1 /* $NetBSD: sbdsp.c,v 1.112 2003/05/09 23:51:29 fvdl Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1991-1993 Regents of the University of California. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the Computer Systems 54 * Engineering Group at Lawrence Berkeley Laboratory. 55 * 4. Neither the name of the University nor of the Laboratory may be used 56 * to endorse or promote products derived from this software without 57 * specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 */ 72 73 /* 74 * SoundBlaster Pro code provided by John Kohl, based on lots of 75 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s 76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs 77 * <sachs@meibm15.cen.uiuc.edu>. 78 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se> 79 * with information from SB "Hardware Programming Guide" and the 80 * Linux drivers. 81 */ 82 83 #include <sys/cdefs.h> 84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.112 2003/05/09 23:51:29 fvdl Exp $"); 85 86 #include "midi.h" 87 #include "mpu.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/kernel.h> 92 #include <sys/errno.h> 93 #include <sys/ioctl.h> 94 #include <sys/syslog.h> 95 #include <sys/device.h> 96 #include <sys/proc.h> 97 #include <sys/buf.h> 98 99 #include <machine/cpu.h> 100 #include <machine/intr.h> 101 #include <machine/bus.h> 102 103 #include <sys/audioio.h> 104 #include <dev/audio_if.h> 105 #include <dev/midi_if.h> 106 #include <dev/mulaw.h> 107 #include <dev/auconv.h> 108 109 #include <dev/isa/isavar.h> 110 #include <dev/isa/isadmavar.h> 111 112 #include <dev/isa/sbreg.h> 113 #include <dev/isa/sbdspvar.h> 114 115 116 #ifdef AUDIO_DEBUG 117 #define DPRINTF(x) if (sbdspdebug) printf x 118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x 119 int sbdspdebug = 0; 120 #else 121 #define DPRINTF(x) 122 #define DPRINTFN(n,x) 123 #endif 124 125 #ifndef SBDSP_NPOLL 126 #define SBDSP_NPOLL 3000 127 #endif 128 129 struct { 130 int wdsp; 131 int rdsp; 132 int wmidi; 133 } sberr; 134 135 /* 136 * Time constant routines follow. See SBK, section 12. 137 * Although they don't come out and say it (in the docs), 138 * the card clearly uses a 1MHz countdown timer, as the 139 * low-speed formula (p. 12-4) is: 140 * tc = 256 - 10^6 / sr 141 * In high-speed mode, the constant is the upper byte of a 16-bit counter, 142 * and a 256MHz clock is used: 143 * tc = 65536 - 256 * 10^ 6 / sr 144 * Since we can only use the upper byte of the HS TC, the two formulae 145 * are equivalent. (Why didn't they say so?) E.g., 146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x 147 * 148 * The crossover point (from low- to high-speed modes) is different 149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data: 150 * 151 * SBPRO SB20 152 * ----- -------- 153 * input ls min 4 KHz 4 KHz 154 * input ls max 23 KHz 13 KHz 155 * input hs max 44.1 KHz 15 KHz 156 * output ls min 4 KHz 4 KHz 157 * output ls max 23 KHz 23 KHz 158 * output hs max 44.1 KHz 44.1 KHz 159 */ 160 /* XXX Should we round the tc? 161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8) 162 */ 163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x)) 164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc))) 165 166 struct sbmode { 167 short model; 168 u_char channels; 169 u_char precision; 170 u_short lowrate, highrate; 171 u_char cmd; 172 u_char halt, cont; 173 u_char cmdchan; 174 }; 175 static struct sbmode sbpmodes[] = { 176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT }, 177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */ 184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO }, 190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 192 #define PLAY16 15 /* must be the index of the next entry in the table */ 193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 195 { -1 } 196 }; 197 static struct sbmode sbrmodes[] = { 198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT }, 199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT }, 201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO }, 211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 215 { -1 } 216 }; 217 218 void sbversion __P((struct sbdsp_softc *)); 219 void sbdsp_jazz16_probe __P((struct sbdsp_softc *)); 220 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port)); 221 void sbdsp_pause __P((struct sbdsp_softc *)); 222 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int)); 223 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int)); 224 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int)); 225 void sbdsp_set_ifilter __P((void *, int)); 226 int sbdsp_get_ifilter __P((void *)); 227 228 int sbdsp_block_output __P((void *)); 229 int sbdsp_block_input __P((void *)); 230 static int sbdsp_adjust __P((int, int)); 231 232 int sbdsp_midi_intr __P((void *)); 233 234 static void sbdsp_powerhook __P((int, void*)); 235 236 #ifdef AUDIO_DEBUG 237 void sb_printsc __P((struct sbdsp_softc *)); 238 239 void 240 sb_printsc(sc) 241 struct sbdsp_softc *sc; 242 { 243 int i; 244 245 printf("open %d DMA chan %d/%d %d/%d iobase 0x%x irq %d\n", 246 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run, 247 sc->sc_drq8, sc->sc_drq16, 248 sc->sc_iobase, sc->sc_irq); 249 printf("irate %d itc %x orate %d otc %x\n", 250 sc->sc_i.rate, sc->sc_i.tc, 251 sc->sc_o.rate, sc->sc_o.tc); 252 printf("spkron %u nintr %lu\n", 253 sc->spkr_state, sc->sc_interrupts); 254 printf("intr8 %p intr16 %p\n", 255 sc->sc_intr8, sc->sc_intr16); 256 printf("gain:"); 257 for (i = 0; i < SB_NDEVS; i++) 258 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]); 259 printf("\n"); 260 } 261 #endif /* AUDIO_DEBUG */ 262 263 /* 264 * Probe / attach routines. 265 */ 266 267 /* 268 * Probe for the soundblaster hardware. 269 */ 270 int 271 sbdsp_probe(sc) 272 struct sbdsp_softc *sc; 273 { 274 275 if (sbdsp_reset(sc) < 0) { 276 DPRINTF(("sbdsp: couldn't reset card\n")); 277 return 0; 278 } 279 /* if flags set, go and probe the jazz16 stuff */ 280 if (sc->sc_dev.dv_cfdata->cf_flags & 1) 281 sbdsp_jazz16_probe(sc); 282 else 283 sbversion(sc); 284 if (sc->sc_model == SB_UNK) { 285 /* Unknown SB model found. */ 286 DPRINTF(("sbdsp: unknown SB model found\n")); 287 return 0; 288 } 289 return 1; 290 } 291 292 /* 293 * Try add-on stuff for Jazz16. 294 */ 295 void 296 sbdsp_jazz16_probe(sc) 297 struct sbdsp_softc *sc; 298 { 299 static u_char jazz16_irq_conf[16] = { 300 -1, -1, 0x02, 0x03, 301 -1, 0x01, -1, 0x04, 302 -1, 0x02, 0x05, -1, 303 -1, -1, -1, 0x06}; 304 static u_char jazz16_drq_conf[8] = { 305 -1, 0x01, -1, 0x02, 306 -1, 0x03, -1, 0x04}; 307 308 bus_space_tag_t iot = sc->sc_iot; 309 bus_space_handle_t ioh; 310 311 sbversion(sc); 312 313 DPRINTF(("jazz16 probe\n")); 314 315 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) { 316 DPRINTF(("bus map failed\n")); 317 return; 318 } 319 320 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 || 321 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) { 322 DPRINTF(("drq/irq check failed\n")); 323 goto done; /* give up, we can't do it. */ 324 } 325 326 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP); 327 delay(10000); /* delay 10 ms */ 328 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE); 329 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70); 330 331 if (sbdsp_reset(sc) < 0) { 332 DPRINTF(("sbdsp_reset check failed\n")); 333 goto done; /* XXX? what else could we do? */ 334 } 335 336 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) { 337 DPRINTF(("read16 setup failed\n")); 338 goto done; 339 } 340 341 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) { 342 DPRINTF(("read16 failed\n")); 343 goto done; 344 } 345 346 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */ 347 sc->sc_drq16 = sc->sc_drq8; 348 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) || 349 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) | 350 jazz16_drq_conf[sc->sc_drq8]) || 351 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) { 352 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n")); 353 } else { 354 DPRINTF(("jazz16 detected!\n")); 355 sc->sc_model = SB_JAZZ; 356 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */ 357 } 358 359 done: 360 bus_space_unmap(iot, ioh, 1); 361 } 362 363 /* 364 * Attach hardware to driver, attach hardware driver to audio 365 * pseudo-device driver . 366 */ 367 void 368 sbdsp_attach(sc) 369 struct sbdsp_softc *sc; 370 { 371 struct audio_params pparams, rparams; 372 int i, error; 373 u_int v; 374 375 pparams = audio_default; 376 rparams = audio_default; 377 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 378 379 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL); 380 381 if (sc->sc_mixer_model != SBM_NONE) { 382 /* Reset the mixer.*/ 383 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 384 /* And set our own default values */ 385 for (i = 0; i < SB_NDEVS; i++) { 386 switch(i) { 387 case SB_MIC_VOL: 388 case SB_LINE_IN_VOL: 389 v = 0; 390 break; 391 case SB_BASS: 392 case SB_TREBLE: 393 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 394 break; 395 case SB_CD_IN_MUTE: 396 case SB_MIC_IN_MUTE: 397 case SB_LINE_IN_MUTE: 398 case SB_MIDI_IN_MUTE: 399 case SB_CD_SWAP: 400 case SB_MIC_SWAP: 401 case SB_LINE_SWAP: 402 case SB_MIDI_SWAP: 403 case SB_CD_OUT_MUTE: 404 case SB_MIC_OUT_MUTE: 405 case SB_LINE_OUT_MUTE: 406 v = 0; 407 break; 408 default: 409 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 410 break; 411 } 412 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v; 413 sbdsp_set_mixer_gain(sc, i); 414 } 415 sc->in_filter = 0; /* no filters turned on, please */ 416 } 417 418 printf(": dsp v%d.%02d%s\n", 419 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version), 420 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : ""); 421 422 sc->sc_fullduplex = ISSB16CLASS(sc) && 423 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 && 424 sc->sc_drq8 != sc->sc_drq16; 425 426 if (sc->sc_drq8 != -1) { 427 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic, 428 sc->sc_drq8); 429 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8, 430 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW); 431 if (error) { 432 printf("%s: can't create map for drq %d\n", 433 sc->sc_dev.dv_xname, sc->sc_drq8); 434 return; 435 } 436 } 437 438 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) { 439 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic, 440 sc->sc_drq16); 441 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16, 442 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW); 443 if (error) { 444 printf("%s: can't create map for drq %d\n", 445 sc->sc_dev.dv_xname, sc->sc_drq16); 446 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8); 447 return; 448 } 449 } 450 451 powerhook_establish (sbdsp_powerhook, sc); 452 } 453 454 static void 455 sbdsp_powerhook (why, arg) 456 int why; 457 void *arg; 458 { 459 struct sbdsp_softc *sc = arg; 460 int i; 461 462 if (!sc || why != PWR_RESUME) 463 return; 464 465 /* Reset the mixer. */ 466 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 467 for (i = 0; i < SB_NDEVS; i++) 468 sbdsp_set_mixer_gain (sc, i); 469 } 470 471 void 472 sbdsp_mix_write(sc, mixerport, val) 473 struct sbdsp_softc *sc; 474 int mixerport; 475 int val; 476 { 477 bus_space_tag_t iot = sc->sc_iot; 478 bus_space_handle_t ioh = sc->sc_ioh; 479 int s; 480 481 s = splaudio(); 482 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 483 delay(20); 484 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val); 485 delay(30); 486 splx(s); 487 } 488 489 int 490 sbdsp_mix_read(sc, mixerport) 491 struct sbdsp_softc *sc; 492 int mixerport; 493 { 494 bus_space_tag_t iot = sc->sc_iot; 495 bus_space_handle_t ioh = sc->sc_ioh; 496 int val; 497 int s; 498 499 s = splaudio(); 500 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 501 delay(20); 502 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA); 503 delay(30); 504 splx(s); 505 return val; 506 } 507 508 /* 509 * Various routines to interface to higher level audio driver 510 */ 511 512 int 513 sbdsp_query_encoding(addr, fp) 514 void *addr; 515 struct audio_encoding *fp; 516 { 517 struct sbdsp_softc *sc = addr; 518 int emul; 519 520 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED; 521 522 switch (fp->index) { 523 case 0: 524 strcpy(fp->name, AudioEulinear); 525 fp->encoding = AUDIO_ENCODING_ULINEAR; 526 fp->precision = 8; 527 fp->flags = 0; 528 return 0; 529 case 1: 530 strcpy(fp->name, AudioEmulaw); 531 fp->encoding = AUDIO_ENCODING_ULAW; 532 fp->precision = 8; 533 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 534 return 0; 535 case 2: 536 strcpy(fp->name, AudioEalaw); 537 fp->encoding = AUDIO_ENCODING_ALAW; 538 fp->precision = 8; 539 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 540 return 0; 541 case 3: 542 strcpy(fp->name, AudioEslinear); 543 fp->encoding = AUDIO_ENCODING_SLINEAR; 544 fp->precision = 8; 545 fp->flags = emul; 546 return 0; 547 } 548 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ) 549 return EINVAL; 550 551 switch(fp->index) { 552 case 4: 553 strcpy(fp->name, AudioEslinear_le); 554 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 555 fp->precision = 16; 556 fp->flags = 0; 557 return 0; 558 case 5: 559 strcpy(fp->name, AudioEulinear_le); 560 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 561 fp->precision = 16; 562 fp->flags = emul; 563 return 0; 564 case 6: 565 strcpy(fp->name, AudioEslinear_be); 566 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 567 fp->precision = 16; 568 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 569 return 0; 570 case 7: 571 strcpy(fp->name, AudioEulinear_be); 572 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 573 fp->precision = 16; 574 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 575 return 0; 576 default: 577 return EINVAL; 578 } 579 return 0; 580 } 581 582 int 583 sbdsp_set_params(addr, setmode, usemode, play, rec) 584 void *addr; 585 int setmode, usemode; 586 struct audio_params *play, *rec; 587 { 588 struct sbdsp_softc *sc = addr; 589 struct sbmode *m; 590 u_int rate, tc, bmode; 591 void (*swcode) __P((void *, u_char *buf, int cnt)); 592 int factor; 593 int model; 594 int chan; 595 struct audio_params *p; 596 int mode; 597 598 if (sc->sc_open == SB_OPEN_MIDI) 599 return EBUSY; 600 601 /* Later models work like SB16. */ 602 model = min(sc->sc_model, SB_16); 603 604 /* 605 * Prior to the SB16, we have only one clock, so make the sample 606 * rates match. 607 */ 608 if (!ISSB16CLASS(sc) && 609 play->sample_rate != rec->sample_rate && 610 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 611 if (setmode == AUMODE_PLAY) { 612 rec->sample_rate = play->sample_rate; 613 setmode |= AUMODE_RECORD; 614 } else if (setmode == AUMODE_RECORD) { 615 play->sample_rate = rec->sample_rate; 616 setmode |= AUMODE_PLAY; 617 } else 618 return (EINVAL); 619 } 620 621 /* Set first record info, then play info */ 622 for (mode = AUMODE_RECORD; mode != -1; 623 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 624 if ((setmode & mode) == 0) 625 continue; 626 627 p = mode == AUMODE_PLAY ? play : rec; 628 /* Locate proper commands */ 629 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes; 630 m->model != -1; m++) { 631 if (model == m->model && 632 p->channels == m->channels && 633 p->precision == m->precision && 634 p->sample_rate >= m->lowrate && 635 p->sample_rate <= m->highrate) 636 break; 637 } 638 if (m->model == -1) 639 return EINVAL; 640 rate = p->sample_rate; 641 swcode = 0; 642 factor = 1; 643 tc = 1; 644 bmode = -1; 645 if (model == SB_16) { 646 switch (p->encoding) { 647 case AUDIO_ENCODING_SLINEAR_BE: 648 if (p->precision == 16) 649 swcode = swap_bytes; 650 /* fall into */ 651 case AUDIO_ENCODING_SLINEAR_LE: 652 bmode = SB_BMODE_SIGNED; 653 break; 654 case AUDIO_ENCODING_ULINEAR_BE: 655 if (p->precision == 16) 656 swcode = swap_bytes; 657 /* fall into */ 658 case AUDIO_ENCODING_ULINEAR_LE: 659 bmode = SB_BMODE_UNSIGNED; 660 break; 661 case AUDIO_ENCODING_ULAW: 662 if (mode == AUMODE_PLAY) { 663 swcode = mulaw_to_ulinear16_le; 664 factor = 2; 665 m = &sbpmodes[PLAY16]; 666 } else 667 swcode = ulinear8_to_mulaw; 668 bmode = SB_BMODE_UNSIGNED; 669 break; 670 case AUDIO_ENCODING_ALAW: 671 if (mode == AUMODE_PLAY) { 672 swcode = alaw_to_ulinear16_le; 673 factor = 2; 674 m = &sbpmodes[PLAY16]; 675 } else 676 swcode = ulinear8_to_alaw; 677 bmode = SB_BMODE_UNSIGNED; 678 break; 679 default: 680 return EINVAL; 681 } 682 if (p->channels == 2) 683 bmode |= SB_BMODE_STEREO; 684 } else if (m->model == SB_JAZZ && m->precision == 16) { 685 switch (p->encoding) { 686 case AUDIO_ENCODING_SLINEAR_LE: 687 break; 688 case AUDIO_ENCODING_ULINEAR_LE: 689 swcode = change_sign16_le; 690 break; 691 case AUDIO_ENCODING_SLINEAR_BE: 692 swcode = swap_bytes; 693 break; 694 case AUDIO_ENCODING_ULINEAR_BE: 695 swcode = mode == AUMODE_PLAY ? 696 swap_bytes_change_sign16_le : 697 change_sign16_swap_bytes_le; 698 break; 699 case AUDIO_ENCODING_ULAW: 700 swcode = mode == AUMODE_PLAY ? 701 mulaw_to_ulinear8 : ulinear8_to_mulaw; 702 break; 703 case AUDIO_ENCODING_ALAW: 704 swcode = mode == AUMODE_PLAY ? 705 alaw_to_ulinear8 : ulinear8_to_alaw; 706 break; 707 default: 708 return EINVAL; 709 } 710 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 711 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 712 } else { 713 switch (p->encoding) { 714 case AUDIO_ENCODING_SLINEAR_BE: 715 case AUDIO_ENCODING_SLINEAR_LE: 716 swcode = change_sign8; 717 break; 718 case AUDIO_ENCODING_ULINEAR_BE: 719 case AUDIO_ENCODING_ULINEAR_LE: 720 break; 721 case AUDIO_ENCODING_ULAW: 722 swcode = mode == AUMODE_PLAY ? 723 mulaw_to_ulinear8 : ulinear8_to_mulaw; 724 break; 725 case AUDIO_ENCODING_ALAW: 726 swcode = mode == AUMODE_PLAY ? 727 alaw_to_ulinear8 : ulinear8_to_alaw; 728 break; 729 default: 730 return EINVAL; 731 } 732 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 733 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 734 } 735 736 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8; 737 if (mode == AUMODE_PLAY) { 738 sc->sc_o.rate = rate; 739 sc->sc_o.tc = tc; 740 sc->sc_o.modep = m; 741 sc->sc_o.bmode = bmode; 742 sc->sc_o.dmachan = chan; 743 } else { 744 sc->sc_i.rate = rate; 745 sc->sc_i.tc = tc; 746 sc->sc_i.modep = m; 747 sc->sc_i.bmode = bmode; 748 sc->sc_i.dmachan = chan; 749 } 750 751 p->sw_code = swcode; 752 p->factor = factor; 753 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n", 754 sc->sc_model, mode, p->sample_rate, p->precision, p->channels, 755 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor)); 756 757 } 758 759 if (sc->sc_fullduplex && 760 usemode == (AUMODE_PLAY | AUMODE_RECORD) && 761 sc->sc_i.dmachan == sc->sc_o.dmachan) { 762 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan)); 763 if (sc->sc_o.dmachan == sc->sc_drq8) { 764 /* Use 16 bit DMA for playing by expanding the samples. */ 765 play->sw_code = linear8_to_linear16_le; 766 play->factor = 2; 767 sc->sc_o.modep = &sbpmodes[PLAY16]; 768 sc->sc_o.dmachan = sc->sc_drq16; 769 } else { 770 return EINVAL; 771 } 772 } 773 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", 774 sc->sc_i.dmachan, sc->sc_o.dmachan)); 775 776 return (0); 777 } 778 779 void 780 sbdsp_set_ifilter(addr, which) 781 void *addr; 782 int which; 783 { 784 struct sbdsp_softc *sc = addr; 785 int mixval; 786 787 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK; 788 switch (which) { 789 case 0: 790 mixval |= SBP_FILTER_OFF; 791 break; 792 case SB_TREBLE: 793 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH; 794 break; 795 case SB_BASS: 796 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW; 797 break; 798 default: 799 return; 800 } 801 sc->in_filter = mixval & SBP_IFILTER_MASK; 802 sbdsp_mix_write(sc, SBP_INFILTER, mixval); 803 } 804 805 int 806 sbdsp_get_ifilter(addr) 807 void *addr; 808 { 809 struct sbdsp_softc *sc = addr; 810 811 sc->in_filter = 812 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK; 813 switch (sc->in_filter) { 814 case SBP_FILTER_ON|SBP_IFILTER_HIGH: 815 return SB_TREBLE; 816 case SBP_FILTER_ON|SBP_IFILTER_LOW: 817 return SB_BASS; 818 default: 819 return 0; 820 } 821 } 822 823 int 824 sbdsp_set_in_ports(sc, mask) 825 struct sbdsp_softc *sc; 826 int mask; 827 { 828 int bitsl, bitsr; 829 int sbport; 830 831 if (sc->sc_open == SB_OPEN_MIDI) 832 return EBUSY; 833 834 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n", 835 sc->sc_mixer_model, mask)); 836 837 switch(sc->sc_mixer_model) { 838 case SBM_NONE: 839 return EINVAL; 840 case SBM_CT1335: 841 if (mask != (1 << SB_MIC_VOL)) 842 return EINVAL; 843 break; 844 case SBM_CT1345: 845 switch (mask) { 846 case 1 << SB_MIC_VOL: 847 sbport = SBP_FROM_MIC; 848 break; 849 case 1 << SB_LINE_IN_VOL: 850 sbport = SBP_FROM_LINE; 851 break; 852 case 1 << SB_CD_VOL: 853 sbport = SBP_FROM_CD; 854 break; 855 default: 856 return (EINVAL); 857 } 858 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter); 859 break; 860 case SBM_CT1XX5: 861 case SBM_CT1745: 862 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) | 863 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL))) 864 return EINVAL; 865 bitsr = 0; 866 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R; 867 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R; 868 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R; 869 bitsl = SB_SRC_R_TO_L(bitsr); 870 if (mask & (1<<SB_MIC_VOL)) { 871 bitsl |= SBP_MIC_SRC; 872 bitsr |= SBP_MIC_SRC; 873 } 874 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl); 875 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr); 876 break; 877 } 878 sc->in_mask = mask; 879 880 return 0; 881 } 882 883 int 884 sbdsp_speaker_ctl(addr, newstate) 885 void *addr; 886 int newstate; 887 { 888 struct sbdsp_softc *sc = addr; 889 890 if (sc->sc_open == SB_OPEN_MIDI) 891 return EBUSY; 892 893 if ((newstate == SPKR_ON) && 894 (sc->spkr_state == SPKR_OFF)) { 895 sbdsp_spkron(sc); 896 sc->spkr_state = SPKR_ON; 897 } 898 if ((newstate == SPKR_OFF) && 899 (sc->spkr_state == SPKR_ON)) { 900 sbdsp_spkroff(sc); 901 sc->spkr_state = SPKR_OFF; 902 } 903 return 0; 904 } 905 906 int 907 sbdsp_round_blocksize(addr, blk) 908 void *addr; 909 int blk; 910 { 911 return blk & -4; /* round to biggest sample size */ 912 } 913 914 int 915 sbdsp_open(addr, flags) 916 void *addr; 917 int flags; 918 { 919 struct sbdsp_softc *sc = addr; 920 int error, state; 921 922 DPRINTF(("sbdsp_open: sc=%p\n", sc)); 923 924 if (sc->sc_open != SB_CLOSED) 925 return (EBUSY); 926 sc->sc_open = SB_OPEN_AUDIO; 927 sc->sc_openflags = flags; 928 state = 0; 929 930 if (sc->sc_drq8 != -1) { 931 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq8); 932 if (error != 0) 933 goto bad; 934 state |= 1; 935 } 936 937 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) { 938 error = isa_drq_alloc(sc->sc_ic, sc->sc_drq16); 939 if (error != 0) 940 goto bad; 941 state |= 2; 942 } 943 944 945 if (sbdsp_reset(sc) != 0) { 946 error = EIO; 947 goto bad; 948 } 949 950 if (ISSBPRO(sc) && 951 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) { 952 DPRINTF(("sbdsp_open: can't set mono mode\n")); 953 /* we'll readjust when it's time for DMA. */ 954 } 955 956 /* 957 * Leave most things as they were; users must change things if 958 * the previous process didn't leave it they way they wanted. 959 * Looked at another way, it's easy to set up a configuration 960 * in one program and leave it for another to inherit. 961 */ 962 DPRINTF(("sbdsp_open: opened\n")); 963 964 return (0); 965 966 bad: 967 if (state & 1) 968 isa_drq_free(sc->sc_ic, sc->sc_drq8); 969 if (state & 2) 970 isa_drq_free(sc->sc_ic, sc->sc_drq16); 971 972 sc->sc_open = SB_CLOSED; 973 return (error); 974 } 975 976 void 977 sbdsp_close(addr) 978 void *addr; 979 { 980 struct sbdsp_softc *sc = addr; 981 982 DPRINTF(("sbdsp_close: sc=%p\n", sc)); 983 984 sbdsp_spkroff(sc); 985 sc->spkr_state = SPKR_OFF; 986 987 sbdsp_halt_output(sc); 988 sbdsp_halt_input(sc); 989 990 sc->sc_intr8 = 0; 991 sc->sc_intr16 = 0; 992 993 if (sc->sc_drq8 != -1) 994 isa_drq_free(sc->sc_ic, sc->sc_drq8); 995 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) 996 isa_drq_free(sc->sc_ic, sc->sc_drq16); 997 998 sc->sc_open = SB_CLOSED; 999 DPRINTF(("sbdsp_close: closed\n")); 1000 } 1001 1002 /* 1003 * Lower-level routines 1004 */ 1005 1006 /* 1007 * Reset the card. 1008 * Return non-zero if the card isn't detected. 1009 */ 1010 int 1011 sbdsp_reset(sc) 1012 struct sbdsp_softc *sc; 1013 { 1014 bus_space_tag_t iot = sc->sc_iot; 1015 bus_space_handle_t ioh = sc->sc_ioh; 1016 1017 sc->sc_intr8 = 0; 1018 sc->sc_intr16 = 0; 1019 sc->sc_intrm = 0; 1020 1021 /* 1022 * See SBK, section 11.3. 1023 * We pulse a reset signal into the card. 1024 * Gee, what a brilliant hardware design. 1025 */ 1026 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1); 1027 delay(10); 1028 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0); 1029 delay(30); 1030 if (sbdsp_rdsp(sc) != SB_MAGIC) 1031 return -1; 1032 1033 return 0; 1034 } 1035 1036 /* 1037 * Write a byte to the dsp. 1038 * We are at the mercy of the card as we use a 1039 * polling loop and wait until it can take the byte. 1040 */ 1041 int 1042 sbdsp_wdsp(sc, v) 1043 struct sbdsp_softc *sc; 1044 int v; 1045 { 1046 bus_space_tag_t iot = sc->sc_iot; 1047 bus_space_handle_t ioh = sc->sc_ioh; 1048 int i; 1049 u_char x; 1050 1051 for (i = SBDSP_NPOLL; --i >= 0; ) { 1052 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT); 1053 delay(10); 1054 if ((x & SB_DSP_BUSY) == 0) { 1055 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v); 1056 delay(10); 1057 return 0; 1058 } 1059 } 1060 ++sberr.wdsp; 1061 return -1; 1062 } 1063 1064 /* 1065 * Read a byte from the DSP, using polling. 1066 */ 1067 int 1068 sbdsp_rdsp(sc) 1069 struct sbdsp_softc *sc; 1070 { 1071 bus_space_tag_t iot = sc->sc_iot; 1072 bus_space_handle_t ioh = sc->sc_ioh; 1073 int i; 1074 u_char x; 1075 1076 for (i = SBDSP_NPOLL; --i >= 0; ) { 1077 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT); 1078 delay(10); 1079 if (x & SB_DSP_READY) { 1080 x = bus_space_read_1(iot, ioh, SBP_DSP_READ); 1081 delay(10); 1082 return x; 1083 } 1084 } 1085 ++sberr.rdsp; 1086 return -1; 1087 } 1088 1089 void 1090 sbdsp_pause(sc) 1091 struct sbdsp_softc *sc; 1092 { 1093 1094 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8); 1095 } 1096 1097 /* 1098 * Turn on the speaker. The SBK documention says this operation 1099 * can take up to 1/10 of a second. Higher level layers should 1100 * probably let the task sleep for this amount of time after 1101 * calling here. Otherwise, things might not work (because 1102 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.) 1103 * 1104 * These engineers had their heads up their ass when 1105 * they designed this card. 1106 */ 1107 void 1108 sbdsp_spkron(sc) 1109 struct sbdsp_softc *sc; 1110 { 1111 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON); 1112 sbdsp_pause(sc); 1113 } 1114 1115 /* 1116 * Turn off the speaker; see comment above. 1117 */ 1118 void 1119 sbdsp_spkroff(sc) 1120 struct sbdsp_softc *sc; 1121 { 1122 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF); 1123 sbdsp_pause(sc); 1124 } 1125 1126 /* 1127 * Read the version number out of the card. 1128 * Store version information in the softc. 1129 */ 1130 void 1131 sbversion(sc) 1132 struct sbdsp_softc *sc; 1133 { 1134 int v; 1135 1136 sc->sc_model = SB_UNK; 1137 sc->sc_version = 0; 1138 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0) 1139 return; 1140 v = sbdsp_rdsp(sc) << 8; 1141 v |= sbdsp_rdsp(sc); 1142 if (v < 0) 1143 return; 1144 sc->sc_version = v; 1145 switch(SBVER_MAJOR(v)) { 1146 case 1: 1147 sc->sc_mixer_model = SBM_NONE; 1148 sc->sc_model = SB_1; 1149 break; 1150 case 2: 1151 /* Some SB2 have a mixer, some don't. */ 1152 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04); 1153 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06); 1154 /* Check if we can read back the mixer values. */ 1155 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 && 1156 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06) 1157 sc->sc_mixer_model = SBM_CT1335; 1158 else 1159 sc->sc_mixer_model = SBM_NONE; 1160 if (SBVER_MINOR(v) == 0) 1161 sc->sc_model = SB_20; 1162 else 1163 sc->sc_model = SB_2x; 1164 break; 1165 case 3: 1166 sc->sc_mixer_model = SBM_CT1345; 1167 sc->sc_model = SB_PRO; 1168 break; 1169 case 4: 1170 #if 0 1171 /* XXX This does not work */ 1172 /* Most SB16 have a tone controls, but some don't. */ 1173 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80); 1174 /* Check if we can read back the mixer value. */ 1175 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80) 1176 sc->sc_mixer_model = SBM_CT1745; 1177 else 1178 sc->sc_mixer_model = SBM_CT1XX5; 1179 #else 1180 sc->sc_mixer_model = SBM_CT1745; 1181 #endif 1182 #if 0 1183 /* XXX figure out a good way of determining the model */ 1184 /* XXX what about SB_32 */ 1185 if (SBVER_MINOR(v) == 16) 1186 sc->sc_model = SB_64; 1187 else 1188 #endif 1189 sc->sc_model = SB_16; 1190 break; 1191 } 1192 } 1193 1194 int 1195 sbdsp_set_timeconst(sc, tc) 1196 struct sbdsp_softc *sc; 1197 int tc; 1198 { 1199 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc)); 1200 1201 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 || 1202 sbdsp_wdsp(sc, tc) < 0) 1203 return EIO; 1204 1205 return 0; 1206 } 1207 1208 int 1209 sbdsp16_set_rate(sc, cmd, rate) 1210 struct sbdsp_softc *sc; 1211 int cmd, rate; 1212 { 1213 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate)); 1214 1215 if (sbdsp_wdsp(sc, cmd) < 0 || 1216 sbdsp_wdsp(sc, rate >> 8) < 0 || 1217 sbdsp_wdsp(sc, rate) < 0) 1218 return EIO; 1219 return 0; 1220 } 1221 1222 int 1223 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param) 1224 void *addr; 1225 void *start, *end; 1226 int blksize; 1227 void (*intr) __P((void *)); 1228 void *arg; 1229 struct audio_params *param; 1230 { 1231 struct sbdsp_softc *sc = addr; 1232 int stereo = param->channels == 2; 1233 int width = param->precision * param->factor; 1234 int filter; 1235 1236 #ifdef DIAGNOSTIC 1237 if (stereo && (blksize & 1)) { 1238 DPRINTF(("stereo record odd bytes (%d)\n", blksize)); 1239 return (EIO); 1240 } 1241 if (sc->sc_i.run != SB_NOTRUNNING) 1242 printf("sbdsp_trigger_input: already running\n"); 1243 #endif 1244 1245 sc->sc_intrr = intr; 1246 sc->sc_argr = arg; 1247 1248 if (width == 8) { 1249 #ifdef DIAGNOSTIC 1250 if (sc->sc_i.dmachan != sc->sc_drq8) { 1251 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1252 width, sc->sc_i.dmachan); 1253 return (EIO); 1254 } 1255 #endif 1256 sc->sc_intr8 = sbdsp_block_input; 1257 } else { 1258 #ifdef DIAGNOSTIC 1259 if (sc->sc_i.dmachan != sc->sc_drq16) { 1260 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1261 width, sc->sc_i.dmachan); 1262 return (EIO); 1263 } 1264 #endif 1265 sc->sc_intr16 = sbdsp_block_input; 1266 } 1267 1268 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16)) 1269 blksize >>= 1; 1270 --blksize; 1271 sc->sc_i.blksize = blksize; 1272 1273 if (ISSBPRO(sc)) { 1274 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0) 1275 return (EIO); 1276 filter = stereo ? SBP_FILTER_OFF : sc->in_filter; 1277 sbdsp_mix_write(sc, SBP_INFILTER, 1278 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) | 1279 filter); 1280 } 1281 1282 if (ISSB16CLASS(sc)) { 1283 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) { 1284 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n", 1285 sc->sc_i.rate)); 1286 return (EIO); 1287 } 1288 } else { 1289 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) { 1290 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n", 1291 sc->sc_i.rate)); 1292 return (EIO); 1293 } 1294 } 1295 1296 DPRINTF(("sbdsp: DMA start loop input start=%p end=%p chan=%d\n", 1297 start, end, sc->sc_i.dmachan)); 1298 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start, 1299 (char *)end - (char *)start, NULL, 1300 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1301 1302 return sbdsp_block_input(addr); 1303 } 1304 1305 int 1306 sbdsp_block_input(addr) 1307 void *addr; 1308 { 1309 struct sbdsp_softc *sc = addr; 1310 int cc = sc->sc_i.blksize; 1311 1312 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc)); 1313 1314 if (sc->sc_i.run != SB_NOTRUNNING) 1315 sc->sc_intrr(sc->sc_argr); 1316 1317 if (sc->sc_model == SB_1) { 1318 /* Non-looping mode, start DMA */ 1319 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1320 sbdsp_wdsp(sc, cc) < 0 || 1321 sbdsp_wdsp(sc, cc >> 8) < 0) { 1322 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n")); 1323 return (EIO); 1324 } 1325 sc->sc_i.run = SB_RUNNING; 1326 } else if (sc->sc_i.run == SB_NOTRUNNING) { 1327 /* Initialize looping PCM */ 1328 if (ISSB16CLASS(sc)) { 1329 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n", 1330 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc)); 1331 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1332 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 || 1333 sbdsp_wdsp(sc, cc) < 0 || 1334 sbdsp_wdsp(sc, cc >> 8) < 0) { 1335 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n")); 1336 return (EIO); 1337 } 1338 } else { 1339 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc)); 1340 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1341 sbdsp_wdsp(sc, cc) < 0 || 1342 sbdsp_wdsp(sc, cc >> 8) < 0) { 1343 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n")); 1344 return (EIO); 1345 } 1346 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) { 1347 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n")); 1348 return (EIO); 1349 } 1350 } 1351 sc->sc_i.run = SB_LOOPING; 1352 } 1353 1354 return (0); 1355 } 1356 1357 int 1358 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param) 1359 void *addr; 1360 void *start, *end; 1361 int blksize; 1362 void (*intr) __P((void *)); 1363 void *arg; 1364 struct audio_params *param; 1365 { 1366 struct sbdsp_softc *sc = addr; 1367 int stereo = param->channels == 2; 1368 int width = param->precision * param->factor; 1369 int cmd; 1370 1371 #ifdef DIAGNOSTIC 1372 if (stereo && (blksize & 1)) { 1373 DPRINTF(("stereo playback odd bytes (%d)\n", blksize)); 1374 return (EIO); 1375 } 1376 if (sc->sc_o.run != SB_NOTRUNNING) 1377 printf("sbdsp_trigger_output: already running\n"); 1378 #endif 1379 1380 sc->sc_intrp = intr; 1381 sc->sc_argp = arg; 1382 1383 if (width == 8) { 1384 #ifdef DIAGNOSTIC 1385 if (sc->sc_o.dmachan != sc->sc_drq8) { 1386 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1387 width, sc->sc_o.dmachan); 1388 return (EIO); 1389 } 1390 #endif 1391 sc->sc_intr8 = sbdsp_block_output; 1392 } else { 1393 #ifdef DIAGNOSTIC 1394 if (sc->sc_o.dmachan != sc->sc_drq16) { 1395 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1396 width, sc->sc_o.dmachan); 1397 return (EIO); 1398 } 1399 #endif 1400 sc->sc_intr16 = sbdsp_block_output; 1401 } 1402 1403 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16)) 1404 blksize >>= 1; 1405 --blksize; 1406 sc->sc_o.blksize = blksize; 1407 1408 if (ISSBPRO(sc)) { 1409 /* make sure we re-set stereo mixer bit when we start output. */ 1410 sbdsp_mix_write(sc, SBP_STEREO, 1411 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) | 1412 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO)); 1413 cmd = sc->sc_o.modep->cmdchan; 1414 if (cmd && sbdsp_wdsp(sc, cmd) < 0) 1415 return (EIO); 1416 } 1417 1418 if (ISSB16CLASS(sc)) { 1419 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) { 1420 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n", 1421 sc->sc_o.rate)); 1422 return (EIO); 1423 } 1424 } else { 1425 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) { 1426 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n", 1427 sc->sc_o.rate)); 1428 return (EIO); 1429 } 1430 } 1431 1432 DPRINTF(("sbdsp: DMA start loop output start=%p end=%p chan=%d\n", 1433 start, end, sc->sc_o.dmachan)); 1434 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start, 1435 (char *)end - (char *)start, NULL, 1436 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1437 1438 return sbdsp_block_output(addr); 1439 } 1440 1441 int 1442 sbdsp_block_output(addr) 1443 void *addr; 1444 { 1445 struct sbdsp_softc *sc = addr; 1446 int cc = sc->sc_o.blksize; 1447 1448 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc)); 1449 1450 if (sc->sc_o.run != SB_NOTRUNNING) 1451 sc->sc_intrp(sc->sc_argp); 1452 1453 if (sc->sc_model == SB_1) { 1454 /* Non-looping mode, initialized. Start DMA and PCM */ 1455 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1456 sbdsp_wdsp(sc, cc) < 0 || 1457 sbdsp_wdsp(sc, cc >> 8) < 0) { 1458 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n")); 1459 return (EIO); 1460 } 1461 sc->sc_o.run = SB_RUNNING; 1462 } else if (sc->sc_o.run == SB_NOTRUNNING) { 1463 /* Initialize looping PCM */ 1464 if (ISSB16CLASS(sc)) { 1465 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n", 1466 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc)); 1467 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1468 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 || 1469 sbdsp_wdsp(sc, cc) < 0 || 1470 sbdsp_wdsp(sc, cc >> 8) < 0) { 1471 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n")); 1472 return (EIO); 1473 } 1474 } else { 1475 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc)); 1476 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1477 sbdsp_wdsp(sc, cc) < 0 || 1478 sbdsp_wdsp(sc, cc >> 8) < 0) { 1479 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n")); 1480 return (EIO); 1481 } 1482 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) { 1483 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n")); 1484 return (EIO); 1485 } 1486 } 1487 sc->sc_o.run = SB_LOOPING; 1488 } 1489 1490 return (0); 1491 } 1492 1493 int 1494 sbdsp_halt_output(addr) 1495 void *addr; 1496 { 1497 struct sbdsp_softc *sc = addr; 1498 1499 if (sc->sc_o.run != SB_NOTRUNNING) { 1500 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0) 1501 printf("sbdsp_halt_output: failed to halt\n"); 1502 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan); 1503 sc->sc_o.run = SB_NOTRUNNING; 1504 } 1505 1506 return (0); 1507 } 1508 1509 int 1510 sbdsp_halt_input(addr) 1511 void *addr; 1512 { 1513 struct sbdsp_softc *sc = addr; 1514 1515 if (sc->sc_i.run != SB_NOTRUNNING) { 1516 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0) 1517 printf("sbdsp_halt_input: failed to halt\n"); 1518 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan); 1519 sc->sc_i.run = SB_NOTRUNNING; 1520 } 1521 1522 return (0); 1523 } 1524 1525 /* 1526 * Only the DSP unit on the sound blaster generates interrupts. 1527 * There are three cases of interrupt: reception of a midi byte 1528 * (when mode is enabled), completion of DMA transmission, or 1529 * completion of a DMA reception. 1530 * 1531 * If there is interrupt sharing or a spurious interrupt occurs 1532 * there is no way to distinguish this on an SB2. So if you have 1533 * an SB2 and experience problems, buy an SB16 (it's only $40). 1534 */ 1535 int 1536 sbdsp_intr(arg) 1537 void *arg; 1538 { 1539 struct sbdsp_softc *sc = arg; 1540 u_char irq; 1541 1542 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n", 1543 sc->sc_intr8, sc->sc_intr16)); 1544 if (ISSB16CLASS(sc)) { 1545 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS); 1546 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) { 1547 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq)); 1548 return 0; 1549 } 1550 } else { 1551 /* XXXX CHECK FOR INTERRUPT */ 1552 irq = SBP_IRQ_DMA8; 1553 } 1554 1555 sc->sc_interrupts++; 1556 delay(10); /* XXX why? */ 1557 1558 /* clear interrupt */ 1559 if (irq & SBP_IRQ_DMA8) { 1560 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8); 1561 if (sc->sc_intr8) 1562 sc->sc_intr8(arg); 1563 } 1564 if (irq & SBP_IRQ_DMA16) { 1565 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16); 1566 if (sc->sc_intr16) 1567 sc->sc_intr16(arg); 1568 } 1569 #if NMPU > 0 1570 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) { 1571 mpu_intr(sc->sc_mpudev); 1572 } 1573 #endif 1574 return 1; 1575 } 1576 1577 /* Like val & mask, but make sure the result is correctly rounded. */ 1578 #define MAXVAL 256 1579 static int 1580 sbdsp_adjust(val, mask) 1581 int val, mask; 1582 { 1583 val += (MAXVAL - mask) >> 1; 1584 if (val >= MAXVAL) 1585 val = MAXVAL-1; 1586 return val & mask; 1587 } 1588 1589 void 1590 sbdsp_set_mixer_gain(sc, port) 1591 struct sbdsp_softc *sc; 1592 int port; 1593 { 1594 int src, gain; 1595 1596 switch(sc->sc_mixer_model) { 1597 case SBM_NONE: 1598 return; 1599 case SBM_CT1335: 1600 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]); 1601 switch(port) { 1602 case SB_MASTER_VOL: 1603 src = SBP_1335_MASTER_VOL; 1604 break; 1605 case SB_MIDI_VOL: 1606 src = SBP_1335_MIDI_VOL; 1607 break; 1608 case SB_CD_VOL: 1609 src = SBP_1335_CD_VOL; 1610 break; 1611 case SB_VOICE_VOL: 1612 src = SBP_1335_VOICE_VOL; 1613 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]); 1614 break; 1615 default: 1616 return; 1617 } 1618 sbdsp_mix_write(sc, src, gain); 1619 break; 1620 case SBM_CT1345: 1621 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT], 1622 sc->gain[port][SB_RIGHT]); 1623 switch (port) { 1624 case SB_MIC_VOL: 1625 src = SBP_MIC_VOL; 1626 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]); 1627 break; 1628 case SB_MASTER_VOL: 1629 src = SBP_MASTER_VOL; 1630 break; 1631 case SB_LINE_IN_VOL: 1632 src = SBP_LINE_VOL; 1633 break; 1634 case SB_VOICE_VOL: 1635 src = SBP_VOICE_VOL; 1636 break; 1637 case SB_MIDI_VOL: 1638 src = SBP_MIDI_VOL; 1639 break; 1640 case SB_CD_VOL: 1641 src = SBP_CD_VOL; 1642 break; 1643 default: 1644 return; 1645 } 1646 sbdsp_mix_write(sc, src, gain); 1647 break; 1648 case SBM_CT1XX5: 1649 case SBM_CT1745: 1650 switch (port) { 1651 case SB_MIC_VOL: 1652 src = SB16P_MIC_L; 1653 break; 1654 case SB_MASTER_VOL: 1655 src = SB16P_MASTER_L; 1656 break; 1657 case SB_LINE_IN_VOL: 1658 src = SB16P_LINE_L; 1659 break; 1660 case SB_VOICE_VOL: 1661 src = SB16P_VOICE_L; 1662 break; 1663 case SB_MIDI_VOL: 1664 src = SB16P_MIDI_L; 1665 break; 1666 case SB_CD_VOL: 1667 src = SB16P_CD_L; 1668 break; 1669 case SB_INPUT_GAIN: 1670 src = SB16P_INPUT_GAIN_L; 1671 break; 1672 case SB_OUTPUT_GAIN: 1673 src = SB16P_OUTPUT_GAIN_L; 1674 break; 1675 case SB_TREBLE: 1676 src = SB16P_TREBLE_L; 1677 break; 1678 case SB_BASS: 1679 src = SB16P_BASS_L; 1680 break; 1681 case SB_PCSPEAKER: 1682 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]); 1683 return; 1684 default: 1685 return; 1686 } 1687 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]); 1688 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]); 1689 break; 1690 } 1691 } 1692 1693 int 1694 sbdsp_mixer_set_port(addr, cp) 1695 void *addr; 1696 mixer_ctrl_t *cp; 1697 { 1698 struct sbdsp_softc *sc = addr; 1699 int lgain, rgain; 1700 int mask, bits; 1701 int lmask, rmask, lbits, rbits; 1702 int mute, swap; 1703 1704 if (sc->sc_open == SB_OPEN_MIDI) 1705 return EBUSY; 1706 1707 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev, 1708 cp->un.value.num_channels)); 1709 1710 if (sc->sc_mixer_model == SBM_NONE) 1711 return EINVAL; 1712 1713 switch (cp->dev) { 1714 case SB_TREBLE: 1715 case SB_BASS: 1716 if (sc->sc_mixer_model == SBM_CT1345 || 1717 sc->sc_mixer_model == SBM_CT1XX5) { 1718 if (cp->type != AUDIO_MIXER_ENUM) 1719 return EINVAL; 1720 switch (cp->dev) { 1721 case SB_TREBLE: 1722 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0); 1723 return 0; 1724 case SB_BASS: 1725 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0); 1726 return 0; 1727 } 1728 } 1729 case SB_PCSPEAKER: 1730 case SB_INPUT_GAIN: 1731 case SB_OUTPUT_GAIN: 1732 if (!ISSBM1745(sc)) 1733 return EINVAL; 1734 case SB_MIC_VOL: 1735 case SB_LINE_IN_VOL: 1736 if (sc->sc_mixer_model == SBM_CT1335) 1737 return EINVAL; 1738 case SB_VOICE_VOL: 1739 case SB_MIDI_VOL: 1740 case SB_CD_VOL: 1741 case SB_MASTER_VOL: 1742 if (cp->type != AUDIO_MIXER_VALUE) 1743 return EINVAL; 1744 1745 /* 1746 * All the mixer ports are stereo except for the microphone. 1747 * If we get a single-channel gain value passed in, then we 1748 * duplicate it to both left and right channels. 1749 */ 1750 1751 switch (cp->dev) { 1752 case SB_MIC_VOL: 1753 if (cp->un.value.num_channels != 1) 1754 return EINVAL; 1755 1756 lgain = rgain = SB_ADJUST_MIC_GAIN(sc, 1757 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1758 break; 1759 case SB_PCSPEAKER: 1760 if (cp->un.value.num_channels != 1) 1761 return EINVAL; 1762 /* fall into */ 1763 case SB_INPUT_GAIN: 1764 case SB_OUTPUT_GAIN: 1765 lgain = rgain = SB_ADJUST_2_GAIN(sc, 1766 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1767 break; 1768 default: 1769 switch (cp->un.value.num_channels) { 1770 case 1: 1771 lgain = rgain = SB_ADJUST_GAIN(sc, 1772 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1773 break; 1774 case 2: 1775 if (sc->sc_mixer_model == SBM_CT1335) 1776 return EINVAL; 1777 lgain = SB_ADJUST_GAIN(sc, 1778 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1779 rgain = SB_ADJUST_GAIN(sc, 1780 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1781 break; 1782 default: 1783 return EINVAL; 1784 } 1785 break; 1786 } 1787 sc->gain[cp->dev][SB_LEFT] = lgain; 1788 sc->gain[cp->dev][SB_RIGHT] = rgain; 1789 1790 sbdsp_set_mixer_gain(sc, cp->dev); 1791 break; 1792 1793 case SB_RECORD_SOURCE: 1794 if (ISSBM1745(sc)) { 1795 if (cp->type != AUDIO_MIXER_SET) 1796 return EINVAL; 1797 return sbdsp_set_in_ports(sc, cp->un.mask); 1798 } else { 1799 if (cp->type != AUDIO_MIXER_ENUM) 1800 return EINVAL; 1801 sc->in_port = cp->un.ord; 1802 return sbdsp_set_in_ports(sc, 1 << cp->un.ord); 1803 } 1804 break; 1805 1806 case SB_AGC: 1807 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM) 1808 return EINVAL; 1809 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1); 1810 break; 1811 1812 case SB_CD_OUT_MUTE: 1813 mask = SB16P_SW_CD; 1814 goto omute; 1815 case SB_MIC_OUT_MUTE: 1816 mask = SB16P_SW_MIC; 1817 goto omute; 1818 case SB_LINE_OUT_MUTE: 1819 mask = SB16P_SW_LINE; 1820 omute: 1821 if (cp->type != AUDIO_MIXER_ENUM) 1822 return EINVAL; 1823 bits = sbdsp_mix_read(sc, SB16P_OSWITCH); 1824 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1825 if (cp->un.ord) 1826 bits = bits & ~mask; 1827 else 1828 bits = bits | mask; 1829 sbdsp_mix_write(sc, SB16P_OSWITCH, bits); 1830 break; 1831 1832 case SB_MIC_IN_MUTE: 1833 case SB_MIC_SWAP: 1834 lmask = rmask = SB16P_SW_MIC; 1835 goto imute; 1836 case SB_CD_IN_MUTE: 1837 case SB_CD_SWAP: 1838 lmask = SB16P_SW_CD_L; 1839 rmask = SB16P_SW_CD_R; 1840 goto imute; 1841 case SB_LINE_IN_MUTE: 1842 case SB_LINE_SWAP: 1843 lmask = SB16P_SW_LINE_L; 1844 rmask = SB16P_SW_LINE_R; 1845 goto imute; 1846 case SB_MIDI_IN_MUTE: 1847 case SB_MIDI_SWAP: 1848 lmask = SB16P_SW_MIDI_L; 1849 rmask = SB16P_SW_MIDI_R; 1850 imute: 1851 if (cp->type != AUDIO_MIXER_ENUM) 1852 return EINVAL; 1853 mask = lmask | rmask; 1854 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask; 1855 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask; 1856 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1857 if (SB_IS_IN_MUTE(cp->dev)) { 1858 mute = cp->dev; 1859 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP; 1860 } else { 1861 swap = cp->dev; 1862 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP; 1863 } 1864 if (sc->gain[swap][SB_LR]) { 1865 mask = lmask; 1866 lmask = rmask; 1867 rmask = mask; 1868 } 1869 if (!sc->gain[mute][SB_LR]) { 1870 lbits = lbits | lmask; 1871 rbits = rbits | rmask; 1872 } 1873 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits); 1874 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits); 1875 break; 1876 1877 default: 1878 return EINVAL; 1879 } 1880 1881 return 0; 1882 } 1883 1884 int 1885 sbdsp_mixer_get_port(addr, cp) 1886 void *addr; 1887 mixer_ctrl_t *cp; 1888 { 1889 struct sbdsp_softc *sc = addr; 1890 1891 if (sc->sc_open == SB_OPEN_MIDI) 1892 return EBUSY; 1893 1894 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev)); 1895 1896 if (sc->sc_mixer_model == SBM_NONE) 1897 return EINVAL; 1898 1899 switch (cp->dev) { 1900 case SB_TREBLE: 1901 case SB_BASS: 1902 if (sc->sc_mixer_model == SBM_CT1345 || 1903 sc->sc_mixer_model == SBM_CT1XX5) { 1904 switch (cp->dev) { 1905 case SB_TREBLE: 1906 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE; 1907 return 0; 1908 case SB_BASS: 1909 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS; 1910 return 0; 1911 } 1912 } 1913 case SB_PCSPEAKER: 1914 case SB_INPUT_GAIN: 1915 case SB_OUTPUT_GAIN: 1916 if (!ISSBM1745(sc)) 1917 return EINVAL; 1918 case SB_MIC_VOL: 1919 case SB_LINE_IN_VOL: 1920 if (sc->sc_mixer_model == SBM_CT1335) 1921 return EINVAL; 1922 case SB_VOICE_VOL: 1923 case SB_MIDI_VOL: 1924 case SB_CD_VOL: 1925 case SB_MASTER_VOL: 1926 switch (cp->dev) { 1927 case SB_MIC_VOL: 1928 case SB_PCSPEAKER: 1929 if (cp->un.value.num_channels != 1) 1930 return EINVAL; 1931 /* fall into */ 1932 default: 1933 switch (cp->un.value.num_channels) { 1934 case 1: 1935 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1936 sc->gain[cp->dev][SB_LEFT]; 1937 break; 1938 case 2: 1939 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1940 sc->gain[cp->dev][SB_LEFT]; 1941 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1942 sc->gain[cp->dev][SB_RIGHT]; 1943 break; 1944 default: 1945 return EINVAL; 1946 } 1947 break; 1948 } 1949 break; 1950 1951 case SB_RECORD_SOURCE: 1952 if (ISSBM1745(sc)) 1953 cp->un.mask = sc->in_mask; 1954 else 1955 cp->un.ord = sc->in_port; 1956 break; 1957 1958 case SB_AGC: 1959 if (!ISSBM1745(sc)) 1960 return EINVAL; 1961 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC); 1962 break; 1963 1964 case SB_CD_IN_MUTE: 1965 case SB_MIC_IN_MUTE: 1966 case SB_LINE_IN_MUTE: 1967 case SB_MIDI_IN_MUTE: 1968 case SB_CD_SWAP: 1969 case SB_MIC_SWAP: 1970 case SB_LINE_SWAP: 1971 case SB_MIDI_SWAP: 1972 case SB_CD_OUT_MUTE: 1973 case SB_MIC_OUT_MUTE: 1974 case SB_LINE_OUT_MUTE: 1975 cp->un.ord = sc->gain[cp->dev][SB_LR]; 1976 break; 1977 1978 default: 1979 return EINVAL; 1980 } 1981 1982 return 0; 1983 } 1984 1985 int 1986 sbdsp_mixer_query_devinfo(addr, dip) 1987 void *addr; 1988 mixer_devinfo_t *dip; 1989 { 1990 struct sbdsp_softc *sc = addr; 1991 int chan, class, is1745; 1992 1993 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n", 1994 sc->sc_mixer_model, dip->index)); 1995 1996 if (sc->sc_mixer_model == SBM_NONE) 1997 return ENXIO; 1998 1999 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2; 2000 is1745 = ISSBM1745(sc); 2001 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS; 2002 2003 switch (dip->index) { 2004 case SB_MASTER_VOL: 2005 dip->type = AUDIO_MIXER_VALUE; 2006 dip->mixer_class = SB_OUTPUT_CLASS; 2007 dip->prev = dip->next = AUDIO_MIXER_LAST; 2008 strcpy(dip->label.name, AudioNmaster); 2009 dip->un.v.num_channels = chan; 2010 strcpy(dip->un.v.units.name, AudioNvolume); 2011 return 0; 2012 case SB_MIDI_VOL: 2013 dip->type = AUDIO_MIXER_VALUE; 2014 dip->mixer_class = class; 2015 dip->prev = AUDIO_MIXER_LAST; 2016 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST; 2017 strcpy(dip->label.name, AudioNfmsynth); 2018 dip->un.v.num_channels = chan; 2019 strcpy(dip->un.v.units.name, AudioNvolume); 2020 return 0; 2021 case SB_CD_VOL: 2022 dip->type = AUDIO_MIXER_VALUE; 2023 dip->mixer_class = class; 2024 dip->prev = AUDIO_MIXER_LAST; 2025 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST; 2026 strcpy(dip->label.name, AudioNcd); 2027 dip->un.v.num_channels = chan; 2028 strcpy(dip->un.v.units.name, AudioNvolume); 2029 return 0; 2030 case SB_VOICE_VOL: 2031 dip->type = AUDIO_MIXER_VALUE; 2032 dip->mixer_class = class; 2033 dip->prev = AUDIO_MIXER_LAST; 2034 dip->next = AUDIO_MIXER_LAST; 2035 strcpy(dip->label.name, AudioNdac); 2036 dip->un.v.num_channels = chan; 2037 strcpy(dip->un.v.units.name, AudioNvolume); 2038 return 0; 2039 case SB_OUTPUT_CLASS: 2040 dip->type = AUDIO_MIXER_CLASS; 2041 dip->mixer_class = SB_OUTPUT_CLASS; 2042 dip->next = dip->prev = AUDIO_MIXER_LAST; 2043 strcpy(dip->label.name, AudioCoutputs); 2044 return 0; 2045 } 2046 2047 if (sc->sc_mixer_model == SBM_CT1335) 2048 return ENXIO; 2049 2050 switch (dip->index) { 2051 case SB_MIC_VOL: 2052 dip->type = AUDIO_MIXER_VALUE; 2053 dip->mixer_class = class; 2054 dip->prev = AUDIO_MIXER_LAST; 2055 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST; 2056 strcpy(dip->label.name, AudioNmicrophone); 2057 dip->un.v.num_channels = 1; 2058 strcpy(dip->un.v.units.name, AudioNvolume); 2059 return 0; 2060 2061 case SB_LINE_IN_VOL: 2062 dip->type = AUDIO_MIXER_VALUE; 2063 dip->mixer_class = class; 2064 dip->prev = AUDIO_MIXER_LAST; 2065 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST; 2066 strcpy(dip->label.name, AudioNline); 2067 dip->un.v.num_channels = 2; 2068 strcpy(dip->un.v.units.name, AudioNvolume); 2069 return 0; 2070 2071 case SB_RECORD_SOURCE: 2072 dip->mixer_class = SB_RECORD_CLASS; 2073 dip->prev = dip->next = AUDIO_MIXER_LAST; 2074 strcpy(dip->label.name, AudioNsource); 2075 if (ISSBM1745(sc)) { 2076 dip->type = AUDIO_MIXER_SET; 2077 dip->un.s.num_mem = 4; 2078 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone); 2079 dip->un.s.member[0].mask = 1 << SB_MIC_VOL; 2080 strcpy(dip->un.s.member[1].label.name, AudioNcd); 2081 dip->un.s.member[1].mask = 1 << SB_CD_VOL; 2082 strcpy(dip->un.s.member[2].label.name, AudioNline); 2083 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL; 2084 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth); 2085 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL; 2086 } else { 2087 dip->type = AUDIO_MIXER_ENUM; 2088 dip->un.e.num_mem = 3; 2089 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 2090 dip->un.e.member[0].ord = SB_MIC_VOL; 2091 strcpy(dip->un.e.member[1].label.name, AudioNcd); 2092 dip->un.e.member[1].ord = SB_CD_VOL; 2093 strcpy(dip->un.e.member[2].label.name, AudioNline); 2094 dip->un.e.member[2].ord = SB_LINE_IN_VOL; 2095 } 2096 return 0; 2097 2098 case SB_BASS: 2099 dip->prev = dip->next = AUDIO_MIXER_LAST; 2100 strcpy(dip->label.name, AudioNbass); 2101 if (sc->sc_mixer_model == SBM_CT1745) { 2102 dip->type = AUDIO_MIXER_VALUE; 2103 dip->mixer_class = SB_EQUALIZATION_CLASS; 2104 dip->un.v.num_channels = 2; 2105 strcpy(dip->un.v.units.name, AudioNbass); 2106 } else { 2107 dip->type = AUDIO_MIXER_ENUM; 2108 dip->mixer_class = SB_INPUT_CLASS; 2109 dip->un.e.num_mem = 2; 2110 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2111 dip->un.e.member[0].ord = 0; 2112 strcpy(dip->un.e.member[1].label.name, AudioNon); 2113 dip->un.e.member[1].ord = 1; 2114 } 2115 return 0; 2116 2117 case SB_TREBLE: 2118 dip->prev = dip->next = AUDIO_MIXER_LAST; 2119 strcpy(dip->label.name, AudioNtreble); 2120 if (sc->sc_mixer_model == SBM_CT1745) { 2121 dip->type = AUDIO_MIXER_VALUE; 2122 dip->mixer_class = SB_EQUALIZATION_CLASS; 2123 dip->un.v.num_channels = 2; 2124 strcpy(dip->un.v.units.name, AudioNtreble); 2125 } else { 2126 dip->type = AUDIO_MIXER_ENUM; 2127 dip->mixer_class = SB_INPUT_CLASS; 2128 dip->un.e.num_mem = 2; 2129 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2130 dip->un.e.member[0].ord = 0; 2131 strcpy(dip->un.e.member[1].label.name, AudioNon); 2132 dip->un.e.member[1].ord = 1; 2133 } 2134 return 0; 2135 2136 case SB_RECORD_CLASS: /* record source class */ 2137 dip->type = AUDIO_MIXER_CLASS; 2138 dip->mixer_class = SB_RECORD_CLASS; 2139 dip->next = dip->prev = AUDIO_MIXER_LAST; 2140 strcpy(dip->label.name, AudioCrecord); 2141 return 0; 2142 2143 case SB_INPUT_CLASS: 2144 dip->type = AUDIO_MIXER_CLASS; 2145 dip->mixer_class = SB_INPUT_CLASS; 2146 dip->next = dip->prev = AUDIO_MIXER_LAST; 2147 strcpy(dip->label.name, AudioCinputs); 2148 return 0; 2149 2150 } 2151 2152 if (sc->sc_mixer_model == SBM_CT1345) 2153 return ENXIO; 2154 2155 switch(dip->index) { 2156 case SB_PCSPEAKER: 2157 dip->type = AUDIO_MIXER_VALUE; 2158 dip->mixer_class = SB_INPUT_CLASS; 2159 dip->prev = dip->next = AUDIO_MIXER_LAST; 2160 strcpy(dip->label.name, "pc_speaker"); 2161 dip->un.v.num_channels = 1; 2162 strcpy(dip->un.v.units.name, AudioNvolume); 2163 return 0; 2164 2165 case SB_INPUT_GAIN: 2166 dip->type = AUDIO_MIXER_VALUE; 2167 dip->mixer_class = SB_INPUT_CLASS; 2168 dip->prev = dip->next = AUDIO_MIXER_LAST; 2169 strcpy(dip->label.name, AudioNinput); 2170 dip->un.v.num_channels = 2; 2171 strcpy(dip->un.v.units.name, AudioNvolume); 2172 return 0; 2173 2174 case SB_OUTPUT_GAIN: 2175 dip->type = AUDIO_MIXER_VALUE; 2176 dip->mixer_class = SB_OUTPUT_CLASS; 2177 dip->prev = dip->next = AUDIO_MIXER_LAST; 2178 strcpy(dip->label.name, AudioNoutput); 2179 dip->un.v.num_channels = 2; 2180 strcpy(dip->un.v.units.name, AudioNvolume); 2181 return 0; 2182 2183 case SB_AGC: 2184 dip->type = AUDIO_MIXER_ENUM; 2185 dip->mixer_class = SB_INPUT_CLASS; 2186 dip->prev = dip->next = AUDIO_MIXER_LAST; 2187 strcpy(dip->label.name, "agc"); 2188 dip->un.e.num_mem = 2; 2189 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2190 dip->un.e.member[0].ord = 0; 2191 strcpy(dip->un.e.member[1].label.name, AudioNon); 2192 dip->un.e.member[1].ord = 1; 2193 return 0; 2194 2195 case SB_EQUALIZATION_CLASS: 2196 dip->type = AUDIO_MIXER_CLASS; 2197 dip->mixer_class = SB_EQUALIZATION_CLASS; 2198 dip->next = dip->prev = AUDIO_MIXER_LAST; 2199 strcpy(dip->label.name, AudioCequalization); 2200 return 0; 2201 2202 case SB_CD_IN_MUTE: 2203 dip->prev = SB_CD_VOL; 2204 dip->next = SB_CD_SWAP; 2205 dip->mixer_class = SB_INPUT_CLASS; 2206 goto mute; 2207 2208 case SB_MIC_IN_MUTE: 2209 dip->prev = SB_MIC_VOL; 2210 dip->next = SB_MIC_SWAP; 2211 dip->mixer_class = SB_INPUT_CLASS; 2212 goto mute; 2213 2214 case SB_LINE_IN_MUTE: 2215 dip->prev = SB_LINE_IN_VOL; 2216 dip->next = SB_LINE_SWAP; 2217 dip->mixer_class = SB_INPUT_CLASS; 2218 goto mute; 2219 2220 case SB_MIDI_IN_MUTE: 2221 dip->prev = SB_MIDI_VOL; 2222 dip->next = SB_MIDI_SWAP; 2223 dip->mixer_class = SB_INPUT_CLASS; 2224 goto mute; 2225 2226 case SB_CD_SWAP: 2227 dip->prev = SB_CD_IN_MUTE; 2228 dip->next = SB_CD_OUT_MUTE; 2229 goto swap; 2230 2231 case SB_MIC_SWAP: 2232 dip->prev = SB_MIC_IN_MUTE; 2233 dip->next = SB_MIC_OUT_MUTE; 2234 goto swap; 2235 2236 case SB_LINE_SWAP: 2237 dip->prev = SB_LINE_IN_MUTE; 2238 dip->next = SB_LINE_OUT_MUTE; 2239 goto swap; 2240 2241 case SB_MIDI_SWAP: 2242 dip->prev = SB_MIDI_IN_MUTE; 2243 dip->next = AUDIO_MIXER_LAST; 2244 swap: 2245 dip->mixer_class = SB_INPUT_CLASS; 2246 strcpy(dip->label.name, AudioNswap); 2247 goto mute1; 2248 2249 case SB_CD_OUT_MUTE: 2250 dip->prev = SB_CD_SWAP; 2251 dip->next = AUDIO_MIXER_LAST; 2252 dip->mixer_class = SB_OUTPUT_CLASS; 2253 goto mute; 2254 2255 case SB_MIC_OUT_MUTE: 2256 dip->prev = SB_MIC_SWAP; 2257 dip->next = AUDIO_MIXER_LAST; 2258 dip->mixer_class = SB_OUTPUT_CLASS; 2259 goto mute; 2260 2261 case SB_LINE_OUT_MUTE: 2262 dip->prev = SB_LINE_SWAP; 2263 dip->next = AUDIO_MIXER_LAST; 2264 dip->mixer_class = SB_OUTPUT_CLASS; 2265 mute: 2266 strcpy(dip->label.name, AudioNmute); 2267 mute1: 2268 dip->type = AUDIO_MIXER_ENUM; 2269 dip->un.e.num_mem = 2; 2270 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2271 dip->un.e.member[0].ord = 0; 2272 strcpy(dip->un.e.member[1].label.name, AudioNon); 2273 dip->un.e.member[1].ord = 1; 2274 return 0; 2275 2276 } 2277 2278 return ENXIO; 2279 } 2280 2281 void * 2282 sb_malloc(addr, direction, size, pool, flags) 2283 void *addr; 2284 int direction; 2285 size_t size; 2286 struct malloc_type *pool; 2287 int flags; 2288 { 2289 struct sbdsp_softc *sc = addr; 2290 int drq; 2291 2292 if (sc->sc_drq8 != -1) 2293 drq = sc->sc_drq8; 2294 else 2295 drq = sc->sc_drq16; 2296 return (isa_malloc(sc->sc_ic, drq, size, pool, flags)); 2297 } 2298 2299 void 2300 sb_free(addr, ptr, pool) 2301 void *addr; 2302 void *ptr; 2303 struct malloc_type *pool; 2304 { 2305 isa_free(ptr, pool); 2306 } 2307 2308 size_t 2309 sb_round_buffersize(addr, direction, size) 2310 void *addr; 2311 int direction; 2312 size_t size; 2313 { 2314 struct sbdsp_softc *sc = addr; 2315 bus_size_t maxsize; 2316 2317 if (sc->sc_drq8 != -1) 2318 maxsize = sc->sc_drq8_maxsize; 2319 else 2320 maxsize = sc->sc_drq16_maxsize; 2321 2322 if (size > maxsize) 2323 size = maxsize; 2324 return (size); 2325 } 2326 2327 paddr_t 2328 sb_mappage(addr, mem, off, prot) 2329 void *addr; 2330 void *mem; 2331 off_t off; 2332 int prot; 2333 { 2334 return isa_mappage(mem, off, prot); 2335 } 2336 2337 int 2338 sbdsp_get_props(addr) 2339 void *addr; 2340 { 2341 struct sbdsp_softc *sc = addr; 2342 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 2343 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0); 2344 } 2345 2346 #if NMPU > 0 2347 /* 2348 * MIDI related routines. 2349 */ 2350 2351 int 2352 sbdsp_midi_open(addr, flags, iintr, ointr, arg) 2353 void *addr; 2354 int flags; 2355 void (*iintr)__P((void *, int)); 2356 void (*ointr)__P((void *)); 2357 void *arg; 2358 { 2359 struct sbdsp_softc *sc = addr; 2360 2361 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc)); 2362 2363 if (sc->sc_open != SB_CLOSED) 2364 return EBUSY; 2365 if (sbdsp_reset(sc) != 0) 2366 return EIO; 2367 2368 sc->sc_open = SB_OPEN_MIDI; 2369 sc->sc_openflags = flags; 2370 2371 if (sc->sc_model >= SB_20) 2372 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */ 2373 return EIO; 2374 2375 sc->sc_intr8 = sbdsp_midi_intr; 2376 sc->sc_intrm = iintr; 2377 sc->sc_argm = arg; 2378 2379 return 0; 2380 } 2381 2382 void 2383 sbdsp_midi_close(addr) 2384 void *addr; 2385 { 2386 struct sbdsp_softc *sc = addr; 2387 2388 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc)); 2389 2390 if (sc->sc_model >= SB_20) 2391 sbdsp_reset(sc); /* exit UART mode */ 2392 2393 sc->sc_intrm = 0; 2394 sc->sc_open = SB_CLOSED; 2395 } 2396 2397 int 2398 sbdsp_midi_output(addr, d) 2399 void *addr; 2400 int d; 2401 { 2402 struct sbdsp_softc *sc = addr; 2403 2404 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE)) 2405 return EIO; 2406 if (sbdsp_wdsp(sc, d)) 2407 return EIO; 2408 return 0; 2409 } 2410 2411 void 2412 sbdsp_midi_getinfo(addr, mi) 2413 void *addr; 2414 struct midi_info *mi; 2415 { 2416 struct sbdsp_softc *sc = addr; 2417 2418 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART"; 2419 mi->props = MIDI_PROP_CAN_INPUT; 2420 } 2421 2422 int 2423 sbdsp_midi_intr(addr) 2424 void *addr; 2425 { 2426 struct sbdsp_softc *sc = addr; 2427 2428 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc)); 2429 return (0); 2430 } 2431 2432 #endif 2433 2434