xref: /netbsd-src/sys/dev/isa/sbdsp.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: sbdsp.c,v 1.122 2006/05/14 21:42:27 elad Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *	  Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1991-1993 Regents of the University of California.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the Computer Systems
54  *	Engineering Group at Lawrence Berkeley Laboratory.
55  * 4. Neither the name of the University nor of the Laboratory may be used
56  *    to endorse or promote products derived from this software without
57  *    specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  */
72 
73 /*
74  * SoundBlaster Pro code provided by John Kohl, based on lots of
75  * information he gleaned from Steve Haehnichen <steve@vigra.com>'s
76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77  * <sachs@meibm15.cen.uiuc.edu>.
78  * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se>
79  * with information from SB "Hardware Programming Guide" and the
80  * Linux drivers.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.122 2006/05/14 21:42:27 elad Exp $");
85 
86 #include "midi.h"
87 #include "mpu.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98 
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #include <machine/bus.h>
102 
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108 
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111 
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114 
115 
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x)	if (sbdspdebug) printf x
118 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
119 int	sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124 
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128 
129 struct {
130 	int wdsp;
131 	int rdsp;
132 	int wmidi;
133 } sberr;
134 
135 /*
136  * Time constant routines follow.  See SBK, section 12.
137  * Although they don't come out and say it (in the docs),
138  * the card clearly uses a 1MHz countdown timer, as the
139  * low-speed formula (p. 12-4) is:
140  *	tc = 256 - 10^6 / sr
141  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142  * and a 256MHz clock is used:
143  *	tc = 65536 - 256 * 10^ 6 / sr
144  * Since we can only use the upper byte of the HS TC, the two formulae
145  * are equivalent.  (Why didn't they say so?)  E.g.,
146  *	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147  *
148  * The crossover point (from low- to high-speed modes) is different
149  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
150  *
151  *				SBPRO			SB20
152  *				-----			--------
153  * input ls min			4	kHz		4	kHz
154  * input ls max			23	kHz		13	kHz
155  * input hs max			44.1	kHz		15	kHz
156  * output ls min		4	kHz		4	kHz
157  * output ls max		23	kHz		23	kHz
158  * output hs max		44.1	kHz		44.1	kHz
159  */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165 
166 struct sbmode {
167 	short	model;
168 	u_char	channels;
169 	u_char	precision;
170 	u_short	lowrate, highrate;
171 	u_char	cmd;
172 	u_char	halt, cont;
173 	u_char	cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
177  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
178  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
179  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
180  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
181  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
182  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
183  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
185  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
186  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
187  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
188  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
189  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
190  { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
191  { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193  { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
194  { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
195  { -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
199  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
200  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
201  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
202  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
203  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
204  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
205  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
206  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
207  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
208  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
209  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
210  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
211  { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
212  { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
213  { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
214  { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
215  { -1 }
216 };
217 
218 void	sbversion(struct sbdsp_softc *);
219 void	sbdsp_jazz16_probe(struct sbdsp_softc *);
220 void	sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
221 void	sbdsp_pause(struct sbdsp_softc *);
222 int	sbdsp_set_timeconst(struct sbdsp_softc *, int);
223 int	sbdsp16_set_rate(struct sbdsp_softc *, int, int);
224 int	sbdsp_set_in_ports(struct sbdsp_softc *, int);
225 void	sbdsp_set_ifilter(void *, int);
226 int	sbdsp_get_ifilter(void *);
227 
228 int	sbdsp_block_output(void *);
229 int	sbdsp_block_input(void *);
230 static	int sbdsp_adjust(int, int);
231 
232 int	sbdsp_midi_intr(void *);
233 
234 static void	sbdsp_powerhook(int, void*);
235 
236 #ifdef AUDIO_DEBUG
237 void	sb_printsc(struct sbdsp_softc *);
238 
239 void
240 sb_printsc(struct sbdsp_softc *sc)
241 {
242 	int i;
243 
244 	printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
245 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
246 	    sc->sc_drq8, sc->sc_drq16,
247 	    sc->sc_iobase, sc->sc_irq);
248 	printf("irate %d itc %x orate %d otc %x\n",
249 	    sc->sc_i.rate, sc->sc_i.tc,
250 	    sc->sc_o.rate, sc->sc_o.tc);
251 	printf("spkron %u nintr %lu\n",
252 	    sc->spkr_state, sc->sc_interrupts);
253 	printf("intr8 %p intr16 %p\n",
254 	    sc->sc_intr8, sc->sc_intr16);
255 	printf("gain:");
256 	for (i = 0; i < SB_NDEVS; i++)
257 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
258 	printf("\n");
259 }
260 #endif /* AUDIO_DEBUG */
261 
262 /*
263  * Probe / attach routines.
264  */
265 
266 /*
267  * Probe for the soundblaster hardware.
268  */
269 int
270 sbdsp_probe(struct sbdsp_softc *sc)
271 {
272 
273 	if (sbdsp_reset(sc) < 0) {
274 		DPRINTF(("sbdsp: couldn't reset card\n"));
275 		return 0;
276 	}
277 	/* if flags set, go and probe the jazz16 stuff */
278 	if (device_cfdata(&sc->sc_dev)->cf_flags & 1)
279 		sbdsp_jazz16_probe(sc);
280 	else
281 		sbversion(sc);
282 	if (sc->sc_model == SB_UNK) {
283 		/* Unknown SB model found. */
284 		DPRINTF(("sbdsp: unknown SB model found\n"));
285 		return 0;
286 	}
287 	return 1;
288 }
289 
290 /*
291  * Try add-on stuff for Jazz16.
292  */
293 void
294 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
295 {
296 	static u_char jazz16_irq_conf[16] = {
297 	    -1, -1, 0x02, 0x03,
298 	    -1, 0x01, -1, 0x04,
299 	    -1, 0x02, 0x05, -1,
300 	    -1, -1, -1, 0x06};
301 	static u_char jazz16_drq_conf[8] = {
302 	    -1, 0x01, -1, 0x02,
303 	    -1, 0x03, -1, 0x04};
304 
305 	bus_space_tag_t iot;
306 	bus_space_handle_t ioh;
307 
308 	iot = sc->sc_iot;
309 	sbversion(sc);
310 
311 	DPRINTF(("jazz16 probe\n"));
312 
313 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
314 		DPRINTF(("bus map failed\n"));
315 		return;
316 	}
317 
318 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
319 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
320 		DPRINTF(("drq/irq check failed\n"));
321 		goto done;		/* give up, we can't do it. */
322 	}
323 
324 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
325 	delay(10000);			/* delay 10 ms */
326 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
327 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
328 
329 	if (sbdsp_reset(sc) < 0) {
330 		DPRINTF(("sbdsp_reset check failed\n"));
331 		goto done;		/* XXX? what else could we do? */
332 	}
333 
334 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
335 		DPRINTF(("read16 setup failed\n"));
336 		goto done;
337 	}
338 
339 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
340 		DPRINTF(("read16 failed\n"));
341 		goto done;
342 	}
343 
344 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
345 	sc->sc_drq16 = sc->sc_drq8;
346 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
347 	    (sc->sc_drq16 >= 0 &&
348 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
349 		jazz16_drq_conf[sc->sc_drq8])) ||
350 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
351 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
352 	} else {
353 		DPRINTF(("jazz16 detected!\n"));
354 		sc->sc_model = SB_JAZZ;
355 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
356 	}
357 
358 done:
359 	bus_space_unmap(iot, ioh, 1);
360 }
361 
362 /*
363  * Attach hardware to driver, attach hardware driver to audio
364  * pseudo-device driver .
365  */
366 void
367 sbdsp_attach(struct sbdsp_softc *sc)
368 {
369 	int i, error;
370 	u_int v;
371 
372 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
373 
374 	if (sc->sc_mixer_model != SBM_NONE) {
375 		/* Reset the mixer.*/
376 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
377 		/* And set our own default values */
378 		for (i = 0; i < SB_NDEVS; i++) {
379 			switch(i) {
380 			case SB_MIC_VOL:
381 			case SB_LINE_IN_VOL:
382 				v = 0;
383 				break;
384 			case SB_BASS:
385 			case SB_TREBLE:
386 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
387 				break;
388 			case SB_CD_IN_MUTE:
389 			case SB_MIC_IN_MUTE:
390 			case SB_LINE_IN_MUTE:
391 			case SB_MIDI_IN_MUTE:
392 			case SB_CD_SWAP:
393 			case SB_MIC_SWAP:
394 			case SB_LINE_SWAP:
395 			case SB_MIDI_SWAP:
396 			case SB_CD_OUT_MUTE:
397 			case SB_MIC_OUT_MUTE:
398 			case SB_LINE_OUT_MUTE:
399 				v = 0;
400 				break;
401 			default:
402 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
403 				break;
404 			}
405 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
406 			sbdsp_set_mixer_gain(sc, i);
407 		}
408 		sc->in_filter = 0;	/* no filters turned on, please */
409 	}
410 
411 	printf(": dsp v%d.%02d%s\n",
412 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
413 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
414 
415 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
416 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
417 	    sc->sc_drq8 != sc->sc_drq16;
418 
419 	if (sc->sc_drq8 != -1) {
420 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
421 		    sc->sc_drq8);
422 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
423 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
424 		if (error) {
425 			printf("%s: can't create map for drq %d\n",
426 			    sc->sc_dev.dv_xname, sc->sc_drq8);
427 			return;
428 		}
429 	}
430 
431 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
432 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
433 		    sc->sc_drq16);
434 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
435 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
436 		if (error) {
437 			printf("%s: can't create map for drq %d\n",
438 			    sc->sc_dev.dv_xname, sc->sc_drq16);
439 			isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
440 			return;
441 		}
442 	}
443 
444 	powerhook_establish (sbdsp_powerhook, sc);
445 }
446 
447 static void
448 sbdsp_powerhook(int why, void *arg)
449 {
450 	struct sbdsp_softc *sc;
451 	int i;
452 
453 	sc = arg;
454 	if (!sc || why != PWR_RESUME)
455 		return;
456 
457 	/* Reset the mixer. */
458 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
459 	for (i = 0; i < SB_NDEVS; i++)
460 		sbdsp_set_mixer_gain (sc, i);
461 }
462 
463 void
464 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
465 {
466 	bus_space_tag_t iot;
467 	bus_space_handle_t ioh;
468 	int s;
469 
470 	iot = sc->sc_iot;
471 	ioh = sc->sc_ioh;
472 	s = splaudio();
473 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
474 	delay(20);
475 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
476 	delay(30);
477 	splx(s);
478 }
479 
480 int
481 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
482 {
483 	bus_space_tag_t iot;
484 	bus_space_handle_t ioh;
485 	int val;
486 	int s;
487 
488 	iot = sc->sc_iot;
489 	ioh = sc->sc_ioh;
490 	s = splaudio();
491 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
492 	delay(20);
493 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
494 	delay(30);
495 	splx(s);
496 	return val;
497 }
498 
499 /*
500  * Various routines to interface to higher level audio driver
501  */
502 
503 int
504 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
505 {
506 	struct sbdsp_softc *sc;
507 	int emul;
508 
509 	sc = addr;
510 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
511 
512 	switch (fp->index) {
513 	case 0:
514 		strcpy(fp->name, AudioEulinear);
515 		fp->encoding = AUDIO_ENCODING_ULINEAR;
516 		fp->precision = 8;
517 		fp->flags = 0;
518 		return 0;
519 	case 1:
520 		strcpy(fp->name, AudioEmulaw);
521 		fp->encoding = AUDIO_ENCODING_ULAW;
522 		fp->precision = 8;
523 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
524 		return 0;
525 	case 2:
526 		strcpy(fp->name, AudioEalaw);
527 		fp->encoding = AUDIO_ENCODING_ALAW;
528 		fp->precision = 8;
529 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
530 		return 0;
531 	case 3:
532 		strcpy(fp->name, AudioEslinear);
533 		fp->encoding = AUDIO_ENCODING_SLINEAR;
534 		fp->precision = 8;
535 		fp->flags = emul;
536 		return 0;
537 	}
538 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
539 		return EINVAL;
540 
541 	switch(fp->index) {
542 	case 4:
543 		strcpy(fp->name, AudioEslinear_le);
544 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
545 		fp->precision = 16;
546 		fp->flags = 0;
547 		return 0;
548 	case 5:
549 		strcpy(fp->name, AudioEulinear_le);
550 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
551 		fp->precision = 16;
552 		fp->flags = emul;
553 		return 0;
554 	case 6:
555 		strcpy(fp->name, AudioEslinear_be);
556 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
557 		fp->precision = 16;
558 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
559 		return 0;
560 	case 7:
561 		strcpy(fp->name, AudioEulinear_be);
562 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
563 		fp->precision = 16;
564 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
565 		return 0;
566 	default:
567 		return EINVAL;
568 	}
569 	return 0;
570 }
571 
572 int
573 sbdsp_set_params(
574 	void *addr,
575 	int setmode, int usemode,
576 	audio_params_t *play, audio_params_t *rec,
577 	stream_filter_list_t *pfil, stream_filter_list_t *rfil)
578 {
579 	struct sbdsp_softc *sc;
580 	struct sbmode *m;
581 	u_int rate, tc, bmode;
582 	stream_filter_factory_t *swcode;
583 	int model;
584 	int chan;
585 	struct audio_params *p;
586 	audio_params_t hw;
587 	stream_filter_list_t *fil;
588 	int mode;
589 
590 	sc = addr;
591 	if (sc->sc_open == SB_OPEN_MIDI)
592 		return EBUSY;
593 
594 	/* Later models work like SB16. */
595 	model = min(sc->sc_model, SB_16);
596 
597 	/*
598 	 * Prior to the SB16, we have only one clock, so make the sample
599 	 * rates match.
600 	 */
601 	if (!ISSB16CLASS(sc) &&
602 	    play->sample_rate != rec->sample_rate &&
603 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
604 		if (setmode == AUMODE_PLAY) {
605 			rec->sample_rate = play->sample_rate;
606 			setmode |= AUMODE_RECORD;
607 		} else if (setmode == AUMODE_RECORD) {
608 			play->sample_rate = rec->sample_rate;
609 			setmode |= AUMODE_PLAY;
610 		} else
611 			return EINVAL;
612 	}
613 
614 	/* Set first record info, then play info */
615 	for (mode = AUMODE_RECORD; mode != -1;
616 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
617 		if ((setmode & mode) == 0)
618 			continue;
619 
620 		p = mode == AUMODE_PLAY ? play : rec;
621 		/* Locate proper commands */
622 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
623 		    m->model != -1; m++) {
624 			if (model == m->model &&
625 			    p->channels == m->channels &&
626 			    p->precision == m->precision &&
627 			    p->sample_rate >= m->lowrate &&
628 			    p->sample_rate <= m->highrate)
629 				break;
630 		}
631 		if (m->model == -1)
632 			return EINVAL;
633 		rate = p->sample_rate;
634 		swcode = NULL;
635 		fil = mode ==  AUMODE_PLAY ? pfil : rfil;
636 		hw = *p;
637 		tc = 1;
638 		bmode = -1;
639 		if (model == SB_16) {
640 			switch (p->encoding) {
641 			case AUDIO_ENCODING_SLINEAR_BE:
642 				if (p->precision == 16) {
643 					hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
644 					swcode = swap_bytes;
645 				}
646 				/* fall into */
647 			case AUDIO_ENCODING_SLINEAR_LE:
648 				bmode = SB_BMODE_SIGNED;
649 				break;
650 
651 			case AUDIO_ENCODING_ULINEAR_BE:
652 				if (p->precision == 16) {
653 					hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
654 					swcode = swap_bytes;
655 				}
656 				/* fall into */
657 			case AUDIO_ENCODING_ULINEAR_LE:
658 				bmode = SB_BMODE_UNSIGNED;
659 				break;
660 
661 			case AUDIO_ENCODING_ULAW:
662 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
663 				if (mode == AUMODE_PLAY) {
664 					hw.precision = hw.validbits = 16;
665 					swcode = mulaw_to_linear16;
666 					m = &sbpmodes[PLAY16];
667 				} else
668 					swcode = linear8_to_mulaw;
669 				bmode = SB_BMODE_UNSIGNED;
670 				break;
671 
672 			case AUDIO_ENCODING_ALAW:
673 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
674 				if (mode == AUMODE_PLAY) {
675 					hw.precision = hw.validbits = 16;
676 					swcode = alaw_to_linear16;
677 					m = &sbpmodes[PLAY16];
678 				} else
679 					swcode = linear8_to_alaw;
680 				bmode = SB_BMODE_UNSIGNED;
681 				break;
682 			default:
683 				return EINVAL;
684 			}
685 			if (p->channels == 2)
686 				bmode |= SB_BMODE_STEREO;
687 		} else if (m->model == SB_JAZZ && m->precision == 16) {
688 			switch (p->encoding) {
689 			case AUDIO_ENCODING_SLINEAR_LE:
690 				break;
691 			case AUDIO_ENCODING_ULINEAR_LE:
692 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
693 				swcode = change_sign16;
694 				break;
695 			case AUDIO_ENCODING_SLINEAR_BE:
696 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
697 				swcode = swap_bytes;
698 				break;
699 			case AUDIO_ENCODING_ULINEAR_BE:
700 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
701 				swcode = swap_bytes_change_sign16;
702 				break;
703 			case AUDIO_ENCODING_ULAW:
704 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
705 				swcode = mode == AUMODE_PLAY ?
706 					mulaw_to_linear8 : linear8_to_mulaw;
707 				break;
708 			case AUDIO_ENCODING_ALAW:
709 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
710 				swcode = mode == AUMODE_PLAY ?
711 					alaw_to_linear8 : linear8_to_alaw;
712 				break;
713 			default:
714 				return EINVAL;
715 			}
716 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
717 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
718 			hw.sample_rate = p->sample_rate;
719 		} else {
720 			switch (p->encoding) {
721 			case AUDIO_ENCODING_SLINEAR_BE:
722 			case AUDIO_ENCODING_SLINEAR_LE:
723 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
724 				swcode = change_sign8;
725 				break;
726 			case AUDIO_ENCODING_ULINEAR_BE:
727 			case AUDIO_ENCODING_ULINEAR_LE:
728 				break;
729 			case AUDIO_ENCODING_ULAW:
730 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
731 				swcode = mode == AUMODE_PLAY ?
732 					mulaw_to_linear8 : linear8_to_mulaw;
733 				break;
734 			case AUDIO_ENCODING_ALAW:
735 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
736 				swcode = mode == AUMODE_PLAY ?
737 					alaw_to_linear8 : linear8_to_alaw;
738 				break;
739 			default:
740 				return EINVAL;
741 			}
742 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
743 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
744 			hw.sample_rate = p->sample_rate;
745 		}
746 
747 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
748 		if (mode == AUMODE_PLAY) {
749 			sc->sc_o.rate = rate;
750 			sc->sc_o.tc = tc;
751 			sc->sc_o.modep = m;
752 			sc->sc_o.bmode = bmode;
753 			sc->sc_o.dmachan = chan;
754 		} else {
755 			sc->sc_i.rate = rate;
756 			sc->sc_i.tc = tc;
757 			sc->sc_i.modep = m;
758 			sc->sc_i.bmode = bmode;
759 			sc->sc_i.dmachan = chan;
760 		}
761 
762 		if (swcode != NULL)
763 			fil->append(fil, swcode, &hw);
764 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
765 			 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
766 			 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
767 			 p->sample_rate, p->precision, p->channels,
768 			 p->encoding, tc, m->cmd, bmode, m->cmdchan));
769 
770 	}
771 
772 	if (sc->sc_fullduplex &&
773 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
774 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
775 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
776 			 "odma=%d\n", sc->sc_fullduplex, usemode,
777 			 sc->sc_i.dmachan, sc->sc_o.dmachan));
778 		if (sc->sc_o.dmachan == sc->sc_drq8) {
779 			/* Use 16 bit DMA for playing by expanding the samples. */
780 			hw.precision = hw.validbits = 16;
781 			pfil->append(pfil, linear8_to_linear16, &hw);
782 			sc->sc_o.modep = &sbpmodes[PLAY16];
783 			sc->sc_o.dmachan = sc->sc_drq16;
784 		} else {
785 			return EINVAL;
786 		}
787 	}
788 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
789 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
790 
791 	return 0;
792 }
793 
794 void
795 sbdsp_set_ifilter(void *addr, int which)
796 {
797 	struct sbdsp_softc *sc;
798 	int mixval;
799 
800 	sc = addr;
801 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
802 	switch (which) {
803 	case 0:
804 		mixval |= SBP_FILTER_OFF;
805 		break;
806 	case SB_TREBLE:
807 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
808 		break;
809 	case SB_BASS:
810 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
811 		break;
812 	default:
813 		return;
814 	}
815 	sc->in_filter = mixval & SBP_IFILTER_MASK;
816 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
817 }
818 
819 int
820 sbdsp_get_ifilter(void *addr)
821 {
822 	struct sbdsp_softc *sc;
823 
824 	sc = addr;
825 	sc->in_filter =
826 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
827 	switch (sc->in_filter) {
828 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
829 		return SB_TREBLE;
830 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
831 		return SB_BASS;
832 	default:
833 		return 0;
834 	}
835 }
836 
837 int
838 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
839 {
840 	int bitsl, bitsr;
841 	int sbport;
842 
843 	if (sc->sc_open == SB_OPEN_MIDI)
844 		return EBUSY;
845 
846 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
847 		 sc->sc_mixer_model, mask));
848 
849 	switch(sc->sc_mixer_model) {
850 	case SBM_NONE:
851 		return EINVAL;
852 	case SBM_CT1335:
853 		if (mask != (1 << SB_MIC_VOL))
854 			return EINVAL;
855 		break;
856 	case SBM_CT1345:
857 		switch (mask) {
858 		case 1 << SB_MIC_VOL:
859 			sbport = SBP_FROM_MIC;
860 			break;
861 		case 1 << SB_LINE_IN_VOL:
862 			sbport = SBP_FROM_LINE;
863 			break;
864 		case 1 << SB_CD_VOL:
865 			sbport = SBP_FROM_CD;
866 			break;
867 		default:
868 			return EINVAL;
869 		}
870 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
871 		break;
872 	case SBM_CT1XX5:
873 	case SBM_CT1745:
874 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
875 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
876 			return EINVAL;
877 		bitsr = 0;
878 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
879 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
880 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
881 		bitsl = SB_SRC_R_TO_L(bitsr);
882 		if (mask & (1<<SB_MIC_VOL)) {
883 			bitsl |= SBP_MIC_SRC;
884 			bitsr |= SBP_MIC_SRC;
885 		}
886 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
887 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
888 		break;
889 	}
890 	sc->in_mask = mask;
891 
892 	return 0;
893 }
894 
895 int
896 sbdsp_speaker_ctl(void *addr, int newstate)
897 {
898 	struct sbdsp_softc *sc;
899 
900 	sc = addr;
901 	if (sc->sc_open == SB_OPEN_MIDI)
902 		return EBUSY;
903 
904 	if ((newstate == SPKR_ON) &&
905 	    (sc->spkr_state == SPKR_OFF)) {
906 		sbdsp_spkron(sc);
907 		sc->spkr_state = SPKR_ON;
908 	}
909 	if ((newstate == SPKR_OFF) &&
910 	    (sc->spkr_state == SPKR_ON)) {
911 		sbdsp_spkroff(sc);
912 		sc->spkr_state = SPKR_OFF;
913 	}
914 	return 0;
915 }
916 
917 int
918 sbdsp_round_blocksize(
919 	void *addr,
920 	int blk,
921 	int mode,
922 	const audio_params_t *param)
923 {
924 	return blk & -4;	/* round to biggest sample size */
925 }
926 
927 int
928 sbdsp_open(void *addr, int flags)
929 {
930 	struct sbdsp_softc *sc;
931 	int error, state;
932 
933 	sc = addr;
934 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
935 
936 	if (sc->sc_open != SB_CLOSED)
937 		return EBUSY;
938 	sc->sc_open = SB_OPEN_AUDIO;
939 	state = 0;
940 
941 	if (sc->sc_drq8 != -1) {
942 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
943 		if (error != 0)
944 			goto bad;
945 		state |= 1;
946 	}
947 
948 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
949 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
950 		if (error != 0)
951 			goto bad;
952 		state |= 2;
953 	}
954 
955 
956 	if (sbdsp_reset(sc) != 0) {
957 		error = EIO;
958 		goto bad;
959 	}
960 
961 	if (ISSBPRO(sc) &&
962 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
963 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
964 		/* we'll readjust when it's time for DMA. */
965 	}
966 
967 	/*
968 	 * Leave most things as they were; users must change things if
969 	 * the previous process didn't leave it they way they wanted.
970 	 * Looked at another way, it's easy to set up a configuration
971 	 * in one program and leave it for another to inherit.
972 	 */
973 	DPRINTF(("sbdsp_open: opened\n"));
974 
975 	return 0;
976 
977 bad:
978 	if (state & 1)
979 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
980 	if (state & 2)
981 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
982 
983 	sc->sc_open = SB_CLOSED;
984 	return error;
985 }
986 
987 void
988 sbdsp_close(void *addr)
989 {
990 	struct sbdsp_softc *sc;
991 
992 	sc = addr;
993 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
994 
995 	sbdsp_spkroff(sc);
996 	sc->spkr_state = SPKR_OFF;
997 
998 	sc->sc_intr8 = 0;
999 	sc->sc_intr16 = 0;
1000 
1001 	if (sc->sc_drq8 != -1)
1002 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
1003 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
1004 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
1005 
1006 	sc->sc_open = SB_CLOSED;
1007 	DPRINTF(("sbdsp_close: closed\n"));
1008 }
1009 
1010 /*
1011  * Lower-level routines
1012  */
1013 
1014 /*
1015  * Reset the card.
1016  * Return non-zero if the card isn't detected.
1017  */
1018 int
1019 sbdsp_reset(struct sbdsp_softc *sc)
1020 {
1021 	bus_space_tag_t iot;
1022 	bus_space_handle_t ioh;
1023 
1024 	iot = sc->sc_iot;
1025 	ioh = sc->sc_ioh;
1026 	sc->sc_intr8 = 0;
1027 	sc->sc_intr16 = 0;
1028 	sc->sc_intrm = 0;
1029 
1030 	/*
1031 	 * See SBK, section 11.3.
1032 	 * We pulse a reset signal into the card.
1033 	 * Gee, what a brilliant hardware design.
1034 	 */
1035 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1036 	delay(10);
1037 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1038 	delay(30);
1039 	if (sbdsp_rdsp(sc) != SB_MAGIC)
1040 		return -1;
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Write a byte to the dsp.
1047  * We are at the mercy of the card as we use a
1048  * polling loop and wait until it can take the byte.
1049  */
1050 int
1051 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
1052 {
1053 	bus_space_tag_t iot;
1054 	bus_space_handle_t ioh;
1055 	int i;
1056 	u_char x;
1057 
1058 	iot = sc->sc_iot;
1059 	ioh = sc->sc_ioh;
1060 	for (i = SBDSP_NPOLL; --i >= 0; ) {
1061 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1062 		delay(10);
1063 		if ((x & SB_DSP_BUSY) == 0) {
1064 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1065 			delay(10);
1066 			return 0;
1067 		}
1068 	}
1069 	++sberr.wdsp;
1070 	return -1;
1071 }
1072 
1073 /*
1074  * Read a byte from the DSP, using polling.
1075  */
1076 int
1077 sbdsp_rdsp(struct sbdsp_softc *sc)
1078 {
1079 	bus_space_tag_t iot;
1080 	bus_space_handle_t ioh;
1081 	int i;
1082 	u_char x;
1083 
1084 	iot = sc->sc_iot;
1085 	ioh = sc->sc_ioh;
1086 	for (i = SBDSP_NPOLL; --i >= 0; ) {
1087 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1088 		delay(10);
1089 		if (x & SB_DSP_READY) {
1090 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1091 			delay(10);
1092 			return x;
1093 		}
1094 	}
1095 	++sberr.rdsp;
1096 	return -1;
1097 }
1098 
1099 void
1100 sbdsp_pause(struct sbdsp_softc *sc)
1101 {
1102 
1103 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1104 }
1105 
1106 /*
1107  * Turn on the speaker.  The SBK documention says this operation
1108  * can take up to 1/10 of a second.  Higher level layers should
1109  * probably let the task sleep for this amount of time after
1110  * calling here.  Otherwise, things might not work (because
1111  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1112  *
1113  * These engineers had their heads up their ass when
1114  * they designed this card.
1115  */
1116 void
1117 sbdsp_spkron(struct sbdsp_softc *sc)
1118 {
1119 
1120 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1121 	sbdsp_pause(sc);
1122 }
1123 
1124 /*
1125  * Turn off the speaker; see comment above.
1126  */
1127 void
1128 sbdsp_spkroff(struct sbdsp_softc *sc)
1129 {
1130 
1131 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1132 	sbdsp_pause(sc);
1133 }
1134 
1135 /*
1136  * Read the version number out of the card.
1137  * Store version information in the softc.
1138  */
1139 void
1140 sbversion(struct sbdsp_softc *sc)
1141 {
1142 	int v;
1143 
1144 	sc->sc_model = SB_UNK;
1145 	sc->sc_version = 0;
1146 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1147 		return;
1148 	v = sbdsp_rdsp(sc) << 8;
1149 	v |= sbdsp_rdsp(sc);
1150 	if (v < 0)
1151 		return;
1152 	sc->sc_version = v;
1153 	switch(SBVER_MAJOR(v)) {
1154 	case 1:
1155 		sc->sc_mixer_model = SBM_NONE;
1156 		sc->sc_model = SB_1;
1157 		break;
1158 	case 2:
1159 		/* Some SB2 have a mixer, some don't. */
1160 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1161 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
1162 		/* Check if we can read back the mixer values. */
1163 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1164 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
1165 			sc->sc_mixer_model = SBM_CT1335;
1166 		else
1167 			sc->sc_mixer_model = SBM_NONE;
1168 		if (SBVER_MINOR(v) == 0)
1169 			sc->sc_model = SB_20;
1170 		else
1171 			sc->sc_model = SB_2x;
1172 		break;
1173 	case 3:
1174 		sc->sc_mixer_model = SBM_CT1345;
1175 		sc->sc_model = SB_PRO;
1176 		break;
1177 	case 4:
1178 #if 0
1179 /* XXX This does not work */
1180 		/* Most SB16 have a tone controls, but some don't. */
1181 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1182 		/* Check if we can read back the mixer value. */
1183 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1184 			sc->sc_mixer_model = SBM_CT1745;
1185 		else
1186 			sc->sc_mixer_model = SBM_CT1XX5;
1187 #else
1188 		sc->sc_mixer_model = SBM_CT1745;
1189 #endif
1190 #if 0
1191 /* XXX figure out a good way of determining the model */
1192 		/* XXX what about SB_32 */
1193 		if (SBVER_MINOR(v) == 16)
1194 			sc->sc_model = SB_64;
1195 		else
1196 #endif
1197 			sc->sc_model = SB_16;
1198 		break;
1199 	}
1200 }
1201 
1202 int
1203 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
1204 {
1205 
1206 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1207 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1208 	    sbdsp_wdsp(sc, tc) < 0)
1209 		return EIO;
1210 	return 0;
1211 }
1212 
1213 int
1214 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
1215 {
1216 
1217 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1218 	if (sbdsp_wdsp(sc, cmd) < 0 ||
1219 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
1220 	    sbdsp_wdsp(sc, rate) < 0)
1221 		return EIO;
1222 	return 0;
1223 }
1224 
1225 int
1226 sbdsp_trigger_input(
1227 	void *addr,
1228 	void *start, void *end,
1229 	int blksize,
1230 	void (*intr)(void *),
1231 	void *arg,
1232 	const audio_params_t *param)
1233 {
1234 	struct sbdsp_softc *sc;
1235 	int stereo;
1236 	int width;
1237 	int filter;
1238 
1239 	sc = addr;
1240 	stereo = param->channels == 2;
1241 	width = param->precision;
1242 #ifdef DIAGNOSTIC
1243 	if (stereo && (blksize & 1)) {
1244 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1245 		return EIO;
1246 	}
1247 	if (sc->sc_i.run != SB_NOTRUNNING)
1248 		printf("sbdsp_trigger_input: already running\n");
1249 #endif
1250 
1251 	sc->sc_intrr = intr;
1252 	sc->sc_argr = arg;
1253 
1254 	if (width == 8) {
1255 #ifdef DIAGNOSTIC
1256 		if (sc->sc_i.dmachan != sc->sc_drq8) {
1257 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1258 			    width, sc->sc_i.dmachan);
1259 			return EIO;
1260 		}
1261 #endif
1262 		sc->sc_intr8 = sbdsp_block_input;
1263 	} else {
1264 #ifdef DIAGNOSTIC
1265 		if (sc->sc_i.dmachan != sc->sc_drq16) {
1266 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1267 			    width, sc->sc_i.dmachan);
1268 			return EIO;
1269 		}
1270 #endif
1271 		sc->sc_intr16 = sbdsp_block_input;
1272 	}
1273 
1274 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1275 		blksize >>= 1;
1276 	--blksize;
1277 	sc->sc_i.blksize = blksize;
1278 
1279 	if (ISSBPRO(sc)) {
1280 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1281 			return EIO;
1282 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1283 		sbdsp_mix_write(sc, SBP_INFILTER,
1284 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1285 		    filter);
1286 	}
1287 
1288 	if (ISSB16CLASS(sc)) {
1289 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1290 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1291 				 sc->sc_i.rate));
1292 			return EIO;
1293 		}
1294 	} else {
1295 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1296 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1297 				 sc->sc_i.rate));
1298 			return EIO;
1299 		}
1300 	}
1301 
1302 	DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1303 	    start, end, sc->sc_i.dmachan));
1304 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1305 	    (char *)end - (char *)start, NULL,
1306 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1307 
1308 	return sbdsp_block_input(addr);
1309 }
1310 
1311 int
1312 sbdsp_block_input(void *addr)
1313 {
1314 	struct sbdsp_softc *sc;
1315 	int cc;
1316 
1317 	sc = addr;
1318 	cc = sc->sc_i.blksize;
1319 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1320 
1321 	if (sc->sc_i.run != SB_NOTRUNNING)
1322 		sc->sc_intrr(sc->sc_argr);
1323 
1324 	if (sc->sc_model == SB_1) {
1325 		/* Non-looping mode, start DMA */
1326 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1327 		    sbdsp_wdsp(sc, cc) < 0 ||
1328 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
1329 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1330 			return EIO;
1331 		}
1332 		sc->sc_i.run = SB_RUNNING;
1333 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
1334 		/* Initialize looping PCM */
1335 		if (ISSB16CLASS(sc)) {
1336 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1337 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1338 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1339 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1340 			    sbdsp_wdsp(sc, cc) < 0 ||
1341 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1342 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1343 				return EIO;
1344 			}
1345 		} else {
1346 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1347 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1348 			    sbdsp_wdsp(sc, cc) < 0 ||
1349 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1350 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1351 				return EIO;
1352 			}
1353 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1354 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1355 				return EIO;
1356 			}
1357 		}
1358 		sc->sc_i.run = SB_LOOPING;
1359 	}
1360 
1361 	return 0;
1362 }
1363 
1364 int
1365 sbdsp_trigger_output(
1366 	void *addr,
1367 	void *start, void *end,
1368 	int blksize,
1369 	void (*intr)(void *),
1370 	void *arg,
1371 	const audio_params_t *param)
1372 {
1373 	struct sbdsp_softc *sc;
1374 	int stereo;
1375 	int width;
1376 	int cmd;
1377 
1378 	sc = addr;
1379 	stereo = param->channels == 2;
1380 	width = param->precision;
1381 #ifdef DIAGNOSTIC
1382 	if (stereo && (blksize & 1)) {
1383 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1384 		return EIO;
1385 	}
1386 	if (sc->sc_o.run != SB_NOTRUNNING)
1387 		printf("sbdsp_trigger_output: already running\n");
1388 #endif
1389 
1390 	sc->sc_intrp = intr;
1391 	sc->sc_argp = arg;
1392 
1393 	if (width == 8) {
1394 #ifdef DIAGNOSTIC
1395 		if (sc->sc_o.dmachan != sc->sc_drq8) {
1396 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1397 			    width, sc->sc_o.dmachan);
1398 			return EIO;
1399 		}
1400 #endif
1401 		sc->sc_intr8 = sbdsp_block_output;
1402 	} else {
1403 #ifdef DIAGNOSTIC
1404 		if (sc->sc_o.dmachan != sc->sc_drq16) {
1405 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1406 			    width, sc->sc_o.dmachan);
1407 			return EIO;
1408 		}
1409 #endif
1410 		sc->sc_intr16 = sbdsp_block_output;
1411 	}
1412 
1413 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1414 		blksize >>= 1;
1415 	--blksize;
1416 	sc->sc_o.blksize = blksize;
1417 
1418 	if (ISSBPRO(sc)) {
1419 		/* make sure we re-set stereo mixer bit when we start output. */
1420 		sbdsp_mix_write(sc, SBP_STEREO,
1421 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1422 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1423 		cmd = sc->sc_o.modep->cmdchan;
1424 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1425 			return EIO;
1426 	}
1427 
1428 	if (ISSB16CLASS(sc)) {
1429 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1430 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1431 				 sc->sc_o.rate));
1432 			return EIO;
1433 		}
1434 	} else {
1435 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1436 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1437 				 sc->sc_o.rate));
1438 			return EIO;
1439 		}
1440 	}
1441 
1442 	DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1443 	    start, end, sc->sc_o.dmachan));
1444 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1445 	    (char *)end - (char *)start, NULL,
1446 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1447 
1448 	return sbdsp_block_output(addr);
1449 }
1450 
1451 int
1452 sbdsp_block_output(void *addr)
1453 {
1454 	struct sbdsp_softc *sc;
1455 	int cc;
1456 
1457 	sc = addr;
1458 	cc = sc->sc_o.blksize;
1459 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1460 
1461 	if (sc->sc_o.run != SB_NOTRUNNING)
1462 		sc->sc_intrp(sc->sc_argp);
1463 
1464 	if (sc->sc_model == SB_1) {
1465 		/* Non-looping mode, initialized. Start DMA and PCM */
1466 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1467 		    sbdsp_wdsp(sc, cc) < 0 ||
1468 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
1469 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1470 			return EIO;
1471 		}
1472 		sc->sc_o.run = SB_RUNNING;
1473 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
1474 		/* Initialize looping PCM */
1475 		if (ISSB16CLASS(sc)) {
1476 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1477 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1478 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1479 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1480 			    sbdsp_wdsp(sc, cc) < 0 ||
1481 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1482 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1483 				return EIO;
1484 			}
1485 		} else {
1486 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1487 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1488 			    sbdsp_wdsp(sc, cc) < 0 ||
1489 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1490 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1491 				return EIO;
1492 			}
1493 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1494 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1495 				return EIO;
1496 			}
1497 		}
1498 		sc->sc_o.run = SB_LOOPING;
1499 	}
1500 
1501 	return 0;
1502 }
1503 
1504 int
1505 sbdsp_halt_output(void *addr)
1506 {
1507 	struct sbdsp_softc *sc;
1508 
1509 	sc = addr;
1510 	if (sc->sc_o.run != SB_NOTRUNNING) {
1511 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1512 			printf("sbdsp_halt_output: failed to halt\n");
1513 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1514 		sc->sc_o.run = SB_NOTRUNNING;
1515 	}
1516 	return 0;
1517 }
1518 
1519 int
1520 sbdsp_halt_input(void *addr)
1521 {
1522 	struct sbdsp_softc *sc;
1523 
1524 	sc = addr;
1525 	if (sc->sc_i.run != SB_NOTRUNNING) {
1526 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1527 			printf("sbdsp_halt_input: failed to halt\n");
1528 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1529 		sc->sc_i.run = SB_NOTRUNNING;
1530 	}
1531 	return 0;
1532 }
1533 
1534 /*
1535  * Only the DSP unit on the sound blaster generates interrupts.
1536  * There are three cases of interrupt: reception of a midi byte
1537  * (when mode is enabled), completion of DMA transmission, or
1538  * completion of a DMA reception.
1539  *
1540  * If there is interrupt sharing or a spurious interrupt occurs
1541  * there is no way to distinguish this on an SB2.  So if you have
1542  * an SB2 and experience problems, buy an SB16 (it's only $40).
1543  */
1544 int
1545 sbdsp_intr(void *arg)
1546 {
1547 	struct sbdsp_softc *sc;
1548 	u_char irq;
1549 
1550 	sc = arg;
1551 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1552 		   sc->sc_intr8, sc->sc_intr16));
1553 	if (ISSB16CLASS(sc)) {
1554 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1555 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1556 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1557 			return 0;
1558 		}
1559 	} else {
1560 		/* XXXX CHECK FOR INTERRUPT */
1561 		irq = SBP_IRQ_DMA8;
1562 	}
1563 
1564 	sc->sc_interrupts++;
1565 	delay(10);		/* XXX why? */
1566 
1567 	/* clear interrupt */
1568 	if (irq & SBP_IRQ_DMA8) {
1569 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1570 		if (sc->sc_intr8)
1571 			sc->sc_intr8(arg);
1572 	}
1573 	if (irq & SBP_IRQ_DMA16) {
1574 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1575 		if (sc->sc_intr16)
1576 			sc->sc_intr16(arg);
1577 	}
1578 #if NMPU > 0
1579 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1580 		mpu_intr(sc->sc_mpudev);
1581 	}
1582 #endif
1583 	return 1;
1584 }
1585 
1586 /* Like val & mask, but make sure the result is correctly rounded. */
1587 #define MAXVAL 256
1588 static int
1589 sbdsp_adjust(int val, int mask)
1590 {
1591 
1592 	val += (MAXVAL - mask) >> 1;
1593 	if (val >= MAXVAL)
1594 		val = MAXVAL-1;
1595 	return val & mask;
1596 }
1597 
1598 void
1599 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
1600 {
1601 	int src, gain;
1602 
1603 	switch(sc->sc_mixer_model) {
1604 	case SBM_NONE:
1605 		return;
1606 	case SBM_CT1335:
1607 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1608 		switch(port) {
1609 		case SB_MASTER_VOL:
1610 			src = SBP_1335_MASTER_VOL;
1611 			break;
1612 		case SB_MIDI_VOL:
1613 			src = SBP_1335_MIDI_VOL;
1614 			break;
1615 		case SB_CD_VOL:
1616 			src = SBP_1335_CD_VOL;
1617 			break;
1618 		case SB_VOICE_VOL:
1619 			src = SBP_1335_VOICE_VOL;
1620 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1621 			break;
1622 		default:
1623 			return;
1624 		}
1625 		sbdsp_mix_write(sc, src, gain);
1626 		break;
1627 	case SBM_CT1345:
1628 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1629 				      sc->gain[port][SB_RIGHT]);
1630 		switch (port) {
1631 		case SB_MIC_VOL:
1632 			src = SBP_MIC_VOL;
1633 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1634 			break;
1635 		case SB_MASTER_VOL:
1636 			src = SBP_MASTER_VOL;
1637 			break;
1638 		case SB_LINE_IN_VOL:
1639 			src = SBP_LINE_VOL;
1640 			break;
1641 		case SB_VOICE_VOL:
1642 			src = SBP_VOICE_VOL;
1643 			break;
1644 		case SB_MIDI_VOL:
1645 			src = SBP_MIDI_VOL;
1646 			break;
1647 		case SB_CD_VOL:
1648 			src = SBP_CD_VOL;
1649 			break;
1650 		default:
1651 			return;
1652 		}
1653 		sbdsp_mix_write(sc, src, gain);
1654 		break;
1655 	case SBM_CT1XX5:
1656 	case SBM_CT1745:
1657 		switch (port) {
1658 		case SB_MIC_VOL:
1659 			src = SB16P_MIC_L;
1660 			break;
1661 		case SB_MASTER_VOL:
1662 			src = SB16P_MASTER_L;
1663 			break;
1664 		case SB_LINE_IN_VOL:
1665 			src = SB16P_LINE_L;
1666 			break;
1667 		case SB_VOICE_VOL:
1668 			src = SB16P_VOICE_L;
1669 			break;
1670 		case SB_MIDI_VOL:
1671 			src = SB16P_MIDI_L;
1672 			break;
1673 		case SB_CD_VOL:
1674 			src = SB16P_CD_L;
1675 			break;
1676 		case SB_INPUT_GAIN:
1677 			src = SB16P_INPUT_GAIN_L;
1678 			break;
1679 		case SB_OUTPUT_GAIN:
1680 			src = SB16P_OUTPUT_GAIN_L;
1681 			break;
1682 		case SB_TREBLE:
1683 			src = SB16P_TREBLE_L;
1684 			break;
1685 		case SB_BASS:
1686 			src = SB16P_BASS_L;
1687 			break;
1688 		case SB_PCSPEAKER:
1689 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1690 			return;
1691 		default:
1692 			return;
1693 		}
1694 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1695 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1696 		break;
1697 	}
1698 }
1699 
1700 int
1701 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1702 {
1703 	struct sbdsp_softc *sc;
1704 	int lgain, rgain;
1705 	int mask, bits;
1706 	int lmask, rmask, lbits, rbits;
1707 	int mute, swap;
1708 
1709 	sc = addr;
1710 	if (sc->sc_open == SB_OPEN_MIDI)
1711 		return EBUSY;
1712 
1713 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1714 	    cp->un.value.num_channels));
1715 
1716 	if (sc->sc_mixer_model == SBM_NONE)
1717 		return EINVAL;
1718 
1719 	switch (cp->dev) {
1720 	case SB_TREBLE:
1721 	case SB_BASS:
1722 		if (sc->sc_mixer_model == SBM_CT1345 ||
1723 		    sc->sc_mixer_model == SBM_CT1XX5) {
1724 			if (cp->type != AUDIO_MIXER_ENUM)
1725 				return EINVAL;
1726 			switch (cp->dev) {
1727 			case SB_TREBLE:
1728 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1729 				return 0;
1730 			case SB_BASS:
1731 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1732 				return 0;
1733 			}
1734 		}
1735 	case SB_PCSPEAKER:
1736 	case SB_INPUT_GAIN:
1737 	case SB_OUTPUT_GAIN:
1738 		if (!ISSBM1745(sc))
1739 			return EINVAL;
1740 	case SB_MIC_VOL:
1741 	case SB_LINE_IN_VOL:
1742 		if (sc->sc_mixer_model == SBM_CT1335)
1743 			return EINVAL;
1744 	case SB_VOICE_VOL:
1745 	case SB_MIDI_VOL:
1746 	case SB_CD_VOL:
1747 	case SB_MASTER_VOL:
1748 		if (cp->type != AUDIO_MIXER_VALUE)
1749 			return EINVAL;
1750 
1751 		/*
1752 		 * All the mixer ports are stereo except for the microphone.
1753 		 * If we get a single-channel gain value passed in, then we
1754 		 * duplicate it to both left and right channels.
1755 		 */
1756 
1757 		switch (cp->dev) {
1758 		case SB_MIC_VOL:
1759 			if (cp->un.value.num_channels != 1)
1760 				return EINVAL;
1761 
1762 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1763 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1764 			break;
1765 		case SB_PCSPEAKER:
1766 			if (cp->un.value.num_channels != 1)
1767 				return EINVAL;
1768 			/* fall into */
1769 		case SB_INPUT_GAIN:
1770 		case SB_OUTPUT_GAIN:
1771 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
1772 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1773 			break;
1774 		default:
1775 			switch (cp->un.value.num_channels) {
1776 			case 1:
1777 				lgain = rgain = SB_ADJUST_GAIN(sc,
1778 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1779 				break;
1780 			case 2:
1781 				if (sc->sc_mixer_model == SBM_CT1335)
1782 					return EINVAL;
1783 				lgain = SB_ADJUST_GAIN(sc,
1784 				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1785 				rgain = SB_ADJUST_GAIN(sc,
1786 				    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1787 				break;
1788 			default:
1789 				return EINVAL;
1790 			}
1791 			break;
1792 		}
1793 		sc->gain[cp->dev][SB_LEFT]  = lgain;
1794 		sc->gain[cp->dev][SB_RIGHT] = rgain;
1795 
1796 		sbdsp_set_mixer_gain(sc, cp->dev);
1797 		break;
1798 
1799 	case SB_RECORD_SOURCE:
1800 		if (ISSBM1745(sc)) {
1801 			if (cp->type != AUDIO_MIXER_SET)
1802 				return EINVAL;
1803 			return sbdsp_set_in_ports(sc, cp->un.mask);
1804 		} else {
1805 			if (cp->type != AUDIO_MIXER_ENUM)
1806 				return EINVAL;
1807 			sc->in_port = cp->un.ord;
1808 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1809 		}
1810 		break;
1811 
1812 	case SB_AGC:
1813 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1814 			return EINVAL;
1815 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1816 		break;
1817 
1818 	case SB_CD_OUT_MUTE:
1819 		mask = SB16P_SW_CD;
1820 		goto omute;
1821 	case SB_MIC_OUT_MUTE:
1822 		mask = SB16P_SW_MIC;
1823 		goto omute;
1824 	case SB_LINE_OUT_MUTE:
1825 		mask = SB16P_SW_LINE;
1826 	omute:
1827 		if (cp->type != AUDIO_MIXER_ENUM)
1828 			return EINVAL;
1829 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1830 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1831 		if (cp->un.ord)
1832 			bits = bits & ~mask;
1833 		else
1834 			bits = bits | mask;
1835 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1836 		break;
1837 
1838 	case SB_MIC_IN_MUTE:
1839 	case SB_MIC_SWAP:
1840 		lmask = rmask = SB16P_SW_MIC;
1841 		goto imute;
1842 	case SB_CD_IN_MUTE:
1843 	case SB_CD_SWAP:
1844 		lmask = SB16P_SW_CD_L;
1845 		rmask = SB16P_SW_CD_R;
1846 		goto imute;
1847 	case SB_LINE_IN_MUTE:
1848 	case SB_LINE_SWAP:
1849 		lmask = SB16P_SW_LINE_L;
1850 		rmask = SB16P_SW_LINE_R;
1851 		goto imute;
1852 	case SB_MIDI_IN_MUTE:
1853 	case SB_MIDI_SWAP:
1854 		lmask = SB16P_SW_MIDI_L;
1855 		rmask = SB16P_SW_MIDI_R;
1856 	imute:
1857 		if (cp->type != AUDIO_MIXER_ENUM)
1858 			return EINVAL;
1859 		mask = lmask | rmask;
1860 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1861 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1862 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1863 		if (SB_IS_IN_MUTE(cp->dev)) {
1864 			mute = cp->dev;
1865 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1866 		} else {
1867 			swap = cp->dev;
1868 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1869 		}
1870 		if (sc->gain[swap][SB_LR]) {
1871 			mask = lmask;
1872 			lmask = rmask;
1873 			rmask = mask;
1874 		}
1875 		if (!sc->gain[mute][SB_LR]) {
1876 			lbits = lbits | lmask;
1877 			rbits = rbits | rmask;
1878 		}
1879 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1880 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1881 		break;
1882 
1883 	default:
1884 		return EINVAL;
1885 	}
1886 
1887 	return 0;
1888 }
1889 
1890 int
1891 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1892 {
1893 	struct sbdsp_softc *sc;
1894 
1895 	sc = addr;
1896 	if (sc->sc_open == SB_OPEN_MIDI)
1897 		return EBUSY;
1898 
1899 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1900 
1901 	if (sc->sc_mixer_model == SBM_NONE)
1902 		return EINVAL;
1903 
1904 	switch (cp->dev) {
1905 	case SB_TREBLE:
1906 	case SB_BASS:
1907 		if (sc->sc_mixer_model == SBM_CT1345 ||
1908 		    sc->sc_mixer_model == SBM_CT1XX5) {
1909 			switch (cp->dev) {
1910 			case SB_TREBLE:
1911 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1912 				return 0;
1913 			case SB_BASS:
1914 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1915 				return 0;
1916 			}
1917 		}
1918 	case SB_PCSPEAKER:
1919 	case SB_INPUT_GAIN:
1920 	case SB_OUTPUT_GAIN:
1921 		if (!ISSBM1745(sc))
1922 			return EINVAL;
1923 	case SB_MIC_VOL:
1924 	case SB_LINE_IN_VOL:
1925 		if (sc->sc_mixer_model == SBM_CT1335)
1926 			return EINVAL;
1927 	case SB_VOICE_VOL:
1928 	case SB_MIDI_VOL:
1929 	case SB_CD_VOL:
1930 	case SB_MASTER_VOL:
1931 		switch (cp->dev) {
1932 		case SB_MIC_VOL:
1933 		case SB_PCSPEAKER:
1934 			if (cp->un.value.num_channels != 1)
1935 				return EINVAL;
1936 			/* fall into */
1937 		default:
1938 			switch (cp->un.value.num_channels) {
1939 			case 1:
1940 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1941 				    sc->gain[cp->dev][SB_LEFT];
1942 				break;
1943 			case 2:
1944 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1945 				    sc->gain[cp->dev][SB_LEFT];
1946 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1947 				    sc->gain[cp->dev][SB_RIGHT];
1948 				break;
1949 			default:
1950 				return EINVAL;
1951 			}
1952 			break;
1953 		}
1954 		break;
1955 
1956 	case SB_RECORD_SOURCE:
1957 		if (ISSBM1745(sc))
1958 			cp->un.mask = sc->in_mask;
1959 		else
1960 			cp->un.ord = sc->in_port;
1961 		break;
1962 
1963 	case SB_AGC:
1964 		if (!ISSBM1745(sc))
1965 			return EINVAL;
1966 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1967 		break;
1968 
1969 	case SB_CD_IN_MUTE:
1970 	case SB_MIC_IN_MUTE:
1971 	case SB_LINE_IN_MUTE:
1972 	case SB_MIDI_IN_MUTE:
1973 	case SB_CD_SWAP:
1974 	case SB_MIC_SWAP:
1975 	case SB_LINE_SWAP:
1976 	case SB_MIDI_SWAP:
1977 	case SB_CD_OUT_MUTE:
1978 	case SB_MIC_OUT_MUTE:
1979 	case SB_LINE_OUT_MUTE:
1980 		cp->un.ord = sc->gain[cp->dev][SB_LR];
1981 		break;
1982 
1983 	default:
1984 		return EINVAL;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 int
1991 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
1992 {
1993 	struct sbdsp_softc *sc = addr;
1994 	int chan, class, is1745;
1995 
1996 	sc = addr;
1997 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1998 		 sc->sc_mixer_model, dip->index));
1999 
2000 	if (sc->sc_mixer_model == SBM_NONE)
2001 		return ENXIO;
2002 
2003 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2004 	is1745 = ISSBM1745(sc);
2005 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2006 
2007 	switch (dip->index) {
2008 	case SB_MASTER_VOL:
2009 		dip->type = AUDIO_MIXER_VALUE;
2010 		dip->mixer_class = SB_OUTPUT_CLASS;
2011 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2012 		strcpy(dip->label.name, AudioNmaster);
2013 		dip->un.v.num_channels = chan;
2014 		strcpy(dip->un.v.units.name, AudioNvolume);
2015 		return 0;
2016 	case SB_MIDI_VOL:
2017 		dip->type = AUDIO_MIXER_VALUE;
2018 		dip->mixer_class = class;
2019 		dip->prev = AUDIO_MIXER_LAST;
2020 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2021 		strcpy(dip->label.name, AudioNfmsynth);
2022 		dip->un.v.num_channels = chan;
2023 		strcpy(dip->un.v.units.name, AudioNvolume);
2024 		return 0;
2025 	case SB_CD_VOL:
2026 		dip->type = AUDIO_MIXER_VALUE;
2027 		dip->mixer_class = class;
2028 		dip->prev = AUDIO_MIXER_LAST;
2029 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2030 		strcpy(dip->label.name, AudioNcd);
2031 		dip->un.v.num_channels = chan;
2032 		strcpy(dip->un.v.units.name, AudioNvolume);
2033 		return 0;
2034 	case SB_VOICE_VOL:
2035 		dip->type = AUDIO_MIXER_VALUE;
2036 		dip->mixer_class = class;
2037 		dip->prev = AUDIO_MIXER_LAST;
2038 		dip->next = AUDIO_MIXER_LAST;
2039 		strcpy(dip->label.name, AudioNdac);
2040 		dip->un.v.num_channels = chan;
2041 		strcpy(dip->un.v.units.name, AudioNvolume);
2042 		return 0;
2043 	case SB_OUTPUT_CLASS:
2044 		dip->type = AUDIO_MIXER_CLASS;
2045 		dip->mixer_class = SB_OUTPUT_CLASS;
2046 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2047 		strcpy(dip->label.name, AudioCoutputs);
2048 		return 0;
2049 	}
2050 
2051 	if (sc->sc_mixer_model == SBM_CT1335)
2052 		return ENXIO;
2053 
2054 	switch (dip->index) {
2055 	case SB_MIC_VOL:
2056 		dip->type = AUDIO_MIXER_VALUE;
2057 		dip->mixer_class = class;
2058 		dip->prev = AUDIO_MIXER_LAST;
2059 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2060 		strcpy(dip->label.name, AudioNmicrophone);
2061 		dip->un.v.num_channels = 1;
2062 		strcpy(dip->un.v.units.name, AudioNvolume);
2063 		return 0;
2064 
2065 	case SB_LINE_IN_VOL:
2066 		dip->type = AUDIO_MIXER_VALUE;
2067 		dip->mixer_class = class;
2068 		dip->prev = AUDIO_MIXER_LAST;
2069 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2070 		strcpy(dip->label.name, AudioNline);
2071 		dip->un.v.num_channels = 2;
2072 		strcpy(dip->un.v.units.name, AudioNvolume);
2073 		return 0;
2074 
2075 	case SB_RECORD_SOURCE:
2076 		dip->mixer_class = SB_RECORD_CLASS;
2077 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2078 		strcpy(dip->label.name, AudioNsource);
2079 		if (ISSBM1745(sc)) {
2080 			dip->type = AUDIO_MIXER_SET;
2081 			dip->un.s.num_mem = 4;
2082 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2083 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2084 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
2085 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2086 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2087 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2088 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2089 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2090 		} else {
2091 			dip->type = AUDIO_MIXER_ENUM;
2092 			dip->un.e.num_mem = 3;
2093 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2094 			dip->un.e.member[0].ord = SB_MIC_VOL;
2095 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
2096 			dip->un.e.member[1].ord = SB_CD_VOL;
2097 			strcpy(dip->un.e.member[2].label.name, AudioNline);
2098 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2099 		}
2100 		return 0;
2101 
2102 	case SB_BASS:
2103 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2104 		strcpy(dip->label.name, AudioNbass);
2105 		if (sc->sc_mixer_model == SBM_CT1745) {
2106 			dip->type = AUDIO_MIXER_VALUE;
2107 			dip->mixer_class = SB_EQUALIZATION_CLASS;
2108 			dip->un.v.num_channels = 2;
2109 			strcpy(dip->un.v.units.name, AudioNbass);
2110 		} else {
2111 			dip->type = AUDIO_MIXER_ENUM;
2112 			dip->mixer_class = SB_INPUT_CLASS;
2113 			dip->un.e.num_mem = 2;
2114 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
2115 			dip->un.e.member[0].ord = 0;
2116 			strcpy(dip->un.e.member[1].label.name, AudioNon);
2117 			dip->un.e.member[1].ord = 1;
2118 		}
2119 		return 0;
2120 
2121 	case SB_TREBLE:
2122 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2123 		strcpy(dip->label.name, AudioNtreble);
2124 		if (sc->sc_mixer_model == SBM_CT1745) {
2125 			dip->type = AUDIO_MIXER_VALUE;
2126 			dip->mixer_class = SB_EQUALIZATION_CLASS;
2127 			dip->un.v.num_channels = 2;
2128 			strcpy(dip->un.v.units.name, AudioNtreble);
2129 		} else {
2130 			dip->type = AUDIO_MIXER_ENUM;
2131 			dip->mixer_class = SB_INPUT_CLASS;
2132 			dip->un.e.num_mem = 2;
2133 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
2134 			dip->un.e.member[0].ord = 0;
2135 			strcpy(dip->un.e.member[1].label.name, AudioNon);
2136 			dip->un.e.member[1].ord = 1;
2137 		}
2138 		return 0;
2139 
2140 	case SB_RECORD_CLASS:			/* record source class */
2141 		dip->type = AUDIO_MIXER_CLASS;
2142 		dip->mixer_class = SB_RECORD_CLASS;
2143 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2144 		strcpy(dip->label.name, AudioCrecord);
2145 		return 0;
2146 
2147 	case SB_INPUT_CLASS:
2148 		dip->type = AUDIO_MIXER_CLASS;
2149 		dip->mixer_class = SB_INPUT_CLASS;
2150 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2151 		strcpy(dip->label.name, AudioCinputs);
2152 		return 0;
2153 
2154 	}
2155 
2156 	if (sc->sc_mixer_model == SBM_CT1345)
2157 		return ENXIO;
2158 
2159 	switch(dip->index) {
2160 	case SB_PCSPEAKER:
2161 		dip->type = AUDIO_MIXER_VALUE;
2162 		dip->mixer_class = SB_INPUT_CLASS;
2163 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2164 		strcpy(dip->label.name, "pc_speaker");
2165 		dip->un.v.num_channels = 1;
2166 		strcpy(dip->un.v.units.name, AudioNvolume);
2167 		return 0;
2168 
2169 	case SB_INPUT_GAIN:
2170 		dip->type = AUDIO_MIXER_VALUE;
2171 		dip->mixer_class = SB_INPUT_CLASS;
2172 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2173 		strcpy(dip->label.name, AudioNinput);
2174 		dip->un.v.num_channels = 2;
2175 		strcpy(dip->un.v.units.name, AudioNvolume);
2176 		return 0;
2177 
2178 	case SB_OUTPUT_GAIN:
2179 		dip->type = AUDIO_MIXER_VALUE;
2180 		dip->mixer_class = SB_OUTPUT_CLASS;
2181 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2182 		strcpy(dip->label.name, AudioNoutput);
2183 		dip->un.v.num_channels = 2;
2184 		strcpy(dip->un.v.units.name, AudioNvolume);
2185 		return 0;
2186 
2187 	case SB_AGC:
2188 		dip->type = AUDIO_MIXER_ENUM;
2189 		dip->mixer_class = SB_INPUT_CLASS;
2190 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2191 		strcpy(dip->label.name, "agc");
2192 		dip->un.e.num_mem = 2;
2193 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2194 		dip->un.e.member[0].ord = 0;
2195 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2196 		dip->un.e.member[1].ord = 1;
2197 		return 0;
2198 
2199 	case SB_EQUALIZATION_CLASS:
2200 		dip->type = AUDIO_MIXER_CLASS;
2201 		dip->mixer_class = SB_EQUALIZATION_CLASS;
2202 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2203 		strcpy(dip->label.name, AudioCequalization);
2204 		return 0;
2205 
2206 	case SB_CD_IN_MUTE:
2207 		dip->prev = SB_CD_VOL;
2208 		dip->next = SB_CD_SWAP;
2209 		dip->mixer_class = SB_INPUT_CLASS;
2210 		goto mute;
2211 
2212 	case SB_MIC_IN_MUTE:
2213 		dip->prev = SB_MIC_VOL;
2214 		dip->next = SB_MIC_SWAP;
2215 		dip->mixer_class = SB_INPUT_CLASS;
2216 		goto mute;
2217 
2218 	case SB_LINE_IN_MUTE:
2219 		dip->prev = SB_LINE_IN_VOL;
2220 		dip->next = SB_LINE_SWAP;
2221 		dip->mixer_class = SB_INPUT_CLASS;
2222 		goto mute;
2223 
2224 	case SB_MIDI_IN_MUTE:
2225 		dip->prev = SB_MIDI_VOL;
2226 		dip->next = SB_MIDI_SWAP;
2227 		dip->mixer_class = SB_INPUT_CLASS;
2228 		goto mute;
2229 
2230 	case SB_CD_SWAP:
2231 		dip->prev = SB_CD_IN_MUTE;
2232 		dip->next = SB_CD_OUT_MUTE;
2233 		goto swap;
2234 
2235 	case SB_MIC_SWAP:
2236 		dip->prev = SB_MIC_IN_MUTE;
2237 		dip->next = SB_MIC_OUT_MUTE;
2238 		goto swap;
2239 
2240 	case SB_LINE_SWAP:
2241 		dip->prev = SB_LINE_IN_MUTE;
2242 		dip->next = SB_LINE_OUT_MUTE;
2243 		goto swap;
2244 
2245 	case SB_MIDI_SWAP:
2246 		dip->prev = SB_MIDI_IN_MUTE;
2247 		dip->next = AUDIO_MIXER_LAST;
2248 	swap:
2249 		dip->mixer_class = SB_INPUT_CLASS;
2250 		strcpy(dip->label.name, AudioNswap);
2251 		goto mute1;
2252 
2253 	case SB_CD_OUT_MUTE:
2254 		dip->prev = SB_CD_SWAP;
2255 		dip->next = AUDIO_MIXER_LAST;
2256 		dip->mixer_class = SB_OUTPUT_CLASS;
2257 		goto mute;
2258 
2259 	case SB_MIC_OUT_MUTE:
2260 		dip->prev = SB_MIC_SWAP;
2261 		dip->next = AUDIO_MIXER_LAST;
2262 		dip->mixer_class = SB_OUTPUT_CLASS;
2263 		goto mute;
2264 
2265 	case SB_LINE_OUT_MUTE:
2266 		dip->prev = SB_LINE_SWAP;
2267 		dip->next = AUDIO_MIXER_LAST;
2268 		dip->mixer_class = SB_OUTPUT_CLASS;
2269 	mute:
2270 		strcpy(dip->label.name, AudioNmute);
2271 	mute1:
2272 		dip->type = AUDIO_MIXER_ENUM;
2273 		dip->un.e.num_mem = 2;
2274 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2275 		dip->un.e.member[0].ord = 0;
2276 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2277 		dip->un.e.member[1].ord = 1;
2278 		return 0;
2279 
2280 	}
2281 
2282 	return ENXIO;
2283 }
2284 
2285 void *
2286 sb_malloc(void *addr, int direction, size_t size,
2287 	  struct malloc_type *pool, int flags)
2288 {
2289 	struct sbdsp_softc *sc;
2290 	int drq;
2291 
2292 	sc = addr;
2293 	if (sc->sc_drq8 != -1)
2294 		drq = sc->sc_drq8;
2295 	else
2296 		drq = sc->sc_drq16;
2297 	return isa_malloc(sc->sc_ic, drq, size, pool, flags);
2298 }
2299 
2300 void
2301 sb_free(void *addr, void *ptr, struct malloc_type *pool)
2302 {
2303 
2304 	isa_free(ptr, pool);
2305 }
2306 
2307 size_t
2308 sb_round_buffersize(void *addr, int direction, size_t size)
2309 {
2310 	struct sbdsp_softc *sc;
2311 	bus_size_t maxsize;
2312 
2313 	sc = addr;
2314 	if (sc->sc_drq8 != -1)
2315 		maxsize = sc->sc_drq8_maxsize;
2316 	else
2317 		maxsize = sc->sc_drq16_maxsize;
2318 
2319 	if (size > maxsize)
2320 		size = maxsize;
2321 	return size;
2322 }
2323 
2324 paddr_t
2325 sb_mappage(void *addr, void *mem, off_t off, int prot)
2326 {
2327 
2328 	return isa_mappage(mem, off, prot);
2329 }
2330 
2331 int
2332 sbdsp_get_props(void *addr)
2333 {
2334 	struct sbdsp_softc *sc;
2335 
2336 	sc = addr;
2337 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2338 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2339 }
2340 
2341 #if NMPU > 0
2342 /*
2343  * MIDI related routines.
2344  */
2345 
2346 int
2347 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
2348 		void (*ointr)(void *), void *arg)
2349 {
2350 	struct sbdsp_softc *sc;
2351 
2352 	sc = addr;
2353 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2354 
2355 	if (sc->sc_open != SB_CLOSED)
2356 		return EBUSY;
2357 	if (sbdsp_reset(sc) != 0)
2358 		return EIO;
2359 
2360 	sc->sc_open = SB_OPEN_MIDI;
2361 
2362 	if (sc->sc_model >= SB_20)
2363 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2364 			return EIO;
2365 
2366 	sc->sc_intr8 = sbdsp_midi_intr;
2367 	sc->sc_intrm = iintr;
2368 	sc->sc_argm = arg;
2369 
2370 	return 0;
2371 }
2372 
2373 void
2374 sbdsp_midi_close(void *addr)
2375 {
2376 	struct sbdsp_softc *sc;
2377 
2378 	sc = addr;
2379 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2380 
2381 	if (sc->sc_model >= SB_20)
2382 		sbdsp_reset(sc); /* exit UART mode */
2383 
2384 	sc->sc_intrm = 0;
2385 	sc->sc_open = SB_CLOSED;
2386 }
2387 
2388 int
2389 sbdsp_midi_output(void *addr, int d)
2390 {
2391 	struct sbdsp_softc *sc;
2392 
2393 	sc = addr;
2394 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2395 		return EIO;
2396 	if (sbdsp_wdsp(sc, d))
2397 		return EIO;
2398 	return 0;
2399 }
2400 
2401 void
2402 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
2403 {
2404 	struct sbdsp_softc *sc;
2405 
2406 	sc = addr;
2407 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2408 	mi->props = MIDI_PROP_CAN_INPUT;
2409 }
2410 
2411 int
2412 sbdsp_midi_intr(void *addr)
2413 {
2414 	struct sbdsp_softc *sc;
2415 
2416 	sc = addr;
2417 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2418 	return (0);
2419 }
2420 
2421 #endif
2422 
2423