xref: /netbsd-src/sys/dev/kttcp.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: kttcp.c,v 1.15 2004/04/22 01:01:40 matt Exp $	*/
2 
3 /*
4  * Copyright (c) 2002 Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Written by Frank van der Linden and Jason R. Thorpe for
8  * Wasabi Systems, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed for the NetBSD Project by
21  *	Wasabi Systems, Inc.
22  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * kttcp.c --
41  *
42  *	This module provides kernel support for testing network
43  *	throughput from the perspective of the kernel.  It is
44  *	similar in spirit to the classic ttcp network benchmark
45  *	program, the main difference being that with kttcp, the
46  *	kernel is the source and sink of the data.
47  *
48  *	Testing like this is useful for a few reasons:
49  *
50  *	1. This allows us to know what kind of performance we can
51  *	   expect from network applications that run in the kernel
52  *	   space, such as the NFS server or the NFS client.  These
53  *	   applications don't have to move the data to/from userspace,
54  *	   and so benchmark programs which run in userspace don't
55  *	   give us an accurate model.
56  *
57  *	2. Since data received is just thrown away, the receiver
58  *	   is very fast.  This can provide better exercise for the
59  *	   sender at the other end.
60  *
61  *	3. Since the NetBSD kernel currently uses a run-to-completion
62  *	   scheduling model, kttcp provides a benchmark model where
63  *	   preemption of the benchmark program is not an issue.
64  */
65 
66 #include <sys/cdefs.h>
67 __KERNEL_RCSID(0, "$NetBSD: kttcp.c,v 1.15 2004/04/22 01:01:40 matt Exp $");
68 
69 #include <sys/param.h>
70 #include <sys/types.h>
71 #include <sys/ioctl.h>
72 #include <sys/file.h>
73 #include <sys/filedesc.h>
74 #include <sys/conf.h>
75 #include <sys/systm.h>
76 #include <sys/protosw.h>
77 #include <sys/proc.h>
78 #include <sys/resourcevar.h>
79 #include <sys/signal.h>
80 #include <sys/socketvar.h>
81 #include <sys/socket.h>
82 #include <sys/mbuf.h>
83 #include <sys/sa.h>
84 #include <sys/mount.h>
85 #include <sys/syscallargs.h>
86 
87 #include <dev/kttcpio.h>
88 
89 static int kttcp_send(struct proc *p, struct kttcp_io_args *);
90 static int kttcp_recv(struct proc *p, struct kttcp_io_args *);
91 static int kttcp_sosend(struct socket *, unsigned long long,
92 			unsigned long long *, struct proc *, int);
93 static int kttcp_soreceive(struct socket *, unsigned long long,
94 			   unsigned long long *, struct proc *, int *);
95 
96 void	kttcpattach(int);
97 
98 dev_type_ioctl(kttcpioctl);
99 
100 const struct cdevsw kttcp_cdevsw = {
101 	nullopen, nullclose, noread, nowrite, kttcpioctl,
102 	nostop, notty, nopoll, nommap, nokqfilter,
103 };
104 
105 void
106 kttcpattach(int count)
107 {
108 	/* Do nothing. */
109 }
110 
111 int
112 kttcpioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
113 {
114 	int error;
115 
116 	if ((flag & FWRITE) == 0)
117 		return EPERM;
118 
119 	switch (cmd) {
120 	case KTTCP_IO_SEND:
121 		error = kttcp_send(p, (struct kttcp_io_args *) data);
122 		break;
123 
124 	case KTTCP_IO_RECV:
125 		error = kttcp_recv(p, (struct kttcp_io_args *) data);
126 		break;
127 
128 	default:
129 		return EINVAL;
130 	}
131 
132 	return error;
133 }
134 
135 static int
136 kttcp_send(struct proc *p, struct kttcp_io_args *kio)
137 {
138 	struct file *fp;
139 	int error;
140 	struct timeval t0, t1;
141 	unsigned long long len, done;
142 
143 	if (kio->kio_totalsize >= KTTCP_MAX_XMIT)
144 		return EINVAL;
145 
146 	fp = fd_getfile(p->p_fd, kio->kio_socket);
147 	if (fp == NULL)
148 		return EBADF;
149 	FILE_USE(fp);
150 	if (fp->f_type != DTYPE_SOCKET) {
151 		FILE_UNUSE(fp, p);
152 		return EFTYPE;
153 	}
154 
155 	len = kio->kio_totalsize;
156 	microtime(&t0);
157 	do {
158 		error = kttcp_sosend((struct socket *)fp->f_data, len,
159 		    &done, p, 0);
160 		len -= done;
161 	} while (error == 0 && len > 0);
162 
163 	FILE_UNUSE(fp, p);
164 
165 	microtime(&t1);
166 	if (error != 0)
167 		return error;
168 	timersub(&t1, &t0, &kio->kio_elapsed);
169 
170 	kio->kio_bytesdone = kio->kio_totalsize - len;
171 
172 	return 0;
173 }
174 
175 static int
176 kttcp_recv(struct proc *p, struct kttcp_io_args *kio)
177 {
178 	struct file *fp;
179 	int error;
180 	struct timeval t0, t1;
181 	unsigned long long len, done;
182 
183 	if (kio->kio_totalsize > KTTCP_MAX_XMIT)
184 		return EINVAL;
185 
186 	fp = fd_getfile(p->p_fd, kio->kio_socket);
187 	if (fp == NULL)
188 		return EBADF;
189 	FILE_USE(fp);
190 	if (fp->f_type != DTYPE_SOCKET) {
191 		FILE_UNUSE(fp, p);
192 		return EBADF;
193 	}
194 	len = kio->kio_totalsize;
195 	microtime(&t0);
196 	do {
197 		error = kttcp_soreceive((struct socket *)fp->f_data,
198 		    len, &done, p, NULL);
199 		len -= done;
200 	} while (error == 0 && len > 0 && done > 0);
201 
202 	FILE_UNUSE(fp, p);
203 
204 	microtime(&t1);
205 	if (error == EPIPE)
206 		error = 0;
207 	if (error != 0)
208 		return error;
209 	timersub(&t1, &t0, &kio->kio_elapsed);
210 
211 	kio->kio_bytesdone = kio->kio_totalsize - len;
212 
213 	return 0;
214 }
215 
216 #define SBLOCKWAIT(f)   (((f) & MSG_DONTWAIT) ? M_NOWAIT : M_WAITOK)
217 
218 /*
219  * Slightly changed version of sosend()
220  */
221 static int
222 kttcp_sosend(struct socket *so, unsigned long long slen,
223 	     unsigned long long *done, struct proc *p, int flags)
224 {
225 	struct mbuf **mp, *m, *top;
226 	long space, len, mlen;
227 	int error, s, dontroute, atomic;
228 	long long resid;
229 
230 	atomic = sosendallatonce(so);
231 	resid = slen;
232 	top = NULL;
233 	/*
234 	 * In theory resid should be unsigned.
235 	 * However, space must be signed, as it might be less than 0
236 	 * if we over-committed, and we must use a signed comparison
237 	 * of space and resid.  On the other hand, a negative resid
238 	 * causes us to loop sending 0-length segments to the protocol.
239 	 */
240 	if (resid < 0) {
241 		error = EINVAL;
242 		goto out;
243 	}
244 	dontroute =
245 	    (flags & MSG_DONTROUTE) && (so->so_options & SO_DONTROUTE) == 0 &&
246 	    (so->so_proto->pr_flags & PR_ATOMIC);
247 	p->p_stats->p_ru.ru_msgsnd++;
248 #define	snderr(errno)	{ error = errno; splx(s); goto release; }
249 
250  restart:
251 	if ((error = sblock(&so->so_snd, SBLOCKWAIT(flags))) != 0)
252 		goto out;
253 	do {
254 		s = splsoftnet();
255 		if (so->so_state & SS_CANTSENDMORE)
256 			snderr(EPIPE);
257 		if (so->so_error) {
258 			error = so->so_error;
259 			so->so_error = 0;
260 			splx(s);
261 			goto release;
262 		}
263 		if ((so->so_state & SS_ISCONNECTED) == 0) {
264 			if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
265 				if ((so->so_state & SS_ISCONFIRMING) == 0)
266 					snderr(ENOTCONN);
267 			} else
268 				snderr(EDESTADDRREQ);
269 		}
270 		space = sbspace(&so->so_snd);
271 		if (flags & MSG_OOB)
272 			space += 1024;
273 		if ((atomic && resid > so->so_snd.sb_hiwat))
274 			snderr(EMSGSIZE);
275 		if (space < resid && (atomic || space < so->so_snd.sb_lowat)) {
276 			if (so->so_state & SS_NBIO)
277 				snderr(EWOULDBLOCK);
278 			SBLASTRECORDCHK(&so->so_rcv,
279 			    "kttcp_soreceive sbwait 1");
280 			SBLASTMBUFCHK(&so->so_rcv,
281 			    "kttcp_soreceive sbwait 1");
282 			sbunlock(&so->so_snd);
283 			error = sbwait(&so->so_snd);
284 			splx(s);
285 			if (error)
286 				goto out;
287 			goto restart;
288 		}
289 		splx(s);
290 		mp = &top;
291 		do {
292 			do {
293 				if (top == 0) {
294 					m = m_gethdr(M_WAIT, MT_DATA);
295 					mlen = MHLEN;
296 					m->m_pkthdr.len = 0;
297 					m->m_pkthdr.rcvif = NULL;
298 				} else {
299 					m = m_get(M_WAIT, MT_DATA);
300 					mlen = MLEN;
301 				}
302 				if (resid >= MINCLSIZE && space >= MCLBYTES) {
303 					m_clget(m, M_WAIT);
304 					if ((m->m_flags & M_EXT) == 0)
305 						goto nopages;
306 					mlen = MCLBYTES;
307 #ifdef	MAPPED_MBUFS
308 					len = lmin(MCLBYTES, resid);
309 #else
310 					if (atomic && top == 0) {
311 						len = lmin(MCLBYTES - max_hdr,
312 						    resid);
313 						m->m_data += max_hdr;
314 					} else
315 						len = lmin(MCLBYTES, resid);
316 #endif
317 					space -= len;
318 				} else {
319 nopages:
320 					len = lmin(lmin(mlen, resid), space);
321 					space -= len;
322 					/*
323 					 * For datagram protocols, leave room
324 					 * for protocol headers in first mbuf.
325 					 */
326 					if (atomic && top == 0 && len < mlen)
327 						MH_ALIGN(m, len);
328 				}
329 				resid -= len;
330 				m->m_len = len;
331 				*mp = m;
332 				top->m_pkthdr.len += len;
333 				if (error)
334 					goto release;
335 				mp = &m->m_next;
336 				if (resid <= 0) {
337 					if (flags & MSG_EOR)
338 						top->m_flags |= M_EOR;
339 					break;
340 				}
341 			} while (space > 0 && atomic);
342 
343 			s = splsoftnet();
344 
345 			if (so->so_state & SS_CANTSENDMORE)
346 				snderr(EPIPE);
347 
348 			if (dontroute)
349 				so->so_options |= SO_DONTROUTE;
350 			if (resid > 0)
351 				so->so_state |= SS_MORETOCOME;
352 			error = (*so->so_proto->pr_usrreq)(so,
353 			    (flags & MSG_OOB) ? PRU_SENDOOB : PRU_SEND,
354 			    top, NULL, NULL, p);
355 			if (dontroute)
356 				so->so_options &= ~SO_DONTROUTE;
357 			if (resid > 0)
358 				so->so_state &= ~SS_MORETOCOME;
359 			splx(s);
360 
361 			top = 0;
362 			mp = &top;
363 			if (error)
364 				goto release;
365 		} while (resid && space > 0);
366 	} while (resid);
367 
368  release:
369 	sbunlock(&so->so_snd);
370  out:
371 	if (top)
372 		m_freem(top);
373 	*done = slen - resid;
374 #if 0
375 	printf("sosend: error %d slen %llu resid %lld\n", error, slen, resid);
376 #endif
377 	return (error);
378 }
379 
380 static int
381 kttcp_soreceive(struct socket *so, unsigned long long slen,
382 		unsigned long long *done, struct proc *p, int *flagsp)
383 {
384 	struct mbuf *m, **mp;
385 	int flags, len, error, s, offset, moff, type;
386 	long long orig_resid, resid;
387 	const struct protosw *pr;
388 	struct mbuf *nextrecord;
389 
390 	pr = so->so_proto;
391 	mp = NULL;
392 	type = 0;
393 	resid = orig_resid = slen;
394 	if (flagsp)
395 		flags = *flagsp &~ MSG_EOR;
396 	else
397  		flags = 0;
398 	if (flags & MSG_OOB) {
399 		m = m_get(M_WAIT, MT_DATA);
400 		error = (*pr->pr_usrreq)(so, PRU_RCVOOB, m,
401 		    (struct mbuf *)(long)(flags & MSG_PEEK), NULL, NULL);
402 		if (error)
403 			goto bad;
404 		do {
405 			resid -= min(resid, m->m_len);
406 			m = m_free(m);
407 		} while (resid && error == 0 && m);
408  bad:
409 		if (m)
410 			m_freem(m);
411 		return (error);
412 	}
413 	if (mp)
414 		*mp = NULL;
415 	if (so->so_state & SS_ISCONFIRMING && resid)
416 		(*pr->pr_usrreq)(so, PRU_RCVD, NULL, NULL, NULL, NULL);
417 
418  restart:
419 	if ((error = sblock(&so->so_rcv, SBLOCKWAIT(flags))) != 0)
420 		return (error);
421 	s = splsoftnet();
422 
423 	m = so->so_rcv.sb_mb;
424 	/*
425 	 * If we have less data than requested, block awaiting more
426 	 * (subject to any timeout) if:
427 	 *   1. the current count is less than the low water mark,
428 	 *   2. MSG_WAITALL is set, and it is possible to do the entire
429 	 *	receive operation at once if we block (resid <= hiwat), or
430 	 *   3. MSG_DONTWAIT is not set.
431 	 * If MSG_WAITALL is set but resid is larger than the receive buffer,
432 	 * we have to do the receive in sections, and thus risk returning
433 	 * a short count if a timeout or signal occurs after we start.
434 	 */
435 	if (m == NULL || (((flags & MSG_DONTWAIT) == 0 &&
436 	    so->so_rcv.sb_cc < resid) &&
437 	    (so->so_rcv.sb_cc < so->so_rcv.sb_lowat ||
438 	    ((flags & MSG_WAITALL) && resid <= so->so_rcv.sb_hiwat)) &&
439 	    m->m_nextpkt == NULL && (pr->pr_flags & PR_ATOMIC) == 0)) {
440 #ifdef DIAGNOSTIC
441 		if (m == NULL && so->so_rcv.sb_cc)
442 			panic("receive 1");
443 #endif
444 		if (so->so_error) {
445 			if (m)
446 				goto dontblock;
447 			error = so->so_error;
448 			if ((flags & MSG_PEEK) == 0)
449 				so->so_error = 0;
450 			goto release;
451 		}
452 		if (so->so_state & SS_CANTRCVMORE) {
453 			if (m)
454 				goto dontblock;
455 			else
456 				goto release;
457 		}
458 		for (; m; m = m->m_next)
459 			if (m->m_type == MT_OOBDATA  || (m->m_flags & M_EOR)) {
460 				m = so->so_rcv.sb_mb;
461 				goto dontblock;
462 			}
463 		if ((so->so_state & (SS_ISCONNECTED|SS_ISCONNECTING)) == 0 &&
464 		    (so->so_proto->pr_flags & PR_CONNREQUIRED)) {
465 			error = ENOTCONN;
466 			goto release;
467 		}
468 		if (resid == 0)
469 			goto release;
470 		if ((so->so_state & SS_NBIO) || (flags & MSG_DONTWAIT)) {
471 			error = EWOULDBLOCK;
472 			goto release;
473 		}
474 		sbunlock(&so->so_rcv);
475 		error = sbwait(&so->so_rcv);
476 		splx(s);
477 		if (error)
478 			return (error);
479 		goto restart;
480 	}
481  dontblock:
482 	/*
483 	 * On entry here, m points to the first record of the socket buffer.
484 	 * While we process the initial mbufs containing address and control
485 	 * info, we save a copy of m->m_nextpkt into nextrecord.
486 	 */
487 #ifdef notyet /* XXXX */
488 	if (uio->uio_procp)
489 		uio->uio_procp->p_stats->p_ru.ru_msgrcv++;
490 #endif
491 	KASSERT(m == so->so_rcv.sb_mb);
492 	SBLASTRECORDCHK(&so->so_rcv, "kttcp_soreceive 1");
493 	SBLASTMBUFCHK(&so->so_rcv, "kttcp_soreceive 1");
494 	nextrecord = m->m_nextpkt;
495 	if (pr->pr_flags & PR_ADDR) {
496 #ifdef DIAGNOSTIC
497 		if (m->m_type != MT_SONAME)
498 			panic("receive 1a");
499 #endif
500 		orig_resid = 0;
501 		if (flags & MSG_PEEK) {
502 			m = m->m_next;
503 		} else {
504 			sbfree(&so->so_rcv, m);
505 			MFREE(m, so->so_rcv.sb_mb);
506 			m = so->so_rcv.sb_mb;
507 		}
508 	}
509 	while (m && m->m_type == MT_CONTROL && error == 0) {
510 		if (flags & MSG_PEEK) {
511 			m = m->m_next;
512 		} else {
513 			sbfree(&so->so_rcv, m);
514 			MFREE(m, so->so_rcv.sb_mb);
515 			m = so->so_rcv.sb_mb;
516 		}
517 	}
518 
519 	/*
520 	 * If m is non-NULL, we have some data to read.  From now on,
521 	 * make sure to keep sb_lastrecord consistent when working on
522 	 * the last packet on the chain (nextrecord == NULL) and we
523 	 * change m->m_nextpkt.
524 	 */
525 	if (m) {
526 		if ((flags & MSG_PEEK) == 0) {
527 			m->m_nextpkt = nextrecord;
528 			/*
529 			 * If nextrecord == NULL (this is a single chain),
530 			 * then sb_lastrecord may not be valid here if m
531 			 * was changed earlier.
532 			 */
533 			if (nextrecord == NULL) {
534 				KASSERT(so->so_rcv.sb_mb == m);
535 				so->so_rcv.sb_lastrecord = m;
536 			}
537 		}
538 		type = m->m_type;
539 		if (type == MT_OOBDATA)
540 			flags |= MSG_OOB;
541 	} else {
542 		if ((flags & MSG_PEEK) == 0) {
543 			KASSERT(so->so_rcv.sb_mb == m);
544 			so->so_rcv.sb_mb = nextrecord;
545 			SB_EMPTY_FIXUP(&so->so_rcv);
546 		}
547 	}
548 	SBLASTRECORDCHK(&so->so_rcv, "kttcp_soreceive 2");
549 	SBLASTMBUFCHK(&so->so_rcv, "kttcp_soreceive 2");
550 
551 	moff = 0;
552 	offset = 0;
553 	while (m && resid > 0 && error == 0) {
554 		if (m->m_type == MT_OOBDATA) {
555 			if (type != MT_OOBDATA)
556 				break;
557 		} else if (type == MT_OOBDATA)
558 			break;
559 #ifdef DIAGNOSTIC
560 		else if (m->m_type != MT_DATA && m->m_type != MT_HEADER)
561 			panic("receive 3");
562 #endif
563 		so->so_state &= ~SS_RCVATMARK;
564 		len = resid;
565 		if (so->so_oobmark && len > so->so_oobmark - offset)
566 			len = so->so_oobmark - offset;
567 		if (len > m->m_len - moff)
568 			len = m->m_len - moff;
569 		/*
570 		 * If mp is set, just pass back the mbufs.
571 		 * Otherwise copy them out via the uio, then free.
572 		 * Sockbuf must be consistent here (points to current mbuf,
573 		 * it points to next record) when we drop priority;
574 		 * we must note any additions to the sockbuf when we
575 		 * block interrupts again.
576 		 */
577 		resid -= len;
578 		if (len == m->m_len - moff) {
579 			if (m->m_flags & M_EOR)
580 				flags |= MSG_EOR;
581 			if (flags & MSG_PEEK) {
582 				m = m->m_next;
583 				moff = 0;
584 			} else {
585 				nextrecord = m->m_nextpkt;
586 				sbfree(&so->so_rcv, m);
587 				if (mp) {
588 					*mp = m;
589 					mp = &m->m_next;
590 					so->so_rcv.sb_mb = m = m->m_next;
591 					*mp = NULL;
592 				} else {
593 					MFREE(m, so->so_rcv.sb_mb);
594 					m = so->so_rcv.sb_mb;
595 				}
596 				/*
597 				 * If m != NULL, we also know that
598 				 * so->so_rcv.sb_mb != NULL.
599 				 */
600 				KASSERT(so->so_rcv.sb_mb == m);
601 				if (m) {
602 					m->m_nextpkt = nextrecord;
603 					if (nextrecord == NULL)
604 						so->so_rcv.sb_lastrecord = m;
605 				} else {
606 					so->so_rcv.sb_mb = nextrecord;
607 					SB_EMPTY_FIXUP(&so->so_rcv);
608 				}
609 				SBLASTRECORDCHK(&so->so_rcv,
610 				    "kttcp_soreceive 3");
611 				SBLASTMBUFCHK(&so->so_rcv,
612 				    "kttcp_soreceive 3");
613 			}
614 		} else {
615 			if (flags & MSG_PEEK)
616 				moff += len;
617 			else {
618 				if (mp)
619 					*mp = m_copym(m, 0, len, M_WAIT);
620 				m->m_data += len;
621 				m->m_len -= len;
622 				so->so_rcv.sb_cc -= len;
623 			}
624 		}
625 		if (so->so_oobmark) {
626 			if ((flags & MSG_PEEK) == 0) {
627 				so->so_oobmark -= len;
628 				if (so->so_oobmark == 0) {
629 					so->so_state |= SS_RCVATMARK;
630 					break;
631 				}
632 			} else {
633 				offset += len;
634 				if (offset == so->so_oobmark)
635 					break;
636 			}
637 		}
638 		if (flags & MSG_EOR)
639 			break;
640 		/*
641 		 * If the MSG_WAITALL flag is set (for non-atomic socket),
642 		 * we must not quit until "uio->uio_resid == 0" or an error
643 		 * termination.  If a signal/timeout occurs, return
644 		 * with a short count but without error.
645 		 * Keep sockbuf locked against other readers.
646 		 */
647 		while (flags & MSG_WAITALL && m == NULL && resid > 0 &&
648 		    !sosendallatonce(so) && !nextrecord) {
649 			if (so->so_error || so->so_state & SS_CANTRCVMORE)
650 				break;
651 			/*
652 			 * If we are peeking and the socket receive buffer is
653 			 * full, stop since we can't get more data to peek at.
654 			 */
655 			if ((flags & MSG_PEEK) && sbspace(&so->so_rcv) <= 0)
656 				break;
657 			/*
658 			 * If we've drained the socket buffer, tell the
659 			 * protocol in case it needs to do something to
660 			 * get it filled again.
661 			 */
662 			if ((pr->pr_flags & PR_WANTRCVD) && so->so_pcb)
663 				(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
664 				    (struct mbuf *)(long)flags, NULL, NULL);
665 			SBLASTRECORDCHK(&so->so_rcv,
666 			    "kttcp_soreceive sbwait 2");
667 			SBLASTMBUFCHK(&so->so_rcv,
668 			    "kttcp_soreceive sbwait 2");
669 			error = sbwait(&so->so_rcv);
670 			if (error) {
671 				sbunlock(&so->so_rcv);
672 				splx(s);
673 				return (0);
674 			}
675 			if ((m = so->so_rcv.sb_mb) != NULL)
676 				nextrecord = m->m_nextpkt;
677 		}
678 	}
679 
680 	if (m && pr->pr_flags & PR_ATOMIC) {
681 		flags |= MSG_TRUNC;
682 		if ((flags & MSG_PEEK) == 0)
683 			(void) sbdroprecord(&so->so_rcv);
684 	}
685 	if ((flags & MSG_PEEK) == 0) {
686 		if (m == NULL) {
687 			/*
688 			 * First part is an SB_EMPTY_FIXUP().  Second part
689 			 * makes sure sb_lastrecord is up-to-date if
690 			 * there is still data in the socket buffer.
691 			 */
692 			so->so_rcv.sb_mb = nextrecord;
693 			if (so->so_rcv.sb_mb == NULL) {
694 				so->so_rcv.sb_mbtail = NULL;
695 				so->so_rcv.sb_lastrecord = NULL;
696 			} else if (nextrecord->m_nextpkt == NULL)
697 				so->so_rcv.sb_lastrecord = nextrecord;
698 		}
699 		SBLASTRECORDCHK(&so->so_rcv, "kttcp_soreceive 4");
700 		SBLASTMBUFCHK(&so->so_rcv, "kttcp_soreceive 4");
701 		if (pr->pr_flags & PR_WANTRCVD && so->so_pcb)
702 			(*pr->pr_usrreq)(so, PRU_RCVD, NULL,
703 			    (struct mbuf *)(long)flags, NULL, NULL);
704 	}
705 	if (orig_resid == resid && orig_resid &&
706 	    (flags & MSG_EOR) == 0 && (so->so_state & SS_CANTRCVMORE) == 0) {
707 		sbunlock(&so->so_rcv);
708 		splx(s);
709 		goto restart;
710 	}
711 
712 	if (flagsp)
713 		*flagsp |= flags;
714  release:
715 	sbunlock(&so->so_rcv);
716 	splx(s);
717 	*done = slen - resid;
718 #if 0
719 	printf("soreceive: error %d slen %llu resid %lld\n", error, slen, resid);
720 #endif
721 	return (error);
722 }
723