1 /* $NetBSD: sbdsp.c,v 1.109 2002/01/06 20:24:12 augustss Exp $ */ 2 3 /*- 4 * Copyright (c) 1999 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1991-1993 Regents of the University of California. 41 * All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by the Computer Systems 54 * Engineering Group at Lawrence Berkeley Laboratory. 55 * 4. Neither the name of the University nor of the Laboratory may be used 56 * to endorse or promote products derived from this software without 57 * specific prior written permission. 58 * 59 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 62 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 69 * SUCH DAMAGE. 70 * 71 */ 72 73 /* 74 * SoundBlaster Pro code provided by John Kohl, based on lots of 75 * information he gleaned from Steve Haehnichen <steve@vigra.com>'s 76 * SBlast driver for 386BSD and DOS driver code from Daniel Sachs 77 * <sachs@meibm15.cen.uiuc.edu>. 78 * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se> 79 * with information from SB "Hardware Programming Guide" and the 80 * Linux drivers. 81 */ 82 83 #include <sys/cdefs.h> 84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.109 2002/01/06 20:24:12 augustss Exp $"); 85 86 #include "midi.h" 87 #include "mpu.h" 88 89 #include <sys/param.h> 90 #include <sys/systm.h> 91 #include <sys/kernel.h> 92 #include <sys/errno.h> 93 #include <sys/ioctl.h> 94 #include <sys/syslog.h> 95 #include <sys/device.h> 96 #include <sys/proc.h> 97 #include <sys/buf.h> 98 99 #include <machine/cpu.h> 100 #include <machine/intr.h> 101 #include <machine/bus.h> 102 103 #include <sys/audioio.h> 104 #include <dev/audio_if.h> 105 #include <dev/midi_if.h> 106 #include <dev/mulaw.h> 107 #include <dev/auconv.h> 108 109 #include <dev/isa/isavar.h> 110 #include <dev/isa/isadmavar.h> 111 112 #include <dev/isa/sbreg.h> 113 #include <dev/isa/sbdspvar.h> 114 115 116 #ifdef AUDIO_DEBUG 117 #define DPRINTF(x) if (sbdspdebug) printf x 118 #define DPRINTFN(n,x) if (sbdspdebug >= (n)) printf x 119 int sbdspdebug = 0; 120 #else 121 #define DPRINTF(x) 122 #define DPRINTFN(n,x) 123 #endif 124 125 #ifndef SBDSP_NPOLL 126 #define SBDSP_NPOLL 3000 127 #endif 128 129 struct { 130 int wdsp; 131 int rdsp; 132 int wmidi; 133 } sberr; 134 135 /* 136 * Time constant routines follow. See SBK, section 12. 137 * Although they don't come out and say it (in the docs), 138 * the card clearly uses a 1MHz countdown timer, as the 139 * low-speed formula (p. 12-4) is: 140 * tc = 256 - 10^6 / sr 141 * In high-speed mode, the constant is the upper byte of a 16-bit counter, 142 * and a 256MHz clock is used: 143 * tc = 65536 - 256 * 10^ 6 / sr 144 * Since we can only use the upper byte of the HS TC, the two formulae 145 * are equivalent. (Why didn't they say so?) E.g., 146 * (65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x 147 * 148 * The crossover point (from low- to high-speed modes) is different 149 * for the SBPRO and SB20. The table on p. 12-5 gives the following data: 150 * 151 * SBPRO SB20 152 * ----- -------- 153 * input ls min 4 KHz 4 KHz 154 * input ls max 23 KHz 13 KHz 155 * input hs max 44.1 KHz 15 KHz 156 * output ls min 4 KHz 4 KHz 157 * output ls max 23 KHz 23 KHz 158 * output hs max 44.1 KHz 44.1 KHz 159 */ 160 /* XXX Should we round the tc? 161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8) 162 */ 163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x)) 164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc))) 165 166 struct sbmode { 167 short model; 168 u_char channels; 169 u_char precision; 170 u_short lowrate, highrate; 171 u_char cmd; 172 u_char halt, cont; 173 u_char cmdchan; 174 }; 175 static struct sbmode sbpmodes[] = { 176 { SB_1, 1, 8, 4000,22727,SB_DSP_WDMA ,SB_DSP_HALT ,SB_DSP_CONT }, 177 { SB_20, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 178 { SB_2x, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 179 { SB_2x, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 180 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 181 { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 182 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT }, 183 /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */ 184 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 185 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 186 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 187 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 188 { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 189 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO }, 190 { SB_16, 1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 191 { SB_16, 2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 192 #define PLAY16 15 /* must be the index of the next entry in the table */ 193 { SB_16, 1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 194 { SB_16, 2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 195 { -1 } 196 }; 197 static struct sbmode sbrmodes[] = { 198 { SB_1, 1, 8, 4000,12987,SB_DSP_RDMA ,SB_DSP_HALT ,SB_DSP_CONT }, 199 { SB_20, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 200 { SB_2x, 1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT }, 201 { SB_2x, 1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT }, 202 { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 203 { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 204 { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 205 { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 206 { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_MONO }, 207 { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,SB_DSP_RECORD_STEREO }, 208 { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 209 { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_MONO }, 210 { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT ,SB_DSP_CONT ,JAZZ16_RECORD_STEREO }, 211 { SB_16, 1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 212 { SB_16, 2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT ,SB_DSP_CONT }, 213 { SB_16, 1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 214 { SB_16, 2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT}, 215 { -1 } 216 }; 217 218 void sbversion __P((struct sbdsp_softc *)); 219 void sbdsp_jazz16_probe __P((struct sbdsp_softc *)); 220 void sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port)); 221 void sbdsp_pause __P((struct sbdsp_softc *)); 222 int sbdsp_set_timeconst __P((struct sbdsp_softc *, int)); 223 int sbdsp16_set_rate __P((struct sbdsp_softc *, int, int)); 224 int sbdsp_set_in_ports __P((struct sbdsp_softc *, int)); 225 void sbdsp_set_ifilter __P((void *, int)); 226 int sbdsp_get_ifilter __P((void *)); 227 228 int sbdsp_block_output __P((void *)); 229 int sbdsp_block_input __P((void *)); 230 static int sbdsp_adjust __P((int, int)); 231 232 int sbdsp_midi_intr __P((void *)); 233 234 static void sbdsp_powerhook __P((int, void*)); 235 236 #ifdef AUDIO_DEBUG 237 void sb_printsc __P((struct sbdsp_softc *)); 238 239 void 240 sb_printsc(sc) 241 struct sbdsp_softc *sc; 242 { 243 int i; 244 245 printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n", 246 (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run, 247 sc->sc_drq8, sc->sc_drq16, 248 sc->sc_iobase, sc->sc_irq); 249 printf("irate %d itc %x orate %d otc %x\n", 250 sc->sc_i.rate, sc->sc_i.tc, 251 sc->sc_o.rate, sc->sc_o.tc); 252 printf("spkron %u nintr %lu\n", 253 sc->spkr_state, sc->sc_interrupts); 254 printf("intr8 %p intr16 %p\n", 255 sc->sc_intr8, sc->sc_intr16); 256 printf("gain:"); 257 for (i = 0; i < SB_NDEVS; i++) 258 printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]); 259 printf("\n"); 260 } 261 #endif /* AUDIO_DEBUG */ 262 263 /* 264 * Probe / attach routines. 265 */ 266 267 /* 268 * Probe for the soundblaster hardware. 269 */ 270 int 271 sbdsp_probe(sc) 272 struct sbdsp_softc *sc; 273 { 274 275 if (sbdsp_reset(sc) < 0) { 276 DPRINTF(("sbdsp: couldn't reset card\n")); 277 return 0; 278 } 279 /* if flags set, go and probe the jazz16 stuff */ 280 if (sc->sc_dev.dv_cfdata->cf_flags & 1) 281 sbdsp_jazz16_probe(sc); 282 else 283 sbversion(sc); 284 if (sc->sc_model == SB_UNK) { 285 /* Unknown SB model found. */ 286 DPRINTF(("sbdsp: unknown SB model found\n")); 287 return 0; 288 } 289 return 1; 290 } 291 292 /* 293 * Try add-on stuff for Jazz16. 294 */ 295 void 296 sbdsp_jazz16_probe(sc) 297 struct sbdsp_softc *sc; 298 { 299 static u_char jazz16_irq_conf[16] = { 300 -1, -1, 0x02, 0x03, 301 -1, 0x01, -1, 0x04, 302 -1, 0x02, 0x05, -1, 303 -1, -1, -1, 0x06}; 304 static u_char jazz16_drq_conf[8] = { 305 -1, 0x01, -1, 0x02, 306 -1, 0x03, -1, 0x04}; 307 308 bus_space_tag_t iot = sc->sc_iot; 309 bus_space_handle_t ioh; 310 311 sbversion(sc); 312 313 DPRINTF(("jazz16 probe\n")); 314 315 if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) { 316 DPRINTF(("bus map failed\n")); 317 return; 318 } 319 320 if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 || 321 jazz16_irq_conf[sc->sc_irq] == (u_char)-1) { 322 DPRINTF(("drq/irq check failed\n")); 323 goto done; /* give up, we can't do it. */ 324 } 325 326 bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP); 327 delay(10000); /* delay 10 ms */ 328 bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE); 329 bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70); 330 331 if (sbdsp_reset(sc) < 0) { 332 DPRINTF(("sbdsp_reset check failed\n")); 333 goto done; /* XXX? what else could we do? */ 334 } 335 336 if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) { 337 DPRINTF(("read16 setup failed\n")); 338 goto done; 339 } 340 341 if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) { 342 DPRINTF(("read16 failed\n")); 343 goto done; 344 } 345 346 /* XXX set both 8 & 16-bit drq to same channel, it works fine. */ 347 sc->sc_drq16 = sc->sc_drq8; 348 if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) || 349 sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) | 350 jazz16_drq_conf[sc->sc_drq8]) || 351 sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) { 352 DPRINTF(("sbdsp: can't write jazz16 probe stuff\n")); 353 } else { 354 DPRINTF(("jazz16 detected!\n")); 355 sc->sc_model = SB_JAZZ; 356 sc->sc_mixer_model = SBM_CT1345; /* XXX really? */ 357 } 358 359 done: 360 bus_space_unmap(iot, ioh, 1); 361 } 362 363 /* 364 * Attach hardware to driver, attach hardware driver to audio 365 * pseudo-device driver . 366 */ 367 void 368 sbdsp_attach(sc) 369 struct sbdsp_softc *sc; 370 { 371 struct audio_params pparams, rparams; 372 int i; 373 u_int v; 374 375 pparams = audio_default; 376 rparams = audio_default; 377 sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 378 379 sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL); 380 381 if (sc->sc_mixer_model != SBM_NONE) { 382 /* Reset the mixer.*/ 383 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 384 /* And set our own default values */ 385 for (i = 0; i < SB_NDEVS; i++) { 386 switch(i) { 387 case SB_MIC_VOL: 388 case SB_LINE_IN_VOL: 389 v = 0; 390 break; 391 case SB_BASS: 392 case SB_TREBLE: 393 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 394 break; 395 case SB_CD_IN_MUTE: 396 case SB_MIC_IN_MUTE: 397 case SB_LINE_IN_MUTE: 398 case SB_MIDI_IN_MUTE: 399 case SB_CD_SWAP: 400 case SB_MIC_SWAP: 401 case SB_LINE_SWAP: 402 case SB_MIDI_SWAP: 403 case SB_CD_OUT_MUTE: 404 case SB_MIC_OUT_MUTE: 405 case SB_LINE_OUT_MUTE: 406 v = 0; 407 break; 408 default: 409 v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2); 410 break; 411 } 412 sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v; 413 sbdsp_set_mixer_gain(sc, i); 414 } 415 sc->in_filter = 0; /* no filters turned on, please */ 416 } 417 418 printf(": dsp v%d.%02d%s\n", 419 SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version), 420 sc->sc_model == SB_JAZZ ? ": <Jazz16>" : ""); 421 422 sc->sc_fullduplex = ISSB16CLASS(sc) && 423 sc->sc_drq8 != -1 && sc->sc_drq16 != -1 && 424 sc->sc_drq8 != sc->sc_drq16; 425 426 if (sc->sc_drq8 != -1) 427 sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic, 428 sc->sc_drq8); 429 430 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) 431 sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic, 432 sc->sc_drq16); 433 434 powerhook_establish (sbdsp_powerhook, sc); 435 } 436 437 static void 438 sbdsp_powerhook (why, arg) 439 int why; 440 void *arg; 441 { 442 struct sbdsp_softc *sc = arg; 443 int i; 444 445 if (!sc || why != PWR_RESUME) 446 return; 447 448 /* Reset the mixer. */ 449 sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET); 450 for (i = 0; i < SB_NDEVS; i++) 451 sbdsp_set_mixer_gain (sc, i); 452 } 453 454 void 455 sbdsp_mix_write(sc, mixerport, val) 456 struct sbdsp_softc *sc; 457 int mixerport; 458 int val; 459 { 460 bus_space_tag_t iot = sc->sc_iot; 461 bus_space_handle_t ioh = sc->sc_ioh; 462 int s; 463 464 s = splaudio(); 465 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 466 delay(20); 467 bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val); 468 delay(30); 469 splx(s); 470 } 471 472 int 473 sbdsp_mix_read(sc, mixerport) 474 struct sbdsp_softc *sc; 475 int mixerport; 476 { 477 bus_space_tag_t iot = sc->sc_iot; 478 bus_space_handle_t ioh = sc->sc_ioh; 479 int val; 480 int s; 481 482 s = splaudio(); 483 bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport); 484 delay(20); 485 val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA); 486 delay(30); 487 splx(s); 488 return val; 489 } 490 491 /* 492 * Various routines to interface to higher level audio driver 493 */ 494 495 int 496 sbdsp_query_encoding(addr, fp) 497 void *addr; 498 struct audio_encoding *fp; 499 { 500 struct sbdsp_softc *sc = addr; 501 int emul; 502 503 emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED; 504 505 switch (fp->index) { 506 case 0: 507 strcpy(fp->name, AudioEulinear); 508 fp->encoding = AUDIO_ENCODING_ULINEAR; 509 fp->precision = 8; 510 fp->flags = 0; 511 return 0; 512 case 1: 513 strcpy(fp->name, AudioEmulaw); 514 fp->encoding = AUDIO_ENCODING_ULAW; 515 fp->precision = 8; 516 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 517 return 0; 518 case 2: 519 strcpy(fp->name, AudioEalaw); 520 fp->encoding = AUDIO_ENCODING_ALAW; 521 fp->precision = 8; 522 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 523 return 0; 524 case 3: 525 strcpy(fp->name, AudioEslinear); 526 fp->encoding = AUDIO_ENCODING_SLINEAR; 527 fp->precision = 8; 528 fp->flags = emul; 529 return 0; 530 } 531 if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ) 532 return EINVAL; 533 534 switch(fp->index) { 535 case 4: 536 strcpy(fp->name, AudioEslinear_le); 537 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 538 fp->precision = 16; 539 fp->flags = 0; 540 return 0; 541 case 5: 542 strcpy(fp->name, AudioEulinear_le); 543 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 544 fp->precision = 16; 545 fp->flags = emul; 546 return 0; 547 case 6: 548 strcpy(fp->name, AudioEslinear_be); 549 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 550 fp->precision = 16; 551 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 552 return 0; 553 case 7: 554 strcpy(fp->name, AudioEulinear_be); 555 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 556 fp->precision = 16; 557 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 558 return 0; 559 default: 560 return EINVAL; 561 } 562 return 0; 563 } 564 565 int 566 sbdsp_set_params(addr, setmode, usemode, play, rec) 567 void *addr; 568 int setmode, usemode; 569 struct audio_params *play, *rec; 570 { 571 struct sbdsp_softc *sc = addr; 572 struct sbmode *m; 573 u_int rate, tc, bmode; 574 void (*swcode) __P((void *, u_char *buf, int cnt)); 575 int factor; 576 int model; 577 int chan; 578 struct audio_params *p; 579 int mode; 580 581 if (sc->sc_open == SB_OPEN_MIDI) 582 return EBUSY; 583 584 /* Later models work like SB16. */ 585 model = min(sc->sc_model, SB_16); 586 587 /* 588 * Prior to the SB16, we have only one clock, so make the sample 589 * rates match. 590 */ 591 if (!ISSB16CLASS(sc) && 592 play->sample_rate != rec->sample_rate && 593 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 594 if (setmode == AUMODE_PLAY) { 595 rec->sample_rate = play->sample_rate; 596 setmode |= AUMODE_RECORD; 597 } else if (setmode == AUMODE_RECORD) { 598 play->sample_rate = rec->sample_rate; 599 setmode |= AUMODE_PLAY; 600 } else 601 return (EINVAL); 602 } 603 604 /* Set first record info, then play info */ 605 for (mode = AUMODE_RECORD; mode != -1; 606 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 607 if ((setmode & mode) == 0) 608 continue; 609 610 p = mode == AUMODE_PLAY ? play : rec; 611 /* Locate proper commands */ 612 for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes; 613 m->model != -1; m++) { 614 if (model == m->model && 615 p->channels == m->channels && 616 p->precision == m->precision && 617 p->sample_rate >= m->lowrate && 618 p->sample_rate <= m->highrate) 619 break; 620 } 621 if (m->model == -1) 622 return EINVAL; 623 rate = p->sample_rate; 624 swcode = 0; 625 factor = 1; 626 tc = 1; 627 bmode = -1; 628 if (model == SB_16) { 629 switch (p->encoding) { 630 case AUDIO_ENCODING_SLINEAR_BE: 631 if (p->precision == 16) 632 swcode = swap_bytes; 633 /* fall into */ 634 case AUDIO_ENCODING_SLINEAR_LE: 635 bmode = SB_BMODE_SIGNED; 636 break; 637 case AUDIO_ENCODING_ULINEAR_BE: 638 if (p->precision == 16) 639 swcode = swap_bytes; 640 /* fall into */ 641 case AUDIO_ENCODING_ULINEAR_LE: 642 bmode = SB_BMODE_UNSIGNED; 643 break; 644 case AUDIO_ENCODING_ULAW: 645 if (mode == AUMODE_PLAY) { 646 swcode = mulaw_to_ulinear16_le; 647 factor = 2; 648 m = &sbpmodes[PLAY16]; 649 } else 650 swcode = ulinear8_to_mulaw; 651 bmode = SB_BMODE_UNSIGNED; 652 break; 653 case AUDIO_ENCODING_ALAW: 654 if (mode == AUMODE_PLAY) { 655 swcode = alaw_to_ulinear16_le; 656 factor = 2; 657 m = &sbpmodes[PLAY16]; 658 } else 659 swcode = ulinear8_to_alaw; 660 bmode = SB_BMODE_UNSIGNED; 661 break; 662 default: 663 return EINVAL; 664 } 665 if (p->channels == 2) 666 bmode |= SB_BMODE_STEREO; 667 } else if (m->model == SB_JAZZ && m->precision == 16) { 668 switch (p->encoding) { 669 case AUDIO_ENCODING_SLINEAR_LE: 670 break; 671 case AUDIO_ENCODING_ULINEAR_LE: 672 swcode = change_sign16_le; 673 break; 674 case AUDIO_ENCODING_SLINEAR_BE: 675 swcode = swap_bytes; 676 break; 677 case AUDIO_ENCODING_ULINEAR_BE: 678 swcode = mode == AUMODE_PLAY ? 679 swap_bytes_change_sign16_le : 680 change_sign16_swap_bytes_le; 681 break; 682 case AUDIO_ENCODING_ULAW: 683 swcode = mode == AUMODE_PLAY ? 684 mulaw_to_ulinear8 : ulinear8_to_mulaw; 685 break; 686 case AUDIO_ENCODING_ALAW: 687 swcode = mode == AUMODE_PLAY ? 688 alaw_to_ulinear8 : ulinear8_to_alaw; 689 break; 690 default: 691 return EINVAL; 692 } 693 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 694 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 695 } else { 696 switch (p->encoding) { 697 case AUDIO_ENCODING_SLINEAR_BE: 698 case AUDIO_ENCODING_SLINEAR_LE: 699 swcode = change_sign8; 700 break; 701 case AUDIO_ENCODING_ULINEAR_BE: 702 case AUDIO_ENCODING_ULINEAR_LE: 703 break; 704 case AUDIO_ENCODING_ULAW: 705 swcode = mode == AUMODE_PLAY ? 706 mulaw_to_ulinear8 : ulinear8_to_mulaw; 707 break; 708 case AUDIO_ENCODING_ALAW: 709 swcode = mode == AUMODE_PLAY ? 710 alaw_to_ulinear8 : ulinear8_to_alaw; 711 break; 712 default: 713 return EINVAL; 714 } 715 tc = SB_RATE_TO_TC(p->sample_rate * p->channels); 716 p->sample_rate = SB_TC_TO_RATE(tc) / p->channels; 717 } 718 719 chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8; 720 if (mode == AUMODE_PLAY) { 721 sc->sc_o.rate = rate; 722 sc->sc_o.tc = tc; 723 sc->sc_o.modep = m; 724 sc->sc_o.bmode = bmode; 725 sc->sc_o.dmachan = chan; 726 } else { 727 sc->sc_i.rate = rate; 728 sc->sc_i.tc = tc; 729 sc->sc_i.modep = m; 730 sc->sc_i.bmode = bmode; 731 sc->sc_i.dmachan = chan; 732 } 733 734 p->sw_code = swcode; 735 p->factor = factor; 736 DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n", 737 sc->sc_model, mode, p->sample_rate, p->precision, p->channels, 738 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor)); 739 740 } 741 742 if (sc->sc_fullduplex && 743 usemode == (AUMODE_PLAY | AUMODE_RECORD) && 744 sc->sc_i.dmachan == sc->sc_o.dmachan) { 745 DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan)); 746 if (sc->sc_o.dmachan == sc->sc_drq8) { 747 /* Use 16 bit DMA for playing by expanding the samples. */ 748 play->sw_code = linear8_to_linear16_le; 749 play->factor = 2; 750 sc->sc_o.modep = &sbpmodes[PLAY16]; 751 sc->sc_o.dmachan = sc->sc_drq16; 752 } else { 753 return EINVAL; 754 } 755 } 756 DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n", 757 sc->sc_i.dmachan, sc->sc_o.dmachan)); 758 759 return (0); 760 } 761 762 void 763 sbdsp_set_ifilter(addr, which) 764 void *addr; 765 int which; 766 { 767 struct sbdsp_softc *sc = addr; 768 int mixval; 769 770 mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK; 771 switch (which) { 772 case 0: 773 mixval |= SBP_FILTER_OFF; 774 break; 775 case SB_TREBLE: 776 mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH; 777 break; 778 case SB_BASS: 779 mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW; 780 break; 781 default: 782 return; 783 } 784 sc->in_filter = mixval & SBP_IFILTER_MASK; 785 sbdsp_mix_write(sc, SBP_INFILTER, mixval); 786 } 787 788 int 789 sbdsp_get_ifilter(addr) 790 void *addr; 791 { 792 struct sbdsp_softc *sc = addr; 793 794 sc->in_filter = 795 sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK; 796 switch (sc->in_filter) { 797 case SBP_FILTER_ON|SBP_IFILTER_HIGH: 798 return SB_TREBLE; 799 case SBP_FILTER_ON|SBP_IFILTER_LOW: 800 return SB_BASS; 801 default: 802 return 0; 803 } 804 } 805 806 int 807 sbdsp_set_in_ports(sc, mask) 808 struct sbdsp_softc *sc; 809 int mask; 810 { 811 int bitsl, bitsr; 812 int sbport; 813 814 if (sc->sc_open == SB_OPEN_MIDI) 815 return EBUSY; 816 817 DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n", 818 sc->sc_mixer_model, mask)); 819 820 switch(sc->sc_mixer_model) { 821 case SBM_NONE: 822 return EINVAL; 823 case SBM_CT1335: 824 if (mask != (1 << SB_MIC_VOL)) 825 return EINVAL; 826 break; 827 case SBM_CT1345: 828 switch (mask) { 829 case 1 << SB_MIC_VOL: 830 sbport = SBP_FROM_MIC; 831 break; 832 case 1 << SB_LINE_IN_VOL: 833 sbport = SBP_FROM_LINE; 834 break; 835 case 1 << SB_CD_VOL: 836 sbport = SBP_FROM_CD; 837 break; 838 default: 839 return (EINVAL); 840 } 841 sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter); 842 break; 843 case SBM_CT1XX5: 844 case SBM_CT1745: 845 if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) | 846 (1<<SB_CD_VOL) | (1<<SB_MIC_VOL))) 847 return EINVAL; 848 bitsr = 0; 849 if (mask & (1<<SB_MIDI_VOL)) bitsr |= SBP_MIDI_SRC_R; 850 if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R; 851 if (mask & (1<<SB_CD_VOL)) bitsr |= SBP_CD_SRC_R; 852 bitsl = SB_SRC_R_TO_L(bitsr); 853 if (mask & (1<<SB_MIC_VOL)) { 854 bitsl |= SBP_MIC_SRC; 855 bitsr |= SBP_MIC_SRC; 856 } 857 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl); 858 sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr); 859 break; 860 } 861 sc->in_mask = mask; 862 863 return 0; 864 } 865 866 int 867 sbdsp_speaker_ctl(addr, newstate) 868 void *addr; 869 int newstate; 870 { 871 struct sbdsp_softc *sc = addr; 872 873 if (sc->sc_open == SB_OPEN_MIDI) 874 return EBUSY; 875 876 if ((newstate == SPKR_ON) && 877 (sc->spkr_state == SPKR_OFF)) { 878 sbdsp_spkron(sc); 879 sc->spkr_state = SPKR_ON; 880 } 881 if ((newstate == SPKR_OFF) && 882 (sc->spkr_state == SPKR_ON)) { 883 sbdsp_spkroff(sc); 884 sc->spkr_state = SPKR_OFF; 885 } 886 return 0; 887 } 888 889 int 890 sbdsp_round_blocksize(addr, blk) 891 void *addr; 892 int blk; 893 { 894 return blk & -4; /* round to biggest sample size */ 895 } 896 897 int 898 sbdsp_open(addr, flags) 899 void *addr; 900 int flags; 901 { 902 struct sbdsp_softc *sc = addr; 903 int error, state; 904 905 DPRINTF(("sbdsp_open: sc=%p\n", sc)); 906 907 if (sc->sc_open != SB_CLOSED) 908 return (EBUSY); 909 sc->sc_open = SB_OPEN_AUDIO; 910 sc->sc_openflags = flags; 911 state = 0; 912 913 if (sc->sc_drq8 != -1) { 914 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8, 915 sc->sc_drq8_maxsize, BUS_DMA_NOWAIT); 916 if (error) { 917 printf("%s: can't create map for drq %d\n", 918 sc->sc_dev.dv_xname, sc->sc_drq8); 919 goto bad; 920 } 921 state |= 1; 922 } 923 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) { 924 error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16, 925 sc->sc_drq16_maxsize, BUS_DMA_NOWAIT); 926 if (error) { 927 printf("%s: can't create map for drq %d\n", 928 sc->sc_dev.dv_xname, sc->sc_drq16); 929 goto bad; 930 } 931 state |= 2; 932 } 933 934 if (sbdsp_reset(sc) != 0) { 935 error = EIO; 936 goto bad; 937 } 938 939 if (ISSBPRO(sc) && 940 sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) { 941 DPRINTF(("sbdsp_open: can't set mono mode\n")); 942 /* we'll readjust when it's time for DMA. */ 943 } 944 945 /* 946 * Leave most things as they were; users must change things if 947 * the previous process didn't leave it they way they wanted. 948 * Looked at another way, it's easy to set up a configuration 949 * in one program and leave it for another to inherit. 950 */ 951 DPRINTF(("sbdsp_open: opened\n")); 952 953 return (0); 954 955 bad: 956 if (state & 1) 957 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8); 958 if (state & 2) 959 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16); 960 961 sc->sc_open = SB_CLOSED; 962 return (error); 963 } 964 965 void 966 sbdsp_close(addr) 967 void *addr; 968 { 969 struct sbdsp_softc *sc = addr; 970 971 DPRINTF(("sbdsp_close: sc=%p\n", sc)); 972 973 sbdsp_spkroff(sc); 974 sc->spkr_state = SPKR_OFF; 975 976 sbdsp_halt_output(sc); 977 sbdsp_halt_input(sc); 978 979 sc->sc_intr8 = 0; 980 sc->sc_intr16 = 0; 981 982 if (sc->sc_drq8 != -1) 983 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8); 984 if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) 985 isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16); 986 987 sc->sc_open = SB_CLOSED; 988 DPRINTF(("sbdsp_close: closed\n")); 989 } 990 991 /* 992 * Lower-level routines 993 */ 994 995 /* 996 * Reset the card. 997 * Return non-zero if the card isn't detected. 998 */ 999 int 1000 sbdsp_reset(sc) 1001 struct sbdsp_softc *sc; 1002 { 1003 bus_space_tag_t iot = sc->sc_iot; 1004 bus_space_handle_t ioh = sc->sc_ioh; 1005 1006 sc->sc_intr8 = 0; 1007 sc->sc_intr16 = 0; 1008 sc->sc_intrm = 0; 1009 1010 /* 1011 * See SBK, section 11.3. 1012 * We pulse a reset signal into the card. 1013 * Gee, what a brilliant hardware design. 1014 */ 1015 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1); 1016 delay(10); 1017 bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0); 1018 delay(30); 1019 if (sbdsp_rdsp(sc) != SB_MAGIC) 1020 return -1; 1021 1022 return 0; 1023 } 1024 1025 /* 1026 * Write a byte to the dsp. 1027 * We are at the mercy of the card as we use a 1028 * polling loop and wait until it can take the byte. 1029 */ 1030 int 1031 sbdsp_wdsp(sc, v) 1032 struct sbdsp_softc *sc; 1033 int v; 1034 { 1035 bus_space_tag_t iot = sc->sc_iot; 1036 bus_space_handle_t ioh = sc->sc_ioh; 1037 int i; 1038 u_char x; 1039 1040 for (i = SBDSP_NPOLL; --i >= 0; ) { 1041 x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT); 1042 delay(10); 1043 if ((x & SB_DSP_BUSY) == 0) { 1044 bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v); 1045 delay(10); 1046 return 0; 1047 } 1048 } 1049 ++sberr.wdsp; 1050 return -1; 1051 } 1052 1053 /* 1054 * Read a byte from the DSP, using polling. 1055 */ 1056 int 1057 sbdsp_rdsp(sc) 1058 struct sbdsp_softc *sc; 1059 { 1060 bus_space_tag_t iot = sc->sc_iot; 1061 bus_space_handle_t ioh = sc->sc_ioh; 1062 int i; 1063 u_char x; 1064 1065 for (i = SBDSP_NPOLL; --i >= 0; ) { 1066 x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT); 1067 delay(10); 1068 if (x & SB_DSP_READY) { 1069 x = bus_space_read_1(iot, ioh, SBP_DSP_READ); 1070 delay(10); 1071 return x; 1072 } 1073 } 1074 ++sberr.rdsp; 1075 return -1; 1076 } 1077 1078 void 1079 sbdsp_pause(sc) 1080 struct sbdsp_softc *sc; 1081 { 1082 1083 (void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8); 1084 } 1085 1086 /* 1087 * Turn on the speaker. The SBK documention says this operation 1088 * can take up to 1/10 of a second. Higher level layers should 1089 * probably let the task sleep for this amount of time after 1090 * calling here. Otherwise, things might not work (because 1091 * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.) 1092 * 1093 * These engineers had their heads up their ass when 1094 * they designed this card. 1095 */ 1096 void 1097 sbdsp_spkron(sc) 1098 struct sbdsp_softc *sc; 1099 { 1100 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON); 1101 sbdsp_pause(sc); 1102 } 1103 1104 /* 1105 * Turn off the speaker; see comment above. 1106 */ 1107 void 1108 sbdsp_spkroff(sc) 1109 struct sbdsp_softc *sc; 1110 { 1111 (void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF); 1112 sbdsp_pause(sc); 1113 } 1114 1115 /* 1116 * Read the version number out of the card. 1117 * Store version information in the softc. 1118 */ 1119 void 1120 sbversion(sc) 1121 struct sbdsp_softc *sc; 1122 { 1123 int v; 1124 1125 sc->sc_model = SB_UNK; 1126 sc->sc_version = 0; 1127 if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0) 1128 return; 1129 v = sbdsp_rdsp(sc) << 8; 1130 v |= sbdsp_rdsp(sc); 1131 if (v < 0) 1132 return; 1133 sc->sc_version = v; 1134 switch(SBVER_MAJOR(v)) { 1135 case 1: 1136 sc->sc_mixer_model = SBM_NONE; 1137 sc->sc_model = SB_1; 1138 break; 1139 case 2: 1140 /* Some SB2 have a mixer, some don't. */ 1141 sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04); 1142 sbdsp_mix_write(sc, SBP_1335_MIDI_VOL, 0x06); 1143 /* Check if we can read back the mixer values. */ 1144 if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 && 1145 (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL) & 0x0e) == 0x06) 1146 sc->sc_mixer_model = SBM_CT1335; 1147 else 1148 sc->sc_mixer_model = SBM_NONE; 1149 if (SBVER_MINOR(v) == 0) 1150 sc->sc_model = SB_20; 1151 else 1152 sc->sc_model = SB_2x; 1153 break; 1154 case 3: 1155 sc->sc_mixer_model = SBM_CT1345; 1156 sc->sc_model = SB_PRO; 1157 break; 1158 case 4: 1159 #if 0 1160 /* XXX This does not work */ 1161 /* Most SB16 have a tone controls, but some don't. */ 1162 sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80); 1163 /* Check if we can read back the mixer value. */ 1164 if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80) 1165 sc->sc_mixer_model = SBM_CT1745; 1166 else 1167 sc->sc_mixer_model = SBM_CT1XX5; 1168 #else 1169 sc->sc_mixer_model = SBM_CT1745; 1170 #endif 1171 #if 0 1172 /* XXX figure out a good way of determining the model */ 1173 /* XXX what about SB_32 */ 1174 if (SBVER_MINOR(v) == 16) 1175 sc->sc_model = SB_64; 1176 else 1177 #endif 1178 sc->sc_model = SB_16; 1179 break; 1180 } 1181 } 1182 1183 int 1184 sbdsp_set_timeconst(sc, tc) 1185 struct sbdsp_softc *sc; 1186 int tc; 1187 { 1188 DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc)); 1189 1190 if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 || 1191 sbdsp_wdsp(sc, tc) < 0) 1192 return EIO; 1193 1194 return 0; 1195 } 1196 1197 int 1198 sbdsp16_set_rate(sc, cmd, rate) 1199 struct sbdsp_softc *sc; 1200 int cmd, rate; 1201 { 1202 DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate)); 1203 1204 if (sbdsp_wdsp(sc, cmd) < 0 || 1205 sbdsp_wdsp(sc, rate >> 8) < 0 || 1206 sbdsp_wdsp(sc, rate) < 0) 1207 return EIO; 1208 return 0; 1209 } 1210 1211 int 1212 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param) 1213 void *addr; 1214 void *start, *end; 1215 int blksize; 1216 void (*intr) __P((void *)); 1217 void *arg; 1218 struct audio_params *param; 1219 { 1220 struct sbdsp_softc *sc = addr; 1221 int stereo = param->channels == 2; 1222 int width = param->precision * param->factor; 1223 int filter; 1224 1225 #ifdef DIAGNOSTIC 1226 if (stereo && (blksize & 1)) { 1227 DPRINTF(("stereo record odd bytes (%d)\n", blksize)); 1228 return (EIO); 1229 } 1230 if (sc->sc_i.run != SB_NOTRUNNING) 1231 printf("sbdsp_trigger_input: already running\n"); 1232 #endif 1233 1234 sc->sc_intrr = intr; 1235 sc->sc_argr = arg; 1236 1237 if (width == 8) { 1238 #ifdef DIAGNOSTIC 1239 if (sc->sc_i.dmachan != sc->sc_drq8) { 1240 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1241 width, sc->sc_i.dmachan); 1242 return (EIO); 1243 } 1244 #endif 1245 sc->sc_intr8 = sbdsp_block_input; 1246 } else { 1247 #ifdef DIAGNOSTIC 1248 if (sc->sc_i.dmachan != sc->sc_drq16) { 1249 printf("sbdsp_trigger_input: width=%d bad chan %d\n", 1250 width, sc->sc_i.dmachan); 1251 return (EIO); 1252 } 1253 #endif 1254 sc->sc_intr16 = sbdsp_block_input; 1255 } 1256 1257 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16)) 1258 blksize >>= 1; 1259 --blksize; 1260 sc->sc_i.blksize = blksize; 1261 1262 if (ISSBPRO(sc)) { 1263 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0) 1264 return (EIO); 1265 filter = stereo ? SBP_FILTER_OFF : sc->in_filter; 1266 sbdsp_mix_write(sc, SBP_INFILTER, 1267 (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) | 1268 filter); 1269 } 1270 1271 if (ISSB16CLASS(sc)) { 1272 if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) { 1273 DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n", 1274 sc->sc_i.rate)); 1275 return (EIO); 1276 } 1277 } else { 1278 if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) { 1279 DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n", 1280 sc->sc_i.rate)); 1281 return (EIO); 1282 } 1283 } 1284 1285 DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n", 1286 start, end, sc->sc_i.dmachan)); 1287 isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start, 1288 (char *)end - (char *)start, NULL, 1289 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1290 1291 return sbdsp_block_input(addr); 1292 } 1293 1294 int 1295 sbdsp_block_input(addr) 1296 void *addr; 1297 { 1298 struct sbdsp_softc *sc = addr; 1299 int cc = sc->sc_i.blksize; 1300 1301 DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc)); 1302 1303 if (sc->sc_i.run != SB_NOTRUNNING) 1304 sc->sc_intrr(sc->sc_argr); 1305 1306 if (sc->sc_model == SB_1) { 1307 /* Non-looping mode, start DMA */ 1308 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1309 sbdsp_wdsp(sc, cc) < 0 || 1310 sbdsp_wdsp(sc, cc >> 8) < 0) { 1311 DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n")); 1312 return (EIO); 1313 } 1314 sc->sc_i.run = SB_RUNNING; 1315 } else if (sc->sc_i.run == SB_NOTRUNNING) { 1316 /* Initialize looping PCM */ 1317 if (ISSB16CLASS(sc)) { 1318 DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n", 1319 sc->sc_i.modep->cmd, sc->sc_i.bmode, cc)); 1320 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 || 1321 sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 || 1322 sbdsp_wdsp(sc, cc) < 0 || 1323 sbdsp_wdsp(sc, cc >> 8) < 0) { 1324 DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n")); 1325 return (EIO); 1326 } 1327 } else { 1328 DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc)); 1329 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1330 sbdsp_wdsp(sc, cc) < 0 || 1331 sbdsp_wdsp(sc, cc >> 8) < 0) { 1332 DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n")); 1333 return (EIO); 1334 } 1335 if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) { 1336 DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n")); 1337 return (EIO); 1338 } 1339 } 1340 sc->sc_i.run = SB_LOOPING; 1341 } 1342 1343 return (0); 1344 } 1345 1346 int 1347 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param) 1348 void *addr; 1349 void *start, *end; 1350 int blksize; 1351 void (*intr) __P((void *)); 1352 void *arg; 1353 struct audio_params *param; 1354 { 1355 struct sbdsp_softc *sc = addr; 1356 int stereo = param->channels == 2; 1357 int width = param->precision * param->factor; 1358 int cmd; 1359 1360 #ifdef DIAGNOSTIC 1361 if (stereo && (blksize & 1)) { 1362 DPRINTF(("stereo playback odd bytes (%d)\n", blksize)); 1363 return (EIO); 1364 } 1365 if (sc->sc_o.run != SB_NOTRUNNING) 1366 printf("sbdsp_trigger_output: already running\n"); 1367 #endif 1368 1369 sc->sc_intrp = intr; 1370 sc->sc_argp = arg; 1371 1372 if (width == 8) { 1373 #ifdef DIAGNOSTIC 1374 if (sc->sc_o.dmachan != sc->sc_drq8) { 1375 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1376 width, sc->sc_o.dmachan); 1377 return (EIO); 1378 } 1379 #endif 1380 sc->sc_intr8 = sbdsp_block_output; 1381 } else { 1382 #ifdef DIAGNOSTIC 1383 if (sc->sc_o.dmachan != sc->sc_drq16) { 1384 printf("sbdsp_trigger_output: width=%d bad chan %d\n", 1385 width, sc->sc_o.dmachan); 1386 return (EIO); 1387 } 1388 #endif 1389 sc->sc_intr16 = sbdsp_block_output; 1390 } 1391 1392 if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16)) 1393 blksize >>= 1; 1394 --blksize; 1395 sc->sc_o.blksize = blksize; 1396 1397 if (ISSBPRO(sc)) { 1398 /* make sure we re-set stereo mixer bit when we start output. */ 1399 sbdsp_mix_write(sc, SBP_STEREO, 1400 (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) | 1401 (stereo ? SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO)); 1402 cmd = sc->sc_o.modep->cmdchan; 1403 if (cmd && sbdsp_wdsp(sc, cmd) < 0) 1404 return (EIO); 1405 } 1406 1407 if (ISSB16CLASS(sc)) { 1408 if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) { 1409 DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n", 1410 sc->sc_o.rate)); 1411 return (EIO); 1412 } 1413 } else { 1414 if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) { 1415 DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n", 1416 sc->sc_o.rate)); 1417 return (EIO); 1418 } 1419 } 1420 1421 DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n", 1422 start, end, sc->sc_o.dmachan)); 1423 isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start, 1424 (char *)end - (char *)start, NULL, 1425 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1426 1427 return sbdsp_block_output(addr); 1428 } 1429 1430 int 1431 sbdsp_block_output(addr) 1432 void *addr; 1433 { 1434 struct sbdsp_softc *sc = addr; 1435 int cc = sc->sc_o.blksize; 1436 1437 DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc)); 1438 1439 if (sc->sc_o.run != SB_NOTRUNNING) 1440 sc->sc_intrp(sc->sc_argp); 1441 1442 if (sc->sc_model == SB_1) { 1443 /* Non-looping mode, initialized. Start DMA and PCM */ 1444 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1445 sbdsp_wdsp(sc, cc) < 0 || 1446 sbdsp_wdsp(sc, cc >> 8) < 0) { 1447 DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n")); 1448 return (EIO); 1449 } 1450 sc->sc_o.run = SB_RUNNING; 1451 } else if (sc->sc_o.run == SB_NOTRUNNING) { 1452 /* Initialize looping PCM */ 1453 if (ISSB16CLASS(sc)) { 1454 DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n", 1455 sc->sc_o.modep->cmd,sc->sc_o.bmode, cc)); 1456 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 || 1457 sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 || 1458 sbdsp_wdsp(sc, cc) < 0 || 1459 sbdsp_wdsp(sc, cc >> 8) < 0) { 1460 DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n")); 1461 return (EIO); 1462 } 1463 } else { 1464 DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc)); 1465 if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 || 1466 sbdsp_wdsp(sc, cc) < 0 || 1467 sbdsp_wdsp(sc, cc >> 8) < 0) { 1468 DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n")); 1469 return (EIO); 1470 } 1471 if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) { 1472 DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n")); 1473 return (EIO); 1474 } 1475 } 1476 sc->sc_o.run = SB_LOOPING; 1477 } 1478 1479 return (0); 1480 } 1481 1482 int 1483 sbdsp_halt_output(addr) 1484 void *addr; 1485 { 1486 struct sbdsp_softc *sc = addr; 1487 1488 if (sc->sc_o.run != SB_NOTRUNNING) { 1489 if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0) 1490 printf("sbdsp_halt_output: failed to halt\n"); 1491 isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan); 1492 sc->sc_o.run = SB_NOTRUNNING; 1493 } 1494 1495 return (0); 1496 } 1497 1498 int 1499 sbdsp_halt_input(addr) 1500 void *addr; 1501 { 1502 struct sbdsp_softc *sc = addr; 1503 1504 if (sc->sc_i.run != SB_NOTRUNNING) { 1505 if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0) 1506 printf("sbdsp_halt_input: failed to halt\n"); 1507 isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan); 1508 sc->sc_i.run = SB_NOTRUNNING; 1509 } 1510 1511 return (0); 1512 } 1513 1514 /* 1515 * Only the DSP unit on the sound blaster generates interrupts. 1516 * There are three cases of interrupt: reception of a midi byte 1517 * (when mode is enabled), completion of dma transmission, or 1518 * completion of a dma reception. 1519 * 1520 * If there is interrupt sharing or a spurious interrupt occurs 1521 * there is no way to distinguish this on an SB2. So if you have 1522 * an SB2 and experience problems, buy an SB16 (it's only $40). 1523 */ 1524 int 1525 sbdsp_intr(arg) 1526 void *arg; 1527 { 1528 struct sbdsp_softc *sc = arg; 1529 u_char irq; 1530 1531 DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n", 1532 sc->sc_intr8, sc->sc_intr16)); 1533 if (ISSB16CLASS(sc)) { 1534 irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS); 1535 if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) { 1536 DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq)); 1537 return 0; 1538 } 1539 } else { 1540 /* XXXX CHECK FOR INTERRUPT */ 1541 irq = SBP_IRQ_DMA8; 1542 } 1543 1544 sc->sc_interrupts++; 1545 delay(10); /* XXX why? */ 1546 1547 /* clear interrupt */ 1548 if (irq & SBP_IRQ_DMA8) { 1549 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8); 1550 if (sc->sc_intr8) 1551 sc->sc_intr8(arg); 1552 } 1553 if (irq & SBP_IRQ_DMA16) { 1554 bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16); 1555 if (sc->sc_intr16) 1556 sc->sc_intr16(arg); 1557 } 1558 #if NMPU > 0 1559 if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) { 1560 mpu_intr(sc->sc_mpudev); 1561 } 1562 #endif 1563 return 1; 1564 } 1565 1566 /* Like val & mask, but make sure the result is correctly rounded. */ 1567 #define MAXVAL 256 1568 static int 1569 sbdsp_adjust(val, mask) 1570 int val, mask; 1571 { 1572 val += (MAXVAL - mask) >> 1; 1573 if (val >= MAXVAL) 1574 val = MAXVAL-1; 1575 return val & mask; 1576 } 1577 1578 void 1579 sbdsp_set_mixer_gain(sc, port) 1580 struct sbdsp_softc *sc; 1581 int port; 1582 { 1583 int src, gain; 1584 1585 switch(sc->sc_mixer_model) { 1586 case SBM_NONE: 1587 return; 1588 case SBM_CT1335: 1589 gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]); 1590 switch(port) { 1591 case SB_MASTER_VOL: 1592 src = SBP_1335_MASTER_VOL; 1593 break; 1594 case SB_MIDI_VOL: 1595 src = SBP_1335_MIDI_VOL; 1596 break; 1597 case SB_CD_VOL: 1598 src = SBP_1335_CD_VOL; 1599 break; 1600 case SB_VOICE_VOL: 1601 src = SBP_1335_VOICE_VOL; 1602 gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]); 1603 break; 1604 default: 1605 return; 1606 } 1607 sbdsp_mix_write(sc, src, gain); 1608 break; 1609 case SBM_CT1345: 1610 gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT], 1611 sc->gain[port][SB_RIGHT]); 1612 switch (port) { 1613 case SB_MIC_VOL: 1614 src = SBP_MIC_VOL; 1615 gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]); 1616 break; 1617 case SB_MASTER_VOL: 1618 src = SBP_MASTER_VOL; 1619 break; 1620 case SB_LINE_IN_VOL: 1621 src = SBP_LINE_VOL; 1622 break; 1623 case SB_VOICE_VOL: 1624 src = SBP_VOICE_VOL; 1625 break; 1626 case SB_MIDI_VOL: 1627 src = SBP_MIDI_VOL; 1628 break; 1629 case SB_CD_VOL: 1630 src = SBP_CD_VOL; 1631 break; 1632 default: 1633 return; 1634 } 1635 sbdsp_mix_write(sc, src, gain); 1636 break; 1637 case SBM_CT1XX5: 1638 case SBM_CT1745: 1639 switch (port) { 1640 case SB_MIC_VOL: 1641 src = SB16P_MIC_L; 1642 break; 1643 case SB_MASTER_VOL: 1644 src = SB16P_MASTER_L; 1645 break; 1646 case SB_LINE_IN_VOL: 1647 src = SB16P_LINE_L; 1648 break; 1649 case SB_VOICE_VOL: 1650 src = SB16P_VOICE_L; 1651 break; 1652 case SB_MIDI_VOL: 1653 src = SB16P_MIDI_L; 1654 break; 1655 case SB_CD_VOL: 1656 src = SB16P_CD_L; 1657 break; 1658 case SB_INPUT_GAIN: 1659 src = SB16P_INPUT_GAIN_L; 1660 break; 1661 case SB_OUTPUT_GAIN: 1662 src = SB16P_OUTPUT_GAIN_L; 1663 break; 1664 case SB_TREBLE: 1665 src = SB16P_TREBLE_L; 1666 break; 1667 case SB_BASS: 1668 src = SB16P_BASS_L; 1669 break; 1670 case SB_PCSPEAKER: 1671 sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]); 1672 return; 1673 default: 1674 return; 1675 } 1676 sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]); 1677 sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]); 1678 break; 1679 } 1680 } 1681 1682 int 1683 sbdsp_mixer_set_port(addr, cp) 1684 void *addr; 1685 mixer_ctrl_t *cp; 1686 { 1687 struct sbdsp_softc *sc = addr; 1688 int lgain, rgain; 1689 int mask, bits; 1690 int lmask, rmask, lbits, rbits; 1691 int mute, swap; 1692 1693 if (sc->sc_open == SB_OPEN_MIDI) 1694 return EBUSY; 1695 1696 DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev, 1697 cp->un.value.num_channels)); 1698 1699 if (sc->sc_mixer_model == SBM_NONE) 1700 return EINVAL; 1701 1702 switch (cp->dev) { 1703 case SB_TREBLE: 1704 case SB_BASS: 1705 if (sc->sc_mixer_model == SBM_CT1345 || 1706 sc->sc_mixer_model == SBM_CT1XX5) { 1707 if (cp->type != AUDIO_MIXER_ENUM) 1708 return EINVAL; 1709 switch (cp->dev) { 1710 case SB_TREBLE: 1711 sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0); 1712 return 0; 1713 case SB_BASS: 1714 sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0); 1715 return 0; 1716 } 1717 } 1718 case SB_PCSPEAKER: 1719 case SB_INPUT_GAIN: 1720 case SB_OUTPUT_GAIN: 1721 if (!ISSBM1745(sc)) 1722 return EINVAL; 1723 case SB_MIC_VOL: 1724 case SB_LINE_IN_VOL: 1725 if (sc->sc_mixer_model == SBM_CT1335) 1726 return EINVAL; 1727 case SB_VOICE_VOL: 1728 case SB_MIDI_VOL: 1729 case SB_CD_VOL: 1730 case SB_MASTER_VOL: 1731 if (cp->type != AUDIO_MIXER_VALUE) 1732 return EINVAL; 1733 1734 /* 1735 * All the mixer ports are stereo except for the microphone. 1736 * If we get a single-channel gain value passed in, then we 1737 * duplicate it to both left and right channels. 1738 */ 1739 1740 switch (cp->dev) { 1741 case SB_MIC_VOL: 1742 if (cp->un.value.num_channels != 1) 1743 return EINVAL; 1744 1745 lgain = rgain = SB_ADJUST_MIC_GAIN(sc, 1746 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1747 break; 1748 case SB_PCSPEAKER: 1749 if (cp->un.value.num_channels != 1) 1750 return EINVAL; 1751 /* fall into */ 1752 case SB_INPUT_GAIN: 1753 case SB_OUTPUT_GAIN: 1754 lgain = rgain = SB_ADJUST_2_GAIN(sc, 1755 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1756 break; 1757 default: 1758 switch (cp->un.value.num_channels) { 1759 case 1: 1760 lgain = rgain = SB_ADJUST_GAIN(sc, 1761 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1762 break; 1763 case 2: 1764 if (sc->sc_mixer_model == SBM_CT1335) 1765 return EINVAL; 1766 lgain = SB_ADJUST_GAIN(sc, 1767 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1768 rgain = SB_ADJUST_GAIN(sc, 1769 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1770 break; 1771 default: 1772 return EINVAL; 1773 } 1774 break; 1775 } 1776 sc->gain[cp->dev][SB_LEFT] = lgain; 1777 sc->gain[cp->dev][SB_RIGHT] = rgain; 1778 1779 sbdsp_set_mixer_gain(sc, cp->dev); 1780 break; 1781 1782 case SB_RECORD_SOURCE: 1783 if (ISSBM1745(sc)) { 1784 if (cp->type != AUDIO_MIXER_SET) 1785 return EINVAL; 1786 return sbdsp_set_in_ports(sc, cp->un.mask); 1787 } else { 1788 if (cp->type != AUDIO_MIXER_ENUM) 1789 return EINVAL; 1790 sc->in_port = cp->un.ord; 1791 return sbdsp_set_in_ports(sc, 1 << cp->un.ord); 1792 } 1793 break; 1794 1795 case SB_AGC: 1796 if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM) 1797 return EINVAL; 1798 sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1); 1799 break; 1800 1801 case SB_CD_OUT_MUTE: 1802 mask = SB16P_SW_CD; 1803 goto omute; 1804 case SB_MIC_OUT_MUTE: 1805 mask = SB16P_SW_MIC; 1806 goto omute; 1807 case SB_LINE_OUT_MUTE: 1808 mask = SB16P_SW_LINE; 1809 omute: 1810 if (cp->type != AUDIO_MIXER_ENUM) 1811 return EINVAL; 1812 bits = sbdsp_mix_read(sc, SB16P_OSWITCH); 1813 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1814 if (cp->un.ord) 1815 bits = bits & ~mask; 1816 else 1817 bits = bits | mask; 1818 sbdsp_mix_write(sc, SB16P_OSWITCH, bits); 1819 break; 1820 1821 case SB_MIC_IN_MUTE: 1822 case SB_MIC_SWAP: 1823 lmask = rmask = SB16P_SW_MIC; 1824 goto imute; 1825 case SB_CD_IN_MUTE: 1826 case SB_CD_SWAP: 1827 lmask = SB16P_SW_CD_L; 1828 rmask = SB16P_SW_CD_R; 1829 goto imute; 1830 case SB_LINE_IN_MUTE: 1831 case SB_LINE_SWAP: 1832 lmask = SB16P_SW_LINE_L; 1833 rmask = SB16P_SW_LINE_R; 1834 goto imute; 1835 case SB_MIDI_IN_MUTE: 1836 case SB_MIDI_SWAP: 1837 lmask = SB16P_SW_MIDI_L; 1838 rmask = SB16P_SW_MIDI_R; 1839 imute: 1840 if (cp->type != AUDIO_MIXER_ENUM) 1841 return EINVAL; 1842 mask = lmask | rmask; 1843 lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask; 1844 rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask; 1845 sc->gain[cp->dev][SB_LR] = cp->un.ord != 0; 1846 if (SB_IS_IN_MUTE(cp->dev)) { 1847 mute = cp->dev; 1848 swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP; 1849 } else { 1850 swap = cp->dev; 1851 mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP; 1852 } 1853 if (sc->gain[swap][SB_LR]) { 1854 mask = lmask; 1855 lmask = rmask; 1856 rmask = mask; 1857 } 1858 if (!sc->gain[mute][SB_LR]) { 1859 lbits = lbits | lmask; 1860 rbits = rbits | rmask; 1861 } 1862 sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits); 1863 sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits); 1864 break; 1865 1866 default: 1867 return EINVAL; 1868 } 1869 1870 return 0; 1871 } 1872 1873 int 1874 sbdsp_mixer_get_port(addr, cp) 1875 void *addr; 1876 mixer_ctrl_t *cp; 1877 { 1878 struct sbdsp_softc *sc = addr; 1879 1880 if (sc->sc_open == SB_OPEN_MIDI) 1881 return EBUSY; 1882 1883 DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev)); 1884 1885 if (sc->sc_mixer_model == SBM_NONE) 1886 return EINVAL; 1887 1888 switch (cp->dev) { 1889 case SB_TREBLE: 1890 case SB_BASS: 1891 if (sc->sc_mixer_model == SBM_CT1345 || 1892 sc->sc_mixer_model == SBM_CT1XX5) { 1893 switch (cp->dev) { 1894 case SB_TREBLE: 1895 cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE; 1896 return 0; 1897 case SB_BASS: 1898 cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS; 1899 return 0; 1900 } 1901 } 1902 case SB_PCSPEAKER: 1903 case SB_INPUT_GAIN: 1904 case SB_OUTPUT_GAIN: 1905 if (!ISSBM1745(sc)) 1906 return EINVAL; 1907 case SB_MIC_VOL: 1908 case SB_LINE_IN_VOL: 1909 if (sc->sc_mixer_model == SBM_CT1335) 1910 return EINVAL; 1911 case SB_VOICE_VOL: 1912 case SB_MIDI_VOL: 1913 case SB_CD_VOL: 1914 case SB_MASTER_VOL: 1915 switch (cp->dev) { 1916 case SB_MIC_VOL: 1917 case SB_PCSPEAKER: 1918 if (cp->un.value.num_channels != 1) 1919 return EINVAL; 1920 /* fall into */ 1921 default: 1922 switch (cp->un.value.num_channels) { 1923 case 1: 1924 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1925 sc->gain[cp->dev][SB_LEFT]; 1926 break; 1927 case 2: 1928 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1929 sc->gain[cp->dev][SB_LEFT]; 1930 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1931 sc->gain[cp->dev][SB_RIGHT]; 1932 break; 1933 default: 1934 return EINVAL; 1935 } 1936 break; 1937 } 1938 break; 1939 1940 case SB_RECORD_SOURCE: 1941 if (ISSBM1745(sc)) 1942 cp->un.mask = sc->in_mask; 1943 else 1944 cp->un.ord = sc->in_port; 1945 break; 1946 1947 case SB_AGC: 1948 if (!ISSBM1745(sc)) 1949 return EINVAL; 1950 cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC); 1951 break; 1952 1953 case SB_CD_IN_MUTE: 1954 case SB_MIC_IN_MUTE: 1955 case SB_LINE_IN_MUTE: 1956 case SB_MIDI_IN_MUTE: 1957 case SB_CD_SWAP: 1958 case SB_MIC_SWAP: 1959 case SB_LINE_SWAP: 1960 case SB_MIDI_SWAP: 1961 case SB_CD_OUT_MUTE: 1962 case SB_MIC_OUT_MUTE: 1963 case SB_LINE_OUT_MUTE: 1964 cp->un.ord = sc->gain[cp->dev][SB_LR]; 1965 break; 1966 1967 default: 1968 return EINVAL; 1969 } 1970 1971 return 0; 1972 } 1973 1974 int 1975 sbdsp_mixer_query_devinfo(addr, dip) 1976 void *addr; 1977 mixer_devinfo_t *dip; 1978 { 1979 struct sbdsp_softc *sc = addr; 1980 int chan, class, is1745; 1981 1982 DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n", 1983 sc->sc_mixer_model, dip->index)); 1984 1985 if (sc->sc_mixer_model == SBM_NONE) 1986 return ENXIO; 1987 1988 chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2; 1989 is1745 = ISSBM1745(sc); 1990 class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS; 1991 1992 switch (dip->index) { 1993 case SB_MASTER_VOL: 1994 dip->type = AUDIO_MIXER_VALUE; 1995 dip->mixer_class = SB_OUTPUT_CLASS; 1996 dip->prev = dip->next = AUDIO_MIXER_LAST; 1997 strcpy(dip->label.name, AudioNmaster); 1998 dip->un.v.num_channels = chan; 1999 strcpy(dip->un.v.units.name, AudioNvolume); 2000 return 0; 2001 case SB_MIDI_VOL: 2002 dip->type = AUDIO_MIXER_VALUE; 2003 dip->mixer_class = class; 2004 dip->prev = AUDIO_MIXER_LAST; 2005 dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST; 2006 strcpy(dip->label.name, AudioNfmsynth); 2007 dip->un.v.num_channels = chan; 2008 strcpy(dip->un.v.units.name, AudioNvolume); 2009 return 0; 2010 case SB_CD_VOL: 2011 dip->type = AUDIO_MIXER_VALUE; 2012 dip->mixer_class = class; 2013 dip->prev = AUDIO_MIXER_LAST; 2014 dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST; 2015 strcpy(dip->label.name, AudioNcd); 2016 dip->un.v.num_channels = chan; 2017 strcpy(dip->un.v.units.name, AudioNvolume); 2018 return 0; 2019 case SB_VOICE_VOL: 2020 dip->type = AUDIO_MIXER_VALUE; 2021 dip->mixer_class = class; 2022 dip->prev = AUDIO_MIXER_LAST; 2023 dip->next = AUDIO_MIXER_LAST; 2024 strcpy(dip->label.name, AudioNdac); 2025 dip->un.v.num_channels = chan; 2026 strcpy(dip->un.v.units.name, AudioNvolume); 2027 return 0; 2028 case SB_OUTPUT_CLASS: 2029 dip->type = AUDIO_MIXER_CLASS; 2030 dip->mixer_class = SB_OUTPUT_CLASS; 2031 dip->next = dip->prev = AUDIO_MIXER_LAST; 2032 strcpy(dip->label.name, AudioCoutputs); 2033 return 0; 2034 } 2035 2036 if (sc->sc_mixer_model == SBM_CT1335) 2037 return ENXIO; 2038 2039 switch (dip->index) { 2040 case SB_MIC_VOL: 2041 dip->type = AUDIO_MIXER_VALUE; 2042 dip->mixer_class = class; 2043 dip->prev = AUDIO_MIXER_LAST; 2044 dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST; 2045 strcpy(dip->label.name, AudioNmicrophone); 2046 dip->un.v.num_channels = 1; 2047 strcpy(dip->un.v.units.name, AudioNvolume); 2048 return 0; 2049 2050 case SB_LINE_IN_VOL: 2051 dip->type = AUDIO_MIXER_VALUE; 2052 dip->mixer_class = class; 2053 dip->prev = AUDIO_MIXER_LAST; 2054 dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST; 2055 strcpy(dip->label.name, AudioNline); 2056 dip->un.v.num_channels = 2; 2057 strcpy(dip->un.v.units.name, AudioNvolume); 2058 return 0; 2059 2060 case SB_RECORD_SOURCE: 2061 dip->mixer_class = SB_RECORD_CLASS; 2062 dip->prev = dip->next = AUDIO_MIXER_LAST; 2063 strcpy(dip->label.name, AudioNsource); 2064 if (ISSBM1745(sc)) { 2065 dip->type = AUDIO_MIXER_SET; 2066 dip->un.s.num_mem = 4; 2067 strcpy(dip->un.s.member[0].label.name, AudioNmicrophone); 2068 dip->un.s.member[0].mask = 1 << SB_MIC_VOL; 2069 strcpy(dip->un.s.member[1].label.name, AudioNcd); 2070 dip->un.s.member[1].mask = 1 << SB_CD_VOL; 2071 strcpy(dip->un.s.member[2].label.name, AudioNline); 2072 dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL; 2073 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth); 2074 dip->un.s.member[3].mask = 1 << SB_MIDI_VOL; 2075 } else { 2076 dip->type = AUDIO_MIXER_ENUM; 2077 dip->un.e.num_mem = 3; 2078 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 2079 dip->un.e.member[0].ord = SB_MIC_VOL; 2080 strcpy(dip->un.e.member[1].label.name, AudioNcd); 2081 dip->un.e.member[1].ord = SB_CD_VOL; 2082 strcpy(dip->un.e.member[2].label.name, AudioNline); 2083 dip->un.e.member[2].ord = SB_LINE_IN_VOL; 2084 } 2085 return 0; 2086 2087 case SB_BASS: 2088 dip->prev = dip->next = AUDIO_MIXER_LAST; 2089 strcpy(dip->label.name, AudioNbass); 2090 if (sc->sc_mixer_model == SBM_CT1745) { 2091 dip->type = AUDIO_MIXER_VALUE; 2092 dip->mixer_class = SB_EQUALIZATION_CLASS; 2093 dip->un.v.num_channels = 2; 2094 strcpy(dip->un.v.units.name, AudioNbass); 2095 } else { 2096 dip->type = AUDIO_MIXER_ENUM; 2097 dip->mixer_class = SB_INPUT_CLASS; 2098 dip->un.e.num_mem = 2; 2099 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2100 dip->un.e.member[0].ord = 0; 2101 strcpy(dip->un.e.member[1].label.name, AudioNon); 2102 dip->un.e.member[1].ord = 1; 2103 } 2104 return 0; 2105 2106 case SB_TREBLE: 2107 dip->prev = dip->next = AUDIO_MIXER_LAST; 2108 strcpy(dip->label.name, AudioNtreble); 2109 if (sc->sc_mixer_model == SBM_CT1745) { 2110 dip->type = AUDIO_MIXER_VALUE; 2111 dip->mixer_class = SB_EQUALIZATION_CLASS; 2112 dip->un.v.num_channels = 2; 2113 strcpy(dip->un.v.units.name, AudioNtreble); 2114 } else { 2115 dip->type = AUDIO_MIXER_ENUM; 2116 dip->mixer_class = SB_INPUT_CLASS; 2117 dip->un.e.num_mem = 2; 2118 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2119 dip->un.e.member[0].ord = 0; 2120 strcpy(dip->un.e.member[1].label.name, AudioNon); 2121 dip->un.e.member[1].ord = 1; 2122 } 2123 return 0; 2124 2125 case SB_RECORD_CLASS: /* record source class */ 2126 dip->type = AUDIO_MIXER_CLASS; 2127 dip->mixer_class = SB_RECORD_CLASS; 2128 dip->next = dip->prev = AUDIO_MIXER_LAST; 2129 strcpy(dip->label.name, AudioCrecord); 2130 return 0; 2131 2132 case SB_INPUT_CLASS: 2133 dip->type = AUDIO_MIXER_CLASS; 2134 dip->mixer_class = SB_INPUT_CLASS; 2135 dip->next = dip->prev = AUDIO_MIXER_LAST; 2136 strcpy(dip->label.name, AudioCinputs); 2137 return 0; 2138 2139 } 2140 2141 if (sc->sc_mixer_model == SBM_CT1345) 2142 return ENXIO; 2143 2144 switch(dip->index) { 2145 case SB_PCSPEAKER: 2146 dip->type = AUDIO_MIXER_VALUE; 2147 dip->mixer_class = SB_INPUT_CLASS; 2148 dip->prev = dip->next = AUDIO_MIXER_LAST; 2149 strcpy(dip->label.name, "pc_speaker"); 2150 dip->un.v.num_channels = 1; 2151 strcpy(dip->un.v.units.name, AudioNvolume); 2152 return 0; 2153 2154 case SB_INPUT_GAIN: 2155 dip->type = AUDIO_MIXER_VALUE; 2156 dip->mixer_class = SB_INPUT_CLASS; 2157 dip->prev = dip->next = AUDIO_MIXER_LAST; 2158 strcpy(dip->label.name, AudioNinput); 2159 dip->un.v.num_channels = 2; 2160 strcpy(dip->un.v.units.name, AudioNvolume); 2161 return 0; 2162 2163 case SB_OUTPUT_GAIN: 2164 dip->type = AUDIO_MIXER_VALUE; 2165 dip->mixer_class = SB_OUTPUT_CLASS; 2166 dip->prev = dip->next = AUDIO_MIXER_LAST; 2167 strcpy(dip->label.name, AudioNoutput); 2168 dip->un.v.num_channels = 2; 2169 strcpy(dip->un.v.units.name, AudioNvolume); 2170 return 0; 2171 2172 case SB_AGC: 2173 dip->type = AUDIO_MIXER_ENUM; 2174 dip->mixer_class = SB_INPUT_CLASS; 2175 dip->prev = dip->next = AUDIO_MIXER_LAST; 2176 strcpy(dip->label.name, "agc"); 2177 dip->un.e.num_mem = 2; 2178 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2179 dip->un.e.member[0].ord = 0; 2180 strcpy(dip->un.e.member[1].label.name, AudioNon); 2181 dip->un.e.member[1].ord = 1; 2182 return 0; 2183 2184 case SB_EQUALIZATION_CLASS: 2185 dip->type = AUDIO_MIXER_CLASS; 2186 dip->mixer_class = SB_EQUALIZATION_CLASS; 2187 dip->next = dip->prev = AUDIO_MIXER_LAST; 2188 strcpy(dip->label.name, AudioCequalization); 2189 return 0; 2190 2191 case SB_CD_IN_MUTE: 2192 dip->prev = SB_CD_VOL; 2193 dip->next = SB_CD_SWAP; 2194 dip->mixer_class = SB_INPUT_CLASS; 2195 goto mute; 2196 2197 case SB_MIC_IN_MUTE: 2198 dip->prev = SB_MIC_VOL; 2199 dip->next = SB_MIC_SWAP; 2200 dip->mixer_class = SB_INPUT_CLASS; 2201 goto mute; 2202 2203 case SB_LINE_IN_MUTE: 2204 dip->prev = SB_LINE_IN_VOL; 2205 dip->next = SB_LINE_SWAP; 2206 dip->mixer_class = SB_INPUT_CLASS; 2207 goto mute; 2208 2209 case SB_MIDI_IN_MUTE: 2210 dip->prev = SB_MIDI_VOL; 2211 dip->next = SB_MIDI_SWAP; 2212 dip->mixer_class = SB_INPUT_CLASS; 2213 goto mute; 2214 2215 case SB_CD_SWAP: 2216 dip->prev = SB_CD_IN_MUTE; 2217 dip->next = SB_CD_OUT_MUTE; 2218 goto swap; 2219 2220 case SB_MIC_SWAP: 2221 dip->prev = SB_MIC_IN_MUTE; 2222 dip->next = SB_MIC_OUT_MUTE; 2223 goto swap; 2224 2225 case SB_LINE_SWAP: 2226 dip->prev = SB_LINE_IN_MUTE; 2227 dip->next = SB_LINE_OUT_MUTE; 2228 goto swap; 2229 2230 case SB_MIDI_SWAP: 2231 dip->prev = SB_MIDI_IN_MUTE; 2232 dip->next = AUDIO_MIXER_LAST; 2233 swap: 2234 dip->mixer_class = SB_INPUT_CLASS; 2235 strcpy(dip->label.name, AudioNswap); 2236 goto mute1; 2237 2238 case SB_CD_OUT_MUTE: 2239 dip->prev = SB_CD_SWAP; 2240 dip->next = AUDIO_MIXER_LAST; 2241 dip->mixer_class = SB_OUTPUT_CLASS; 2242 goto mute; 2243 2244 case SB_MIC_OUT_MUTE: 2245 dip->prev = SB_MIC_SWAP; 2246 dip->next = AUDIO_MIXER_LAST; 2247 dip->mixer_class = SB_OUTPUT_CLASS; 2248 goto mute; 2249 2250 case SB_LINE_OUT_MUTE: 2251 dip->prev = SB_LINE_SWAP; 2252 dip->next = AUDIO_MIXER_LAST; 2253 dip->mixer_class = SB_OUTPUT_CLASS; 2254 mute: 2255 strcpy(dip->label.name, AudioNmute); 2256 mute1: 2257 dip->type = AUDIO_MIXER_ENUM; 2258 dip->un.e.num_mem = 2; 2259 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2260 dip->un.e.member[0].ord = 0; 2261 strcpy(dip->un.e.member[1].label.name, AudioNon); 2262 dip->un.e.member[1].ord = 1; 2263 return 0; 2264 2265 } 2266 2267 return ENXIO; 2268 } 2269 2270 void * 2271 sb_malloc(addr, direction, size, pool, flags) 2272 void *addr; 2273 int direction; 2274 size_t size; 2275 int pool, flags; 2276 { 2277 struct sbdsp_softc *sc = addr; 2278 int drq; 2279 2280 if (sc->sc_drq8 != -1) 2281 drq = sc->sc_drq8; 2282 else 2283 drq = sc->sc_drq16; 2284 return (isa_malloc(sc->sc_ic, drq, size, pool, flags)); 2285 } 2286 2287 void 2288 sb_free(addr, ptr, pool) 2289 void *addr; 2290 void *ptr; 2291 int pool; 2292 { 2293 isa_free(ptr, pool); 2294 } 2295 2296 size_t 2297 sb_round_buffersize(addr, direction, size) 2298 void *addr; 2299 int direction; 2300 size_t size; 2301 { 2302 struct sbdsp_softc *sc = addr; 2303 bus_size_t maxsize; 2304 2305 if (sc->sc_drq8 != -1) 2306 maxsize = sc->sc_drq8_maxsize; 2307 else 2308 maxsize = sc->sc_drq16_maxsize; 2309 2310 if (size > maxsize) 2311 size = maxsize; 2312 return (size); 2313 } 2314 2315 paddr_t 2316 sb_mappage(addr, mem, off, prot) 2317 void *addr; 2318 void *mem; 2319 off_t off; 2320 int prot; 2321 { 2322 return isa_mappage(mem, off, prot); 2323 } 2324 2325 int 2326 sbdsp_get_props(addr) 2327 void *addr; 2328 { 2329 struct sbdsp_softc *sc = addr; 2330 return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | 2331 (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0); 2332 } 2333 2334 #if NMPU > 0 2335 /* 2336 * MIDI related routines. 2337 */ 2338 2339 int 2340 sbdsp_midi_open(addr, flags, iintr, ointr, arg) 2341 void *addr; 2342 int flags; 2343 void (*iintr)__P((void *, int)); 2344 void (*ointr)__P((void *)); 2345 void *arg; 2346 { 2347 struct sbdsp_softc *sc = addr; 2348 2349 DPRINTF(("sbdsp_midi_open: sc=%p\n", sc)); 2350 2351 if (sc->sc_open != SB_CLOSED) 2352 return EBUSY; 2353 if (sbdsp_reset(sc) != 0) 2354 return EIO; 2355 2356 sc->sc_open = SB_OPEN_MIDI; 2357 sc->sc_openflags = flags; 2358 2359 if (sc->sc_model >= SB_20) 2360 if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */ 2361 return EIO; 2362 2363 sc->sc_intr8 = sbdsp_midi_intr; 2364 sc->sc_intrm = iintr; 2365 sc->sc_argm = arg; 2366 2367 return 0; 2368 } 2369 2370 void 2371 sbdsp_midi_close(addr) 2372 void *addr; 2373 { 2374 struct sbdsp_softc *sc = addr; 2375 2376 DPRINTF(("sbdsp_midi_close: sc=%p\n", sc)); 2377 2378 if (sc->sc_model >= SB_20) 2379 sbdsp_reset(sc); /* exit UART mode */ 2380 2381 sc->sc_intrm = 0; 2382 sc->sc_open = SB_CLOSED; 2383 } 2384 2385 int 2386 sbdsp_midi_output(addr, d) 2387 void *addr; 2388 int d; 2389 { 2390 struct sbdsp_softc *sc = addr; 2391 2392 if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE)) 2393 return EIO; 2394 if (sbdsp_wdsp(sc, d)) 2395 return EIO; 2396 return 0; 2397 } 2398 2399 void 2400 sbdsp_midi_getinfo(addr, mi) 2401 void *addr; 2402 struct midi_info *mi; 2403 { 2404 struct sbdsp_softc *sc = addr; 2405 2406 mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART"; 2407 mi->props = MIDI_PROP_CAN_INPUT; 2408 } 2409 2410 int 2411 sbdsp_midi_intr(addr) 2412 void *addr; 2413 { 2414 struct sbdsp_softc *sc = addr; 2415 2416 sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc)); 2417 return (0); 2418 } 2419 2420 #endif 2421 2422