1300 	bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1301 	    txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
1302 	txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
1303 	txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
1304 	GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1305 
1306 	/*
1307 	 * Request a buffer interrupt every 2/3 of the way thru the transmit
1308 	 * buffer.
1309 	 */
1310 	txq->txq_ei_gapcount += buflen;
1311 	if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
1312 		txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST|TX_CMD_EI);
1313 		txq->txq_ei_gapcount = 0;
1314 	} else {
1315 		txd->ed_cmdsts = htogt32(TX_CMD_FIRST|TX_CMD_LAST);
1316 	}
1317 #if 0
1318 	GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
1319 	    ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1320 	    ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1321 #endif
1322 	GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1323 
1324 	txq->txq_outptr += buflen;
1325 	/*
1326 	 * Tell the SDMA engine to "Fetch!"
1327 	 */
1328 	GE_WRITE(sc, ETH_ESDCMR,
1329 		 txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH|ETH_ESDCMR_TXDL));
1330 
1331 	GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
1332 
1333 	/*
1334 	 * Update the last out appropriately.
1335 	 */
1336 	txq->txq_nactive++;
1337 	if (++txq->txq_lo == GE_TXDESC_MAX)
1338 		txq->txq_lo = 0;
1339 
1340 	/*
1341 	 * Move mbuf from the pending queue to the snd queue.
1342 	 */
1343 	IF_DEQUEUE(&txq->txq_pendq, m);
1344 	bpf_mtap(ifp, m);
1345 	m_freem(m);
1346 	ifp->if_flags &= ~IFF_OACTIVE;
1347 
1348 	/*
1349 	 * Since we have put an item into the packet queue, we now want
1350 	 * an interrupt when the transmit queue finishes processing the
1351 	 * list.  But only update the mask if needs changing.
1352 	 */
1353 	intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow);
1354 	if (sc->sc_intrmask != intrmask) {
1355 		sc->sc_intrmask = intrmask;
1356 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1357 	}
1358 	if (ifp->if_timer == 0)
1359 		ifp->if_timer = 5;
1360 	GE_FUNC_EXIT(sc, "*");
1361 	return 1;
1362 }
1363 
1364 uint32_t
1365 gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
1366 {
1367 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1368 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
1369 
1370 	GE_FUNC_ENTER(sc, "gfe_tx_done");
1371 
1372 	if (txq == NULL) {
1373 		GE_FUNC_EXIT(sc, "");
1374 		return intrmask;
1375 	}
1376 
1377 	while (txq->txq_nactive > 0) {
1378 		const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1379 		volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
1380 		uint32_t cmdsts;
1381 		size_t pktlen;
1382 
1383 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1384 		if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
1385 			int nextin;
1386 
1387 			if (txq->txq_nactive == 1) {
1388 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1389 				GE_FUNC_EXIT(sc, "");
1390 				return intrmask;
1391 			}
1392 			/*
1393 			 * Sometimes the Discovery forgets to update the
1394 			 * ownership bit in the descriptor.  See if we own the
1395 			 * descriptor after it (since we know we've turned
1396 			 * that to the Discovery and if we own it now then the
1397 			 * Discovery gave it back).  If we do, we know the
1398 			 * Discovery gave back this one but forgot to mark it
1399 			 * as ours.
1400 			 */
1401 			nextin = txq->txq_fi + 1;
1402 			if (nextin == GE_TXDESC_MAX)
1403 				nextin = 0;
1404 			GE_TXDPOSTSYNC(sc, txq, nextin);
1405 			if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1406 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1407 				GE_TXDPRESYNC(sc, txq, nextin);
1408 				GE_FUNC_EXIT(sc, "");
1409 				return intrmask;
1410 			}
1411 #ifdef DEBUG
1412 			printf("%s: txdone: transmitter resynced at %d\n",
1413 			    device_xname(sc->sc_dev), txq->txq_fi);
1414 #endif
1415 		}
1416 #if 0
1417 		GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
1418 		    txq->txq_lo,
1419 		    ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1420 		    ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1421 #endif
1422 		GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
1423 		if (++txq->txq_fi == GE_TXDESC_MAX)
1424 			txq->txq_fi = 0;
1425 		txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
1426 		pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
1427 		bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1428 		    txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
1429 		txq->txq_inptr += roundup(pktlen, dcache_line_size);
1430 
1431 		/* statistics */
1432 		ifp->if_opackets++;
1433 		if (cmdsts & TX_STS_ES)
1434 			ifp->if_oerrors++;
1435 
1436 		/* txd->ed_bufptr = 0; */
1437 
1438 		ifp->if_timer = 5;
1439 		--txq->txq_nactive;
1440 	}
1441 	if (txq->txq_nactive != 0)
1442 		panic("%s: transmit fifo%d empty but active count (%d) > 0!",
1443 		    device_xname(sc->sc_dev), txprio, txq->txq_nactive);
1444 	ifp->if_timer = 0;
1445 	intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxEndHigh|ETH_IR_TxEndLow));
1446 	intrmask &= ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh|ETH_IR_TxBufferLow));
1447 	GE_FUNC_EXIT(sc, "");
1448 	return intrmask;
1449 }
1450 
1451 int
1452 gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
1453 {
1454 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1455 	int error;
1456 
1457 	GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
1458 
1459 	error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
1460 	    GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
1461 	if (error) {
1462 		GE_FUNC_EXIT(sc, "");
1463 		return error;
1464 	}
1465 	error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
1466 	if (error) {
1467 		gfe_dmamem_free(sc, &txq->txq_desc_mem);
1468 		GE_FUNC_EXIT(sc, "");
1469 		return error;
1470 	}
1471 	GE_FUNC_EXIT(sc, "");
1472 	return 0;
1473 }
1474 
1475 int
1476 gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
1477 {
1478 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1479 	volatile struct gt_eth_desc *txd;
1480 	unsigned int i;
1481 	bus_addr_t addr;
1482 
1483 	GE_FUNC_ENTER(sc, "gfe_tx_start");
1484 
1485 	sc->sc_intrmask &=
1486 	    ~(ETH_IR_TxEndHigh		|
1487 	      ETH_IR_TxBufferHigh	|
1488 	      ETH_IR_TxEndLow		|
1489 	      ETH_IR_TxBufferLow);
1490 
1491 	if (sc->sc_flags & GE_NOFREE) {
1492 		KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
1493 		KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
1494 	} else {
1495 		int error = gfe_tx_txqalloc(sc, txprio);
1496 		if (error) {
1497 			GE_FUNC_EXIT(sc, "!");
1498 			return error;
1499 		}
1500 	}
1501 
1502 	txq->txq_descs =
1503 	    (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
1504 	txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
1505 	txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
1506 
1507 	txq->txq_pendq.ifq_maxlen = 10;
1508 	txq->txq_ei_gapcount = 0;
1509 	txq->txq_nactive = 0;
1510 	txq->txq_fi = 0;
1511 	txq->txq_lo = 0;
1512 	txq->txq_inptr = GE_TXBUF_SIZE;
1513 	txq->txq_outptr = 0;
1514 	for (i = 0, txd = txq->txq_descs,
1515 	    addr = txq->txq_desc_busaddr + sizeof(*txd);
1516 	    i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
1517 		/*
1518 		 * update the nxtptr to point to the next txd.
1519 		 */
1520 		txd->ed_cmdsts = 0;
1521 		txd->ed_nxtptr = htogt32(addr);
1522 	}
1523 	txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
1524 	    htogt32(txq->txq_desc_busaddr);
1525 	bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
1526 	    GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1527 
1528 	switch (txprio) {
1529 	case GE_TXPRIO_HI:
1530 		txq->txq_intrbits = ETH_IR_TxEndHigh|ETH_IR_TxBufferHigh;
1531 		txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
1532 		txq->txq_epsrbits = ETH_EPSR_TxHigh;
1533 		txq->txq_ectdp = ETH_ECTDP1;
1534 		GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
1535 		break;
1536 
1537 	case GE_TXPRIO_LO:
1538 		txq->txq_intrbits = ETH_IR_TxEndLow|ETH_IR_TxBufferLow;
1539 		txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
1540 		txq->txq_epsrbits = ETH_EPSR_TxLow;
1541 		txq->txq_ectdp = ETH_ECTDP0;
1542 		GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
1543 		break;
1544 
1545 	case GE_TXPRIO_NONE:
1546 		break;
1547 	}
1548 #if 0
1549 	GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
1550 	GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
1551 	GE_DPRINTF(sc, (")"));
1552 #endif
1553 
1554 	/*
1555 	 * If we are restarting, there may be packets in the pending queue
1556 	 * waiting to be enqueued.  Try enqueuing packets from both priority
1557 	 * queues until the pending queue is empty or there no room for them
1558 	 * on the device.
1559 	 */
1560 	while (gfe_tx_enqueue(sc, txprio))
1561 		continue;
1562 
1563 	GE_FUNC_EXIT(sc, "");
1564 	return 0;
1565 }
1566 
1567 void
1568 gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
1569 {
1570 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1571 
1572 	GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
1573 	if (txq == NULL) {
1574 		GE_FUNC_EXIT(sc, "");
1575 		return;
1576 	}
1577 
1578 	if (!flush) {
1579 		GE_FUNC_EXIT(sc, "");
1580 		return;
1581 	}
1582 
1583 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1584 		gfe_dmamem_free(sc, &txq->txq_desc_mem);
1585 		gfe_dmamem_free(sc, &txq->txq_buf_mem);
1586 	}
1587 	GE_FUNC_EXIT(sc, "-F");
1588 }
1589 
1590 void
1591 gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1592 {
1593 	GE_FUNC_ENTER(sc, "gfe_tx_stop");
1594 
1595 	GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH|ETH_ESDCMR_STDL);
1596 
1597 	sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
1598 	sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
1599 	sc->sc_intrmask &=
1600 	    ~(ETH_IR_TxEndHigh		|
1601 	      ETH_IR_TxBufferHigh	|
1602 	      ETH_IR_TxEndLow		|
1603 	      ETH_IR_TxBufferLow);
1604 
1605 	gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
1606 	gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
1607 
1608 	sc->sc_ec.ec_if.if_timer = 0;
1609 	GE_FUNC_EXIT(sc, "");
1610 }
1611 
1612 int
1613 gfe_intr(void *arg)
1614 {
1615 	struct gfe_softc * const sc = arg;
1616 	uint32_t cause;
1617 	uint32_t intrmask = sc->sc_intrmask;
1618 	int claim = 0;
1619 	int cnt;
1620 
1621 	GE_FUNC_ENTER(sc, "gfe_intr");
1622 
1623 	for (cnt = 0; cnt < 4; cnt++) {
1624 		if (sc->sc_intrmask != intrmask) {
1625 			sc->sc_intrmask = intrmask;
1626 			GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1627 		}
1628 		cause = GE_READ(sc, ETH_EICR);
1629 		cause &= sc->sc_intrmask;
1630 		GE_DPRINTF(sc, (".%#x", cause));
1631 		if (cause == 0)
1632 			break;
1633 
1634 		claim = 1;
1635 
1636 		GE_WRITE(sc, ETH_EICR, ~cause);
1637 #ifndef GE_NORX
1638 		if (cause & (ETH_IR_RxBuffer|ETH_IR_RxError))
1639 			intrmask = gfe_rx_process(sc, cause, intrmask);
1640 #endif
1641 
1642 #ifndef GE_NOTX
1643 		if (cause & (ETH_IR_TxBufferHigh|ETH_IR_TxEndHigh))
1644 			intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
1645 		if (cause & (ETH_IR_TxBufferLow|ETH_IR_TxEndLow))
1646 			intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
1647 #endif
1648 		if (cause & ETH_IR_MIIPhySTC) {
1649 			sc->sc_flags |= GE_PHYSTSCHG;
1650 			/* intrmask &= ~ETH_IR_MIIPhySTC; */
1651 		}
1652 	}
1653 
1654 	while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
1655 		continue;
1656 	while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
1657 		continue;
1658 
1659 	GE_FUNC_EXIT(sc, "");
1660 	return claim;
1661 }
1662 
1663 int
1664 gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
1665 {
1666 	int error = 0;
1667 	GE_FUNC_ENTER(sc, "gfe_whack");
1668 
1669 	switch (op) {
1670 	case GE_WHACK_RESTART:
1671 #ifndef GE_NOTX
1672 		gfe_tx_stop(sc, op);
1673 #endif
1674 		/* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
1675 		/* FALLTHROUGH */
1676 	case GE_WHACK_START:
1677 #ifndef GE_NOHASH
1678 		if (error == 0 && sc->sc_hashtable == NULL) {
1679 			error = gfe_hash_alloc(sc);
1680 			if (error)
1681 				break;
1682 		}
1683 		if (op != GE_WHACK_RESTART)
1684 			gfe_hash_fill(sc);
1685 #endif
1686 #ifndef GE_NORX
1687 		if (op != GE_WHACK_RESTART) {
1688 			error = gfe_rx_prime(sc);
1689 			if (error)
1690 				break;
1691 		}
1692 #endif
1693 #ifndef GE_NOTX
1694 		error = gfe_tx_start(sc, GE_TXPRIO_HI);
1695 		if (error)
1696 			break;
1697 #endif
1698 		sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
1699 		GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1700 		GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
1701 		GE_WRITE(sc, ETH_EICR, 0);
1702 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1703 #ifndef GE_NOHASH
1704 		GE_WRITE(sc, ETH_EHTPR,
1705 		    sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
1706 #endif
1707 #ifndef GE_NORX
1708 		GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
1709 		sc->sc_flags |= GE_RXACTIVE;
1710 #endif
1711 		/* FALLTHROUGH */
1712 	case GE_WHACK_CHANGE:
1713 		GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
1714 		    GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
1715 		GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1716 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1717 		gfe_ifstart(&sc->sc_ec.ec_if);
1718 		GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
1719 		    GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
1720 		GE_FUNC_EXIT(sc, "");
1721 		return error;
1722 	case GE_WHACK_STOP:
1723 		break;
1724 	}
1725 
1726 #ifdef GE_DEBUG
1727 	if (error)
1728 		GE_DPRINTF(sc, (" failed: %d\n", error));
1729 #endif
1730 	GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1731 	GE_WRITE(sc, ETH_EIMR, 0);
1732 	sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
1733 #ifndef GE_NOTX
1734 	gfe_tx_stop(sc, GE_WHACK_STOP);
1735 #endif
1736 #ifndef GE_NORX
1737 	gfe_rx_stop(sc, GE_WHACK_STOP);
1738 #endif
1739 #ifndef GE_NOHASH
1740 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1741 		gfe_dmamem_free(sc, &sc->sc_hash_mem);
1742 		sc->sc_hashtable = NULL;
1743 	}
1744 #endif
1745 
1746 	GE_FUNC_EXIT(sc, "");
1747 	return error;
1748 }
1749 
1750 int
1751 gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
1752 {
1753 	uint32_t w0, add0, add1;
1754 	uint32_t result;
1755 
1756 	GE_FUNC_ENTER(sc, "gfe_hash_compute");
1757 	add0 = ((uint32_t) eaddr[5] <<  0) |
1758 	       ((uint32_t) eaddr[4] <<  8) |
1759 	       ((uint32_t) eaddr[3] << 16);
1760 
1761 	add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
1762 	add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
1763 	add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
1764 
1765 	add1 = ((uint32_t) eaddr[2] <<  0) |
1766 	       ((uint32_t) eaddr[1] <<  8) |
1767 	       ((uint32_t) eaddr[0] << 16);
1768 
1769 	add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
1770 	add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
1771 	add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
1772 
1773 	GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
1774 	/*
1775 	 * hashResult is the 15 bits Hash entry address.
1776 	 * ethernetADD is a 48 bit number, which is derived from the Ethernet
1777 	 *	MAC address, by nibble swapping in every byte (i.e MAC address
1778 	 *	of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
1779 	 */
1780 
1781 	if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
1782 		/*
1783 		 * hashResult[14:0] = hashFunc0(ethernetADD[47:0])
1784 		 *
1785 		 * hashFunc0 calculates the hashResult in the following manner:
1786 		 *   hashResult[ 8:0] = ethernetADD[14:8,1,0]
1787 		 *		XOR ethernetADD[23:15] XOR ethernetADD[32:24]
1788 		 */
1789 		result = (add0 & 3) | ((add0 >> 6) & ~3);
1790 		result ^= (add0 >> 15) ^ (add1 >>  0);
1791 		result &= 0x1ff;
1792 		/*
1793 		 *   hashResult[14:9] = ethernetADD[7:2]
1794 		 */
1795 		result |= (add0 & ~3) << 7;	/* excess bits will be masked */
1796 		GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
1797 	} else {
1798 #define	TRIBITFLIP	073516240	/* yes its in octal */
1799 		/*
1800 		 * hashResult[14:0] = hashFunc1(ethernetADD[47:0])
1801 		 *
1802 		 * hashFunc1 calculates the hashResult in the following manner:
1803 		 *   hashResult[08:00] = ethernetADD[06:14]
1804 		 *		XOR ethernetADD[15:23] XOR ethernetADD[24:32]
1805 		 */
1806 		w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
1807 		/*
1808 		 * Now bitswap those 9 bits
1809 		 */
1810 		result = 0;
1811 		result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
1812 		result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
1813 		result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
1814 
1815 		/*
1816 		 *   hashResult[14:09] = ethernetADD[00:05]
1817 		 */
1818 		result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
1819 		result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
1820 		GE_DPRINTF(sc, ("1(%#x)", result));
1821 	}
1822 	GE_FUNC_EXIT(sc, "");
1823 	return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
1824 }
1825 
1826 int
1827 gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
1828 	enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
1829 {
1830 	uint64_t he;
1831 	uint64_t *maybe_he_p = NULL;
1832 	int limit;
1833 	int hash;
1834 	int maybe_hash = 0;
1835 
1836 	GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
1837 
1838 	hash = gfe_hash_compute(sc, eaddr);
1839 
1840 	if (sc->sc_hashtable == NULL) {
1841 		panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
1842 			__LINE__);
1843 	}
1844 
1845 	/*
1846 	 * Assume we are going to insert so create the hash entry we
1847 	 * are going to insert.  We also use it to match entries we
1848 	 * will be removing.
1849 	 */
1850 	he = ((uint64_t) eaddr[5] << 43) |
1851 	     ((uint64_t) eaddr[4] << 35) |
1852 	     ((uint64_t) eaddr[3] << 27) |
1853 	     ((uint64_t) eaddr[2] << 19) |
1854 	     ((uint64_t) eaddr[1] << 11) |
1855 	     ((uint64_t) eaddr[0] <<  3) |
1856 	     HSH_PRIO_INS(prio) | HSH_V | HSH_R;
1857 
1858 	/*
1859 	 * The GT will search upto 12 entries for a hit, so we must mimic that.
1860 	 */
1861 	hash &= sc->sc_hashmask / sizeof(he);
1862 	for (limit = HSH_LIMIT; limit > 0 ; --limit) {
1863 		/*
1864 		 * Does the GT wrap at the end, stop at the, or overrun the
1865 		 * end?  Assume it wraps for now.  Stash a copy of the
1866 		 * current hash entry.
1867 		 */
1868 		uint64_t *he_p = &sc->sc_hashtable[hash];
1869 		uint64_t thishe = *he_p;
1870 
1871 		/*
1872 		 * If the hash entry isn't valid, that break the chain.  And
1873 		 * this entry a good candidate for reuse.
1874 		 */
1875 		if ((thishe & HSH_V) == 0) {
1876 			maybe_he_p = he_p;
1877 			break;
1878 		}
1879 
1880 		/*
1881 		 * If the hash entry has the same address we are looking for
1882 		 * then ...  if we are removing and the skip bit is set, its
1883 		 * already been removed.  if are adding and the skip bit is
1884 		 * clear, then its already added.  In either return EBUSY
1885 		 * indicating the op has already been done.  Otherwise flip
1886 		 * the skip bit and return 0.
1887 		 */
1888 		if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
1889 			if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
1890 			    ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
1891 				return EBUSY;
1892 			*he_p = thishe ^ HSH_S;
1893 			bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1894 			    hash * sizeof(he), sizeof(he),
1895 			    BUS_DMASYNC_PREWRITE);
1896 			GE_FUNC_EXIT(sc, "^");
1897 			return 0;
1898 		}
1899 
1900 		/*
1901 		 * If we haven't found a slot for the entry and this entry
1902 		 * is currently being skipped, return this entry.
1903 		 */
1904 		if (maybe_he_p == NULL && (thishe & HSH_S)) {
1905 			maybe_he_p = he_p;
1906 			maybe_hash = hash;
1907 		}
1908 
1909 		hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
1910 	}
1911 
1912 	/*
1913 	 * If we got here, then there was no entry to remove.
1914 	 */
1915 	if (op == GE_HASH_REMOVE) {
1916 		GE_FUNC_EXIT(sc, "?");
1917 		return ENOENT;
1918 	}
1919 
1920 	/*
1921 	 * If we couldn't find a slot, return an error.
1922 	 */
1923 	if (maybe_he_p == NULL) {
1924 		GE_FUNC_EXIT(sc, "!");
1925 		return ENOSPC;
1926 	}
1927 
1928 	/* Update the entry.
1929 	 */
1930 	*maybe_he_p = he;
1931 	bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1932 	    maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
1933 	GE_FUNC_EXIT(sc, "+");
1934 	return 0;
1935 }
1936 
1937 int
1938 gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
1939 		  u_long cmd)
1940 {
1941 	struct gfe_softc *sc = ec->ec_if.if_softc;
1942 	int error;
1943 	enum gfe_hash_op op;
1944 	enum gfe_rxprio prio;
1945 
1946 	GE_FUNC_ENTER(sc, "hash_multichg");
1947 	/*
1948 	 * Is this a wildcard entry?  If so and its being removed, recompute.
1949 	 */
1950 	if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1951 		if (cmd == SIOCDELMULTI) {
1952 			GE_FUNC_EXIT(sc, "");
1953 			return ENETRESET;
1954 		}
1955 
1956 		/*
1957 		 * Switch in
1958 		 */
1959 		sc->sc_flags |= GE_ALLMULTI;
1960 		if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
1961 			sc->sc_pcr |= ETH_EPCR_PM;
1962 			GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1963 			GE_FUNC_EXIT(sc, "");
1964 			return 0;
1965 		}
1966 		GE_FUNC_EXIT(sc, "");
1967 		return ENETRESET;
1968 	}
1969 
1970 	prio = GE_RXPRIO_MEDLO;
1971 	op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
1972 
1973 	if (sc->sc_hashtable == NULL) {
1974 		GE_FUNC_EXIT(sc, "");
1975 		return 0;
1976 	}
1977 
1978 	error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
1979 	if (error == EBUSY) {
1980 		aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
1981 		   cmd == SIOCDELMULTI ? "remove" : "add",
1982 		   ether_sprintf(enm->enm_addrlo));
1983 		GE_FUNC_EXIT(sc, "");
1984 		return 0;
1985 	}
1986 
1987 	if (error == ENOENT) {
1988 		aprint_error_dev(sc->sc_dev,
1989 		    "multichg: failed to remove %s: not in table\n",
1990 		    ether_sprintf(enm->enm_addrlo));
1991 		GE_FUNC_EXIT(sc, "");
1992 		return 0;
1993 	}
1994 
1995 	if (error == ENOSPC) {
1996 		aprint_error_dev(sc->sc_dev, "multichg:"
1997 		    " failed to add %s: no space; regenerating table\n",
1998 		    ether_sprintf(enm->enm_addrlo));
1999 		GE_FUNC_EXIT(sc, "");
2000 		return ENETRESET;
2001 	}
2002 	GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
2003 	    device_xname(sc->sc_dev),
2004 	    cmd == SIOCDELMULTI ? "remove" : "add",
2005 	    ether_sprintf(enm->enm_addrlo)));
2006 	GE_FUNC_EXIT(sc, "");
2007 	return 0;
2008 }
2009 
2010 int
2011 gfe_hash_fill(struct gfe_softc *sc)
2012 {
2013 	struct ether_multistep step;
2014 	struct ether_multi *enm;
2015 	int error;
2016 
2017 	GE_FUNC_ENTER(sc, "gfe_hash_fill");
2018 
2019 	error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
2020 	    CLLADDR(sc->sc_ec.ec_if.if_sadl));
2021 	if (error)
2022 		GE_FUNC_EXIT(sc, "!");
2023 		return error;
2024 
2025 	sc->sc_flags &= ~GE_ALLMULTI;
2026 	if ((sc->sc_ec.ec_if.if_flags & IFF_PROMISC) == 0)
2027 		sc->sc_pcr &= ~ETH_EPCR_PM;
2028 	ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
2029 	while (enm != NULL) {
2030 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2031 			sc->sc_flags |= GE_ALLMULTI;
2032 			sc->sc_pcr |= ETH_EPCR_PM;
2033 		} else {
2034 			error = gfe_hash_entry_op(sc, GE_HASH_ADD,
2035 			    GE_RXPRIO_MEDLO, enm->enm_addrlo);
2036 			if (error == ENOSPC)
2037 				break;
2038 		}
2039 		ETHER_NEXT_MULTI(step, enm);
2040 	}
2041 
2042 	GE_FUNC_EXIT(sc, "");
2043 	return error;
2044 }
2045 
2046 int
2047 gfe_hash_alloc(struct gfe_softc *sc)
2048 {
2049 	int error;
2050 	GE_FUNC_ENTER(sc, "gfe_hash_alloc");
2051 	sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
2052 	error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
2053 	    BUS_DMA_NOCACHE);
2054 	if (error) {
2055 		aprint_error_dev(sc->sc_dev,
2056 		    "failed to allocate %d bytes for hash table: %d\n",
2057 		    sc->sc_hashmask + 1, error);
2058 		GE_FUNC_EXIT(sc, "");
2059 		return error;
2060 	}
2061 	sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
2062 	memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
2063 	bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
2064 	    0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
2065 	GE_FUNC_EXIT(sc, "");
2066 	return 0;
2067 }
2068