xref: /netbsd-src/sys/dev/isa/sbdsp.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: sbdsp.c,v 1.118 2005/12/11 12:22:03 christos Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *	  Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1991-1993 Regents of the University of California.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the Computer Systems
54  *	Engineering Group at Lawrence Berkeley Laboratory.
55  * 4. Neither the name of the University nor of the Laboratory may be used
56  *    to endorse or promote products derived from this software without
57  *    specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  */
72 
73 /*
74  * SoundBlaster Pro code provided by John Kohl, based on lots of
75  * information he gleaned from Steve Haehnichen <steve@vigra.com>'s
76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77  * <sachs@meibm15.cen.uiuc.edu>.
78  * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se>
79  * with information from SB "Hardware Programming Guide" and the
80  * Linux drivers.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.118 2005/12/11 12:22:03 christos Exp $");
85 
86 #include "midi.h"
87 #include "mpu.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98 
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #include <machine/bus.h>
102 
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108 
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111 
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114 
115 
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x)	if (sbdspdebug) printf x
118 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
119 int	sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124 
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128 
129 struct {
130 	int wdsp;
131 	int rdsp;
132 	int wmidi;
133 } sberr;
134 
135 /*
136  * Time constant routines follow.  See SBK, section 12.
137  * Although they don't come out and say it (in the docs),
138  * the card clearly uses a 1MHz countdown timer, as the
139  * low-speed formula (p. 12-4) is:
140  *	tc = 256 - 10^6 / sr
141  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142  * and a 256MHz clock is used:
143  *	tc = 65536 - 256 * 10^ 6 / sr
144  * Since we can only use the upper byte of the HS TC, the two formulae
145  * are equivalent.  (Why didn't they say so?)  E.g.,
146  *	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147  *
148  * The crossover point (from low- to high-speed modes) is different
149  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
150  *
151  *				SBPRO			SB20
152  *				-----			--------
153  * input ls min			4	KHz		4	KHz
154  * input ls max			23	KHz		13	KHz
155  * input hs max			44.1	KHz		15	KHz
156  * output ls min		4	KHz		4	KHz
157  * output ls max		23	KHz		23	KHz
158  * output hs max		44.1	KHz		44.1	KHz
159  */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165 
166 struct sbmode {
167 	short	model;
168 	u_char	channels;
169 	u_char	precision;
170 	u_short	lowrate, highrate;
171 	u_char	cmd;
172 	u_char	halt, cont;
173 	u_char	cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
177  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
178  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
179  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
180  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
181  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
182  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
183  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
185  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
186  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
187  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
188  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
189  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
190  { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
191  { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193  { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
194  { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
195  { -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
199  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
200  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
201  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
202  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
203  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
204  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
205  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
206  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
207  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
208  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
209  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
210  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
211  { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
212  { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
213  { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
214  { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
215  { -1 }
216 };
217 
218 void	sbversion(struct sbdsp_softc *);
219 void	sbdsp_jazz16_probe(struct sbdsp_softc *);
220 void	sbdsp_set_mixer_gain(struct sbdsp_softc *, int);
221 void	sbdsp_pause(struct sbdsp_softc *);
222 int	sbdsp_set_timeconst(struct sbdsp_softc *, int);
223 int	sbdsp16_set_rate(struct sbdsp_softc *, int, int);
224 int	sbdsp_set_in_ports(struct sbdsp_softc *, int);
225 void	sbdsp_set_ifilter(void *, int);
226 int	sbdsp_get_ifilter(void *);
227 
228 int	sbdsp_block_output(void *);
229 int	sbdsp_block_input(void *);
230 static	int sbdsp_adjust(int, int);
231 
232 int	sbdsp_midi_intr(void *);
233 
234 static void	sbdsp_powerhook(int, void*);
235 
236 #ifdef AUDIO_DEBUG
237 void	sb_printsc(struct sbdsp_softc *);
238 
239 void
240 sb_printsc(struct sbdsp_softc *sc)
241 {
242 	int i;
243 
244 	printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n",
245 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
246 	    sc->sc_drq8, sc->sc_drq16,
247 	    sc->sc_iobase, sc->sc_irq);
248 	printf("irate %d itc %x orate %d otc %x\n",
249 	    sc->sc_i.rate, sc->sc_i.tc,
250 	    sc->sc_o.rate, sc->sc_o.tc);
251 	printf("spkron %u nintr %lu\n",
252 	    sc->spkr_state, sc->sc_interrupts);
253 	printf("intr8 %p intr16 %p\n",
254 	    sc->sc_intr8, sc->sc_intr16);
255 	printf("gain:");
256 	for (i = 0; i < SB_NDEVS; i++)
257 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
258 	printf("\n");
259 }
260 #endif /* AUDIO_DEBUG */
261 
262 /*
263  * Probe / attach routines.
264  */
265 
266 /*
267  * Probe for the soundblaster hardware.
268  */
269 int
270 sbdsp_probe(struct sbdsp_softc *sc)
271 {
272 
273 	if (sbdsp_reset(sc) < 0) {
274 		DPRINTF(("sbdsp: couldn't reset card\n"));
275 		return 0;
276 	}
277 	/* if flags set, go and probe the jazz16 stuff */
278 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
279 		sbdsp_jazz16_probe(sc);
280 	else
281 		sbversion(sc);
282 	if (sc->sc_model == SB_UNK) {
283 		/* Unknown SB model found. */
284 		DPRINTF(("sbdsp: unknown SB model found\n"));
285 		return 0;
286 	}
287 	return 1;
288 }
289 
290 /*
291  * Try add-on stuff for Jazz16.
292  */
293 void
294 sbdsp_jazz16_probe(struct sbdsp_softc *sc)
295 {
296 	static u_char jazz16_irq_conf[16] = {
297 	    -1, -1, 0x02, 0x03,
298 	    -1, 0x01, -1, 0x04,
299 	    -1, 0x02, 0x05, -1,
300 	    -1, -1, -1, 0x06};
301 	static u_char jazz16_drq_conf[8] = {
302 	    -1, 0x01, -1, 0x02,
303 	    -1, 0x03, -1, 0x04};
304 
305 	bus_space_tag_t iot;
306 	bus_space_handle_t ioh;
307 
308 	iot = sc->sc_iot;
309 	sbversion(sc);
310 
311 	DPRINTF(("jazz16 probe\n"));
312 
313 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
314 		DPRINTF(("bus map failed\n"));
315 		return;
316 	}
317 
318 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
319 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
320 		DPRINTF(("drq/irq check failed\n"));
321 		goto done;		/* give up, we can't do it. */
322 	}
323 
324 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
325 	delay(10000);			/* delay 10 ms */
326 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
327 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
328 
329 	if (sbdsp_reset(sc) < 0) {
330 		DPRINTF(("sbdsp_reset check failed\n"));
331 		goto done;		/* XXX? what else could we do? */
332 	}
333 
334 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
335 		DPRINTF(("read16 setup failed\n"));
336 		goto done;
337 	}
338 
339 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
340 		DPRINTF(("read16 failed\n"));
341 		goto done;
342 	}
343 
344 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
345 	sc->sc_drq16 = sc->sc_drq8;
346 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
347 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
348 		jazz16_drq_conf[sc->sc_drq8]) ||
349 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
350 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
351 	} else {
352 		DPRINTF(("jazz16 detected!\n"));
353 		sc->sc_model = SB_JAZZ;
354 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
355 	}
356 
357 done:
358 	bus_space_unmap(iot, ioh, 1);
359 }
360 
361 /*
362  * Attach hardware to driver, attach hardware driver to audio
363  * pseudo-device driver .
364  */
365 void
366 sbdsp_attach(struct sbdsp_softc *sc)
367 {
368 	int i, error;
369 	u_int v;
370 
371 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
372 
373 	if (sc->sc_mixer_model != SBM_NONE) {
374 		/* Reset the mixer.*/
375 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
376 		/* And set our own default values */
377 		for (i = 0; i < SB_NDEVS; i++) {
378 			switch(i) {
379 			case SB_MIC_VOL:
380 			case SB_LINE_IN_VOL:
381 				v = 0;
382 				break;
383 			case SB_BASS:
384 			case SB_TREBLE:
385 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
386 				break;
387 			case SB_CD_IN_MUTE:
388 			case SB_MIC_IN_MUTE:
389 			case SB_LINE_IN_MUTE:
390 			case SB_MIDI_IN_MUTE:
391 			case SB_CD_SWAP:
392 			case SB_MIC_SWAP:
393 			case SB_LINE_SWAP:
394 			case SB_MIDI_SWAP:
395 			case SB_CD_OUT_MUTE:
396 			case SB_MIC_OUT_MUTE:
397 			case SB_LINE_OUT_MUTE:
398 				v = 0;
399 				break;
400 			default:
401 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
402 				break;
403 			}
404 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
405 			sbdsp_set_mixer_gain(sc, i);
406 		}
407 		sc->in_filter = 0;	/* no filters turned on, please */
408 	}
409 
410 	printf(": dsp v%d.%02d%s\n",
411 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
412 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
413 
414 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
415 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
416 	    sc->sc_drq8 != sc->sc_drq16;
417 
418 	if (sc->sc_drq8 != -1) {
419 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
420 		    sc->sc_drq8);
421 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
422 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
423 		if (error) {
424 			printf("%s: can't create map for drq %d\n",
425 			    sc->sc_dev.dv_xname, sc->sc_drq8);
426 			return;
427 		}
428 	}
429 
430 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
431 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
432 		    sc->sc_drq16);
433 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
434 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW);
435 		if (error) {
436 			printf("%s: can't create map for drq %d\n",
437 			    sc->sc_dev.dv_xname, sc->sc_drq16);
438 			isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
439 			return;
440 		}
441 	}
442 
443 	powerhook_establish (sbdsp_powerhook, sc);
444 }
445 
446 static void
447 sbdsp_powerhook(int why, void *arg)
448 {
449 	struct sbdsp_softc *sc;
450 	int i;
451 
452 	sc = arg;
453 	if (!sc || why != PWR_RESUME)
454 		return;
455 
456 	/* Reset the mixer. */
457 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
458 	for (i = 0; i < SB_NDEVS; i++)
459 		sbdsp_set_mixer_gain (sc, i);
460 }
461 
462 void
463 sbdsp_mix_write(struct sbdsp_softc *sc, int mixerport, int val)
464 {
465 	bus_space_tag_t iot;
466 	bus_space_handle_t ioh;
467 	int s;
468 
469 	iot = sc->sc_iot;
470 	ioh = sc->sc_ioh;
471 	s = splaudio();
472 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
473 	delay(20);
474 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
475 	delay(30);
476 	splx(s);
477 }
478 
479 int
480 sbdsp_mix_read(struct sbdsp_softc *sc, int mixerport)
481 {
482 	bus_space_tag_t iot;
483 	bus_space_handle_t ioh;
484 	int val;
485 	int s;
486 
487 	iot = sc->sc_iot;
488 	ioh = sc->sc_ioh;
489 	s = splaudio();
490 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
491 	delay(20);
492 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
493 	delay(30);
494 	splx(s);
495 	return val;
496 }
497 
498 /*
499  * Various routines to interface to higher level audio driver
500  */
501 
502 int
503 sbdsp_query_encoding(void *addr, struct audio_encoding *fp)
504 {
505 	struct sbdsp_softc *sc;
506 	int emul;
507 
508 	sc = addr;
509 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
510 
511 	switch (fp->index) {
512 	case 0:
513 		strcpy(fp->name, AudioEulinear);
514 		fp->encoding = AUDIO_ENCODING_ULINEAR;
515 		fp->precision = 8;
516 		fp->flags = 0;
517 		return 0;
518 	case 1:
519 		strcpy(fp->name, AudioEmulaw);
520 		fp->encoding = AUDIO_ENCODING_ULAW;
521 		fp->precision = 8;
522 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
523 		return 0;
524 	case 2:
525 		strcpy(fp->name, AudioEalaw);
526 		fp->encoding = AUDIO_ENCODING_ALAW;
527 		fp->precision = 8;
528 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
529 		return 0;
530 	case 3:
531 		strcpy(fp->name, AudioEslinear);
532 		fp->encoding = AUDIO_ENCODING_SLINEAR;
533 		fp->precision = 8;
534 		fp->flags = emul;
535 		return 0;
536 	}
537 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
538 		return EINVAL;
539 
540 	switch(fp->index) {
541 	case 4:
542 		strcpy(fp->name, AudioEslinear_le);
543 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
544 		fp->precision = 16;
545 		fp->flags = 0;
546 		return 0;
547 	case 5:
548 		strcpy(fp->name, AudioEulinear_le);
549 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
550 		fp->precision = 16;
551 		fp->flags = emul;
552 		return 0;
553 	case 6:
554 		strcpy(fp->name, AudioEslinear_be);
555 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
556 		fp->precision = 16;
557 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
558 		return 0;
559 	case 7:
560 		strcpy(fp->name, AudioEulinear_be);
561 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
562 		fp->precision = 16;
563 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
564 		return 0;
565 	default:
566 		return EINVAL;
567 	}
568 	return 0;
569 }
570 
571 int
572 sbdsp_set_params(
573 	void *addr,
574 	int setmode, int usemode,
575 	audio_params_t *play, audio_params_t *rec,
576 	stream_filter_list_t *pfil, stream_filter_list_t *rfil)
577 {
578 	struct sbdsp_softc *sc;
579 	struct sbmode *m;
580 	u_int rate, tc, bmode;
581 	stream_filter_factory_t *swcode;
582 	int model;
583 	int chan;
584 	struct audio_params *p;
585 	audio_params_t hw;
586 	stream_filter_list_t *fil;
587 	int mode;
588 
589 	sc = addr;
590 	if (sc->sc_open == SB_OPEN_MIDI)
591 		return EBUSY;
592 
593 	/* Later models work like SB16. */
594 	model = min(sc->sc_model, SB_16);
595 
596 	/*
597 	 * Prior to the SB16, we have only one clock, so make the sample
598 	 * rates match.
599 	 */
600 	if (!ISSB16CLASS(sc) &&
601 	    play->sample_rate != rec->sample_rate &&
602 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
603 		if (setmode == AUMODE_PLAY) {
604 			rec->sample_rate = play->sample_rate;
605 			setmode |= AUMODE_RECORD;
606 		} else if (setmode == AUMODE_RECORD) {
607 			play->sample_rate = rec->sample_rate;
608 			setmode |= AUMODE_PLAY;
609 		} else
610 			return EINVAL;
611 	}
612 
613 	/* Set first record info, then play info */
614 	for (mode = AUMODE_RECORD; mode != -1;
615 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
616 		if ((setmode & mode) == 0)
617 			continue;
618 
619 		p = mode == AUMODE_PLAY ? play : rec;
620 		/* Locate proper commands */
621 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
622 		    m->model != -1; m++) {
623 			if (model == m->model &&
624 			    p->channels == m->channels &&
625 			    p->precision == m->precision &&
626 			    p->sample_rate >= m->lowrate &&
627 			    p->sample_rate <= m->highrate)
628 				break;
629 		}
630 		if (m->model == -1)
631 			return EINVAL;
632 		rate = p->sample_rate;
633 		swcode = NULL;
634 		fil = mode ==  AUMODE_PLAY ? pfil : rfil;
635 		hw = *p;
636 		tc = 1;
637 		bmode = -1;
638 		if (model == SB_16) {
639 			switch (p->encoding) {
640 			case AUDIO_ENCODING_SLINEAR_BE:
641 				if (p->precision == 16) {
642 					hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
643 					swcode = swap_bytes;
644 				}
645 				/* fall into */
646 			case AUDIO_ENCODING_SLINEAR_LE:
647 				bmode = SB_BMODE_SIGNED;
648 				break;
649 
650 			case AUDIO_ENCODING_ULINEAR_BE:
651 				if (p->precision == 16) {
652 					hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
653 					swcode = swap_bytes;
654 				}
655 				/* fall into */
656 			case AUDIO_ENCODING_ULINEAR_LE:
657 				bmode = SB_BMODE_UNSIGNED;
658 				break;
659 
660 			case AUDIO_ENCODING_ULAW:
661 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
662 				if (mode == AUMODE_PLAY) {
663 					hw.precision = hw.validbits = 16;
664 					swcode = mulaw_to_linear16;
665 					m = &sbpmodes[PLAY16];
666 				} else
667 					swcode = linear8_to_mulaw;
668 				bmode = SB_BMODE_UNSIGNED;
669 				break;
670 
671 			case AUDIO_ENCODING_ALAW:
672 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
673 				if (mode == AUMODE_PLAY) {
674 					hw.precision = hw.validbits = 16;
675 					swcode = alaw_to_linear16;
676 					m = &sbpmodes[PLAY16];
677 				} else
678 					swcode = linear8_to_alaw;
679 				bmode = SB_BMODE_UNSIGNED;
680 				break;
681 			default:
682 				return EINVAL;
683 			}
684 			if (p->channels == 2)
685 				bmode |= SB_BMODE_STEREO;
686 		} else if (m->model == SB_JAZZ && m->precision == 16) {
687 			switch (p->encoding) {
688 			case AUDIO_ENCODING_SLINEAR_LE:
689 				break;
690 			case AUDIO_ENCODING_ULINEAR_LE:
691 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
692 				swcode = change_sign16;
693 				break;
694 			case AUDIO_ENCODING_SLINEAR_BE:
695 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
696 				swcode = swap_bytes;
697 				break;
698 			case AUDIO_ENCODING_ULINEAR_BE:
699 				hw.encoding = AUDIO_ENCODING_SLINEAR_LE;
700 				swcode = swap_bytes_change_sign16;
701 				break;
702 			case AUDIO_ENCODING_ULAW:
703 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
704 				swcode = mode == AUMODE_PLAY ?
705 					mulaw_to_linear8 : linear8_to_mulaw;
706 				break;
707 			case AUDIO_ENCODING_ALAW:
708 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
709 				swcode = mode == AUMODE_PLAY ?
710 					alaw_to_linear8 : linear8_to_alaw;
711 				break;
712 			default:
713 				return EINVAL;
714 			}
715 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
716 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
717 			hw.sample_rate = p->sample_rate;
718 		} else {
719 			switch (p->encoding) {
720 			case AUDIO_ENCODING_SLINEAR_BE:
721 			case AUDIO_ENCODING_SLINEAR_LE:
722 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
723 				swcode = change_sign8;
724 				break;
725 			case AUDIO_ENCODING_ULINEAR_BE:
726 			case AUDIO_ENCODING_ULINEAR_LE:
727 				break;
728 			case AUDIO_ENCODING_ULAW:
729 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
730 				swcode = mode == AUMODE_PLAY ?
731 					mulaw_to_linear8 : linear8_to_mulaw;
732 				break;
733 			case AUDIO_ENCODING_ALAW:
734 				hw.encoding = AUDIO_ENCODING_ULINEAR_LE;
735 				swcode = mode == AUMODE_PLAY ?
736 					alaw_to_linear8 : linear8_to_alaw;
737 				break;
738 			default:
739 				return EINVAL;
740 			}
741 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
742 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
743 			hw.sample_rate = p->sample_rate;
744 		}
745 
746 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
747 		if (mode == AUMODE_PLAY) {
748 			sc->sc_o.rate = rate;
749 			sc->sc_o.tc = tc;
750 			sc->sc_o.modep = m;
751 			sc->sc_o.bmode = bmode;
752 			sc->sc_o.dmachan = chan;
753 		} else {
754 			sc->sc_i.rate = rate;
755 			sc->sc_i.tc = tc;
756 			sc->sc_i.modep = m;
757 			sc->sc_i.bmode = bmode;
758 			sc->sc_i.dmachan = chan;
759 		}
760 
761 		if (swcode != NULL)
762 			fil->append(fil, swcode, &hw);
763 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%u, "
764 			 "prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, "
765 			 "bmode=%02x, cmdchan=%02x\n", sc->sc_model, mode,
766 			 p->sample_rate, p->precision, p->channels,
767 			 p->encoding, tc, m->cmd, bmode, m->cmdchan));
768 
769 	}
770 
771 	if (sc->sc_fullduplex &&
772 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
773 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
774 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, "
775 			 "odma=%d\n", sc->sc_fullduplex, usemode,
776 			 sc->sc_i.dmachan, sc->sc_o.dmachan));
777 		if (sc->sc_o.dmachan == sc->sc_drq8) {
778 			/* Use 16 bit DMA for playing by expanding the samples. */
779 			hw.precision = hw.validbits = 16;
780 			pfil->append(pfil, linear8_to_linear16, &hw);
781 			sc->sc_o.modep = &sbpmodes[PLAY16];
782 			sc->sc_o.dmachan = sc->sc_drq16;
783 		} else {
784 			return EINVAL;
785 		}
786 	}
787 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
788 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
789 
790 	return 0;
791 }
792 
793 void
794 sbdsp_set_ifilter(void *addr, int which)
795 {
796 	struct sbdsp_softc *sc;
797 	int mixval;
798 
799 	sc = addr;
800 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
801 	switch (which) {
802 	case 0:
803 		mixval |= SBP_FILTER_OFF;
804 		break;
805 	case SB_TREBLE:
806 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
807 		break;
808 	case SB_BASS:
809 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
810 		break;
811 	default:
812 		return;
813 	}
814 	sc->in_filter = mixval & SBP_IFILTER_MASK;
815 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
816 }
817 
818 int
819 sbdsp_get_ifilter(void *addr)
820 {
821 	struct sbdsp_softc *sc;
822 
823 	sc = addr;
824 	sc->in_filter =
825 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
826 	switch (sc->in_filter) {
827 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
828 		return SB_TREBLE;
829 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
830 		return SB_BASS;
831 	default:
832 		return 0;
833 	}
834 }
835 
836 int
837 sbdsp_set_in_ports(struct sbdsp_softc *sc, int mask)
838 {
839 	int bitsl, bitsr;
840 	int sbport;
841 
842 	if (sc->sc_open == SB_OPEN_MIDI)
843 		return EBUSY;
844 
845 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
846 		 sc->sc_mixer_model, mask));
847 
848 	switch(sc->sc_mixer_model) {
849 	case SBM_NONE:
850 		return EINVAL;
851 	case SBM_CT1335:
852 		if (mask != (1 << SB_MIC_VOL))
853 			return EINVAL;
854 		break;
855 	case SBM_CT1345:
856 		switch (mask) {
857 		case 1 << SB_MIC_VOL:
858 			sbport = SBP_FROM_MIC;
859 			break;
860 		case 1 << SB_LINE_IN_VOL:
861 			sbport = SBP_FROM_LINE;
862 			break;
863 		case 1 << SB_CD_VOL:
864 			sbport = SBP_FROM_CD;
865 			break;
866 		default:
867 			return EINVAL;
868 		}
869 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
870 		break;
871 	case SBM_CT1XX5:
872 	case SBM_CT1745:
873 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
874 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
875 			return EINVAL;
876 		bitsr = 0;
877 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
878 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
879 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
880 		bitsl = SB_SRC_R_TO_L(bitsr);
881 		if (mask & (1<<SB_MIC_VOL)) {
882 			bitsl |= SBP_MIC_SRC;
883 			bitsr |= SBP_MIC_SRC;
884 		}
885 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
886 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
887 		break;
888 	}
889 	sc->in_mask = mask;
890 
891 	return 0;
892 }
893 
894 int
895 sbdsp_speaker_ctl(void *addr, int newstate)
896 {
897 	struct sbdsp_softc *sc;
898 
899 	sc = addr;
900 	if (sc->sc_open == SB_OPEN_MIDI)
901 		return EBUSY;
902 
903 	if ((newstate == SPKR_ON) &&
904 	    (sc->spkr_state == SPKR_OFF)) {
905 		sbdsp_spkron(sc);
906 		sc->spkr_state = SPKR_ON;
907 	}
908 	if ((newstate == SPKR_OFF) &&
909 	    (sc->spkr_state == SPKR_ON)) {
910 		sbdsp_spkroff(sc);
911 		sc->spkr_state = SPKR_OFF;
912 	}
913 	return 0;
914 }
915 
916 int
917 sbdsp_round_blocksize(
918 	void *addr,
919 	int blk,
920 	int mode,
921 	const audio_params_t *param)
922 {
923 	return blk & -4;	/* round to biggest sample size */
924 }
925 
926 int
927 sbdsp_open(void *addr, int flags)
928 {
929 	struct sbdsp_softc *sc;
930 	int error, state;
931 
932 	sc = addr;
933 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
934 
935 	if (sc->sc_open != SB_CLOSED)
936 		return EBUSY;
937 	sc->sc_open = SB_OPEN_AUDIO;
938 	state = 0;
939 
940 	if (sc->sc_drq8 != -1) {
941 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8);
942 		if (error != 0)
943 			goto bad;
944 		state |= 1;
945 	}
946 
947 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
948 		error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16);
949 		if (error != 0)
950 			goto bad;
951 		state |= 2;
952 	}
953 
954 
955 	if (sbdsp_reset(sc) != 0) {
956 		error = EIO;
957 		goto bad;
958 	}
959 
960 	if (ISSBPRO(sc) &&
961 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
962 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
963 		/* we'll readjust when it's time for DMA. */
964 	}
965 
966 	/*
967 	 * Leave most things as they were; users must change things if
968 	 * the previous process didn't leave it they way they wanted.
969 	 * Looked at another way, it's easy to set up a configuration
970 	 * in one program and leave it for another to inherit.
971 	 */
972 	DPRINTF(("sbdsp_open: opened\n"));
973 
974 	return 0;
975 
976 bad:
977 	if (state & 1)
978 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
979 	if (state & 2)
980 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
981 
982 	sc->sc_open = SB_CLOSED;
983 	return error;
984 }
985 
986 void
987 sbdsp_close(void *addr)
988 {
989 	struct sbdsp_softc *sc;
990 
991 	sc = addr;
992 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
993 
994 	sbdsp_spkroff(sc);
995 	sc->spkr_state = SPKR_OFF;
996 
997 	sc->sc_intr8 = 0;
998 	sc->sc_intr16 = 0;
999 
1000 	if (sc->sc_drq8 != -1)
1001 		isa_drq_free(sc->sc_ic, sc->sc_drq8);
1002 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
1003 		isa_drq_free(sc->sc_ic, sc->sc_drq16);
1004 
1005 	sc->sc_open = SB_CLOSED;
1006 	DPRINTF(("sbdsp_close: closed\n"));
1007 }
1008 
1009 /*
1010  * Lower-level routines
1011  */
1012 
1013 /*
1014  * Reset the card.
1015  * Return non-zero if the card isn't detected.
1016  */
1017 int
1018 sbdsp_reset(struct sbdsp_softc *sc)
1019 {
1020 	bus_space_tag_t iot;
1021 	bus_space_handle_t ioh;
1022 
1023 	iot = sc->sc_iot;
1024 	ioh = sc->sc_ioh;
1025 	sc->sc_intr8 = 0;
1026 	sc->sc_intr16 = 0;
1027 	sc->sc_intrm = 0;
1028 
1029 	/*
1030 	 * See SBK, section 11.3.
1031 	 * We pulse a reset signal into the card.
1032 	 * Gee, what a brilliant hardware design.
1033 	 */
1034 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1035 	delay(10);
1036 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1037 	delay(30);
1038 	if (sbdsp_rdsp(sc) != SB_MAGIC)
1039 		return -1;
1040 
1041 	return 0;
1042 }
1043 
1044 /*
1045  * Write a byte to the dsp.
1046  * We are at the mercy of the card as we use a
1047  * polling loop and wait until it can take the byte.
1048  */
1049 int
1050 sbdsp_wdsp(struct sbdsp_softc *sc, int v)
1051 {
1052 	bus_space_tag_t iot;
1053 	bus_space_handle_t ioh;
1054 	int i;
1055 	u_char x;
1056 
1057 	iot = sc->sc_iot;
1058 	ioh = sc->sc_ioh;
1059 	for (i = SBDSP_NPOLL; --i >= 0; ) {
1060 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1061 		delay(10);
1062 		if ((x & SB_DSP_BUSY) == 0) {
1063 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1064 			delay(10);
1065 			return 0;
1066 		}
1067 	}
1068 	++sberr.wdsp;
1069 	return -1;
1070 }
1071 
1072 /*
1073  * Read a byte from the DSP, using polling.
1074  */
1075 int
1076 sbdsp_rdsp(struct sbdsp_softc *sc)
1077 {
1078 	bus_space_tag_t iot;
1079 	bus_space_handle_t ioh;
1080 	int i;
1081 	u_char x;
1082 
1083 	iot = sc->sc_iot;
1084 	ioh = sc->sc_ioh;
1085 	for (i = SBDSP_NPOLL; --i >= 0; ) {
1086 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1087 		delay(10);
1088 		if (x & SB_DSP_READY) {
1089 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1090 			delay(10);
1091 			return x;
1092 		}
1093 	}
1094 	++sberr.rdsp;
1095 	return -1;
1096 }
1097 
1098 void
1099 sbdsp_pause(struct sbdsp_softc *sc)
1100 {
1101 
1102 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1103 }
1104 
1105 /*
1106  * Turn on the speaker.  The SBK documention says this operation
1107  * can take up to 1/10 of a second.  Higher level layers should
1108  * probably let the task sleep for this amount of time after
1109  * calling here.  Otherwise, things might not work (because
1110  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1111  *
1112  * These engineers had their heads up their ass when
1113  * they designed this card.
1114  */
1115 void
1116 sbdsp_spkron(struct sbdsp_softc *sc)
1117 {
1118 
1119 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1120 	sbdsp_pause(sc);
1121 }
1122 
1123 /*
1124  * Turn off the speaker; see comment above.
1125  */
1126 void
1127 sbdsp_spkroff(struct sbdsp_softc *sc)
1128 {
1129 
1130 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1131 	sbdsp_pause(sc);
1132 }
1133 
1134 /*
1135  * Read the version number out of the card.
1136  * Store version information in the softc.
1137  */
1138 void
1139 sbversion(struct sbdsp_softc *sc)
1140 {
1141 	int v;
1142 
1143 	sc->sc_model = SB_UNK;
1144 	sc->sc_version = 0;
1145 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1146 		return;
1147 	v = sbdsp_rdsp(sc) << 8;
1148 	v |= sbdsp_rdsp(sc);
1149 	if (v < 0)
1150 		return;
1151 	sc->sc_version = v;
1152 	switch(SBVER_MAJOR(v)) {
1153 	case 1:
1154 		sc->sc_mixer_model = SBM_NONE;
1155 		sc->sc_model = SB_1;
1156 		break;
1157 	case 2:
1158 		/* Some SB2 have a mixer, some don't. */
1159 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1160 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
1161 		/* Check if we can read back the mixer values. */
1162 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1163 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
1164 			sc->sc_mixer_model = SBM_CT1335;
1165 		else
1166 			sc->sc_mixer_model = SBM_NONE;
1167 		if (SBVER_MINOR(v) == 0)
1168 			sc->sc_model = SB_20;
1169 		else
1170 			sc->sc_model = SB_2x;
1171 		break;
1172 	case 3:
1173 		sc->sc_mixer_model = SBM_CT1345;
1174 		sc->sc_model = SB_PRO;
1175 		break;
1176 	case 4:
1177 #if 0
1178 /* XXX This does not work */
1179 		/* Most SB16 have a tone controls, but some don't. */
1180 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1181 		/* Check if we can read back the mixer value. */
1182 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1183 			sc->sc_mixer_model = SBM_CT1745;
1184 		else
1185 			sc->sc_mixer_model = SBM_CT1XX5;
1186 #else
1187 		sc->sc_mixer_model = SBM_CT1745;
1188 #endif
1189 #if 0
1190 /* XXX figure out a good way of determining the model */
1191 		/* XXX what about SB_32 */
1192 		if (SBVER_MINOR(v) == 16)
1193 			sc->sc_model = SB_64;
1194 		else
1195 #endif
1196 			sc->sc_model = SB_16;
1197 		break;
1198 	}
1199 }
1200 
1201 int
1202 sbdsp_set_timeconst(struct sbdsp_softc *sc, int tc)
1203 {
1204 
1205 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1206 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1207 	    sbdsp_wdsp(sc, tc) < 0)
1208 		return EIO;
1209 	return 0;
1210 }
1211 
1212 int
1213 sbdsp16_set_rate(struct sbdsp_softc *sc, int cmd, int rate)
1214 {
1215 
1216 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1217 	if (sbdsp_wdsp(sc, cmd) < 0 ||
1218 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
1219 	    sbdsp_wdsp(sc, rate) < 0)
1220 		return EIO;
1221 	return 0;
1222 }
1223 
1224 int
1225 sbdsp_trigger_input(
1226 	void *addr,
1227 	void *start, void *end,
1228 	int blksize,
1229 	void (*intr)(void *),
1230 	void *arg,
1231 	const audio_params_t *param)
1232 {
1233 	struct sbdsp_softc *sc;
1234 	int stereo;
1235 	int width;
1236 	int filter;
1237 
1238 	sc = addr;
1239 	stereo = param->channels == 2;
1240 	width = param->precision;
1241 #ifdef DIAGNOSTIC
1242 	if (stereo && (blksize & 1)) {
1243 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1244 		return EIO;
1245 	}
1246 	if (sc->sc_i.run != SB_NOTRUNNING)
1247 		printf("sbdsp_trigger_input: already running\n");
1248 #endif
1249 
1250 	sc->sc_intrr = intr;
1251 	sc->sc_argr = arg;
1252 
1253 	if (width == 8) {
1254 #ifdef DIAGNOSTIC
1255 		if (sc->sc_i.dmachan != sc->sc_drq8) {
1256 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1257 			    width, sc->sc_i.dmachan);
1258 			return EIO;
1259 		}
1260 #endif
1261 		sc->sc_intr8 = sbdsp_block_input;
1262 	} else {
1263 #ifdef DIAGNOSTIC
1264 		if (sc->sc_i.dmachan != sc->sc_drq16) {
1265 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1266 			    width, sc->sc_i.dmachan);
1267 			return EIO;
1268 		}
1269 #endif
1270 		sc->sc_intr16 = sbdsp_block_input;
1271 	}
1272 
1273 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1274 		blksize >>= 1;
1275 	--blksize;
1276 	sc->sc_i.blksize = blksize;
1277 
1278 	if (ISSBPRO(sc)) {
1279 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1280 			return EIO;
1281 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1282 		sbdsp_mix_write(sc, SBP_INFILTER,
1283 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1284 		    filter);
1285 	}
1286 
1287 	if (ISSB16CLASS(sc)) {
1288 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1289 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1290 				 sc->sc_i.rate));
1291 			return EIO;
1292 		}
1293 	} else {
1294 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1295 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1296 				 sc->sc_i.rate));
1297 			return EIO;
1298 		}
1299 	}
1300 
1301 	DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n",
1302 	    start, end, sc->sc_i.dmachan));
1303 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1304 	    (char *)end - (char *)start, NULL,
1305 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1306 
1307 	return sbdsp_block_input(addr);
1308 }
1309 
1310 int
1311 sbdsp_block_input(void *addr)
1312 {
1313 	struct sbdsp_softc *sc;
1314 	int cc;
1315 
1316 	sc = addr;
1317 	cc = sc->sc_i.blksize;
1318 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1319 
1320 	if (sc->sc_i.run != SB_NOTRUNNING)
1321 		sc->sc_intrr(sc->sc_argr);
1322 
1323 	if (sc->sc_model == SB_1) {
1324 		/* Non-looping mode, start DMA */
1325 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1326 		    sbdsp_wdsp(sc, cc) < 0 ||
1327 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
1328 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1329 			return EIO;
1330 		}
1331 		sc->sc_i.run = SB_RUNNING;
1332 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
1333 		/* Initialize looping PCM */
1334 		if (ISSB16CLASS(sc)) {
1335 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1336 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1337 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1338 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1339 			    sbdsp_wdsp(sc, cc) < 0 ||
1340 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1341 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1342 				return EIO;
1343 			}
1344 		} else {
1345 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1346 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1347 			    sbdsp_wdsp(sc, cc) < 0 ||
1348 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1349 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1350 				return EIO;
1351 			}
1352 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1353 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1354 				return EIO;
1355 			}
1356 		}
1357 		sc->sc_i.run = SB_LOOPING;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 int
1364 sbdsp_trigger_output(
1365 	void *addr,
1366 	void *start, void *end,
1367 	int blksize,
1368 	void (*intr)(void *),
1369 	void *arg,
1370 	const audio_params_t *param)
1371 {
1372 	struct sbdsp_softc *sc;
1373 	int stereo;
1374 	int width;
1375 	int cmd;
1376 
1377 	sc = addr;
1378 	stereo = param->channels == 2;
1379 	width = param->precision;
1380 #ifdef DIAGNOSTIC
1381 	if (stereo && (blksize & 1)) {
1382 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1383 		return EIO;
1384 	}
1385 	if (sc->sc_o.run != SB_NOTRUNNING)
1386 		printf("sbdsp_trigger_output: already running\n");
1387 #endif
1388 
1389 	sc->sc_intrp = intr;
1390 	sc->sc_argp = arg;
1391 
1392 	if (width == 8) {
1393 #ifdef DIAGNOSTIC
1394 		if (sc->sc_o.dmachan != sc->sc_drq8) {
1395 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1396 			    width, sc->sc_o.dmachan);
1397 			return EIO;
1398 		}
1399 #endif
1400 		sc->sc_intr8 = sbdsp_block_output;
1401 	} else {
1402 #ifdef DIAGNOSTIC
1403 		if (sc->sc_o.dmachan != sc->sc_drq16) {
1404 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1405 			    width, sc->sc_o.dmachan);
1406 			return EIO;
1407 		}
1408 #endif
1409 		sc->sc_intr16 = sbdsp_block_output;
1410 	}
1411 
1412 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1413 		blksize >>= 1;
1414 	--blksize;
1415 	sc->sc_o.blksize = blksize;
1416 
1417 	if (ISSBPRO(sc)) {
1418 		/* make sure we re-set stereo mixer bit when we start output. */
1419 		sbdsp_mix_write(sc, SBP_STEREO,
1420 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1421 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1422 		cmd = sc->sc_o.modep->cmdchan;
1423 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1424 			return EIO;
1425 	}
1426 
1427 	if (ISSB16CLASS(sc)) {
1428 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1429 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1430 				 sc->sc_o.rate));
1431 			return EIO;
1432 		}
1433 	} else {
1434 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1435 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1436 				 sc->sc_o.rate));
1437 			return EIO;
1438 		}
1439 	}
1440 
1441 	DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n",
1442 	    start, end, sc->sc_o.dmachan));
1443 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1444 	    (char *)end - (char *)start, NULL,
1445 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1446 
1447 	return sbdsp_block_output(addr);
1448 }
1449 
1450 int
1451 sbdsp_block_output(void *addr)
1452 {
1453 	struct sbdsp_softc *sc;
1454 	int cc;
1455 
1456 	sc = addr;
1457 	cc = sc->sc_o.blksize;
1458 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1459 
1460 	if (sc->sc_o.run != SB_NOTRUNNING)
1461 		sc->sc_intrp(sc->sc_argp);
1462 
1463 	if (sc->sc_model == SB_1) {
1464 		/* Non-looping mode, initialized. Start DMA and PCM */
1465 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1466 		    sbdsp_wdsp(sc, cc) < 0 ||
1467 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
1468 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1469 			return EIO;
1470 		}
1471 		sc->sc_o.run = SB_RUNNING;
1472 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
1473 		/* Initialize looping PCM */
1474 		if (ISSB16CLASS(sc)) {
1475 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1476 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1477 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1478 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1479 			    sbdsp_wdsp(sc, cc) < 0 ||
1480 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1481 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1482 				return EIO;
1483 			}
1484 		} else {
1485 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1486 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1487 			    sbdsp_wdsp(sc, cc) < 0 ||
1488 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1489 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1490 				return EIO;
1491 			}
1492 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1493 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1494 				return EIO;
1495 			}
1496 		}
1497 		sc->sc_o.run = SB_LOOPING;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 int
1504 sbdsp_halt_output(void *addr)
1505 {
1506 	struct sbdsp_softc *sc;
1507 
1508 	sc = addr;
1509 	if (sc->sc_o.run != SB_NOTRUNNING) {
1510 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1511 			printf("sbdsp_halt_output: failed to halt\n");
1512 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1513 		sc->sc_o.run = SB_NOTRUNNING;
1514 	}
1515 	return 0;
1516 }
1517 
1518 int
1519 sbdsp_halt_input(void *addr)
1520 {
1521 	struct sbdsp_softc *sc;
1522 
1523 	sc = addr;
1524 	if (sc->sc_i.run != SB_NOTRUNNING) {
1525 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1526 			printf("sbdsp_halt_input: failed to halt\n");
1527 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1528 		sc->sc_i.run = SB_NOTRUNNING;
1529 	}
1530 	return 0;
1531 }
1532 
1533 /*
1534  * Only the DSP unit on the sound blaster generates interrupts.
1535  * There are three cases of interrupt: reception of a midi byte
1536  * (when mode is enabled), completion of DMA transmission, or
1537  * completion of a DMA reception.
1538  *
1539  * If there is interrupt sharing or a spurious interrupt occurs
1540  * there is no way to distinguish this on an SB2.  So if you have
1541  * an SB2 and experience problems, buy an SB16 (it's only $40).
1542  */
1543 int
1544 sbdsp_intr(void *arg)
1545 {
1546 	struct sbdsp_softc *sc;
1547 	u_char irq;
1548 
1549 	sc = arg;
1550 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1551 		   sc->sc_intr8, sc->sc_intr16));
1552 	if (ISSB16CLASS(sc)) {
1553 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1554 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1555 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1556 			return 0;
1557 		}
1558 	} else {
1559 		/* XXXX CHECK FOR INTERRUPT */
1560 		irq = SBP_IRQ_DMA8;
1561 	}
1562 
1563 	sc->sc_interrupts++;
1564 	delay(10);		/* XXX why? */
1565 
1566 	/* clear interrupt */
1567 	if (irq & SBP_IRQ_DMA8) {
1568 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1569 		if (sc->sc_intr8)
1570 			sc->sc_intr8(arg);
1571 	}
1572 	if (irq & SBP_IRQ_DMA16) {
1573 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1574 		if (sc->sc_intr16)
1575 			sc->sc_intr16(arg);
1576 	}
1577 #if NMPU > 0
1578 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1579 		mpu_intr(sc->sc_mpudev);
1580 	}
1581 #endif
1582 	return 1;
1583 }
1584 
1585 /* Like val & mask, but make sure the result is correctly rounded. */
1586 #define MAXVAL 256
1587 static int
1588 sbdsp_adjust(int val, int mask)
1589 {
1590 
1591 	val += (MAXVAL - mask) >> 1;
1592 	if (val >= MAXVAL)
1593 		val = MAXVAL-1;
1594 	return val & mask;
1595 }
1596 
1597 void
1598 sbdsp_set_mixer_gain(struct sbdsp_softc *sc, int port)
1599 {
1600 	int src, gain;
1601 
1602 	switch(sc->sc_mixer_model) {
1603 	case SBM_NONE:
1604 		return;
1605 	case SBM_CT1335:
1606 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1607 		switch(port) {
1608 		case SB_MASTER_VOL:
1609 			src = SBP_1335_MASTER_VOL;
1610 			break;
1611 		case SB_MIDI_VOL:
1612 			src = SBP_1335_MIDI_VOL;
1613 			break;
1614 		case SB_CD_VOL:
1615 			src = SBP_1335_CD_VOL;
1616 			break;
1617 		case SB_VOICE_VOL:
1618 			src = SBP_1335_VOICE_VOL;
1619 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1620 			break;
1621 		default:
1622 			return;
1623 		}
1624 		sbdsp_mix_write(sc, src, gain);
1625 		break;
1626 	case SBM_CT1345:
1627 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1628 				      sc->gain[port][SB_RIGHT]);
1629 		switch (port) {
1630 		case SB_MIC_VOL:
1631 			src = SBP_MIC_VOL;
1632 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1633 			break;
1634 		case SB_MASTER_VOL:
1635 			src = SBP_MASTER_VOL;
1636 			break;
1637 		case SB_LINE_IN_VOL:
1638 			src = SBP_LINE_VOL;
1639 			break;
1640 		case SB_VOICE_VOL:
1641 			src = SBP_VOICE_VOL;
1642 			break;
1643 		case SB_MIDI_VOL:
1644 			src = SBP_MIDI_VOL;
1645 			break;
1646 		case SB_CD_VOL:
1647 			src = SBP_CD_VOL;
1648 			break;
1649 		default:
1650 			return;
1651 		}
1652 		sbdsp_mix_write(sc, src, gain);
1653 		break;
1654 	case SBM_CT1XX5:
1655 	case SBM_CT1745:
1656 		switch (port) {
1657 		case SB_MIC_VOL:
1658 			src = SB16P_MIC_L;
1659 			break;
1660 		case SB_MASTER_VOL:
1661 			src = SB16P_MASTER_L;
1662 			break;
1663 		case SB_LINE_IN_VOL:
1664 			src = SB16P_LINE_L;
1665 			break;
1666 		case SB_VOICE_VOL:
1667 			src = SB16P_VOICE_L;
1668 			break;
1669 		case SB_MIDI_VOL:
1670 			src = SB16P_MIDI_L;
1671 			break;
1672 		case SB_CD_VOL:
1673 			src = SB16P_CD_L;
1674 			break;
1675 		case SB_INPUT_GAIN:
1676 			src = SB16P_INPUT_GAIN_L;
1677 			break;
1678 		case SB_OUTPUT_GAIN:
1679 			src = SB16P_OUTPUT_GAIN_L;
1680 			break;
1681 		case SB_TREBLE:
1682 			src = SB16P_TREBLE_L;
1683 			break;
1684 		case SB_BASS:
1685 			src = SB16P_BASS_L;
1686 			break;
1687 		case SB_PCSPEAKER:
1688 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1689 			return;
1690 		default:
1691 			return;
1692 		}
1693 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1694 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1695 		break;
1696 	}
1697 }
1698 
1699 int
1700 sbdsp_mixer_set_port(void *addr, mixer_ctrl_t *cp)
1701 {
1702 	struct sbdsp_softc *sc;
1703 	int lgain, rgain;
1704 	int mask, bits;
1705 	int lmask, rmask, lbits, rbits;
1706 	int mute, swap;
1707 
1708 	sc = addr;
1709 	if (sc->sc_open == SB_OPEN_MIDI)
1710 		return EBUSY;
1711 
1712 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1713 	    cp->un.value.num_channels));
1714 
1715 	if (sc->sc_mixer_model == SBM_NONE)
1716 		return EINVAL;
1717 
1718 	switch (cp->dev) {
1719 	case SB_TREBLE:
1720 	case SB_BASS:
1721 		if (sc->sc_mixer_model == SBM_CT1345 ||
1722 		    sc->sc_mixer_model == SBM_CT1XX5) {
1723 			if (cp->type != AUDIO_MIXER_ENUM)
1724 				return EINVAL;
1725 			switch (cp->dev) {
1726 			case SB_TREBLE:
1727 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1728 				return 0;
1729 			case SB_BASS:
1730 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1731 				return 0;
1732 			}
1733 		}
1734 	case SB_PCSPEAKER:
1735 	case SB_INPUT_GAIN:
1736 	case SB_OUTPUT_GAIN:
1737 		if (!ISSBM1745(sc))
1738 			return EINVAL;
1739 	case SB_MIC_VOL:
1740 	case SB_LINE_IN_VOL:
1741 		if (sc->sc_mixer_model == SBM_CT1335)
1742 			return EINVAL;
1743 	case SB_VOICE_VOL:
1744 	case SB_MIDI_VOL:
1745 	case SB_CD_VOL:
1746 	case SB_MASTER_VOL:
1747 		if (cp->type != AUDIO_MIXER_VALUE)
1748 			return EINVAL;
1749 
1750 		/*
1751 		 * All the mixer ports are stereo except for the microphone.
1752 		 * If we get a single-channel gain value passed in, then we
1753 		 * duplicate it to both left and right channels.
1754 		 */
1755 
1756 		switch (cp->dev) {
1757 		case SB_MIC_VOL:
1758 			if (cp->un.value.num_channels != 1)
1759 				return EINVAL;
1760 
1761 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1762 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1763 			break;
1764 		case SB_PCSPEAKER:
1765 			if (cp->un.value.num_channels != 1)
1766 				return EINVAL;
1767 			/* fall into */
1768 		case SB_INPUT_GAIN:
1769 		case SB_OUTPUT_GAIN:
1770 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
1771 			    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1772 			break;
1773 		default:
1774 			switch (cp->un.value.num_channels) {
1775 			case 1:
1776 				lgain = rgain = SB_ADJUST_GAIN(sc,
1777 				    cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1778 				break;
1779 			case 2:
1780 				if (sc->sc_mixer_model == SBM_CT1335)
1781 					return EINVAL;
1782 				lgain = SB_ADJUST_GAIN(sc,
1783 				    cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1784 				rgain = SB_ADJUST_GAIN(sc,
1785 				    cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1786 				break;
1787 			default:
1788 				return EINVAL;
1789 			}
1790 			break;
1791 		}
1792 		sc->gain[cp->dev][SB_LEFT]  = lgain;
1793 		sc->gain[cp->dev][SB_RIGHT] = rgain;
1794 
1795 		sbdsp_set_mixer_gain(sc, cp->dev);
1796 		break;
1797 
1798 	case SB_RECORD_SOURCE:
1799 		if (ISSBM1745(sc)) {
1800 			if (cp->type != AUDIO_MIXER_SET)
1801 				return EINVAL;
1802 			return sbdsp_set_in_ports(sc, cp->un.mask);
1803 		} else {
1804 			if (cp->type != AUDIO_MIXER_ENUM)
1805 				return EINVAL;
1806 			sc->in_port = cp->un.ord;
1807 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1808 		}
1809 		break;
1810 
1811 	case SB_AGC:
1812 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1813 			return EINVAL;
1814 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1815 		break;
1816 
1817 	case SB_CD_OUT_MUTE:
1818 		mask = SB16P_SW_CD;
1819 		goto omute;
1820 	case SB_MIC_OUT_MUTE:
1821 		mask = SB16P_SW_MIC;
1822 		goto omute;
1823 	case SB_LINE_OUT_MUTE:
1824 		mask = SB16P_SW_LINE;
1825 	omute:
1826 		if (cp->type != AUDIO_MIXER_ENUM)
1827 			return EINVAL;
1828 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1829 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1830 		if (cp->un.ord)
1831 			bits = bits & ~mask;
1832 		else
1833 			bits = bits | mask;
1834 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1835 		break;
1836 
1837 	case SB_MIC_IN_MUTE:
1838 	case SB_MIC_SWAP:
1839 		lmask = rmask = SB16P_SW_MIC;
1840 		goto imute;
1841 	case SB_CD_IN_MUTE:
1842 	case SB_CD_SWAP:
1843 		lmask = SB16P_SW_CD_L;
1844 		rmask = SB16P_SW_CD_R;
1845 		goto imute;
1846 	case SB_LINE_IN_MUTE:
1847 	case SB_LINE_SWAP:
1848 		lmask = SB16P_SW_LINE_L;
1849 		rmask = SB16P_SW_LINE_R;
1850 		goto imute;
1851 	case SB_MIDI_IN_MUTE:
1852 	case SB_MIDI_SWAP:
1853 		lmask = SB16P_SW_MIDI_L;
1854 		rmask = SB16P_SW_MIDI_R;
1855 	imute:
1856 		if (cp->type != AUDIO_MIXER_ENUM)
1857 			return EINVAL;
1858 		mask = lmask | rmask;
1859 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1860 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1861 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1862 		if (SB_IS_IN_MUTE(cp->dev)) {
1863 			mute = cp->dev;
1864 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1865 		} else {
1866 			swap = cp->dev;
1867 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1868 		}
1869 		if (sc->gain[swap][SB_LR]) {
1870 			mask = lmask;
1871 			lmask = rmask;
1872 			rmask = mask;
1873 		}
1874 		if (!sc->gain[mute][SB_LR]) {
1875 			lbits = lbits | lmask;
1876 			rbits = rbits | rmask;
1877 		}
1878 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1879 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1880 		break;
1881 
1882 	default:
1883 		return EINVAL;
1884 	}
1885 
1886 	return 0;
1887 }
1888 
1889 int
1890 sbdsp_mixer_get_port(void *addr, mixer_ctrl_t *cp)
1891 {
1892 	struct sbdsp_softc *sc;
1893 
1894 	sc = addr;
1895 	if (sc->sc_open == SB_OPEN_MIDI)
1896 		return EBUSY;
1897 
1898 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1899 
1900 	if (sc->sc_mixer_model == SBM_NONE)
1901 		return EINVAL;
1902 
1903 	switch (cp->dev) {
1904 	case SB_TREBLE:
1905 	case SB_BASS:
1906 		if (sc->sc_mixer_model == SBM_CT1345 ||
1907 		    sc->sc_mixer_model == SBM_CT1XX5) {
1908 			switch (cp->dev) {
1909 			case SB_TREBLE:
1910 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1911 				return 0;
1912 			case SB_BASS:
1913 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1914 				return 0;
1915 			}
1916 		}
1917 	case SB_PCSPEAKER:
1918 	case SB_INPUT_GAIN:
1919 	case SB_OUTPUT_GAIN:
1920 		if (!ISSBM1745(sc))
1921 			return EINVAL;
1922 	case SB_MIC_VOL:
1923 	case SB_LINE_IN_VOL:
1924 		if (sc->sc_mixer_model == SBM_CT1335)
1925 			return EINVAL;
1926 	case SB_VOICE_VOL:
1927 	case SB_MIDI_VOL:
1928 	case SB_CD_VOL:
1929 	case SB_MASTER_VOL:
1930 		switch (cp->dev) {
1931 		case SB_MIC_VOL:
1932 		case SB_PCSPEAKER:
1933 			if (cp->un.value.num_channels != 1)
1934 				return EINVAL;
1935 			/* fall into */
1936 		default:
1937 			switch (cp->un.value.num_channels) {
1938 			case 1:
1939 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1940 				    sc->gain[cp->dev][SB_LEFT];
1941 				break;
1942 			case 2:
1943 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1944 				    sc->gain[cp->dev][SB_LEFT];
1945 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1946 				    sc->gain[cp->dev][SB_RIGHT];
1947 				break;
1948 			default:
1949 				return EINVAL;
1950 			}
1951 			break;
1952 		}
1953 		break;
1954 
1955 	case SB_RECORD_SOURCE:
1956 		if (ISSBM1745(sc))
1957 			cp->un.mask = sc->in_mask;
1958 		else
1959 			cp->un.ord = sc->in_port;
1960 		break;
1961 
1962 	case SB_AGC:
1963 		if (!ISSBM1745(sc))
1964 			return EINVAL;
1965 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1966 		break;
1967 
1968 	case SB_CD_IN_MUTE:
1969 	case SB_MIC_IN_MUTE:
1970 	case SB_LINE_IN_MUTE:
1971 	case SB_MIDI_IN_MUTE:
1972 	case SB_CD_SWAP:
1973 	case SB_MIC_SWAP:
1974 	case SB_LINE_SWAP:
1975 	case SB_MIDI_SWAP:
1976 	case SB_CD_OUT_MUTE:
1977 	case SB_MIC_OUT_MUTE:
1978 	case SB_LINE_OUT_MUTE:
1979 		cp->un.ord = sc->gain[cp->dev][SB_LR];
1980 		break;
1981 
1982 	default:
1983 		return EINVAL;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 int
1990 sbdsp_mixer_query_devinfo(void *addr, mixer_devinfo_t *dip)
1991 {
1992 	struct sbdsp_softc *sc = addr;
1993 	int chan, class, is1745;
1994 
1995 	sc = addr;
1996 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1997 		 sc->sc_mixer_model, dip->index));
1998 
1999 	if (sc->sc_mixer_model == SBM_NONE)
2000 		return ENXIO;
2001 
2002 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
2003 	is1745 = ISSBM1745(sc);
2004 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
2005 
2006 	switch (dip->index) {
2007 	case SB_MASTER_VOL:
2008 		dip->type = AUDIO_MIXER_VALUE;
2009 		dip->mixer_class = SB_OUTPUT_CLASS;
2010 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2011 		strcpy(dip->label.name, AudioNmaster);
2012 		dip->un.v.num_channels = chan;
2013 		strcpy(dip->un.v.units.name, AudioNvolume);
2014 		return 0;
2015 	case SB_MIDI_VOL:
2016 		dip->type = AUDIO_MIXER_VALUE;
2017 		dip->mixer_class = class;
2018 		dip->prev = AUDIO_MIXER_LAST;
2019 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2020 		strcpy(dip->label.name, AudioNfmsynth);
2021 		dip->un.v.num_channels = chan;
2022 		strcpy(dip->un.v.units.name, AudioNvolume);
2023 		return 0;
2024 	case SB_CD_VOL:
2025 		dip->type = AUDIO_MIXER_VALUE;
2026 		dip->mixer_class = class;
2027 		dip->prev = AUDIO_MIXER_LAST;
2028 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2029 		strcpy(dip->label.name, AudioNcd);
2030 		dip->un.v.num_channels = chan;
2031 		strcpy(dip->un.v.units.name, AudioNvolume);
2032 		return 0;
2033 	case SB_VOICE_VOL:
2034 		dip->type = AUDIO_MIXER_VALUE;
2035 		dip->mixer_class = class;
2036 		dip->prev = AUDIO_MIXER_LAST;
2037 		dip->next = AUDIO_MIXER_LAST;
2038 		strcpy(dip->label.name, AudioNdac);
2039 		dip->un.v.num_channels = chan;
2040 		strcpy(dip->un.v.units.name, AudioNvolume);
2041 		return 0;
2042 	case SB_OUTPUT_CLASS:
2043 		dip->type = AUDIO_MIXER_CLASS;
2044 		dip->mixer_class = SB_OUTPUT_CLASS;
2045 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2046 		strcpy(dip->label.name, AudioCoutputs);
2047 		return 0;
2048 	}
2049 
2050 	if (sc->sc_mixer_model == SBM_CT1335)
2051 		return ENXIO;
2052 
2053 	switch (dip->index) {
2054 	case SB_MIC_VOL:
2055 		dip->type = AUDIO_MIXER_VALUE;
2056 		dip->mixer_class = class;
2057 		dip->prev = AUDIO_MIXER_LAST;
2058 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2059 		strcpy(dip->label.name, AudioNmicrophone);
2060 		dip->un.v.num_channels = 1;
2061 		strcpy(dip->un.v.units.name, AudioNvolume);
2062 		return 0;
2063 
2064 	case SB_LINE_IN_VOL:
2065 		dip->type = AUDIO_MIXER_VALUE;
2066 		dip->mixer_class = class;
2067 		dip->prev = AUDIO_MIXER_LAST;
2068 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2069 		strcpy(dip->label.name, AudioNline);
2070 		dip->un.v.num_channels = 2;
2071 		strcpy(dip->un.v.units.name, AudioNvolume);
2072 		return 0;
2073 
2074 	case SB_RECORD_SOURCE:
2075 		dip->mixer_class = SB_RECORD_CLASS;
2076 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2077 		strcpy(dip->label.name, AudioNsource);
2078 		if (ISSBM1745(sc)) {
2079 			dip->type = AUDIO_MIXER_SET;
2080 			dip->un.s.num_mem = 4;
2081 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2082 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2083 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
2084 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2085 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2086 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2087 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2088 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2089 		} else {
2090 			dip->type = AUDIO_MIXER_ENUM;
2091 			dip->un.e.num_mem = 3;
2092 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2093 			dip->un.e.member[0].ord = SB_MIC_VOL;
2094 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
2095 			dip->un.e.member[1].ord = SB_CD_VOL;
2096 			strcpy(dip->un.e.member[2].label.name, AudioNline);
2097 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2098 		}
2099 		return 0;
2100 
2101 	case SB_BASS:
2102 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2103 		strcpy(dip->label.name, AudioNbass);
2104 		if (sc->sc_mixer_model == SBM_CT1745) {
2105 			dip->type = AUDIO_MIXER_VALUE;
2106 			dip->mixer_class = SB_EQUALIZATION_CLASS;
2107 			dip->un.v.num_channels = 2;
2108 			strcpy(dip->un.v.units.name, AudioNbass);
2109 		} else {
2110 			dip->type = AUDIO_MIXER_ENUM;
2111 			dip->mixer_class = SB_INPUT_CLASS;
2112 			dip->un.e.num_mem = 2;
2113 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
2114 			dip->un.e.member[0].ord = 0;
2115 			strcpy(dip->un.e.member[1].label.name, AudioNon);
2116 			dip->un.e.member[1].ord = 1;
2117 		}
2118 		return 0;
2119 
2120 	case SB_TREBLE:
2121 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2122 		strcpy(dip->label.name, AudioNtreble);
2123 		if (sc->sc_mixer_model == SBM_CT1745) {
2124 			dip->type = AUDIO_MIXER_VALUE;
2125 			dip->mixer_class = SB_EQUALIZATION_CLASS;
2126 			dip->un.v.num_channels = 2;
2127 			strcpy(dip->un.v.units.name, AudioNtreble);
2128 		} else {
2129 			dip->type = AUDIO_MIXER_ENUM;
2130 			dip->mixer_class = SB_INPUT_CLASS;
2131 			dip->un.e.num_mem = 2;
2132 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
2133 			dip->un.e.member[0].ord = 0;
2134 			strcpy(dip->un.e.member[1].label.name, AudioNon);
2135 			dip->un.e.member[1].ord = 1;
2136 		}
2137 		return 0;
2138 
2139 	case SB_RECORD_CLASS:			/* record source class */
2140 		dip->type = AUDIO_MIXER_CLASS;
2141 		dip->mixer_class = SB_RECORD_CLASS;
2142 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2143 		strcpy(dip->label.name, AudioCrecord);
2144 		return 0;
2145 
2146 	case SB_INPUT_CLASS:
2147 		dip->type = AUDIO_MIXER_CLASS;
2148 		dip->mixer_class = SB_INPUT_CLASS;
2149 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2150 		strcpy(dip->label.name, AudioCinputs);
2151 		return 0;
2152 
2153 	}
2154 
2155 	if (sc->sc_mixer_model == SBM_CT1345)
2156 		return ENXIO;
2157 
2158 	switch(dip->index) {
2159 	case SB_PCSPEAKER:
2160 		dip->type = AUDIO_MIXER_VALUE;
2161 		dip->mixer_class = SB_INPUT_CLASS;
2162 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2163 		strcpy(dip->label.name, "pc_speaker");
2164 		dip->un.v.num_channels = 1;
2165 		strcpy(dip->un.v.units.name, AudioNvolume);
2166 		return 0;
2167 
2168 	case SB_INPUT_GAIN:
2169 		dip->type = AUDIO_MIXER_VALUE;
2170 		dip->mixer_class = SB_INPUT_CLASS;
2171 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2172 		strcpy(dip->label.name, AudioNinput);
2173 		dip->un.v.num_channels = 2;
2174 		strcpy(dip->un.v.units.name, AudioNvolume);
2175 		return 0;
2176 
2177 	case SB_OUTPUT_GAIN:
2178 		dip->type = AUDIO_MIXER_VALUE;
2179 		dip->mixer_class = SB_OUTPUT_CLASS;
2180 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2181 		strcpy(dip->label.name, AudioNoutput);
2182 		dip->un.v.num_channels = 2;
2183 		strcpy(dip->un.v.units.name, AudioNvolume);
2184 		return 0;
2185 
2186 	case SB_AGC:
2187 		dip->type = AUDIO_MIXER_ENUM;
2188 		dip->mixer_class = SB_INPUT_CLASS;
2189 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2190 		strcpy(dip->label.name, "agc");
2191 		dip->un.e.num_mem = 2;
2192 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2193 		dip->un.e.member[0].ord = 0;
2194 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2195 		dip->un.e.member[1].ord = 1;
2196 		return 0;
2197 
2198 	case SB_EQUALIZATION_CLASS:
2199 		dip->type = AUDIO_MIXER_CLASS;
2200 		dip->mixer_class = SB_EQUALIZATION_CLASS;
2201 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2202 		strcpy(dip->label.name, AudioCequalization);
2203 		return 0;
2204 
2205 	case SB_CD_IN_MUTE:
2206 		dip->prev = SB_CD_VOL;
2207 		dip->next = SB_CD_SWAP;
2208 		dip->mixer_class = SB_INPUT_CLASS;
2209 		goto mute;
2210 
2211 	case SB_MIC_IN_MUTE:
2212 		dip->prev = SB_MIC_VOL;
2213 		dip->next = SB_MIC_SWAP;
2214 		dip->mixer_class = SB_INPUT_CLASS;
2215 		goto mute;
2216 
2217 	case SB_LINE_IN_MUTE:
2218 		dip->prev = SB_LINE_IN_VOL;
2219 		dip->next = SB_LINE_SWAP;
2220 		dip->mixer_class = SB_INPUT_CLASS;
2221 		goto mute;
2222 
2223 	case SB_MIDI_IN_MUTE:
2224 		dip->prev = SB_MIDI_VOL;
2225 		dip->next = SB_MIDI_SWAP;
2226 		dip->mixer_class = SB_INPUT_CLASS;
2227 		goto mute;
2228 
2229 	case SB_CD_SWAP:
2230 		dip->prev = SB_CD_IN_MUTE;
2231 		dip->next = SB_CD_OUT_MUTE;
2232 		goto swap;
2233 
2234 	case SB_MIC_SWAP:
2235 		dip->prev = SB_MIC_IN_MUTE;
2236 		dip->next = SB_MIC_OUT_MUTE;
2237 		goto swap;
2238 
2239 	case SB_LINE_SWAP:
2240 		dip->prev = SB_LINE_IN_MUTE;
2241 		dip->next = SB_LINE_OUT_MUTE;
2242 		goto swap;
2243 
2244 	case SB_MIDI_SWAP:
2245 		dip->prev = SB_MIDI_IN_MUTE;
2246 		dip->next = AUDIO_MIXER_LAST;
2247 	swap:
2248 		dip->mixer_class = SB_INPUT_CLASS;
2249 		strcpy(dip->label.name, AudioNswap);
2250 		goto mute1;
2251 
2252 	case SB_CD_OUT_MUTE:
2253 		dip->prev = SB_CD_SWAP;
2254 		dip->next = AUDIO_MIXER_LAST;
2255 		dip->mixer_class = SB_OUTPUT_CLASS;
2256 		goto mute;
2257 
2258 	case SB_MIC_OUT_MUTE:
2259 		dip->prev = SB_MIC_SWAP;
2260 		dip->next = AUDIO_MIXER_LAST;
2261 		dip->mixer_class = SB_OUTPUT_CLASS;
2262 		goto mute;
2263 
2264 	case SB_LINE_OUT_MUTE:
2265 		dip->prev = SB_LINE_SWAP;
2266 		dip->next = AUDIO_MIXER_LAST;
2267 		dip->mixer_class = SB_OUTPUT_CLASS;
2268 	mute:
2269 		strcpy(dip->label.name, AudioNmute);
2270 	mute1:
2271 		dip->type = AUDIO_MIXER_ENUM;
2272 		dip->un.e.num_mem = 2;
2273 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2274 		dip->un.e.member[0].ord = 0;
2275 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2276 		dip->un.e.member[1].ord = 1;
2277 		return 0;
2278 
2279 	}
2280 
2281 	return ENXIO;
2282 }
2283 
2284 void *
2285 sb_malloc(void *addr, int direction, size_t size,
2286 	  struct malloc_type *pool, int flags)
2287 {
2288 	struct sbdsp_softc *sc;
2289 	int drq;
2290 
2291 	sc = addr;
2292 	if (sc->sc_drq8 != -1)
2293 		drq = sc->sc_drq8;
2294 	else
2295 		drq = sc->sc_drq16;
2296 	return isa_malloc(sc->sc_ic, drq, size, pool, flags);
2297 }
2298 
2299 void
2300 sb_free(void *addr, void *ptr, struct malloc_type *pool)
2301 {
2302 
2303 	isa_free(ptr, pool);
2304 }
2305 
2306 size_t
2307 sb_round_buffersize(void *addr, int direction, size_t size)
2308 {
2309 	struct sbdsp_softc *sc;
2310 	bus_size_t maxsize;
2311 
2312 	sc = addr;
2313 	if (sc->sc_drq8 != -1)
2314 		maxsize = sc->sc_drq8_maxsize;
2315 	else
2316 		maxsize = sc->sc_drq16_maxsize;
2317 
2318 	if (size > maxsize)
2319 		size = maxsize;
2320 	return size;
2321 }
2322 
2323 paddr_t
2324 sb_mappage(void *addr, void *mem, off_t off, int prot)
2325 {
2326 
2327 	return isa_mappage(mem, off, prot);
2328 }
2329 
2330 int
2331 sbdsp_get_props(void *addr)
2332 {
2333 	struct sbdsp_softc *sc;
2334 
2335 	sc = addr;
2336 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2337 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2338 }
2339 
2340 #if NMPU > 0
2341 /*
2342  * MIDI related routines.
2343  */
2344 
2345 int
2346 sbdsp_midi_open(void *addr, int flags, void (*iintr)(void *, int),
2347 		void (*ointr)(void *), void *arg)
2348 {
2349 	struct sbdsp_softc *sc;
2350 
2351 	sc = addr;
2352 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2353 
2354 	if (sc->sc_open != SB_CLOSED)
2355 		return EBUSY;
2356 	if (sbdsp_reset(sc) != 0)
2357 		return EIO;
2358 
2359 	sc->sc_open = SB_OPEN_MIDI;
2360 
2361 	if (sc->sc_model >= SB_20)
2362 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2363 			return EIO;
2364 
2365 	sc->sc_intr8 = sbdsp_midi_intr;
2366 	sc->sc_intrm = iintr;
2367 	sc->sc_argm = arg;
2368 
2369 	return 0;
2370 }
2371 
2372 void
2373 sbdsp_midi_close(void *addr)
2374 {
2375 	struct sbdsp_softc *sc;
2376 
2377 	sc = addr;
2378 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2379 
2380 	if (sc->sc_model >= SB_20)
2381 		sbdsp_reset(sc); /* exit UART mode */
2382 
2383 	sc->sc_intrm = 0;
2384 	sc->sc_open = SB_CLOSED;
2385 }
2386 
2387 int
2388 sbdsp_midi_output(void *addr, int d)
2389 {
2390 	struct sbdsp_softc *sc;
2391 
2392 	sc = addr;
2393 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2394 		return EIO;
2395 	if (sbdsp_wdsp(sc, d))
2396 		return EIO;
2397 	return 0;
2398 }
2399 
2400 void
2401 sbdsp_midi_getinfo(void *addr, struct midi_info *mi)
2402 {
2403 	struct sbdsp_softc *sc;
2404 
2405 	sc = addr;
2406 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2407 	mi->props = MIDI_PROP_CAN_INPUT;
2408 }
2409 
2410 int
2411 sbdsp_midi_intr(void *addr)
2412 {
2413 	struct sbdsp_softc *sc;
2414 
2415 	sc = addr;
2416 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2417 	return (0);
2418 }
2419 
2420 #endif
2421 
2422