1 /* $NetBSD: sbdsp.c,v 1.113 2004/07/09 02:15:37 mycroft Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1991-1993 Regents of the University of California. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the Computer Systems 54 * Engineering Group at Lawrence Berkeley Laboratory. 55 * 4. Neither the name of the University nor of the Laboratory may be used 56 * to endorse or promote products derived from this software without 57 * specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 */ 72 73 /* 74 * SoundBlaster Pro code provided by John Kohl, based on lots of 75 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s 76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs 77 * <sachs@meibm15.cen.uiuc.edu>. 78 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se> 79 * with information from SB "Hardware Programming Guide" and the 80 * Linux drivers. 81 */ 82 83 #include <sys/cdefs.h> 84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.113 2004/07/09 02:15:37 mycroft Exp $"); 85 86 #include "midi.h" 87 #include "mpu.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/kernel.h> 92 #include <sys/errno.h> 93 #include <sys/ioctl.h> 94 #include <sys/syslog.h> 95 #include <sys/device.h> 96 #include <sys/proc.h> 97 #include <sys/buf.h> 98 99 #include <machine/cpu.h> 100 #include <machine/intr.h> 101 #include <machine/bus.h> 102 103 #include <sys/audioio.h> 104 #include <dev/audio_if.h> 105 #include <dev/midi_if.h> 106 #include <dev/mulaw.h> 107 #include <dev/auconv.h> 108 109 #include <dev/isa/isavar.h> 110 #include <dev/isa/isadmavar.h> 111 112 #include <dev/isa/sbreg.h> 113 #include <dev/isa/sbdspvar.h> 114 115 116 #ifdef AUDIO_DEBUG 117 #define DPRINTF(x) if (sbdspdebug) printf x 118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x 119 int sbdspdebug = 0; 120 #else 121 #define DPRINTF(x) 122 #define DPRINTFN(n,x) 123 #endif 124 125 #ifndef SBDSP_NPOLL 126 #define SBDSP_NPOLL 3000 127 #endif 128 129 struct { 130 int wdsp; 131 int rdsp; 132 int wmidi; 133 } sberr; 134 135 /* 136 * Time constant routines follow. See SBK, section 12. 137 * Although they don't come out and say it (in the docs), 138 * the card clearly uses a 1MHz countdown timer, as the 139 * low-speed formula (p. 12-4) is: 140 * tc = 256 - 10^6 / sr 141 * In high-speed mode, the constant is the upper byte of a 16-bit counter, 142 * and a 256MHz clock is used: 143 * tc = 65536 - 256 * 10^ 6 / sr 144 * Since we can only use the upper byte of the HS TC, the two formulae 145 * are equivalent. (Why didn't they say so?) E.g., 146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x 147 * 148 * The crossover point (from low- to high-speed modes) is different 149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data: 150 * 151 * SBPRO SB20 152 * ----- -------- 153 * input ls min 4 KHz 4 KHz 154 * input ls max 23 KHz 13 KHz 155 * input hs max 44.1 KHz 15 KHz 156 * output ls min 4 KHz 4 KHz 157 * output ls max 23 KHz 23 KHz 158 * output hs max 44.1 KHz 44.1 KHz 159 */ 160 /* XXX Should we round the tc? 161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8) 162 */ 163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x)) 164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc))) 165 166 struct sbmode { 167 short model; 168 u_char channels; 169 u_char precision; 170 u_short lowrate, highrate; 171 u_char cmd; 172 u_char halt, cont; 173 u_char cmdchan; 174 }; 175 static struct sbmode sbpmodes[] = { 176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT }, 177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */ 184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO }, 190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 192 #define PLAY16 15 /* must be the index of the next entry in the table */ 193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 195 { -1 } 196 }; 197 static struct sbmode sbrmodes[] = { 198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT }, 199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT }, 201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO }, 211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 215 { -1 } 216 }; 217 218 void sbversion __P((struct sbdsp_softc *)); 219 void sbdsp_jazz16_probe __P((struct sbdsp_softc *)); 220 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port)); 221 void sbdsp_pause __P((struct sbdsp_softc *)); 222 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int)); 223 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int)); 224 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int)); 225 void sbdsp_set_ifilter __P((void *, int)); 226 int sbdsp_get_ifilter __P((void *)); 227 228 int sbdsp_block_output __P((void *)); 229 int sbdsp_block_input __P((void *)); 230 static int sbdsp_adjust __P((int, int)); 231 232 int sbdsp_midi_intr __P((void *)); 233 234 static void sbdsp_powerhook __P((int, void*)); 235 236 #ifdef AUDIO_DEBUG 237 void sb_printsc __P((struct sbdsp_softc *)); 238 239 void 240 sb_printsc(sc) 241 struct sbdsp_softc *sc; 242 { 243 int i; 244 245 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n", 246 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run, 247 sc->sc_drq8, sc->sc_drq16, 248 sc->sc_iobase, sc->sc_irq); 249 printf("irate %d itc %x orate %d otc %x\n", 250 sc->sc_i.rate, sc->sc_i.tc, 251 sc->sc_o.rate, sc->sc_o.tc); 252 printf("spkron %u nintr %lu\n", 253 sc->spkr_state, sc->sc_interrupts); 254 printf("intr8 %p intr16 %p\n", 255 sc->sc_intr8, sc->sc_intr16); 256 printf("gain:"); 257 for (i = 0; i < SB_NDEVS; i++) 258 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]); 259 printf("\n"); 260 } 261 #endif /* AUDIO_DEBUG */ 262 263 /* 264 * Probe / attach routines. 265 */ 266 267 /* 268 * Probe for the soundblaster hardware. 269 */ 270 int 271 sbdsp_probe(sc) 272 struct sbdsp_softc *sc; 273 { 274 275 if (sbdsp_reset(sc) < 0) { 276 DPRINTF(("sbdsp: couldn't reset card\n")); 277 return 0; 278 } 279 /* if flags set, go and probe the jazz16 stuff */ 280 if (sc->sc_dev.dv_cfdata->cf_flags & 1) 281 sbdsp_jazz16_probe(sc); 282 else 283 sbversion(sc); 284 if (sc->sc_model == SB_UNK) { 285 /* Unknown SB model found. */ 286 DPRINTF(("sbdsp: unknown SB model found\n")); 287 return 0; 288 } 289 return 1; 290 } 291 292 /* 293 * Try add-on stuff for Jazz16. 294 */ 295 void 296 sbdsp_jazz16_probe(sc) 297 struct sbdsp_softc *sc; 298 { 299 static u_char jazz16_irq_conf[16] = { 300 -1, -1, 0x02, 0x03, 301 -1, 0x01, -1, 0x04, 302 -1, 0x02, 0x05, -1, 303 -1, -1, -1, 0x06}; 304 static u_char jazz16_drq_conf[8] = { 305 -1, 0x01, -1, 0x02, 306 -1, 0x03, -1, 0x04}; 307 308 bus_space_tag_t iot = sc->sc_iot; 309 bus_space_handle_t ioh; 310 311 sbversion(sc); 312 313 DPRINTF(("jazz16 probe\n")); 314 315 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) { 316 DPRINTF(("bus map failed\n")); 317 return; 318 } 319 320 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 || 321 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) { 322 DPRINTF(("drq/irq check failed\n")); 323 goto done; /* give up, we can't do it. */ 324 } 325 326 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP); 327 delay(10000); /* delay 10 ms */ 328 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE); 329 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70); 330 331 if (sbdsp_reset(sc) < 0) { 332 DPRINTF(("sbdsp_reset check failed\n")); 333 goto done; /* XXX? what else could we do? */ 334 } 335 336 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) { 337 DPRINTF(("read16 setup failed\n")); 338 goto done; 339 } 340 341 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) { 342 DPRINTF(("read16 failed\n")); 343 goto done; 344 } 345 346 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */ 347 sc->sc_drq16 = sc->sc_drq8; 348 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) || 349 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) | 350 jazz16_drq_conf[sc->sc_drq8]) || 351 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) { 352 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n")); 353 } else { 354 DPRINTF(("jazz16 detected!\n")); 355 sc->sc_model = SB_JAZZ; 356 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */ 357 } 358 359 done: 360 bus_space_unmap(iot, ioh, 1); 361 } 362 363 /* 364 * Attach hardware to driver, attach hardware driver to audio 365 * pseudo-device driver . 366 */ 367 void 368 sbdsp_attach(sc) 369 struct sbdsp_softc *sc; 370 { 371 struct audio_params pparams, rparams; 372 int i, error; 373 u_int v; 374 375 pparams = audio_default; 376 rparams = audio_default; 377 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 378 379 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL); 380 381 if (sc->sc_mixer_model != SBM_NONE) { 382 /* Reset the mixer.*/ 383 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 384 /* And set our own default values */ 385 for (i = 0; i < SB_NDEVS; i++) { 386 switch(i) { 387 case SB_MIC_VOL: 388 case SB_LINE_IN_VOL: 389 v = 0; 390 break; 391 case SB_BASS: 392 case SB_TREBLE: 393 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 394 break; 395 case SB_CD_IN_MUTE: 396 case SB_MIC_IN_MUTE: 397 case SB_LINE_IN_MUTE: 398 case SB_MIDI_IN_MUTE: 399 case SB_CD_SWAP: 400 case SB_MIC_SWAP: 401 case SB_LINE_SWAP: 402 case SB_MIDI_SWAP: 403 case SB_CD_OUT_MUTE: 404 case SB_MIC_OUT_MUTE: 405 case SB_LINE_OUT_MUTE: 406 v = 0; 407 break; 408 default: 409 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 410 break; 411 } 412 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v; 413 sbdsp_set_mixer_gain(sc, i); 414 } 415 sc->in_filter = 0; /* no filters turned on, please */ 416 } 417 418 printf(": dsp v%d.%02d%s\n", 419 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version), 420 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : ""); 421 422 sc->sc_fullduplex = ISSB16CLASS(sc) && 423 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 && 424 sc->sc_drq8 != sc->sc_drq16; 425 426 if (sc->sc_drq8 != -1) { 427 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic, 428 sc->sc_drq8); 429 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8, 430 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW); 431 if (error) { 432 printf("%s: can't create map for drq %d\n", 433 sc->sc_dev.dv_xname, sc->sc_drq8); 434 return; 435 } 436 } 437 438 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) { 439 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic, 440 sc->sc_drq16); 441 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16, 442 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW); 443 if (error) { 444 printf("%s: can't create map for drq %d\n", 445 sc->sc_dev.dv_xname, sc->sc_drq16); 446 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8); 447 return; 448 } 449 } 450 451 powerhook_establish (sbdsp_powerhook, sc); 452 } 453 454 static void 455 sbdsp_powerhook (why, arg) 456 int why; 457 void *arg; 458 { 459 struct sbdsp_softc *sc = arg; 460 int i; 461 462 if (!sc || why != PWR_RESUME) 463 return; 464 465 /* Reset the mixer. */ 466 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 467 for (i = 0; i < SB_NDEVS; i++) 468 sbdsp_set_mixer_gain (sc, i); 469 } 470 471 void 472 sbdsp_mix_write(sc, mixerport, val) 473 struct sbdsp_softc *sc; 474 int mixerport; 475 int val; 476 { 477 bus_space_tag_t iot = sc->sc_iot; 478 bus_space_handle_t ioh = sc->sc_ioh; 479 int s; 480 481 s = splaudio(); 482 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 483 delay(20); 484 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val); 485 delay(30); 486 splx(s); 487 } 488 489 int 490 sbdsp_mix_read(sc, mixerport) 491 struct sbdsp_softc *sc; 492 int mixerport; 493 { 494 bus_space_tag_t iot = sc->sc_iot; 495 bus_space_handle_t ioh = sc->sc_ioh; 496 int val; 497 int s; 498 499 s = splaudio(); 500 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 501 delay(20); 502 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA); 503 delay(30); 504 splx(s); 505 return val; 506 } 507 508 /* 509 * Various routines to interface to higher level audio driver 510 */ 511 512 int 513 sbdsp_query_encoding(addr, fp) 514 void *addr; 515 struct audio_encoding *fp; 516 { 517 struct sbdsp_softc *sc = addr; 518 int emul; 519 520 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED; 521 522 switch (fp->index) { 523 case 0: 524 strcpy(fp->name, AudioEulinear); 525 fp->encoding = AUDIO_ENCODING_ULINEAR; 526 fp->precision = 8; 527 fp->flags = 0; 528 return 0; 529 case 1: 530 strcpy(fp->name, AudioEmulaw); 531 fp->encoding = AUDIO_ENCODING_ULAW; 532 fp->precision = 8; 533 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 534 return 0; 535 case 2: 536 strcpy(fp->name, AudioEalaw); 537 fp->encoding = AUDIO_ENCODING_ALAW; 538 fp->precision = 8; 539 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 540 return 0; 541 case 3: 542 strcpy(fp->name, AudioEslinear); 543 fp->encoding = AUDIO_ENCODING_SLINEAR; 544 fp->precision = 8; 545 fp->flags = emul; 546 return 0; 547 } 548 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ) 549 return EINVAL; 550 551 switch(fp->index) { 552 case 4: 553 strcpy(fp->name, AudioEslinear_le); 554 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 555 fp->precision = 16; 556 fp->flags = 0; 557 return 0; 558 case 5: 559 strcpy(fp->name, AudioEulinear_le); 560 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 561 fp->precision = 16; 562 fp->flags = emul; 563 return 0; 564 case 6: 565 strcpy(fp->name, AudioEslinear_be); 566 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 567 fp->precision = 16; 568 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 569 return 0; 570 case 7: 571 strcpy(fp->name, AudioEulinear_be); 572 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 573 fp->precision = 16; 574 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 575 return 0; 576 default: 577 return EINVAL; 578 } 579 return 0; 580 } 581 582 int 583 sbdsp_set_params(addr, setmode, usemode, play, rec) 584 void *addr; 585 int setmode, usemode; 586 struct audio_params *play, *rec; 587 { 588 struct sbdsp_softc *sc = addr; 589 struct sbmode *m; 590 u_int rate, tc, bmode; 591 void (*swcode) __P((void *, u_char *buf, int cnt)); 592 int factor; 593 int model; 594 int chan; 595 struct audio_params *p; 596 int mode; 597 598 if (sc->sc_open == SB_OPEN_MIDI) 599 return EBUSY; 600 601 /* Later models work like SB16. */ 602 model = min(sc->sc_model, SB_16); 603 604 /* 605 * Prior to the SB16, we have only one clock, so make the sample 606 * rates match. 607 */ 608 if (!ISSB16CLASS(sc) && 609 play->sample_rate != rec->sample_rate && 610 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 611 if (setmode == AUMODE_PLAY) { 612 rec->sample_rate = play->sample_rate; 613 setmode |= AUMODE_RECORD; 614 } else if (setmode == AUMODE_RECORD) { 615 play->sample_rate = rec->sample_rate; 616 setmode |= AUMODE_PLAY; 617 } else 618 return (EINVAL); 619 } 620 621 /* Set first record info, then play info */ 622 for (mode = AUMODE_RECORD; mode != -1; 623 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 624 if ((setmode & mode) == 0) 625 continue; 626 627 p = mode == AUMODE_PLAY ? play : rec; 628 /* Locate proper commands */ 629 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes; 630 m->model != -1; m++) { 631 if (model == m->model && 632 p->channels == m->channels && 633 p->precision == m->precision && 634 p->sample_rate >= m->lowrate && 635 p->sample_rate <= m->highrate) 636 break; 637 } 638 if (m->model == -1) 639 return EINVAL; 640 rate = p->sample_rate; 641 swcode = 0; 642 factor = 1; 643 tc = 1; 644 bmode = -1; 645 if (model == SB_16) { 646 switch (p->encoding) { 647 case AUDIO_ENCODING_SLINEAR_BE: 648 if (p->precision == 16) 649 swcode = swap_bytes; 650 /* fall into */ 651 case AUDIO_ENCODING_SLINEAR_LE: 652 bmode = SB_BMODE_SIGNED; 653 break; 654 case AUDIO_ENCODING_ULINEAR_BE: 655 if (p->precision == 16) 656 swcode = swap_bytes; 657 /* fall into */ 658 case AUDIO_ENCODING_ULINEAR_LE: 659 bmode = SB_BMODE_UNSIGNED; 660 break; 661 case AUDIO_ENCODING_ULAW: 662 if (mode == AUMODE_PLAY) { 663 swcode = mulaw_to_ulinear16_le; 664 factor = 2; 665 m = &sbpmodes[PLAY16]; 666 } else 667 swcode = ulinear8_to_mulaw; 668 bmode = SB_BMODE_UNSIGNED; 669 break; 670 case AUDIO_ENCODING_ALAW: 671 if (mode == AUMODE_PLAY) { 672 swcode = alaw_to_ulinear16_le; 673 factor = 2; 674 m = &sbpmodes[PLAY16]; 675 } else 676 swcode = ulinear8_to_alaw; 677 bmode = SB_BMODE_UNSIGNED; 678 break; 679 default: 680 return EINVAL; 681 } 682 if (p->channels == 2) 683 bmode |= SB_BMODE_STEREO; 684 } else if (m->model == SB_JAZZ && m->precision == 16) { 685 switch (p->encoding) { 686 case AUDIO_ENCODING_SLINEAR_LE: 687 break; 688 case AUDIO_ENCODING_ULINEAR_LE: 689 swcode = change_sign16_le; 690 break; 691 case AUDIO_ENCODING_SLINEAR_BE: 692 swcode = swap_bytes; 693 break; 694 case AUDIO_ENCODING_ULINEAR_BE: 695 swcode = mode == AUMODE_PLAY ? 696 swap_bytes_change_sign16_le : 697 change_sign16_swap_bytes_le; 698 break; 699 case AUDIO_ENCODING_ULAW: 700 swcode = mode == AUMODE_PLAY ? 701 mulaw_to_ulinear8 : ulinear8_to_mulaw; 702 break; 703 case AUDIO_ENCODING_ALAW: 704 swcode = mode == AUMODE_PLAY ? 705 alaw_to_ulinear8 : ulinear8_to_alaw; 706 break; 707 default: 708 return EINVAL; 709 } 710 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 711 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 712 } else { 713 switch (p->encoding) { 714 case AUDIO_ENCODING_SLINEAR_BE: 715 case AUDIO_ENCODING_SLINEAR_LE: 716 swcode = change_sign8; 717 break; 718 case AUDIO_ENCODING_ULINEAR_BE: 719 case AUDIO_ENCODING_ULINEAR_LE: 720 break; 721 case AUDIO_ENCODING_ULAW: 722 swcode = mode == AUMODE_PLAY ? 723 mulaw_to_ulinear8 : ulinear8_to_mulaw; 724 break; 725 case AUDIO_ENCODING_ALAW: 726 swcode = mode == AUMODE_PLAY ? 727 alaw_to_ulinear8 : ulinear8_to_alaw; 728 break; 729 default: 730 return EINVAL; 731 } 732 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 733 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 734 } 735 736 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8; 737 if (mode == AUMODE_PLAY) { 738 sc->sc_o.rate = rate; 739 sc->sc_o.tc = tc; 740 sc->sc_o.modep = m; 741 sc->sc_o.bmode = bmode; 742 sc->sc_o.dmachan = chan; 743 } else { 744 sc->sc_i.rate = rate; 745 sc->sc_i.tc = tc; 746 sc->sc_i.modep = m; 747 sc->sc_i.bmode = bmode; 748 sc->sc_i.dmachan = chan; 749 } 750 751 p->sw_code = swcode; 752 p->factor = factor; 753 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n", 754 sc->sc_model, mode, p->sample_rate, p->precision, p->channels, 755 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor)); 756 757 } 758 759 if (sc->sc_fullduplex && 760 usemode == (AUMODE_PLAY | AUMODE_RECORD) && 761 sc->sc_i.dmachan == sc->sc_o.dmachan) { 762 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan)); 763 if (sc->sc_o.dmachan == sc->sc_drq8) { 764 /* Use 16 bit DMA for playing by expanding the samples. */ 765 play->sw_code = linear8_to_linear16_le; 766 play->factor = 2; 767 sc->sc_o.modep = &sbpmodes[PLAY16]; 768 sc->sc_o.dmachan = sc->sc_drq16; 769 } else { 770 return EINVAL; 771 } 772 } 773 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", 774 sc->sc_i.dmachan, sc->sc_o.dmachan)); 775 776 return (0); 777 } 778 779 void 780 sbdsp_set_ifilter(addr, which) 781 void *addr; 782 int which; 783 { 784 struct sbdsp_softc *sc = addr; 785 int mixval; 786 787 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK; 788 switch (which) { 789 case 0: 790 mixval |= SBP_FILTER_OFF; 791 break; 792 case SB_TREBLE: 793 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH; 794 break; 795 case SB_BASS: 796 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW; 797 break; 798 default: 799 return; 800 } 801 sc->in_filter = mixval & SBP_IFILTER_MASK; 802 sbdsp_mix_write(sc, SBP_INFILTER, mixval); 803 } 804 805 int 806 sbdsp_get_ifilter(addr) 807 void *addr; 808 { 809 struct sbdsp_softc *sc = addr; 810 811 sc->in_filter = 812 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK; 813 switch (sc->in_filter) { 814 case SBP_FILTER_ON|SBP_IFILTER_HIGH: 815 return SB_TREBLE; 816 case SBP_FILTER_ON|SBP_IFILTER_LOW: 817 return SB_BASS; 818 default: 819 return 0; 820 } 821 } 822 823 int 824 sbdsp_set_in_ports(sc, mask) 825 struct sbdsp_softc *sc; 826 int mask; 827 { 828 int bitsl, bitsr; 829 int sbport; 830 831 if (sc->sc_open == SB_OPEN_MIDI) 832 return EBUSY; 833 834 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n", 835 sc->sc_mixer_model, mask)); 836 837 switch(sc->sc_mixer_model) { 838 case SBM_NONE: 839 return EINVAL; 840 case SBM_CT1335: 841 if (mask != (1 << SB_MIC_VOL)) 842 return EINVAL; 843 break; 844 case SBM_CT1345: 845 switch (mask) { 846 case 1 << SB_MIC_VOL: 847 sbport = SBP_FROM_MIC; 848 break; 849 case 1 << SB_LINE_IN_VOL: 850 sbport = SBP_FROM_LINE; 851 break; 852 case 1 << SB_CD_VOL: 853 sbport = SBP_FROM_CD; 854 break; 855 default: 856 return (EINVAL); 857 } 858 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter); 859 break; 860 case SBM_CT1XX5: 861 case SBM_CT1745: 862 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) | 863 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL))) 864 return EINVAL; 865 bitsr = 0; 866 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R; 867 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R; 868 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R; 869 bitsl = SB_SRC_R_TO_L(bitsr); 870 if (mask & (1<<SB_MIC_VOL)) { 871 bitsl |= SBP_MIC_SRC; 872 bitsr |= SBP_MIC_SRC; 873 } 874 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl); 875 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr); 876 break; 877 } 878 sc->in_mask = mask; 879 880 return 0; 881 } 882 883 int 884 sbdsp_speaker_ctl(addr, newstate) 885 void *addr; 886 int newstate; 887 { 888 struct sbdsp_softc *sc = addr; 889 890 if (sc->sc_open == SB_OPEN_MIDI) 891 return EBUSY; 892 893 if ((newstate == SPKR_ON) && 894 (sc->spkr_state == SPKR_OFF)) { 895 sbdsp_spkron(sc); 896 sc->spkr_state = SPKR_ON; 897 } 898 if ((newstate == SPKR_OFF) && 899 (sc->spkr_state == SPKR_ON)) { 900 sbdsp_spkroff(sc); 901 sc->spkr_state = SPKR_OFF; 902 } 903 return 0; 904 } 905 906 int 907 sbdsp_round_blocksize(addr, blk) 908 void *addr; 909 int blk; 910 { 911 return blk & -4; /* round to biggest sample size */ 912 } 913 914 int 915 sbdsp_open(addr, flags) 916 void *addr; 917 int flags; 918 { 919 struct sbdsp_softc *sc = addr; 920 int error, state; 921 922 DPRINTF(("sbdsp_open: sc=%p\n", sc)); 923 924 if (sc->sc_open != SB_CLOSED) 925 return (EBUSY); 926 sc->sc_open = SB_OPEN_AUDIO; 927 state = 0; 928 929 if (sc->sc_drq8 != -1) { 930 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8); 931 if (error != 0) 932 goto bad; 933 state |= 1; 934 } 935 936 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) { 937 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16); 938 if (error != 0) 939 goto bad; 940 state |= 2; 941 } 942 943 944 if (sbdsp_reset(sc) != 0) { 945 error = EIO; 946 goto bad; 947 } 948 949 if (ISSBPRO(sc) && 950 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) { 951 DPRINTF(("sbdsp_open: can't set mono mode\n")); 952 /* we'll readjust when it's time for DMA. */ 953 } 954 955 /* 956 * Leave most things as they were; users must change things if 957 * the previous process didn't leave it they way they wanted. 958 * Looked at another way, it's easy to set up a configuration 959 * in one program and leave it for another to inherit. 960 */ 961 DPRINTF(("sbdsp_open: opened\n")); 962 963 return (0); 964 965 bad: 966 if (state & 1) 967 isa_drq_free(sc->sc_ic, sc->sc_drq8); 968 if (state & 2) 969 isa_drq_free(sc->sc_ic, sc->sc_drq16); 970 971 sc->sc_open = SB_CLOSED; 972 return (error); 973 } 974 975 void 976 sbdsp_close(addr) 977 void *addr; 978 { 979 struct sbdsp_softc *sc = addr; 980 981 DPRINTF(("sbdsp_close: sc=%p\n", sc)); 982 983 sbdsp_spkroff(sc); 984 sc->spkr_state = SPKR_OFF; 985 986 sc->sc_intr8 = 0; 987 sc->sc_intr16 = 0; 988 989 if (sc->sc_drq8 != -1) 990 isa_drq_free(sc->sc_ic, sc->sc_drq8); 991 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) 992 isa_drq_free(sc->sc_ic, sc->sc_drq16); 993 994 sc->sc_open = SB_CLOSED; 995 DPRINTF(("sbdsp_close: closed\n")); 996 } 997 998 /* 999 * Lower-level routines 1000 */ 1001 1002 /* 1003 * Reset the card. 1004 * Return non-zero if the card isn't detected. 1005 */ 1006 int 1007 sbdsp_reset(sc) 1008 struct sbdsp_softc *sc; 1009 { 1010 bus_space_tag_t iot = sc->sc_iot; 1011 bus_space_handle_t ioh = sc->sc_ioh; 1012 1013 sc->sc_intr8 = 0; 1014 sc->sc_intr16 = 0; 1015 sc->sc_intrm = 0; 1016 1017 /* 1018 * See SBK, section 11.3. 1019 * We pulse a reset signal into the card. 1020 * Gee, what a brilliant hardware design. 1021 */ 1022 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1); 1023 delay(10); 1024 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0); 1025 delay(30); 1026 if (sbdsp_rdsp(sc) != SB_MAGIC) 1027 return -1; 1028 1029 return 0; 1030 } 1031 1032 /* 1033 * Write a byte to the dsp. 1034 * We are at the mercy of the card as we use a 1035 * polling loop and wait until it can take the byte. 1036 */ 1037 int 1038 sbdsp_wdsp(sc, v) 1039 struct sbdsp_softc *sc; 1040 int v; 1041 { 1042 bus_space_tag_t iot = sc->sc_iot; 1043 bus_space_handle_t ioh = sc->sc_ioh; 1044 int i; 1045 u_char x; 1046 1047 for (i = SBDSP_NPOLL; --i >= 0; ) { 1048 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT); 1049 delay(10); 1050 if ((x & SB_DSP_BUSY) == 0) { 1051 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v); 1052 delay(10); 1053 return 0; 1054 } 1055 } 1056 ++sberr.wdsp; 1057 return -1; 1058 } 1059 1060 /* 1061 * Read a byte from the DSP, using polling. 1062 */ 1063 int 1064 sbdsp_rdsp(sc) 1065 struct sbdsp_softc *sc; 1066 { 1067 bus_space_tag_t iot = sc->sc_iot; 1068 bus_space_handle_t ioh = sc->sc_ioh; 1069 int i; 1070 u_char x; 1071 1072 for (i = SBDSP_NPOLL; --i >= 0; ) { 1073 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT); 1074 delay(10); 1075 if (x & SB_DSP_READY) { 1076 x = bus_space_read_1(iot, ioh, SBP_DSP_READ); 1077 delay(10); 1078 return x; 1079 } 1080 } 1081 ++sberr.rdsp; 1082 return -1; 1083 } 1084 1085 void 1086 sbdsp_pause(sc) 1087 struct sbdsp_softc *sc; 1088 { 1089 1090 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8); 1091 } 1092 1093 /* 1094 * Turn on the speaker. The SBK documention says this operation 1095 * can take up to 1/10 of a second. Higher level layers should 1096 * probably let the task sleep for this amount of time after 1097 * calling here. Otherwise, things might not work (because 1098 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.) 1099 * 1100 * These engineers had their heads up their ass when 1101 * they designed this card. 1102 */ 1103 void 1104 sbdsp_spkron(sc) 1105 struct sbdsp_softc *sc; 1106 { 1107 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON); 1108 sbdsp_pause(sc); 1109 } 1110 1111 /* 1112 * Turn off the speaker; see comment above. 1113 */ 1114 void 1115 sbdsp_spkroff(sc) 1116 struct sbdsp_softc *sc; 1117 { 1118 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF); 1119 sbdsp_pause(sc); 1120 } 1121 1122 /* 1123 * Read the version number out of the card. 1124 * Store version information in the softc. 1125 */ 1126 void 1127 sbversion(sc) 1128 struct sbdsp_softc *sc; 1129 { 1130 int v; 1131 1132 sc->sc_model = SB_UNK; 1133 sc->sc_version = 0; 1134 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0) 1135 return; 1136 v = sbdsp_rdsp(sc) << 8; 1137 v |= sbdsp_rdsp(sc); 1138 if (v < 0) 1139 return; 1140 sc->sc_version = v; 1141 switch(SBVER_MAJOR(v)) { 1142 case 1: 1143 sc->sc_mixer_model = SBM_NONE; 1144 sc->sc_model = SB_1; 1145 break; 1146 case 2: 1147 /* Some SB2 have a mixer, some don't. */ 1148 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04); 1149 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06); 1150 /* Check if we can read back the mixer values. */ 1151 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 && 1152 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06) 1153 sc->sc_mixer_model = SBM_CT1335; 1154 else 1155 sc->sc_mixer_model = SBM_NONE; 1156 if (SBVER_MINOR(v) == 0) 1157 sc->sc_model = SB_20; 1158 else 1159 sc->sc_model = SB_2x; 1160 break; 1161 case 3: 1162 sc->sc_mixer_model = SBM_CT1345; 1163 sc->sc_model = SB_PRO; 1164 break; 1165 case 4: 1166 #if 0 1167 /* XXX This does not work */ 1168 /* Most SB16 have a tone controls, but some don't. */ 1169 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80); 1170 /* Check if we can read back the mixer value. */ 1171 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80) 1172 sc->sc_mixer_model = SBM_CT1745; 1173 else 1174 sc->sc_mixer_model = SBM_CT1XX5; 1175 #else 1176 sc->sc_mixer_model = SBM_CT1745; 1177 #endif 1178 #if 0 1179 /* XXX figure out a good way of determining the model */ 1180 /* XXX what about SB_32 */ 1181 if (SBVER_MINOR(v) == 16) 1182 sc->sc_model = SB_64; 1183 else 1184 #endif 1185 sc->sc_model = SB_16; 1186 break; 1187 } 1188 } 1189 1190 int 1191 sbdsp_set_timeconst(sc, tc) 1192 struct sbdsp_softc *sc; 1193 int tc; 1194 { 1195 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc)); 1196 1197 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 || 1198 sbdsp_wdsp(sc, tc) < 0) 1199 return EIO; 1200 1201 return 0; 1202 } 1203 1204 int 1205 sbdsp16_set_rate(sc, cmd, rate) 1206 struct sbdsp_softc *sc; 1207 int cmd, rate; 1208 { 1209 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate)); 1210 1211 if (sbdsp_wdsp(sc, cmd) < 0 || 1212 sbdsp_wdsp(sc, rate >> 8) < 0 || 1213 sbdsp_wdsp(sc, rate) < 0) 1214 return EIO; 1215 return 0; 1216 } 1217 1218 int 1219 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param) 1220 void *addr; 1221 void *start, *end; 1222 int blksize; 1223 void (*intr) __P((void *)); 1224 void *arg; 1225 struct audio_params *param; 1226 { 1227 struct sbdsp_softc *sc = addr; 1228 int stereo = param->channels == 2; 1229 int width = param->precision * param->factor; 1230 int filter; 1231 1232 #ifdef DIAGNOSTIC 1233 if (stereo && (blksize & 1)) { 1234 DPRINTF(("stereo record odd bytes (%d)\n", blksize)); 1235 return (EIO); 1236 } 1237 if (sc->sc_i.run != SB_NOTRUNNING) 1238 printf("sbdsp_trigger_input: already running\n"); 1239 #endif 1240 1241 sc->sc_intrr = intr; 1242 sc->sc_argr = arg; 1243 1244 if (width == 8) { 1245 #ifdef DIAGNOSTIC 1246 if (sc->sc_i.dmachan != sc->sc_drq8) { 1247 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1248 width, sc->sc_i.dmachan); 1249 return (EIO); 1250 } 1251 #endif 1252 sc->sc_intr8 = sbdsp_block_input; 1253 } else { 1254 #ifdef DIAGNOSTIC 1255 if (sc->sc_i.dmachan != sc->sc_drq16) { 1256 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1257 width, sc->sc_i.dmachan); 1258 return (EIO); 1259 } 1260 #endif 1261 sc->sc_intr16 = sbdsp_block_input; 1262 } 1263 1264 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16)) 1265 blksize >>= 1; 1266 --blksize; 1267 sc->sc_i.blksize = blksize; 1268 1269 if (ISSBPRO(sc)) { 1270 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0) 1271 return (EIO); 1272 filter = stereo ? SBP_FILTER_OFF : sc->in_filter; 1273 sbdsp_mix_write(sc, SBP_INFILTER, 1274 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) | 1275 filter); 1276 } 1277 1278 if (ISSB16CLASS(sc)) { 1279 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) { 1280 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n", 1281 sc->sc_i.rate)); 1282 return (EIO); 1283 } 1284 } else { 1285 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) { 1286 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n", 1287 sc->sc_i.rate)); 1288 return (EIO); 1289 } 1290 } 1291 1292 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n", 1293 start, end, sc->sc_i.dmachan)); 1294 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start, 1295 (char *)end - (char *)start, NULL, 1296 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1297 1298 return sbdsp_block_input(addr); 1299 } 1300 1301 int 1302 sbdsp_block_input(addr) 1303 void *addr; 1304 { 1305 struct sbdsp_softc *sc = addr; 1306 int cc = sc->sc_i.blksize; 1307 1308 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc)); 1309 1310 if (sc->sc_i.run != SB_NOTRUNNING) 1311 sc->sc_intrr(sc->sc_argr); 1312 1313 if (sc->sc_model == SB_1) { 1314 /* Non-looping mode, start DMA */ 1315 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1316 sbdsp_wdsp(sc, cc) < 0 || 1317 sbdsp_wdsp(sc, cc >> 8) < 0) { 1318 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n")); 1319 return (EIO); 1320 } 1321 sc->sc_i.run = SB_RUNNING; 1322 } else if (sc->sc_i.run == SB_NOTRUNNING) { 1323 /* Initialize looping PCM */ 1324 if (ISSB16CLASS(sc)) { 1325 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n", 1326 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc)); 1327 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1328 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 || 1329 sbdsp_wdsp(sc, cc) < 0 || 1330 sbdsp_wdsp(sc, cc >> 8) < 0) { 1331 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n")); 1332 return (EIO); 1333 } 1334 } else { 1335 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc)); 1336 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1337 sbdsp_wdsp(sc, cc) < 0 || 1338 sbdsp_wdsp(sc, cc >> 8) < 0) { 1339 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n")); 1340 return (EIO); 1341 } 1342 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) { 1343 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n")); 1344 return (EIO); 1345 } 1346 } 1347 sc->sc_i.run = SB_LOOPING; 1348 } 1349 1350 return (0); 1351 } 1352 1353 int 1354 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param) 1355 void *addr; 1356 void *start, *end; 1357 int blksize; 1358 void (*intr) __P((void *)); 1359 void *arg; 1360 struct audio_params *param; 1361 { 1362 struct sbdsp_softc *sc = addr; 1363 int stereo = param->channels == 2; 1364 int width = param->precision * param->factor; 1365 int cmd; 1366 1367 #ifdef DIAGNOSTIC 1368 if (stereo && (blksize & 1)) { 1369 DPRINTF(("stereo playback odd bytes (%d)\n", blksize)); 1370 return (EIO); 1371 } 1372 if (sc->sc_o.run != SB_NOTRUNNING) 1373 printf("sbdsp_trigger_output: already running\n"); 1374 #endif 1375 1376 sc->sc_intrp = intr; 1377 sc->sc_argp = arg; 1378 1379 if (width == 8) { 1380 #ifdef DIAGNOSTIC 1381 if (sc->sc_o.dmachan != sc->sc_drq8) { 1382 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1383 width, sc->sc_o.dmachan); 1384 return (EIO); 1385 } 1386 #endif 1387 sc->sc_intr8 = sbdsp_block_output; 1388 } else { 1389 #ifdef DIAGNOSTIC 1390 if (sc->sc_o.dmachan != sc->sc_drq16) { 1391 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1392 width, sc->sc_o.dmachan); 1393 return (EIO); 1394 } 1395 #endif 1396 sc->sc_intr16 = sbdsp_block_output; 1397 } 1398 1399 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16)) 1400 blksize >>= 1; 1401 --blksize; 1402 sc->sc_o.blksize = blksize; 1403 1404 if (ISSBPRO(sc)) { 1405 /* make sure we re-set stereo mixer bit when we start output. */ 1406 sbdsp_mix_write(sc, SBP_STEREO, 1407 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) | 1408 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO)); 1409 cmd = sc->sc_o.modep->cmdchan; 1410 if (cmd && sbdsp_wdsp(sc, cmd) < 0) 1411 return (EIO); 1412 } 1413 1414 if (ISSB16CLASS(sc)) { 1415 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) { 1416 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n", 1417 sc->sc_o.rate)); 1418 return (EIO); 1419 } 1420 } else { 1421 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) { 1422 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n", 1423 sc->sc_o.rate)); 1424 return (EIO); 1425 } 1426 } 1427 1428 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n", 1429 start, end, sc->sc_o.dmachan)); 1430 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start, 1431 (char *)end - (char *)start, NULL, 1432 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1433 1434 return sbdsp_block_output(addr); 1435 } 1436 1437 int 1438 sbdsp_block_output(addr) 1439 void *addr; 1440 { 1441 struct sbdsp_softc *sc = addr; 1442 int cc = sc->sc_o.blksize; 1443 1444 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc)); 1445 1446 if (sc->sc_o.run != SB_NOTRUNNING) 1447 sc->sc_intrp(sc->sc_argp); 1448 1449 if (sc->sc_model == SB_1) { 1450 /* Non-looping mode, initialized. Start DMA and PCM */ 1451 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1452 sbdsp_wdsp(sc, cc) < 0 || 1453 sbdsp_wdsp(sc, cc >> 8) < 0) { 1454 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n")); 1455 return (EIO); 1456 } 1457 sc->sc_o.run = SB_RUNNING; 1458 } else if (sc->sc_o.run == SB_NOTRUNNING) { 1459 /* Initialize looping PCM */ 1460 if (ISSB16CLASS(sc)) { 1461 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n", 1462 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc)); 1463 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1464 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 || 1465 sbdsp_wdsp(sc, cc) < 0 || 1466 sbdsp_wdsp(sc, cc >> 8) < 0) { 1467 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n")); 1468 return (EIO); 1469 } 1470 } else { 1471 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc)); 1472 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1473 sbdsp_wdsp(sc, cc) < 0 || 1474 sbdsp_wdsp(sc, cc >> 8) < 0) { 1475 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n")); 1476 return (EIO); 1477 } 1478 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) { 1479 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n")); 1480 return (EIO); 1481 } 1482 } 1483 sc->sc_o.run = SB_LOOPING; 1484 } 1485 1486 return (0); 1487 } 1488 1489 int 1490 sbdsp_halt_output(addr) 1491 void *addr; 1492 { 1493 struct sbdsp_softc *sc = addr; 1494 1495 if (sc->sc_o.run != SB_NOTRUNNING) { 1496 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0) 1497 printf("sbdsp_halt_output: failed to halt\n"); 1498 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan); 1499 sc->sc_o.run = SB_NOTRUNNING; 1500 } 1501 1502 return (0); 1503 } 1504 1505 int 1506 sbdsp_halt_input(addr) 1507 void *addr; 1508 { 1509 struct sbdsp_softc *sc = addr; 1510 1511 if (sc->sc_i.run != SB_NOTRUNNING) { 1512 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0) 1513 printf("sbdsp_halt_input: failed to halt\n"); 1514 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan); 1515 sc->sc_i.run = SB_NOTRUNNING; 1516 } 1517 1518 return (0); 1519 } 1520 1521 /* 1522 * Only the DSP unit on the sound blaster generates interrupts. 1523 * There are three cases of interrupt: reception of a midi byte 1524 * (when mode is enabled), completion of DMA transmission, or 1525 * completion of a DMA reception. 1526 * 1527 * If there is interrupt sharing or a spurious interrupt occurs 1528 * there is no way to distinguish this on an SB2. So if you have 1529 * an SB2 and experience problems, buy an SB16 (it's only $40). 1530 */ 1531 int 1532 sbdsp_intr(arg) 1533 void *arg; 1534 { 1535 struct sbdsp_softc *sc = arg; 1536 u_char irq; 1537 1538 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n", 1539 sc->sc_intr8, sc->sc_intr16)); 1540 if (ISSB16CLASS(sc)) { 1541 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS); 1542 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) { 1543 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq)); 1544 return 0; 1545 } 1546 } else { 1547 /* XXXX CHECK FOR INTERRUPT */ 1548 irq = SBP_IRQ_DMA8; 1549 } 1550 1551 sc->sc_interrupts++; 1552 delay(10); /* XXX why? */ 1553 1554 /* clear interrupt */ 1555 if (irq & SBP_IRQ_DMA8) { 1556 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8); 1557 if (sc->sc_intr8) 1558 sc->sc_intr8(arg); 1559 } 1560 if (irq & SBP_IRQ_DMA16) { 1561 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16); 1562 if (sc->sc_intr16) 1563 sc->sc_intr16(arg); 1564 } 1565 #if NMPU > 0 1566 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) { 1567 mpu_intr(sc->sc_mpudev); 1568 } 1569 #endif 1570 return 1; 1571 } 1572 1573 /* Like val & mask, but make sure the result is correctly rounded. */ 1574 #define MAXVAL 256 1575 static int 1576 sbdsp_adjust(val, mask) 1577 int val, mask; 1578 { 1579 val += (MAXVAL - mask) >> 1; 1580 if (val >= MAXVAL) 1581 val = MAXVAL-1; 1582 return val & mask; 1583 } 1584 1585 void 1586 sbdsp_set_mixer_gain(sc, port) 1587 struct sbdsp_softc *sc; 1588 int port; 1589 { 1590 int src, gain; 1591 1592 switch(sc->sc_mixer_model) { 1593 case SBM_NONE: 1594 return; 1595 case SBM_CT1335: 1596 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]); 1597 switch(port) { 1598 case SB_MASTER_VOL: 1599 src = SBP_1335_MASTER_VOL; 1600 break; 1601 case SB_MIDI_VOL: 1602 src = SBP_1335_MIDI_VOL; 1603 break; 1604 case SB_CD_VOL: 1605 src = SBP_1335_CD_VOL; 1606 break; 1607 case SB_VOICE_VOL: 1608 src = SBP_1335_VOICE_VOL; 1609 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]); 1610 break; 1611 default: 1612 return; 1613 } 1614 sbdsp_mix_write(sc, src, gain); 1615 break; 1616 case SBM_CT1345: 1617 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT], 1618 sc->gain[port][SB_RIGHT]); 1619 switch (port) { 1620 case SB_MIC_VOL: 1621 src = SBP_MIC_VOL; 1622 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]); 1623 break; 1624 case SB_MASTER_VOL: 1625 src = SBP_MASTER_VOL; 1626 break; 1627 case SB_LINE_IN_VOL: 1628 src = SBP_LINE_VOL; 1629 break; 1630 case SB_VOICE_VOL: 1631 src = SBP_VOICE_VOL; 1632 break; 1633 case SB_MIDI_VOL: 1634 src = SBP_MIDI_VOL; 1635 break; 1636 case SB_CD_VOL: 1637 src = SBP_CD_VOL; 1638 break; 1639 default: 1640 return; 1641 } 1642 sbdsp_mix_write(sc, src, gain); 1643 break; 1644 case SBM_CT1XX5: 1645 case SBM_CT1745: 1646 switch (port) { 1647 case SB_MIC_VOL: 1648 src = SB16P_MIC_L; 1649 break; 1650 case SB_MASTER_VOL: 1651 src = SB16P_MASTER_L; 1652 break; 1653 case SB_LINE_IN_VOL: 1654 src = SB16P_LINE_L; 1655 break; 1656 case SB_VOICE_VOL: 1657 src = SB16P_VOICE_L; 1658 break; 1659 case SB_MIDI_VOL: 1660 src = SB16P_MIDI_L; 1661 break; 1662 case SB_CD_VOL: 1663 src = SB16P_CD_L; 1664 break; 1665 case SB_INPUT_GAIN: 1666 src = SB16P_INPUT_GAIN_L; 1667 break; 1668 case SB_OUTPUT_GAIN: 1669 src = SB16P_OUTPUT_GAIN_L; 1670 break; 1671 case SB_TREBLE: 1672 src = SB16P_TREBLE_L; 1673 break; 1674 case SB_BASS: 1675 src = SB16P_BASS_L; 1676 break; 1677 case SB_PCSPEAKER: 1678 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]); 1679 return; 1680 default: 1681 return; 1682 } 1683 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]); 1684 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]); 1685 break; 1686 } 1687 } 1688 1689 int 1690 sbdsp_mixer_set_port(addr, cp) 1691 void *addr; 1692 mixer_ctrl_t *cp; 1693 { 1694 struct sbdsp_softc *sc = addr; 1695 int lgain, rgain; 1696 int mask, bits; 1697 int lmask, rmask, lbits, rbits; 1698 int mute, swap; 1699 1700 if (sc->sc_open == SB_OPEN_MIDI) 1701 return EBUSY; 1702 1703 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev, 1704 cp->un.value.num_channels)); 1705 1706 if (sc->sc_mixer_model == SBM_NONE) 1707 return EINVAL; 1708 1709 switch (cp->dev) { 1710 case SB_TREBLE: 1711 case SB_BASS: 1712 if (sc->sc_mixer_model == SBM_CT1345 || 1713 sc->sc_mixer_model == SBM_CT1XX5) { 1714 if (cp->type != AUDIO_MIXER_ENUM) 1715 return EINVAL; 1716 switch (cp->dev) { 1717 case SB_TREBLE: 1718 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0); 1719 return 0; 1720 case SB_BASS: 1721 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0); 1722 return 0; 1723 } 1724 } 1725 case SB_PCSPEAKER: 1726 case SB_INPUT_GAIN: 1727 case SB_OUTPUT_GAIN: 1728 if (!ISSBM1745(sc)) 1729 return EINVAL; 1730 case SB_MIC_VOL: 1731 case SB_LINE_IN_VOL: 1732 if (sc->sc_mixer_model == SBM_CT1335) 1733 return EINVAL; 1734 case SB_VOICE_VOL: 1735 case SB_MIDI_VOL: 1736 case SB_CD_VOL: 1737 case SB_MASTER_VOL: 1738 if (cp->type != AUDIO_MIXER_VALUE) 1739 return EINVAL; 1740 1741 /* 1742 * All the mixer ports are stereo except for the microphone. 1743 * If we get a single-channel gain value passed in, then we 1744 * duplicate it to both left and right channels. 1745 */ 1746 1747 switch (cp->dev) { 1748 case SB_MIC_VOL: 1749 if (cp->un.value.num_channels != 1) 1750 return EINVAL; 1751 1752 lgain = rgain = SB_ADJUST_MIC_GAIN(sc, 1753 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1754 break; 1755 case SB_PCSPEAKER: 1756 if (cp->un.value.num_channels != 1) 1757 return EINVAL; 1758 /* fall into */ 1759 case SB_INPUT_GAIN: 1760 case SB_OUTPUT_GAIN: 1761 lgain = rgain = SB_ADJUST_2_GAIN(sc, 1762 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1763 break; 1764 default: 1765 switch (cp->un.value.num_channels) { 1766 case 1: 1767 lgain = rgain = SB_ADJUST_GAIN(sc, 1768 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1769 break; 1770 case 2: 1771 if (sc->sc_mixer_model == SBM_CT1335) 1772 return EINVAL; 1773 lgain = SB_ADJUST_GAIN(sc, 1774 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1775 rgain = SB_ADJUST_GAIN(sc, 1776 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1777 break; 1778 default: 1779 return EINVAL; 1780 } 1781 break; 1782 } 1783 sc->gain[cp->dev][SB_LEFT] = lgain; 1784 sc->gain[cp->dev][SB_RIGHT] = rgain; 1785 1786 sbdsp_set_mixer_gain(sc, cp->dev); 1787 break; 1788 1789 case SB_RECORD_SOURCE: 1790 if (ISSBM1745(sc)) { 1791 if (cp->type != AUDIO_MIXER_SET) 1792 return EINVAL; 1793 return sbdsp_set_in_ports(sc, cp->un.mask); 1794 } else { 1795 if (cp->type != AUDIO_MIXER_ENUM) 1796 return EINVAL; 1797 sc->in_port = cp->un.ord; 1798 return sbdsp_set_in_ports(sc, 1 << cp->un.ord); 1799 } 1800 break; 1801 1802 case SB_AGC: 1803 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM) 1804 return EINVAL; 1805 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1); 1806 break; 1807 1808 case SB_CD_OUT_MUTE: 1809 mask = SB16P_SW_CD; 1810 goto omute; 1811 case SB_MIC_OUT_MUTE: 1812 mask = SB16P_SW_MIC; 1813 goto omute; 1814 case SB_LINE_OUT_MUTE: 1815 mask = SB16P_SW_LINE; 1816 omute: 1817 if (cp->type != AUDIO_MIXER_ENUM) 1818 return EINVAL; 1819 bits = sbdsp_mix_read(sc, SB16P_OSWITCH); 1820 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1821 if (cp->un.ord) 1822 bits = bits & ~mask; 1823 else 1824 bits = bits | mask; 1825 sbdsp_mix_write(sc, SB16P_OSWITCH, bits); 1826 break; 1827 1828 case SB_MIC_IN_MUTE: 1829 case SB_MIC_SWAP: 1830 lmask = rmask = SB16P_SW_MIC; 1831 goto imute; 1832 case SB_CD_IN_MUTE: 1833 case SB_CD_SWAP: 1834 lmask = SB16P_SW_CD_L; 1835 rmask = SB16P_SW_CD_R; 1836 goto imute; 1837 case SB_LINE_IN_MUTE: 1838 case SB_LINE_SWAP: 1839 lmask = SB16P_SW_LINE_L; 1840 rmask = SB16P_SW_LINE_R; 1841 goto imute; 1842 case SB_MIDI_IN_MUTE: 1843 case SB_MIDI_SWAP: 1844 lmask = SB16P_SW_MIDI_L; 1845 rmask = SB16P_SW_MIDI_R; 1846 imute: 1847 if (cp->type != AUDIO_MIXER_ENUM) 1848 return EINVAL; 1849 mask = lmask | rmask; 1850 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask; 1851 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask; 1852 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1853 if (SB_IS_IN_MUTE(cp->dev)) { 1854 mute = cp->dev; 1855 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP; 1856 } else { 1857 swap = cp->dev; 1858 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP; 1859 } 1860 if (sc->gain[swap][SB_LR]) { 1861 mask = lmask; 1862 lmask = rmask; 1863 rmask = mask; 1864 } 1865 if (!sc->gain[mute][SB_LR]) { 1866 lbits = lbits | lmask; 1867 rbits = rbits | rmask; 1868 } 1869 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits); 1870 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits); 1871 break; 1872 1873 default: 1874 return EINVAL; 1875 } 1876 1877 return 0; 1878 } 1879 1880 int 1881 sbdsp_mixer_get_port(addr, cp) 1882 void *addr; 1883 mixer_ctrl_t *cp; 1884 { 1885 struct sbdsp_softc *sc = addr; 1886 1887 if (sc->sc_open == SB_OPEN_MIDI) 1888 return EBUSY; 1889 1890 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev)); 1891 1892 if (sc->sc_mixer_model == SBM_NONE) 1893 return EINVAL; 1894 1895 switch (cp->dev) { 1896 case SB_TREBLE: 1897 case SB_BASS: 1898 if (sc->sc_mixer_model == SBM_CT1345 || 1899 sc->sc_mixer_model == SBM_CT1XX5) { 1900 switch (cp->dev) { 1901 case SB_TREBLE: 1902 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE; 1903 return 0; 1904 case SB_BASS: 1905 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS; 1906 return 0; 1907 } 1908 } 1909 case SB_PCSPEAKER: 1910 case SB_INPUT_GAIN: 1911 case SB_OUTPUT_GAIN: 1912 if (!ISSBM1745(sc)) 1913 return EINVAL; 1914 case SB_MIC_VOL: 1915 case SB_LINE_IN_VOL: 1916 if (sc->sc_mixer_model == SBM_CT1335) 1917 return EINVAL; 1918 case SB_VOICE_VOL: 1919 case SB_MIDI_VOL: 1920 case SB_CD_VOL: 1921 case SB_MASTER_VOL: 1922 switch (cp->dev) { 1923 case SB_MIC_VOL: 1924 case SB_PCSPEAKER: 1925 if (cp->un.value.num_channels != 1) 1926 return EINVAL; 1927 /* fall into */ 1928 default: 1929 switch (cp->un.value.num_channels) { 1930 case 1: 1931 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1932 sc->gain[cp->dev][SB_LEFT]; 1933 break; 1934 case 2: 1935 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1936 sc->gain[cp->dev][SB_LEFT]; 1937 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1938 sc->gain[cp->dev][SB_RIGHT]; 1939 break; 1940 default: 1941 return EINVAL; 1942 } 1943 break; 1944 } 1945 break; 1946 1947 case SB_RECORD_SOURCE: 1948 if (ISSBM1745(sc)) 1949 cp->un.mask = sc->in_mask; 1950 else 1951 cp->un.ord = sc->in_port; 1952 break; 1953 1954 case SB_AGC: 1955 if (!ISSBM1745(sc)) 1956 return EINVAL; 1957 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC); 1958 break; 1959 1960 case SB_CD_IN_MUTE: 1961 case SB_MIC_IN_MUTE: 1962 case SB_LINE_IN_MUTE: 1963 case SB_MIDI_IN_MUTE: 1964 case SB_CD_SWAP: 1965 case SB_MIC_SWAP: 1966 case SB_LINE_SWAP: 1967 case SB_MIDI_SWAP: 1968 case SB_CD_OUT_MUTE: 1969 case SB_MIC_OUT_MUTE: 1970 case SB_LINE_OUT_MUTE: 1971 cp->un.ord = sc->gain[cp->dev][SB_LR]; 1972 break; 1973 1974 default: 1975 return EINVAL; 1976 } 1977 1978 return 0; 1979 } 1980 1981 int 1982 sbdsp_mixer_query_devinfo(addr, dip) 1983 void *addr; 1984 mixer_devinfo_t *dip; 1985 { 1986 struct sbdsp_softc *sc = addr; 1987 int chan, class, is1745; 1988 1989 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n", 1990 sc->sc_mixer_model, dip->index)); 1991 1992 if (sc->sc_mixer_model == SBM_NONE) 1993 return ENXIO; 1994 1995 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2; 1996 is1745 = ISSBM1745(sc); 1997 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS; 1998 1999 switch (dip->index) { 2000 case SB_MASTER_VOL: 2001 dip->type = AUDIO_MIXER_VALUE; 2002 dip->mixer_class = SB_OUTPUT_CLASS; 2003 dip->prev = dip->next = AUDIO_MIXER_LAST; 2004 strcpy(dip->label.name, AudioNmaster); 2005 dip->un.v.num_channels = chan; 2006 strcpy(dip->un.v.units.name, AudioNvolume); 2007 return 0; 2008 case SB_MIDI_VOL: 2009 dip->type = AUDIO_MIXER_VALUE; 2010 dip->mixer_class = class; 2011 dip->prev = AUDIO_MIXER_LAST; 2012 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST; 2013 strcpy(dip->label.name, AudioNfmsynth); 2014 dip->un.v.num_channels = chan; 2015 strcpy(dip->un.v.units.name, AudioNvolume); 2016 return 0; 2017 case SB_CD_VOL: 2018 dip->type = AUDIO_MIXER_VALUE; 2019 dip->mixer_class = class; 2020 dip->prev = AUDIO_MIXER_LAST; 2021 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST; 2022 strcpy(dip->label.name, AudioNcd); 2023 dip->un.v.num_channels = chan; 2024 strcpy(dip->un.v.units.name, AudioNvolume); 2025 return 0; 2026 case SB_VOICE_VOL: 2027 dip->type = AUDIO_MIXER_VALUE; 2028 dip->mixer_class = class; 2029 dip->prev = AUDIO_MIXER_LAST; 2030 dip->next = AUDIO_MIXER_LAST; 2031 strcpy(dip->label.name, AudioNdac); 2032 dip->un.v.num_channels = chan; 2033 strcpy(dip->un.v.units.name, AudioNvolume); 2034 return 0; 2035 case SB_OUTPUT_CLASS: 2036 dip->type = AUDIO_MIXER_CLASS; 2037 dip->mixer_class = SB_OUTPUT_CLASS; 2038 dip->next = dip->prev = AUDIO_MIXER_LAST; 2039 strcpy(dip->label.name, AudioCoutputs); 2040 return 0; 2041 } 2042 2043 if (sc->sc_mixer_model == SBM_CT1335) 2044 return ENXIO; 2045 2046 switch (dip->index) { 2047 case SB_MIC_VOL: 2048 dip->type = AUDIO_MIXER_VALUE; 2049 dip->mixer_class = class; 2050 dip->prev = AUDIO_MIXER_LAST; 2051 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST; 2052 strcpy(dip->label.name, AudioNmicrophone); 2053 dip->un.v.num_channels = 1; 2054 strcpy(dip->un.v.units.name, AudioNvolume); 2055 return 0; 2056 2057 case SB_LINE_IN_VOL: 2058 dip->type = AUDIO_MIXER_VALUE; 2059 dip->mixer_class = class; 2060 dip->prev = AUDIO_MIXER_LAST; 2061 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST; 2062 strcpy(dip->label.name, AudioNline); 2063 dip->un.v.num_channels = 2; 2064 strcpy(dip->un.v.units.name, AudioNvolume); 2065 return 0; 2066 2067 case SB_RECORD_SOURCE: 2068 dip->mixer_class = SB_RECORD_CLASS; 2069 dip->prev = dip->next = AUDIO_MIXER_LAST; 2070 strcpy(dip->label.name, AudioNsource); 2071 if (ISSBM1745(sc)) { 2072 dip->type = AUDIO_MIXER_SET; 2073 dip->un.s.num_mem = 4; 2074 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone); 2075 dip->un.s.member[0].mask = 1 << SB_MIC_VOL; 2076 strcpy(dip->un.s.member[1].label.name, AudioNcd); 2077 dip->un.s.member[1].mask = 1 << SB_CD_VOL; 2078 strcpy(dip->un.s.member[2].label.name, AudioNline); 2079 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL; 2080 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth); 2081 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL; 2082 } else { 2083 dip->type = AUDIO_MIXER_ENUM; 2084 dip->un.e.num_mem = 3; 2085 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 2086 dip->un.e.member[0].ord = SB_MIC_VOL; 2087 strcpy(dip->un.e.member[1].label.name, AudioNcd); 2088 dip->un.e.member[1].ord = SB_CD_VOL; 2089 strcpy(dip->un.e.member[2].label.name, AudioNline); 2090 dip->un.e.member[2].ord = SB_LINE_IN_VOL; 2091 } 2092 return 0; 2093 2094 case SB_BASS: 2095 dip->prev = dip->next = AUDIO_MIXER_LAST; 2096 strcpy(dip->label.name, AudioNbass); 2097 if (sc->sc_mixer_model == SBM_CT1745) { 2098 dip->type = AUDIO_MIXER_VALUE; 2099 dip->mixer_class = SB_EQUALIZATION_CLASS; 2100 dip->un.v.num_channels = 2; 2101 strcpy(dip->un.v.units.name, AudioNbass); 2102 } else { 2103 dip->type = AUDIO_MIXER_ENUM; 2104 dip->mixer_class = SB_INPUT_CLASS; 2105 dip->un.e.num_mem = 2; 2106 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2107 dip->un.e.member[0].ord = 0; 2108 strcpy(dip->un.e.member[1].label.name, AudioNon); 2109 dip->un.e.member[1].ord = 1; 2110 } 2111 return 0; 2112 2113 case SB_TREBLE: 2114 dip->prev = dip->next = AUDIO_MIXER_LAST; 2115 strcpy(dip->label.name, AudioNtreble); 2116 if (sc->sc_mixer_model == SBM_CT1745) { 2117 dip->type = AUDIO_MIXER_VALUE; 2118 dip->mixer_class = SB_EQUALIZATION_CLASS; 2119 dip->un.v.num_channels = 2; 2120 strcpy(dip->un.v.units.name, AudioNtreble); 2121 } else { 2122 dip->type = AUDIO_MIXER_ENUM; 2123 dip->mixer_class = SB_INPUT_CLASS; 2124 dip->un.e.num_mem = 2; 2125 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2126 dip->un.e.member[0].ord = 0; 2127 strcpy(dip->un.e.member[1].label.name, AudioNon); 2128 dip->un.e.member[1].ord = 1; 2129 } 2130 return 0; 2131 2132 case SB_RECORD_CLASS: /* record source class */ 2133 dip->type = AUDIO_MIXER_CLASS; 2134 dip->mixer_class = SB_RECORD_CLASS; 2135 dip->next = dip->prev = AUDIO_MIXER_LAST; 2136 strcpy(dip->label.name, AudioCrecord); 2137 return 0; 2138 2139 case SB_INPUT_CLASS: 2140 dip->type = AUDIO_MIXER_CLASS; 2141 dip->mixer_class = SB_INPUT_CLASS; 2142 dip->next = dip->prev = AUDIO_MIXER_LAST; 2143 strcpy(dip->label.name, AudioCinputs); 2144 return 0; 2145 2146 } 2147 2148 if (sc->sc_mixer_model == SBM_CT1345) 2149 return ENXIO; 2150 2151 switch(dip->index) { 2152 case SB_PCSPEAKER: 2153 dip->type = AUDIO_MIXER_VALUE; 2154 dip->mixer_class = SB_INPUT_CLASS; 2155 dip->prev = dip->next = AUDIO_MIXER_LAST; 2156 strcpy(dip->label.name, "pc_speaker"); 2157 dip->un.v.num_channels = 1; 2158 strcpy(dip->un.v.units.name, AudioNvolume); 2159 return 0; 2160 2161 case SB_INPUT_GAIN: 2162 dip->type = AUDIO_MIXER_VALUE; 2163 dip->mixer_class = SB_INPUT_CLASS; 2164 dip->prev = dip->next = AUDIO_MIXER_LAST; 2165 strcpy(dip->label.name, AudioNinput); 2166 dip->un.v.num_channels = 2; 2167 strcpy(dip->un.v.units.name, AudioNvolume); 2168 return 0; 2169 2170 case SB_OUTPUT_GAIN: 2171 dip->type = AUDIO_MIXER_VALUE; 2172 dip->mixer_class = SB_OUTPUT_CLASS; 2173 dip->prev = dip->next = AUDIO_MIXER_LAST; 2174 strcpy(dip->label.name, AudioNoutput); 2175 dip->un.v.num_channels = 2; 2176 strcpy(dip->un.v.units.name, AudioNvolume); 2177 return 0; 2178 2179 case SB_AGC: 2180 dip->type = AUDIO_MIXER_ENUM; 2181 dip->mixer_class = SB_INPUT_CLASS; 2182 dip->prev = dip->next = AUDIO_MIXER_LAST; 2183 strcpy(dip->label.name, "agc"); 2184 dip->un.e.num_mem = 2; 2185 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2186 dip->un.e.member[0].ord = 0; 2187 strcpy(dip->un.e.member[1].label.name, AudioNon); 2188 dip->un.e.member[1].ord = 1; 2189 return 0; 2190 2191 case SB_EQUALIZATION_CLASS: 2192 dip->type = AUDIO_MIXER_CLASS; 2193 dip->mixer_class = SB_EQUALIZATION_CLASS; 2194 dip->next = dip->prev = AUDIO_MIXER_LAST; 2195 strcpy(dip->label.name, AudioCequalization); 2196 return 0; 2197 2198 case SB_CD_IN_MUTE: 2199 dip->prev = SB_CD_VOL; 2200 dip->next = SB_CD_SWAP; 2201 dip->mixer_class = SB_INPUT_CLASS; 2202 goto mute; 2203 2204 case SB_MIC_IN_MUTE: 2205 dip->prev = SB_MIC_VOL; 2206 dip->next = SB_MIC_SWAP; 2207 dip->mixer_class = SB_INPUT_CLASS; 2208 goto mute; 2209 2210 case SB_LINE_IN_MUTE: 2211 dip->prev = SB_LINE_IN_VOL; 2212 dip->next = SB_LINE_SWAP; 2213 dip->mixer_class = SB_INPUT_CLASS; 2214 goto mute; 2215 2216 case SB_MIDI_IN_MUTE: 2217 dip->prev = SB_MIDI_VOL; 2218 dip->next = SB_MIDI_SWAP; 2219 dip->mixer_class = SB_INPUT_CLASS; 2220 goto mute; 2221 2222 case SB_CD_SWAP: 2223 dip->prev = SB_CD_IN_MUTE; 2224 dip->next = SB_CD_OUT_MUTE; 2225 goto swap; 2226 2227 case SB_MIC_SWAP: 2228 dip->prev = SB_MIC_IN_MUTE; 2229 dip->next = SB_MIC_OUT_MUTE; 2230 goto swap; 2231 2232 case SB_LINE_SWAP: 2233 dip->prev = SB_LINE_IN_MUTE; 2234 dip->next = SB_LINE_OUT_MUTE; 2235 goto swap; 2236 2237 case SB_MIDI_SWAP: 2238 dip->prev = SB_MIDI_IN_MUTE; 2239 dip->next = AUDIO_MIXER_LAST; 2240 swap: 2241 dip->mixer_class = SB_INPUT_CLASS; 2242 strcpy(dip->label.name, AudioNswap); 2243 goto mute1; 2244 2245 case SB_CD_OUT_MUTE: 2246 dip->prev = SB_CD_SWAP; 2247 dip->next = AUDIO_MIXER_LAST; 2248 dip->mixer_class = SB_OUTPUT_CLASS; 2249 goto mute; 2250 2251 case SB_MIC_OUT_MUTE: 2252 dip->prev = SB_MIC_SWAP; 2253 dip->next = AUDIO_MIXER_LAST; 2254 dip->mixer_class = SB_OUTPUT_CLASS; 2255 goto mute; 2256 2257 case SB_LINE_OUT_MUTE: 2258 dip->prev = SB_LINE_SWAP; 2259 dip->next = AUDIO_MIXER_LAST; 2260 dip->mixer_class = SB_OUTPUT_CLASS; 2261 mute: 2262 strcpy(dip->label.name, AudioNmute); 2263 mute1: 2264 dip->type = AUDIO_MIXER_ENUM; 2265 dip->un.e.num_mem = 2; 2266 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2267 dip->un.e.member[0].ord = 0; 2268 strcpy(dip->un.e.member[1].label.name, AudioNon); 2269 dip->un.e.member[1].ord = 1; 2270 return 0; 2271 2272 } 2273 2274 return ENXIO; 2275 } 2276 2277 void * 2278 sb_malloc(addr, direction, size, pool, flags) 2279 void *addr; 2280 int direction; 2281 size_t size; 2282 struct malloc_type *pool; 2283 int flags; 2284 { 2285 struct sbdsp_softc *sc = addr; 2286 int drq; 2287 2288 if (sc->sc_drq8 != -1) 2289 drq = sc->sc_drq8; 2290 else 2291 drq = sc->sc_drq16; 2292 return (isa_malloc(sc->sc_ic, drq, size, pool, flags)); 2293 } 2294 2295 void 2296 sb_free(addr, ptr, pool) 2297 void *addr; 2298 void *ptr; 2299 struct malloc_type *pool; 2300 { 2301 isa_free(ptr, pool); 2302 } 2303 2304 size_t 2305 sb_round_buffersize(addr, direction, size) 2306 void *addr; 2307 int direction; 2308 size_t size; 2309 { 2310 struct sbdsp_softc *sc = addr; 2311 bus_size_t maxsize; 2312 2313 if (sc->sc_drq8 != -1) 2314 maxsize = sc->sc_drq8_maxsize; 2315 else 2316 maxsize = sc->sc_drq16_maxsize; 2317 2318 if (size > maxsize) 2319 size = maxsize; 2320 return (size); 2321 } 2322 2323 paddr_t 2324 sb_mappage(addr, mem, off, prot) 2325 void *addr; 2326 void *mem; 2327 off_t off; 2328 int prot; 2329 { 2330 return isa_mappage(mem, off, prot); 2331 } 2332 2333 int 2334 sbdsp_get_props(addr) 2335 void *addr; 2336 { 2337 struct sbdsp_softc *sc = addr; 2338 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 2339 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0); 2340 } 2341 2342 #if NMPU > 0 2343 /* 2344 * MIDI related routines. 2345 */ 2346 2347 int 2348 sbdsp_midi_open(addr, flags, iintr, ointr, arg) 2349 void *addr; 2350 int flags; 2351 void (*iintr)__P((void *, int)); 2352 void (*ointr)__P((void *)); 2353 void *arg; 2354 { 2355 struct sbdsp_softc *sc = addr; 2356 2357 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc)); 2358 2359 if (sc->sc_open != SB_CLOSED) 2360 return EBUSY; 2361 if (sbdsp_reset(sc) != 0) 2362 return EIO; 2363 2364 sc->sc_open = SB_OPEN_MIDI; 2365 2366 if (sc->sc_model >= SB_20) 2367 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */ 2368 return EIO; 2369 2370 sc->sc_intr8 = sbdsp_midi_intr; 2371 sc->sc_intrm = iintr; 2372 sc->sc_argm = arg; 2373 2374 return 0; 2375 } 2376 2377 void 2378 sbdsp_midi_close(addr) 2379 void *addr; 2380 { 2381 struct sbdsp_softc *sc = addr; 2382 2383 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc)); 2384 2385 if (sc->sc_model >= SB_20) 2386 sbdsp_reset(sc); /* exit UART mode */ 2387 2388 sc->sc_intrm = 0; 2389 sc->sc_open = SB_CLOSED; 2390 } 2391 2392 int 2393 sbdsp_midi_output(addr, d) 2394 void *addr; 2395 int d; 2396 { 2397 struct sbdsp_softc *sc = addr; 2398 2399 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE)) 2400 return EIO; 2401 if (sbdsp_wdsp(sc, d)) 2402 return EIO; 2403 return 0; 2404 } 2405 2406 void 2407 sbdsp_midi_getinfo(addr, mi) 2408 void *addr; 2409 struct midi_info *mi; 2410 { 2411 struct sbdsp_softc *sc = addr; 2412 2413 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART"; 2414 mi->props = MIDI_PROP_CAN_INPUT; 2415 } 2416 2417 int 2418 sbdsp_midi_intr(addr) 2419 void *addr; 2420 { 2421 struct sbdsp_softc *sc = addr; 2422 2423 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc)); 2424 return (0); 2425 } 2426 2427 #endif 2428 2429