xref: /netbsd-src/sys/dev/isa/sbdsp.c (revision 5e4c038a45edbc7d63b7c2daa76e29f88b64a4e3)
1 /*	$NetBSD: sbdsp.c,v 1.109 2002/01/06 20:24:12 augustss Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *	  Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1991-1993 Regents of the University of California.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the Computer Systems
54  *	Engineering Group at Lawrence Berkeley Laboratory.
55  * 4. Neither the name of the University nor of the Laboratory may be used
56  *    to endorse or promote products derived from this software without
57  *    specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  */
72 
73 /*
74  * SoundBlaster Pro code provided by John Kohl, based on lots of
75  * information he gleaned from Steve Haehnichen <steve@vigra.com>'s
76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77  * <sachs@meibm15.cen.uiuc.edu>.
78  * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se>
79  * with information from SB "Hardware Programming Guide" and the
80  * Linux drivers.
81  */
82 
83 #include <sys/cdefs.h>
84 __KERNEL_RCSID(0, "$NetBSD: sbdsp.c,v 1.109 2002/01/06 20:24:12 augustss Exp $");
85 
86 #include "midi.h"
87 #include "mpu.h"
88 
89 #include <sys/param.h>
90 #include <sys/systm.h>
91 #include <sys/kernel.h>
92 #include <sys/errno.h>
93 #include <sys/ioctl.h>
94 #include <sys/syslog.h>
95 #include <sys/device.h>
96 #include <sys/proc.h>
97 #include <sys/buf.h>
98 
99 #include <machine/cpu.h>
100 #include <machine/intr.h>
101 #include <machine/bus.h>
102 
103 #include <sys/audioio.h>
104 #include <dev/audio_if.h>
105 #include <dev/midi_if.h>
106 #include <dev/mulaw.h>
107 #include <dev/auconv.h>
108 
109 #include <dev/isa/isavar.h>
110 #include <dev/isa/isadmavar.h>
111 
112 #include <dev/isa/sbreg.h>
113 #include <dev/isa/sbdspvar.h>
114 
115 
116 #ifdef AUDIO_DEBUG
117 #define DPRINTF(x)	if (sbdspdebug) printf x
118 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
119 int	sbdspdebug = 0;
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124 
125 #ifndef SBDSP_NPOLL
126 #define SBDSP_NPOLL 3000
127 #endif
128 
129 struct {
130 	int wdsp;
131 	int rdsp;
132 	int wmidi;
133 } sberr;
134 
135 /*
136  * Time constant routines follow.  See SBK, section 12.
137  * Although they don't come out and say it (in the docs),
138  * the card clearly uses a 1MHz countdown timer, as the
139  * low-speed formula (p. 12-4) is:
140  *	tc = 256 - 10^6 / sr
141  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
142  * and a 256MHz clock is used:
143  *	tc = 65536 - 256 * 10^ 6 / sr
144  * Since we can only use the upper byte of the HS TC, the two formulae
145  * are equivalent.  (Why didn't they say so?)  E.g.,
146  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
147  *
148  * The crossover point (from low- to high-speed modes) is different
149  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
150  *
151  *				SBPRO			SB20
152  *				-----			--------
153  * input ls min			4	KHz		4	KHz
154  * input ls max			23	KHz		13	KHz
155  * input hs max			44.1	KHz		15	KHz
156  * output ls min		4	KHz		4	KHz
157  * output ls max		23	KHz		23	KHz
158  * output hs max		44.1	KHz		44.1	KHz
159  */
160 /* XXX Should we round the tc?
161 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
162 */
163 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
164 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
165 
166 struct sbmode {
167 	short	model;
168 	u_char	channels;
169 	u_char	precision;
170 	u_short	lowrate, highrate;
171 	u_char	cmd;
172 	u_char	halt, cont;
173 	u_char	cmdchan;
174 };
175 static struct sbmode sbpmodes[] = {
176  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
177  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
178  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
179  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
180  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
181  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
182  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
183  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
184  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
185  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
186  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
187  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
188  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
189  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
190  { SB_16,  1, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
191  { SB_16,  2, 8, 5000,49000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
192 #define PLAY16 15 /* must be the index of the next entry in the table */
193  { SB_16,  1,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
194  { SB_16,  2,16, 5000,49000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
195  { -1 }
196 };
197 static struct sbmode sbrmodes[] = {
198  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
199  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
200  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
201  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
202  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
203  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
204  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
205  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
206  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
207  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
208  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
209  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
210  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
211  { SB_16,  1, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
212  { SB_16,  2, 8, 5000,49000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
213  { SB_16,  1,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
214  { SB_16,  2,16, 5000,49000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
215  { -1 }
216 };
217 
218 void	sbversion __P((struct sbdsp_softc *));
219 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
220 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
221 void	sbdsp_pause __P((struct sbdsp_softc *));
222 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
223 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
224 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
225 void	sbdsp_set_ifilter __P((void *, int));
226 int	sbdsp_get_ifilter __P((void *));
227 
228 int	sbdsp_block_output __P((void *));
229 int	sbdsp_block_input __P((void *));
230 static	int sbdsp_adjust __P((int, int));
231 
232 int	sbdsp_midi_intr __P((void *));
233 
234 static void	sbdsp_powerhook __P((int, void*));
235 
236 #ifdef AUDIO_DEBUG
237 void	sb_printsc __P((struct sbdsp_softc *));
238 
239 void
240 sb_printsc(sc)
241 	struct sbdsp_softc *sc;
242 {
243 	int i;
244 
245 	printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
246 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
247 	    sc->sc_drq8, sc->sc_drq16,
248 	    sc->sc_iobase, sc->sc_irq);
249 	printf("irate %d itc %x orate %d otc %x\n",
250 	    sc->sc_i.rate, sc->sc_i.tc,
251 	    sc->sc_o.rate, sc->sc_o.tc);
252 	printf("spkron %u nintr %lu\n",
253 	    sc->spkr_state, sc->sc_interrupts);
254 	printf("intr8 %p intr16 %p\n",
255 	    sc->sc_intr8, sc->sc_intr16);
256 	printf("gain:");
257 	for (i = 0; i < SB_NDEVS; i++)
258 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
259 	printf("\n");
260 }
261 #endif /* AUDIO_DEBUG */
262 
263 /*
264  * Probe / attach routines.
265  */
266 
267 /*
268  * Probe for the soundblaster hardware.
269  */
270 int
271 sbdsp_probe(sc)
272 	struct sbdsp_softc *sc;
273 {
274 
275 	if (sbdsp_reset(sc) < 0) {
276 		DPRINTF(("sbdsp: couldn't reset card\n"));
277 		return 0;
278 	}
279 	/* if flags set, go and probe the jazz16 stuff */
280 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
281 		sbdsp_jazz16_probe(sc);
282 	else
283 		sbversion(sc);
284 	if (sc->sc_model == SB_UNK) {
285 		/* Unknown SB model found. */
286 		DPRINTF(("sbdsp: unknown SB model found\n"));
287 		return 0;
288 	}
289 	return 1;
290 }
291 
292 /*
293  * Try add-on stuff for Jazz16.
294  */
295 void
296 sbdsp_jazz16_probe(sc)
297 	struct sbdsp_softc *sc;
298 {
299 	static u_char jazz16_irq_conf[16] = {
300 	    -1, -1, 0x02, 0x03,
301 	    -1, 0x01, -1, 0x04,
302 	    -1, 0x02, 0x05, -1,
303 	    -1, -1, -1, 0x06};
304 	static u_char jazz16_drq_conf[8] = {
305 	    -1, 0x01, -1, 0x02,
306 	    -1, 0x03, -1, 0x04};
307 
308 	bus_space_tag_t iot = sc->sc_iot;
309 	bus_space_handle_t ioh;
310 
311 	sbversion(sc);
312 
313 	DPRINTF(("jazz16 probe\n"));
314 
315 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
316 		DPRINTF(("bus map failed\n"));
317 		return;
318 	}
319 
320 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
321 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
322 		DPRINTF(("drq/irq check failed\n"));
323 		goto done;		/* give up, we can't do it. */
324 	}
325 
326 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
327 	delay(10000);			/* delay 10 ms */
328 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
329 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
330 
331 	if (sbdsp_reset(sc) < 0) {
332 		DPRINTF(("sbdsp_reset check failed\n"));
333 		goto done;		/* XXX? what else could we do? */
334 	}
335 
336 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
337 		DPRINTF(("read16 setup failed\n"));
338 		goto done;
339 	}
340 
341 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
342 		DPRINTF(("read16 failed\n"));
343 		goto done;
344 	}
345 
346 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
347 	sc->sc_drq16 = sc->sc_drq8;
348 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
349 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
350 		jazz16_drq_conf[sc->sc_drq8]) ||
351 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
352 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
353 	} else {
354 		DPRINTF(("jazz16 detected!\n"));
355 		sc->sc_model = SB_JAZZ;
356 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
357 	}
358 
359 done:
360 	bus_space_unmap(iot, ioh, 1);
361 }
362 
363 /*
364  * Attach hardware to driver, attach hardware driver to audio
365  * pseudo-device driver .
366  */
367 void
368 sbdsp_attach(sc)
369 	struct sbdsp_softc *sc;
370 {
371 	struct audio_params pparams, rparams;
372 	int i;
373 	u_int v;
374 
375 	pparams = audio_default;
376 	rparams = audio_default;
377 	sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
378 
379 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
380 
381 	if (sc->sc_mixer_model != SBM_NONE) {
382 		/* Reset the mixer.*/
383 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
384 		/* And set our own default values */
385 		for (i = 0; i < SB_NDEVS; i++) {
386 			switch(i) {
387 			case SB_MIC_VOL:
388 			case SB_LINE_IN_VOL:
389 				v = 0;
390 				break;
391 			case SB_BASS:
392 			case SB_TREBLE:
393 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
394 				break;
395 			case SB_CD_IN_MUTE:
396 			case SB_MIC_IN_MUTE:
397 			case SB_LINE_IN_MUTE:
398 			case SB_MIDI_IN_MUTE:
399 			case SB_CD_SWAP:
400 			case SB_MIC_SWAP:
401 			case SB_LINE_SWAP:
402 			case SB_MIDI_SWAP:
403 			case SB_CD_OUT_MUTE:
404 			case SB_MIC_OUT_MUTE:
405 			case SB_LINE_OUT_MUTE:
406 				v = 0;
407 				break;
408 			default:
409 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
410 				break;
411 			}
412 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
413 			sbdsp_set_mixer_gain(sc, i);
414 		}
415 		sc->in_filter = 0;	/* no filters turned on, please */
416 	}
417 
418 	printf(": dsp v%d.%02d%s\n",
419 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
420 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
421 
422 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
423 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
424 	    sc->sc_drq8 != sc->sc_drq16;
425 
426 	if (sc->sc_drq8 != -1)
427 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
428 		    sc->sc_drq8);
429 
430 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
431 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
432 		    sc->sc_drq16);
433 
434 	powerhook_establish (sbdsp_powerhook, sc);
435 }
436 
437 static void
438 sbdsp_powerhook (why, arg)
439 	int why;
440 	void *arg;
441 {
442 	struct sbdsp_softc *sc = arg;
443 	int i;
444 
445 	if (!sc || why != PWR_RESUME)
446 		return;
447 
448 	/* Reset the mixer. */
449 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
450 	for (i = 0; i < SB_NDEVS; i++)
451 		sbdsp_set_mixer_gain (sc, i);
452 }
453 
454 void
455 sbdsp_mix_write(sc, mixerport, val)
456 	struct sbdsp_softc *sc;
457 	int mixerport;
458 	int val;
459 {
460 	bus_space_tag_t iot = sc->sc_iot;
461 	bus_space_handle_t ioh = sc->sc_ioh;
462 	int s;
463 
464 	s = splaudio();
465 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
466 	delay(20);
467 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
468 	delay(30);
469 	splx(s);
470 }
471 
472 int
473 sbdsp_mix_read(sc, mixerport)
474 	struct sbdsp_softc *sc;
475 	int mixerport;
476 {
477 	bus_space_tag_t iot = sc->sc_iot;
478 	bus_space_handle_t ioh = sc->sc_ioh;
479 	int val;
480 	int s;
481 
482 	s = splaudio();
483 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
484 	delay(20);
485 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
486 	delay(30);
487 	splx(s);
488 	return val;
489 }
490 
491 /*
492  * Various routines to interface to higher level audio driver
493  */
494 
495 int
496 sbdsp_query_encoding(addr, fp)
497 	void *addr;
498 	struct audio_encoding *fp;
499 {
500 	struct sbdsp_softc *sc = addr;
501 	int emul;
502 
503 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
504 
505 	switch (fp->index) {
506 	case 0:
507 		strcpy(fp->name, AudioEulinear);
508 		fp->encoding = AUDIO_ENCODING_ULINEAR;
509 		fp->precision = 8;
510 		fp->flags = 0;
511 		return 0;
512 	case 1:
513 		strcpy(fp->name, AudioEmulaw);
514 		fp->encoding = AUDIO_ENCODING_ULAW;
515 		fp->precision = 8;
516 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
517 		return 0;
518 	case 2:
519 		strcpy(fp->name, AudioEalaw);
520 		fp->encoding = AUDIO_ENCODING_ALAW;
521 		fp->precision = 8;
522 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
523 		return 0;
524 	case 3:
525 		strcpy(fp->name, AudioEslinear);
526 		fp->encoding = AUDIO_ENCODING_SLINEAR;
527 		fp->precision = 8;
528 		fp->flags = emul;
529 		return 0;
530 	}
531 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
532 		return EINVAL;
533 
534 	switch(fp->index) {
535 	case 4:
536 		strcpy(fp->name, AudioEslinear_le);
537 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
538 		fp->precision = 16;
539 		fp->flags = 0;
540 		return 0;
541 	case 5:
542 		strcpy(fp->name, AudioEulinear_le);
543 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
544 		fp->precision = 16;
545 		fp->flags = emul;
546 		return 0;
547 	case 6:
548 		strcpy(fp->name, AudioEslinear_be);
549 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
550 		fp->precision = 16;
551 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
552 		return 0;
553 	case 7:
554 		strcpy(fp->name, AudioEulinear_be);
555 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
556 		fp->precision = 16;
557 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
558 		return 0;
559 	default:
560 		return EINVAL;
561 	}
562 	return 0;
563 }
564 
565 int
566 sbdsp_set_params(addr, setmode, usemode, play, rec)
567 	void *addr;
568 	int setmode, usemode;
569 	struct audio_params *play, *rec;
570 {
571 	struct sbdsp_softc *sc = addr;
572 	struct sbmode *m;
573 	u_int rate, tc, bmode;
574 	void (*swcode) __P((void *, u_char *buf, int cnt));
575 	int factor;
576 	int model;
577 	int chan;
578 	struct audio_params *p;
579 	int mode;
580 
581 	if (sc->sc_open == SB_OPEN_MIDI)
582 		return EBUSY;
583 
584 	/* Later models work like SB16. */
585 	model = min(sc->sc_model, SB_16);
586 
587 	/*
588 	 * Prior to the SB16, we have only one clock, so make the sample
589 	 * rates match.
590 	 */
591 	if (!ISSB16CLASS(sc) &&
592 	    play->sample_rate != rec->sample_rate &&
593 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
594 		if (setmode == AUMODE_PLAY) {
595 			rec->sample_rate = play->sample_rate;
596 			setmode |= AUMODE_RECORD;
597 		} else if (setmode == AUMODE_RECORD) {
598 			play->sample_rate = rec->sample_rate;
599 			setmode |= AUMODE_PLAY;
600 		} else
601 			return (EINVAL);
602 	}
603 
604 	/* Set first record info, then play info */
605 	for (mode = AUMODE_RECORD; mode != -1;
606 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
607 		if ((setmode & mode) == 0)
608 			continue;
609 
610 		p = mode == AUMODE_PLAY ? play : rec;
611 		/* Locate proper commands */
612 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
613 		    m->model != -1; m++) {
614 			if (model == m->model &&
615 			    p->channels == m->channels &&
616 			    p->precision == m->precision &&
617 			    p->sample_rate >= m->lowrate &&
618 			    p->sample_rate <= m->highrate)
619 				break;
620 		}
621 		if (m->model == -1)
622 			return EINVAL;
623 		rate = p->sample_rate;
624 		swcode = 0;
625 		factor = 1;
626 		tc = 1;
627 		bmode = -1;
628 		if (model == SB_16) {
629 			switch (p->encoding) {
630 			case AUDIO_ENCODING_SLINEAR_BE:
631 				if (p->precision == 16)
632 					swcode = swap_bytes;
633 				/* fall into */
634 			case AUDIO_ENCODING_SLINEAR_LE:
635 				bmode = SB_BMODE_SIGNED;
636 				break;
637 			case AUDIO_ENCODING_ULINEAR_BE:
638 				if (p->precision == 16)
639 					swcode = swap_bytes;
640 				/* fall into */
641 			case AUDIO_ENCODING_ULINEAR_LE:
642 				bmode = SB_BMODE_UNSIGNED;
643 				break;
644 			case AUDIO_ENCODING_ULAW:
645 				if (mode == AUMODE_PLAY) {
646 					swcode = mulaw_to_ulinear16_le;
647 					factor = 2;
648 					m = &sbpmodes[PLAY16];
649 				} else
650 					swcode = ulinear8_to_mulaw;
651 				bmode = SB_BMODE_UNSIGNED;
652 				break;
653 			case AUDIO_ENCODING_ALAW:
654 				if (mode == AUMODE_PLAY) {
655 					swcode = alaw_to_ulinear16_le;
656 					factor = 2;
657 					m = &sbpmodes[PLAY16];
658 				} else
659 					swcode = ulinear8_to_alaw;
660 				bmode = SB_BMODE_UNSIGNED;
661 				break;
662 			default:
663 				return EINVAL;
664 			}
665 			if (p->channels == 2)
666 				bmode |= SB_BMODE_STEREO;
667 		} else if (m->model == SB_JAZZ && m->precision == 16) {
668 			switch (p->encoding) {
669 			case AUDIO_ENCODING_SLINEAR_LE:
670 				break;
671 			case AUDIO_ENCODING_ULINEAR_LE:
672 				swcode = change_sign16_le;
673 				break;
674 			case AUDIO_ENCODING_SLINEAR_BE:
675 				swcode = swap_bytes;
676 				break;
677 			case AUDIO_ENCODING_ULINEAR_BE:
678 				swcode = mode == AUMODE_PLAY ?
679 					swap_bytes_change_sign16_le :
680 					change_sign16_swap_bytes_le;
681 				break;
682 			case AUDIO_ENCODING_ULAW:
683 				swcode = mode == AUMODE_PLAY ?
684 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
685 				break;
686 			case AUDIO_ENCODING_ALAW:
687 				swcode = mode == AUMODE_PLAY ?
688 					alaw_to_ulinear8 : ulinear8_to_alaw;
689 				break;
690 			default:
691 				return EINVAL;
692 			}
693 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
694 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
695 		} else {
696 			switch (p->encoding) {
697 			case AUDIO_ENCODING_SLINEAR_BE:
698 			case AUDIO_ENCODING_SLINEAR_LE:
699 				swcode = change_sign8;
700 				break;
701 			case AUDIO_ENCODING_ULINEAR_BE:
702 			case AUDIO_ENCODING_ULINEAR_LE:
703 				break;
704 			case AUDIO_ENCODING_ULAW:
705 				swcode = mode == AUMODE_PLAY ?
706 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
707 				break;
708 			case AUDIO_ENCODING_ALAW:
709 				swcode = mode == AUMODE_PLAY ?
710 					alaw_to_ulinear8 : ulinear8_to_alaw;
711 				break;
712 			default:
713 				return EINVAL;
714 			}
715 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
716 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
717 		}
718 
719 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
720 		if (mode == AUMODE_PLAY) {
721 			sc->sc_o.rate = rate;
722 			sc->sc_o.tc = tc;
723 			sc->sc_o.modep = m;
724 			sc->sc_o.bmode = bmode;
725 			sc->sc_o.dmachan = chan;
726 		} else {
727 			sc->sc_i.rate = rate;
728 			sc->sc_i.tc = tc;
729 			sc->sc_i.modep = m;
730 			sc->sc_i.bmode = bmode;
731 			sc->sc_i.dmachan = chan;
732 		}
733 
734 		p->sw_code = swcode;
735 		p->factor = factor;
736 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
737 			 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
738 			 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
739 
740 	}
741 
742 	if (sc->sc_fullduplex &&
743 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
744 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
745 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
746 		if (sc->sc_o.dmachan == sc->sc_drq8) {
747 			/* Use 16 bit DMA for playing by expanding the samples. */
748 			play->sw_code = linear8_to_linear16_le;
749 			play->factor = 2;
750 			sc->sc_o.modep = &sbpmodes[PLAY16];
751 			sc->sc_o.dmachan = sc->sc_drq16;
752 		} else {
753 			return EINVAL;
754 		}
755 	}
756 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
757 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
758 
759 	return (0);
760 }
761 
762 void
763 sbdsp_set_ifilter(addr, which)
764 	void *addr;
765 	int which;
766 {
767 	struct sbdsp_softc *sc = addr;
768 	int mixval;
769 
770 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
771 	switch (which) {
772 	case 0:
773 		mixval |= SBP_FILTER_OFF;
774 		break;
775 	case SB_TREBLE:
776 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
777 		break;
778 	case SB_BASS:
779 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
780 		break;
781 	default:
782 		return;
783 	}
784 	sc->in_filter = mixval & SBP_IFILTER_MASK;
785 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
786 }
787 
788 int
789 sbdsp_get_ifilter(addr)
790 	void *addr;
791 {
792 	struct sbdsp_softc *sc = addr;
793 
794 	sc->in_filter =
795 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
796 	switch (sc->in_filter) {
797 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
798 		return SB_TREBLE;
799 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
800 		return SB_BASS;
801 	default:
802 		return 0;
803 	}
804 }
805 
806 int
807 sbdsp_set_in_ports(sc, mask)
808 	struct sbdsp_softc *sc;
809 	int mask;
810 {
811 	int bitsl, bitsr;
812 	int sbport;
813 
814 	if (sc->sc_open == SB_OPEN_MIDI)
815 		return EBUSY;
816 
817 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
818 		 sc->sc_mixer_model, mask));
819 
820 	switch(sc->sc_mixer_model) {
821 	case SBM_NONE:
822 		return EINVAL;
823 	case SBM_CT1335:
824 		if (mask != (1 << SB_MIC_VOL))
825 			return EINVAL;
826 		break;
827 	case SBM_CT1345:
828 		switch (mask) {
829 		case 1 << SB_MIC_VOL:
830 			sbport = SBP_FROM_MIC;
831 			break;
832 		case 1 << SB_LINE_IN_VOL:
833 			sbport = SBP_FROM_LINE;
834 			break;
835 		case 1 << SB_CD_VOL:
836 			sbport = SBP_FROM_CD;
837 			break;
838 		default:
839 			return (EINVAL);
840 		}
841 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
842 		break;
843 	case SBM_CT1XX5:
844 	case SBM_CT1745:
845 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
846 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
847 			return EINVAL;
848 		bitsr = 0;
849 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
850 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
851 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
852 		bitsl = SB_SRC_R_TO_L(bitsr);
853 		if (mask & (1<<SB_MIC_VOL)) {
854 			bitsl |= SBP_MIC_SRC;
855 			bitsr |= SBP_MIC_SRC;
856 		}
857 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
858 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
859 		break;
860 	}
861 	sc->in_mask = mask;
862 
863 	return 0;
864 }
865 
866 int
867 sbdsp_speaker_ctl(addr, newstate)
868 	void *addr;
869 	int newstate;
870 {
871 	struct sbdsp_softc *sc = addr;
872 
873 	if (sc->sc_open == SB_OPEN_MIDI)
874 		return EBUSY;
875 
876 	if ((newstate == SPKR_ON) &&
877 	    (sc->spkr_state == SPKR_OFF)) {
878 		sbdsp_spkron(sc);
879 		sc->spkr_state = SPKR_ON;
880 	}
881 	if ((newstate == SPKR_OFF) &&
882 	    (sc->spkr_state == SPKR_ON)) {
883 		sbdsp_spkroff(sc);
884 		sc->spkr_state = SPKR_OFF;
885 	}
886 	return 0;
887 }
888 
889 int
890 sbdsp_round_blocksize(addr, blk)
891 	void *addr;
892 	int blk;
893 {
894 	return blk & -4;	/* round to biggest sample size */
895 }
896 
897 int
898 sbdsp_open(addr, flags)
899 	void *addr;
900 	int flags;
901 {
902 	struct sbdsp_softc *sc = addr;
903 	int error, state;
904 
905 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
906 
907 	if (sc->sc_open != SB_CLOSED)
908 		return (EBUSY);
909 	sc->sc_open = SB_OPEN_AUDIO;
910 	sc->sc_openflags = flags;
911 	state = 0;
912 
913 	if (sc->sc_drq8 != -1) {
914 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
915 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
916 		if (error) {
917 			printf("%s: can't create map for drq %d\n",
918 			    sc->sc_dev.dv_xname, sc->sc_drq8);
919 			goto bad;
920 		}
921 		state |= 1;
922 	}
923 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
924 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
925 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
926 		if (error) {
927 			printf("%s: can't create map for drq %d\n",
928 			    sc->sc_dev.dv_xname, sc->sc_drq16);
929 			goto bad;
930 		}
931 		state |= 2;
932 	}
933 
934 	if (sbdsp_reset(sc) != 0) {
935 		error = EIO;
936 		goto bad;
937 	}
938 
939 	if (ISSBPRO(sc) &&
940 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
941 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
942 		/* we'll readjust when it's time for DMA. */
943 	}
944 
945 	/*
946 	 * Leave most things as they were; users must change things if
947 	 * the previous process didn't leave it they way they wanted.
948 	 * Looked at another way, it's easy to set up a configuration
949 	 * in one program and leave it for another to inherit.
950 	 */
951 	DPRINTF(("sbdsp_open: opened\n"));
952 
953 	return (0);
954 
955 bad:
956 	if (state & 1)
957 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
958 	if (state & 2)
959 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
960 
961 	sc->sc_open = SB_CLOSED;
962 	return (error);
963 }
964 
965 void
966 sbdsp_close(addr)
967 	void *addr;
968 {
969 	struct sbdsp_softc *sc = addr;
970 
971 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
972 
973 	sbdsp_spkroff(sc);
974 	sc->spkr_state = SPKR_OFF;
975 
976 	sbdsp_halt_output(sc);
977 	sbdsp_halt_input(sc);
978 
979 	sc->sc_intr8 = 0;
980 	sc->sc_intr16 = 0;
981 
982 	if (sc->sc_drq8 != -1)
983 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
984 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
985 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
986 
987 	sc->sc_open = SB_CLOSED;
988 	DPRINTF(("sbdsp_close: closed\n"));
989 }
990 
991 /*
992  * Lower-level routines
993  */
994 
995 /*
996  * Reset the card.
997  * Return non-zero if the card isn't detected.
998  */
999 int
1000 sbdsp_reset(sc)
1001 	struct sbdsp_softc *sc;
1002 {
1003 	bus_space_tag_t iot = sc->sc_iot;
1004 	bus_space_handle_t ioh = sc->sc_ioh;
1005 
1006 	sc->sc_intr8 = 0;
1007 	sc->sc_intr16 = 0;
1008 	sc->sc_intrm = 0;
1009 
1010 	/*
1011 	 * See SBK, section 11.3.
1012 	 * We pulse a reset signal into the card.
1013 	 * Gee, what a brilliant hardware design.
1014 	 */
1015 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1016 	delay(10);
1017 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1018 	delay(30);
1019 	if (sbdsp_rdsp(sc) != SB_MAGIC)
1020 		return -1;
1021 
1022 	return 0;
1023 }
1024 
1025 /*
1026  * Write a byte to the dsp.
1027  * We are at the mercy of the card as we use a
1028  * polling loop and wait until it can take the byte.
1029  */
1030 int
1031 sbdsp_wdsp(sc, v)
1032 	struct sbdsp_softc *sc;
1033 	int v;
1034 {
1035 	bus_space_tag_t iot = sc->sc_iot;
1036 	bus_space_handle_t ioh = sc->sc_ioh;
1037 	int i;
1038 	u_char x;
1039 
1040 	for (i = SBDSP_NPOLL; --i >= 0; ) {
1041 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1042 		delay(10);
1043 		if ((x & SB_DSP_BUSY) == 0) {
1044 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1045 			delay(10);
1046 			return 0;
1047 		}
1048 	}
1049 	++sberr.wdsp;
1050 	return -1;
1051 }
1052 
1053 /*
1054  * Read a byte from the DSP, using polling.
1055  */
1056 int
1057 sbdsp_rdsp(sc)
1058 	struct sbdsp_softc *sc;
1059 {
1060 	bus_space_tag_t iot = sc->sc_iot;
1061 	bus_space_handle_t ioh = sc->sc_ioh;
1062 	int i;
1063 	u_char x;
1064 
1065 	for (i = SBDSP_NPOLL; --i >= 0; ) {
1066 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1067 		delay(10);
1068 		if (x & SB_DSP_READY) {
1069 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1070 			delay(10);
1071 			return x;
1072 		}
1073 	}
1074 	++sberr.rdsp;
1075 	return -1;
1076 }
1077 
1078 void
1079 sbdsp_pause(sc)
1080 	struct sbdsp_softc *sc;
1081 {
1082 
1083 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1084 }
1085 
1086 /*
1087  * Turn on the speaker.  The SBK documention says this operation
1088  * can take up to 1/10 of a second.  Higher level layers should
1089  * probably let the task sleep for this amount of time after
1090  * calling here.  Otherwise, things might not work (because
1091  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1092  *
1093  * These engineers had their heads up their ass when
1094  * they designed this card.
1095  */
1096 void
1097 sbdsp_spkron(sc)
1098 	struct sbdsp_softc *sc;
1099 {
1100 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1101 	sbdsp_pause(sc);
1102 }
1103 
1104 /*
1105  * Turn off the speaker; see comment above.
1106  */
1107 void
1108 sbdsp_spkroff(sc)
1109 	struct sbdsp_softc *sc;
1110 {
1111 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1112 	sbdsp_pause(sc);
1113 }
1114 
1115 /*
1116  * Read the version number out of the card.
1117  * Store version information in the softc.
1118  */
1119 void
1120 sbversion(sc)
1121 	struct sbdsp_softc *sc;
1122 {
1123 	int v;
1124 
1125 	sc->sc_model = SB_UNK;
1126 	sc->sc_version = 0;
1127 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1128 		return;
1129 	v = sbdsp_rdsp(sc) << 8;
1130 	v |= sbdsp_rdsp(sc);
1131 	if (v < 0)
1132 		return;
1133 	sc->sc_version = v;
1134 	switch(SBVER_MAJOR(v)) {
1135 	case 1:
1136 		sc->sc_mixer_model = SBM_NONE;
1137 		sc->sc_model = SB_1;
1138 		break;
1139 	case 2:
1140 		/* Some SB2 have a mixer, some don't. */
1141 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1142 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
1143 		/* Check if we can read back the mixer values. */
1144 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1145 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
1146 			sc->sc_mixer_model = SBM_CT1335;
1147 		else
1148 			sc->sc_mixer_model = SBM_NONE;
1149 		if (SBVER_MINOR(v) == 0)
1150 			sc->sc_model = SB_20;
1151 		else
1152 			sc->sc_model = SB_2x;
1153 		break;
1154 	case 3:
1155 		sc->sc_mixer_model = SBM_CT1345;
1156 		sc->sc_model = SB_PRO;
1157 		break;
1158 	case 4:
1159 #if 0
1160 /* XXX This does not work */
1161 		/* Most SB16 have a tone controls, but some don't. */
1162 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1163 		/* Check if we can read back the mixer value. */
1164 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1165 			sc->sc_mixer_model = SBM_CT1745;
1166 		else
1167 			sc->sc_mixer_model = SBM_CT1XX5;
1168 #else
1169 		sc->sc_mixer_model = SBM_CT1745;
1170 #endif
1171 #if 0
1172 /* XXX figure out a good way of determining the model */
1173 		/* XXX what about SB_32 */
1174 		if (SBVER_MINOR(v) == 16)
1175 			sc->sc_model = SB_64;
1176 		else
1177 #endif
1178 			sc->sc_model = SB_16;
1179 		break;
1180 	}
1181 }
1182 
1183 int
1184 sbdsp_set_timeconst(sc, tc)
1185 	struct sbdsp_softc *sc;
1186 	int tc;
1187 {
1188 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1189 
1190 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1191 	    sbdsp_wdsp(sc, tc) < 0)
1192 		return EIO;
1193 
1194 	return 0;
1195 }
1196 
1197 int
1198 sbdsp16_set_rate(sc, cmd, rate)
1199 	struct sbdsp_softc *sc;
1200 	int cmd, rate;
1201 {
1202 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1203 
1204 	if (sbdsp_wdsp(sc, cmd) < 0 ||
1205 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
1206 	    sbdsp_wdsp(sc, rate) < 0)
1207 		return EIO;
1208 	return 0;
1209 }
1210 
1211 int
1212 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1213 	void *addr;
1214 	void *start, *end;
1215 	int blksize;
1216 	void (*intr) __P((void *));
1217 	void *arg;
1218 	struct audio_params *param;
1219 {
1220 	struct sbdsp_softc *sc = addr;
1221 	int stereo = param->channels == 2;
1222 	int width = param->precision * param->factor;
1223 	int filter;
1224 
1225 #ifdef DIAGNOSTIC
1226 	if (stereo && (blksize & 1)) {
1227 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1228 		return (EIO);
1229 	}
1230 	if (sc->sc_i.run != SB_NOTRUNNING)
1231 		printf("sbdsp_trigger_input: already running\n");
1232 #endif
1233 
1234 	sc->sc_intrr = intr;
1235 	sc->sc_argr = arg;
1236 
1237 	if (width == 8) {
1238 #ifdef DIAGNOSTIC
1239 		if (sc->sc_i.dmachan != sc->sc_drq8) {
1240 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1241 			    width, sc->sc_i.dmachan);
1242 			return (EIO);
1243 		}
1244 #endif
1245 		sc->sc_intr8 = sbdsp_block_input;
1246 	} else {
1247 #ifdef DIAGNOSTIC
1248 		if (sc->sc_i.dmachan != sc->sc_drq16) {
1249 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1250 			    width, sc->sc_i.dmachan);
1251 			return (EIO);
1252 		}
1253 #endif
1254 		sc->sc_intr16 = sbdsp_block_input;
1255 	}
1256 
1257 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1258 		blksize >>= 1;
1259 	--blksize;
1260 	sc->sc_i.blksize = blksize;
1261 
1262 	if (ISSBPRO(sc)) {
1263 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1264 			return (EIO);
1265 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1266 		sbdsp_mix_write(sc, SBP_INFILTER,
1267 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1268 		    filter);
1269 	}
1270 
1271 	if (ISSB16CLASS(sc)) {
1272 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1273 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1274 				 sc->sc_i.rate));
1275 			return (EIO);
1276 		}
1277 	} else {
1278 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1279 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1280 				 sc->sc_i.rate));
1281 			return (EIO);
1282 		}
1283 	}
1284 
1285 	DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1286 	    start, end, sc->sc_i.dmachan));
1287 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1288 	    (char *)end - (char *)start, NULL,
1289 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1290 
1291 	return sbdsp_block_input(addr);
1292 }
1293 
1294 int
1295 sbdsp_block_input(addr)
1296 	void *addr;
1297 {
1298 	struct sbdsp_softc *sc = addr;
1299 	int cc = sc->sc_i.blksize;
1300 
1301 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1302 
1303 	if (sc->sc_i.run != SB_NOTRUNNING)
1304 		sc->sc_intrr(sc->sc_argr);
1305 
1306 	if (sc->sc_model == SB_1) {
1307 		/* Non-looping mode, start DMA */
1308 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1309 		    sbdsp_wdsp(sc, cc) < 0 ||
1310 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
1311 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1312 			return (EIO);
1313 		}
1314 		sc->sc_i.run = SB_RUNNING;
1315 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
1316 		/* Initialize looping PCM */
1317 		if (ISSB16CLASS(sc)) {
1318 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1319 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1320 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1321 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1322 			    sbdsp_wdsp(sc, cc) < 0 ||
1323 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1324 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1325 				return (EIO);
1326 			}
1327 		} else {
1328 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1329 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1330 			    sbdsp_wdsp(sc, cc) < 0 ||
1331 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1332 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1333 				return (EIO);
1334 			}
1335 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1336 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1337 				return (EIO);
1338 			}
1339 		}
1340 		sc->sc_i.run = SB_LOOPING;
1341 	}
1342 
1343 	return (0);
1344 }
1345 
1346 int
1347 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1348 	void *addr;
1349 	void *start, *end;
1350 	int blksize;
1351 	void (*intr) __P((void *));
1352 	void *arg;
1353 	struct audio_params *param;
1354 {
1355 	struct sbdsp_softc *sc = addr;
1356 	int stereo = param->channels == 2;
1357 	int width = param->precision * param->factor;
1358 	int cmd;
1359 
1360 #ifdef DIAGNOSTIC
1361 	if (stereo && (blksize & 1)) {
1362 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1363 		return (EIO);
1364 	}
1365 	if (sc->sc_o.run != SB_NOTRUNNING)
1366 		printf("sbdsp_trigger_output: already running\n");
1367 #endif
1368 
1369 	sc->sc_intrp = intr;
1370 	sc->sc_argp = arg;
1371 
1372 	if (width == 8) {
1373 #ifdef DIAGNOSTIC
1374 		if (sc->sc_o.dmachan != sc->sc_drq8) {
1375 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1376 			    width, sc->sc_o.dmachan);
1377 			return (EIO);
1378 		}
1379 #endif
1380 		sc->sc_intr8 = sbdsp_block_output;
1381 	} else {
1382 #ifdef DIAGNOSTIC
1383 		if (sc->sc_o.dmachan != sc->sc_drq16) {
1384 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1385 			    width, sc->sc_o.dmachan);
1386 			return (EIO);
1387 		}
1388 #endif
1389 		sc->sc_intr16 = sbdsp_block_output;
1390 	}
1391 
1392 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1393 		blksize >>= 1;
1394 	--blksize;
1395 	sc->sc_o.blksize = blksize;
1396 
1397 	if (ISSBPRO(sc)) {
1398 		/* make sure we re-set stereo mixer bit when we start output. */
1399 		sbdsp_mix_write(sc, SBP_STEREO,
1400 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1401 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1402 		cmd = sc->sc_o.modep->cmdchan;
1403 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1404 			return (EIO);
1405 	}
1406 
1407 	if (ISSB16CLASS(sc)) {
1408 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1409 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1410 				 sc->sc_o.rate));
1411 			return (EIO);
1412 		}
1413 	} else {
1414 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1415 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1416 				 sc->sc_o.rate));
1417 			return (EIO);
1418 		}
1419 	}
1420 
1421 	DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1422 	    start, end, sc->sc_o.dmachan));
1423 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1424 	    (char *)end - (char *)start, NULL,
1425 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1426 
1427 	return sbdsp_block_output(addr);
1428 }
1429 
1430 int
1431 sbdsp_block_output(addr)
1432 	void *addr;
1433 {
1434 	struct sbdsp_softc *sc = addr;
1435 	int cc = sc->sc_o.blksize;
1436 
1437 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1438 
1439 	if (sc->sc_o.run != SB_NOTRUNNING)
1440 		sc->sc_intrp(sc->sc_argp);
1441 
1442 	if (sc->sc_model == SB_1) {
1443 		/* Non-looping mode, initialized. Start DMA and PCM */
1444 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1445 		    sbdsp_wdsp(sc, cc) < 0 ||
1446 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
1447 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1448 			return (EIO);
1449 		}
1450 		sc->sc_o.run = SB_RUNNING;
1451 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
1452 		/* Initialize looping PCM */
1453 		if (ISSB16CLASS(sc)) {
1454 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1455 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1456 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1457 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1458 			    sbdsp_wdsp(sc, cc) < 0 ||
1459 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1460 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1461 				return (EIO);
1462 			}
1463 		} else {
1464 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1465 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1466 			    sbdsp_wdsp(sc, cc) < 0 ||
1467 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1468 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1469 				return (EIO);
1470 			}
1471 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1472 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1473 				return (EIO);
1474 			}
1475 		}
1476 		sc->sc_o.run = SB_LOOPING;
1477 	}
1478 
1479 	return (0);
1480 }
1481 
1482 int
1483 sbdsp_halt_output(addr)
1484 	void *addr;
1485 {
1486 	struct sbdsp_softc *sc = addr;
1487 
1488 	if (sc->sc_o.run != SB_NOTRUNNING) {
1489 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1490 			printf("sbdsp_halt_output: failed to halt\n");
1491 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1492 		sc->sc_o.run = SB_NOTRUNNING;
1493 	}
1494 
1495 	return (0);
1496 }
1497 
1498 int
1499 sbdsp_halt_input(addr)
1500 	void *addr;
1501 {
1502 	struct sbdsp_softc *sc = addr;
1503 
1504 	if (sc->sc_i.run != SB_NOTRUNNING) {
1505 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1506 			printf("sbdsp_halt_input: failed to halt\n");
1507 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1508 		sc->sc_i.run = SB_NOTRUNNING;
1509 	}
1510 
1511 	return (0);
1512 }
1513 
1514 /*
1515  * Only the DSP unit on the sound blaster generates interrupts.
1516  * There are three cases of interrupt: reception of a midi byte
1517  * (when mode is enabled), completion of dma transmission, or
1518  * completion of a dma reception.
1519  *
1520  * If there is interrupt sharing or a spurious interrupt occurs
1521  * there is no way to distinguish this on an SB2.  So if you have
1522  * an SB2 and experience problems, buy an SB16 (it's only $40).
1523  */
1524 int
1525 sbdsp_intr(arg)
1526 	void *arg;
1527 {
1528 	struct sbdsp_softc *sc = arg;
1529 	u_char irq;
1530 
1531 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1532 		   sc->sc_intr8, sc->sc_intr16));
1533 	if (ISSB16CLASS(sc)) {
1534 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1535 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1536 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1537 			return 0;
1538 		}
1539 	} else {
1540 		/* XXXX CHECK FOR INTERRUPT */
1541 		irq = SBP_IRQ_DMA8;
1542 	}
1543 
1544 	sc->sc_interrupts++;
1545 	delay(10);		/* XXX why? */
1546 
1547 	/* clear interrupt */
1548 	if (irq & SBP_IRQ_DMA8) {
1549 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1550 		if (sc->sc_intr8)
1551 			sc->sc_intr8(arg);
1552 	}
1553 	if (irq & SBP_IRQ_DMA16) {
1554 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1555 		if (sc->sc_intr16)
1556 			sc->sc_intr16(arg);
1557 	}
1558 #if NMPU > 0
1559 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1560 		mpu_intr(sc->sc_mpudev);
1561 	}
1562 #endif
1563 	return 1;
1564 }
1565 
1566 /* Like val & mask, but make sure the result is correctly rounded. */
1567 #define MAXVAL 256
1568 static int
1569 sbdsp_adjust(val, mask)
1570 	int val, mask;
1571 {
1572 	val += (MAXVAL - mask) >> 1;
1573 	if (val >= MAXVAL)
1574 		val = MAXVAL-1;
1575 	return val & mask;
1576 }
1577 
1578 void
1579 sbdsp_set_mixer_gain(sc, port)
1580 	struct sbdsp_softc *sc;
1581 	int port;
1582 {
1583 	int src, gain;
1584 
1585 	switch(sc->sc_mixer_model) {
1586 	case SBM_NONE:
1587 		return;
1588 	case SBM_CT1335:
1589 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1590 		switch(port) {
1591 		case SB_MASTER_VOL:
1592 			src = SBP_1335_MASTER_VOL;
1593 			break;
1594 		case SB_MIDI_VOL:
1595 			src = SBP_1335_MIDI_VOL;
1596 			break;
1597 		case SB_CD_VOL:
1598 			src = SBP_1335_CD_VOL;
1599 			break;
1600 		case SB_VOICE_VOL:
1601 			src = SBP_1335_VOICE_VOL;
1602 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1603 			break;
1604 		default:
1605 			return;
1606 		}
1607 		sbdsp_mix_write(sc, src, gain);
1608 		break;
1609 	case SBM_CT1345:
1610 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1611 				      sc->gain[port][SB_RIGHT]);
1612 		switch (port) {
1613 		case SB_MIC_VOL:
1614 			src = SBP_MIC_VOL;
1615 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1616 			break;
1617 		case SB_MASTER_VOL:
1618 			src = SBP_MASTER_VOL;
1619 			break;
1620 		case SB_LINE_IN_VOL:
1621 			src = SBP_LINE_VOL;
1622 			break;
1623 		case SB_VOICE_VOL:
1624 			src = SBP_VOICE_VOL;
1625 			break;
1626 		case SB_MIDI_VOL:
1627 			src = SBP_MIDI_VOL;
1628 			break;
1629 		case SB_CD_VOL:
1630 			src = SBP_CD_VOL;
1631 			break;
1632 		default:
1633 			return;
1634 		}
1635 		sbdsp_mix_write(sc, src, gain);
1636 		break;
1637 	case SBM_CT1XX5:
1638 	case SBM_CT1745:
1639 		switch (port) {
1640 		case SB_MIC_VOL:
1641 			src = SB16P_MIC_L;
1642 			break;
1643 		case SB_MASTER_VOL:
1644 			src = SB16P_MASTER_L;
1645 			break;
1646 		case SB_LINE_IN_VOL:
1647 			src = SB16P_LINE_L;
1648 			break;
1649 		case SB_VOICE_VOL:
1650 			src = SB16P_VOICE_L;
1651 			break;
1652 		case SB_MIDI_VOL:
1653 			src = SB16P_MIDI_L;
1654 			break;
1655 		case SB_CD_VOL:
1656 			src = SB16P_CD_L;
1657 			break;
1658 		case SB_INPUT_GAIN:
1659 			src = SB16P_INPUT_GAIN_L;
1660 			break;
1661 		case SB_OUTPUT_GAIN:
1662 			src = SB16P_OUTPUT_GAIN_L;
1663 			break;
1664 		case SB_TREBLE:
1665 			src = SB16P_TREBLE_L;
1666 			break;
1667 		case SB_BASS:
1668 			src = SB16P_BASS_L;
1669 			break;
1670 		case SB_PCSPEAKER:
1671 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1672 			return;
1673 		default:
1674 			return;
1675 		}
1676 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1677 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1678 		break;
1679 	}
1680 }
1681 
1682 int
1683 sbdsp_mixer_set_port(addr, cp)
1684 	void *addr;
1685 	mixer_ctrl_t *cp;
1686 {
1687 	struct sbdsp_softc *sc = addr;
1688 	int lgain, rgain;
1689 	int mask, bits;
1690 	int lmask, rmask, lbits, rbits;
1691 	int mute, swap;
1692 
1693 	if (sc->sc_open == SB_OPEN_MIDI)
1694 		return EBUSY;
1695 
1696 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1697 	    cp->un.value.num_channels));
1698 
1699 	if (sc->sc_mixer_model == SBM_NONE)
1700 		return EINVAL;
1701 
1702 	switch (cp->dev) {
1703 	case SB_TREBLE:
1704 	case SB_BASS:
1705 		if (sc->sc_mixer_model == SBM_CT1345 ||
1706 		    sc->sc_mixer_model == SBM_CT1XX5) {
1707 			if (cp->type != AUDIO_MIXER_ENUM)
1708 				return EINVAL;
1709 			switch (cp->dev) {
1710 			case SB_TREBLE:
1711 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1712 				return 0;
1713 			case SB_BASS:
1714 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1715 				return 0;
1716 			}
1717 		}
1718 	case SB_PCSPEAKER:
1719 	case SB_INPUT_GAIN:
1720 	case SB_OUTPUT_GAIN:
1721 		if (!ISSBM1745(sc))
1722 			return EINVAL;
1723 	case SB_MIC_VOL:
1724 	case SB_LINE_IN_VOL:
1725 		if (sc->sc_mixer_model == SBM_CT1335)
1726 			return EINVAL;
1727 	case SB_VOICE_VOL:
1728 	case SB_MIDI_VOL:
1729 	case SB_CD_VOL:
1730 	case SB_MASTER_VOL:
1731 		if (cp->type != AUDIO_MIXER_VALUE)
1732 			return EINVAL;
1733 
1734 		/*
1735 		 * All the mixer ports are stereo except for the microphone.
1736 		 * If we get a single-channel gain value passed in, then we
1737 		 * duplicate it to both left and right channels.
1738 		 */
1739 
1740 		switch (cp->dev) {
1741 		case SB_MIC_VOL:
1742 			if (cp->un.value.num_channels != 1)
1743 				return EINVAL;
1744 
1745 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1746 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1747 			break;
1748 		case SB_PCSPEAKER:
1749 			if (cp->un.value.num_channels != 1)
1750 				return EINVAL;
1751 			/* fall into */
1752 		case SB_INPUT_GAIN:
1753 		case SB_OUTPUT_GAIN:
1754 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
1755 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1756 			break;
1757 		default:
1758 			switch (cp->un.value.num_channels) {
1759 			case 1:
1760 				lgain = rgain = SB_ADJUST_GAIN(sc,
1761 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1762 				break;
1763 			case 2:
1764 				if (sc->sc_mixer_model == SBM_CT1335)
1765 					return EINVAL;
1766 				lgain = SB_ADJUST_GAIN(sc,
1767 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1768 				rgain = SB_ADJUST_GAIN(sc,
1769 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1770 				break;
1771 			default:
1772 				return EINVAL;
1773 			}
1774 			break;
1775 		}
1776 		sc->gain[cp->dev][SB_LEFT]  = lgain;
1777 		sc->gain[cp->dev][SB_RIGHT] = rgain;
1778 
1779 		sbdsp_set_mixer_gain(sc, cp->dev);
1780 		break;
1781 
1782 	case SB_RECORD_SOURCE:
1783 		if (ISSBM1745(sc)) {
1784 			if (cp->type != AUDIO_MIXER_SET)
1785 				return EINVAL;
1786 			return sbdsp_set_in_ports(sc, cp->un.mask);
1787 		} else {
1788 			if (cp->type != AUDIO_MIXER_ENUM)
1789 				return EINVAL;
1790 			sc->in_port = cp->un.ord;
1791 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1792 		}
1793 		break;
1794 
1795 	case SB_AGC:
1796 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1797 			return EINVAL;
1798 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1799 		break;
1800 
1801 	case SB_CD_OUT_MUTE:
1802 		mask = SB16P_SW_CD;
1803 		goto omute;
1804 	case SB_MIC_OUT_MUTE:
1805 		mask = SB16P_SW_MIC;
1806 		goto omute;
1807 	case SB_LINE_OUT_MUTE:
1808 		mask = SB16P_SW_LINE;
1809 	omute:
1810 		if (cp->type != AUDIO_MIXER_ENUM)
1811 			return EINVAL;
1812 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1813 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1814 		if (cp->un.ord)
1815 			bits = bits & ~mask;
1816 		else
1817 			bits = bits | mask;
1818 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1819 		break;
1820 
1821 	case SB_MIC_IN_MUTE:
1822 	case SB_MIC_SWAP:
1823 		lmask = rmask = SB16P_SW_MIC;
1824 		goto imute;
1825 	case SB_CD_IN_MUTE:
1826 	case SB_CD_SWAP:
1827 		lmask = SB16P_SW_CD_L;
1828 		rmask = SB16P_SW_CD_R;
1829 		goto imute;
1830 	case SB_LINE_IN_MUTE:
1831 	case SB_LINE_SWAP:
1832 		lmask = SB16P_SW_LINE_L;
1833 		rmask = SB16P_SW_LINE_R;
1834 		goto imute;
1835 	case SB_MIDI_IN_MUTE:
1836 	case SB_MIDI_SWAP:
1837 		lmask = SB16P_SW_MIDI_L;
1838 		rmask = SB16P_SW_MIDI_R;
1839 	imute:
1840 		if (cp->type != AUDIO_MIXER_ENUM)
1841 			return EINVAL;
1842 		mask = lmask | rmask;
1843 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1844 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1845 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1846 		if (SB_IS_IN_MUTE(cp->dev)) {
1847 			mute = cp->dev;
1848 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1849 		} else {
1850 			swap = cp->dev;
1851 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1852 		}
1853 		if (sc->gain[swap][SB_LR]) {
1854 			mask = lmask;
1855 			lmask = rmask;
1856 			rmask = mask;
1857 		}
1858 		if (!sc->gain[mute][SB_LR]) {
1859 			lbits = lbits | lmask;
1860 			rbits = rbits | rmask;
1861 		}
1862 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1863 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1864 		break;
1865 
1866 	default:
1867 		return EINVAL;
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 int
1874 sbdsp_mixer_get_port(addr, cp)
1875 	void *addr;
1876 	mixer_ctrl_t *cp;
1877 {
1878 	struct sbdsp_softc *sc = addr;
1879 
1880 	if (sc->sc_open == SB_OPEN_MIDI)
1881 		return EBUSY;
1882 
1883 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1884 
1885 	if (sc->sc_mixer_model == SBM_NONE)
1886 		return EINVAL;
1887 
1888 	switch (cp->dev) {
1889 	case SB_TREBLE:
1890 	case SB_BASS:
1891 		if (sc->sc_mixer_model == SBM_CT1345 ||
1892 		    sc->sc_mixer_model == SBM_CT1XX5) {
1893 			switch (cp->dev) {
1894 			case SB_TREBLE:
1895 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1896 				return 0;
1897 			case SB_BASS:
1898 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1899 				return 0;
1900 			}
1901 		}
1902 	case SB_PCSPEAKER:
1903 	case SB_INPUT_GAIN:
1904 	case SB_OUTPUT_GAIN:
1905 		if (!ISSBM1745(sc))
1906 			return EINVAL;
1907 	case SB_MIC_VOL:
1908 	case SB_LINE_IN_VOL:
1909 		if (sc->sc_mixer_model == SBM_CT1335)
1910 			return EINVAL;
1911 	case SB_VOICE_VOL:
1912 	case SB_MIDI_VOL:
1913 	case SB_CD_VOL:
1914 	case SB_MASTER_VOL:
1915 		switch (cp->dev) {
1916 		case SB_MIC_VOL:
1917 		case SB_PCSPEAKER:
1918 			if (cp->un.value.num_channels != 1)
1919 				return EINVAL;
1920 			/* fall into */
1921 		default:
1922 			switch (cp->un.value.num_channels) {
1923 			case 1:
1924 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1925 					sc->gain[cp->dev][SB_LEFT];
1926 				break;
1927 			case 2:
1928 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1929 					sc->gain[cp->dev][SB_LEFT];
1930 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1931 					sc->gain[cp->dev][SB_RIGHT];
1932 				break;
1933 			default:
1934 				return EINVAL;
1935 			}
1936 			break;
1937 		}
1938 		break;
1939 
1940 	case SB_RECORD_SOURCE:
1941 		if (ISSBM1745(sc))
1942 			cp->un.mask = sc->in_mask;
1943 		else
1944 			cp->un.ord = sc->in_port;
1945 		break;
1946 
1947 	case SB_AGC:
1948 		if (!ISSBM1745(sc))
1949 			return EINVAL;
1950 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1951 		break;
1952 
1953 	case SB_CD_IN_MUTE:
1954 	case SB_MIC_IN_MUTE:
1955 	case SB_LINE_IN_MUTE:
1956 	case SB_MIDI_IN_MUTE:
1957 	case SB_CD_SWAP:
1958 	case SB_MIC_SWAP:
1959 	case SB_LINE_SWAP:
1960 	case SB_MIDI_SWAP:
1961 	case SB_CD_OUT_MUTE:
1962 	case SB_MIC_OUT_MUTE:
1963 	case SB_LINE_OUT_MUTE:
1964 		cp->un.ord = sc->gain[cp->dev][SB_LR];
1965 		break;
1966 
1967 	default:
1968 		return EINVAL;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 int
1975 sbdsp_mixer_query_devinfo(addr, dip)
1976 	void *addr;
1977 	mixer_devinfo_t *dip;
1978 {
1979 	struct sbdsp_softc *sc = addr;
1980 	int chan, class, is1745;
1981 
1982 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1983 		 sc->sc_mixer_model, dip->index));
1984 
1985 	if (sc->sc_mixer_model == SBM_NONE)
1986 		return ENXIO;
1987 
1988 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1989 	is1745 = ISSBM1745(sc);
1990 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1991 
1992 	switch (dip->index) {
1993 	case SB_MASTER_VOL:
1994 		dip->type = AUDIO_MIXER_VALUE;
1995 		dip->mixer_class = SB_OUTPUT_CLASS;
1996 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1997 		strcpy(dip->label.name, AudioNmaster);
1998 		dip->un.v.num_channels = chan;
1999 		strcpy(dip->un.v.units.name, AudioNvolume);
2000 		return 0;
2001 	case SB_MIDI_VOL:
2002 		dip->type = AUDIO_MIXER_VALUE;
2003 		dip->mixer_class = class;
2004 		dip->prev = AUDIO_MIXER_LAST;
2005 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2006 		strcpy(dip->label.name, AudioNfmsynth);
2007 		dip->un.v.num_channels = chan;
2008 		strcpy(dip->un.v.units.name, AudioNvolume);
2009 		return 0;
2010 	case SB_CD_VOL:
2011 		dip->type = AUDIO_MIXER_VALUE;
2012 		dip->mixer_class = class;
2013 		dip->prev = AUDIO_MIXER_LAST;
2014 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2015 		strcpy(dip->label.name, AudioNcd);
2016 		dip->un.v.num_channels = chan;
2017 		strcpy(dip->un.v.units.name, AudioNvolume);
2018 		return 0;
2019 	case SB_VOICE_VOL:
2020 		dip->type = AUDIO_MIXER_VALUE;
2021 		dip->mixer_class = class;
2022 		dip->prev = AUDIO_MIXER_LAST;
2023 		dip->next = AUDIO_MIXER_LAST;
2024 		strcpy(dip->label.name, AudioNdac);
2025 		dip->un.v.num_channels = chan;
2026 		strcpy(dip->un.v.units.name, AudioNvolume);
2027 		return 0;
2028 	case SB_OUTPUT_CLASS:
2029 		dip->type = AUDIO_MIXER_CLASS;
2030 		dip->mixer_class = SB_OUTPUT_CLASS;
2031 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2032 		strcpy(dip->label.name, AudioCoutputs);
2033 		return 0;
2034 	}
2035 
2036 	if (sc->sc_mixer_model == SBM_CT1335)
2037 		return ENXIO;
2038 
2039 	switch (dip->index) {
2040 	case SB_MIC_VOL:
2041 		dip->type = AUDIO_MIXER_VALUE;
2042 		dip->mixer_class = class;
2043 		dip->prev = AUDIO_MIXER_LAST;
2044 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2045 		strcpy(dip->label.name, AudioNmicrophone);
2046 		dip->un.v.num_channels = 1;
2047 		strcpy(dip->un.v.units.name, AudioNvolume);
2048 		return 0;
2049 
2050 	case SB_LINE_IN_VOL:
2051 		dip->type = AUDIO_MIXER_VALUE;
2052 		dip->mixer_class = class;
2053 		dip->prev = AUDIO_MIXER_LAST;
2054 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2055 		strcpy(dip->label.name, AudioNline);
2056 		dip->un.v.num_channels = 2;
2057 		strcpy(dip->un.v.units.name, AudioNvolume);
2058 		return 0;
2059 
2060 	case SB_RECORD_SOURCE:
2061 		dip->mixer_class = SB_RECORD_CLASS;
2062 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2063 		strcpy(dip->label.name, AudioNsource);
2064 		if (ISSBM1745(sc)) {
2065 			dip->type = AUDIO_MIXER_SET;
2066 			dip->un.s.num_mem = 4;
2067 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2068 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2069 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
2070 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2071 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2072 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2073 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2074 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2075 		} else {
2076 			dip->type = AUDIO_MIXER_ENUM;
2077 			dip->un.e.num_mem = 3;
2078 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2079 			dip->un.e.member[0].ord = SB_MIC_VOL;
2080 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
2081 			dip->un.e.member[1].ord = SB_CD_VOL;
2082 			strcpy(dip->un.e.member[2].label.name, AudioNline);
2083 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2084 		}
2085 		return 0;
2086 
2087 	case SB_BASS:
2088 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2089 		strcpy(dip->label.name, AudioNbass);
2090 		if (sc->sc_mixer_model == SBM_CT1745) {
2091 			dip->type = AUDIO_MIXER_VALUE;
2092 			dip->mixer_class = SB_EQUALIZATION_CLASS;
2093 			dip->un.v.num_channels = 2;
2094 			strcpy(dip->un.v.units.name, AudioNbass);
2095 		} else {
2096 			dip->type = AUDIO_MIXER_ENUM;
2097 			dip->mixer_class = SB_INPUT_CLASS;
2098 			dip->un.e.num_mem = 2;
2099 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
2100 			dip->un.e.member[0].ord = 0;
2101 			strcpy(dip->un.e.member[1].label.name, AudioNon);
2102 			dip->un.e.member[1].ord = 1;
2103 		}
2104 		return 0;
2105 
2106 	case SB_TREBLE:
2107 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2108 		strcpy(dip->label.name, AudioNtreble);
2109 		if (sc->sc_mixer_model == SBM_CT1745) {
2110 			dip->type = AUDIO_MIXER_VALUE;
2111 			dip->mixer_class = SB_EQUALIZATION_CLASS;
2112 			dip->un.v.num_channels = 2;
2113 			strcpy(dip->un.v.units.name, AudioNtreble);
2114 		} else {
2115 			dip->type = AUDIO_MIXER_ENUM;
2116 			dip->mixer_class = SB_INPUT_CLASS;
2117 			dip->un.e.num_mem = 2;
2118 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
2119 			dip->un.e.member[0].ord = 0;
2120 			strcpy(dip->un.e.member[1].label.name, AudioNon);
2121 			dip->un.e.member[1].ord = 1;
2122 		}
2123 		return 0;
2124 
2125 	case SB_RECORD_CLASS:			/* record source class */
2126 		dip->type = AUDIO_MIXER_CLASS;
2127 		dip->mixer_class = SB_RECORD_CLASS;
2128 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2129 		strcpy(dip->label.name, AudioCrecord);
2130 		return 0;
2131 
2132 	case SB_INPUT_CLASS:
2133 		dip->type = AUDIO_MIXER_CLASS;
2134 		dip->mixer_class = SB_INPUT_CLASS;
2135 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2136 		strcpy(dip->label.name, AudioCinputs);
2137 		return 0;
2138 
2139 	}
2140 
2141 	if (sc->sc_mixer_model == SBM_CT1345)
2142 		return ENXIO;
2143 
2144 	switch(dip->index) {
2145 	case SB_PCSPEAKER:
2146 		dip->type = AUDIO_MIXER_VALUE;
2147 		dip->mixer_class = SB_INPUT_CLASS;
2148 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2149 		strcpy(dip->label.name, "pc_speaker");
2150 		dip->un.v.num_channels = 1;
2151 		strcpy(dip->un.v.units.name, AudioNvolume);
2152 		return 0;
2153 
2154 	case SB_INPUT_GAIN:
2155 		dip->type = AUDIO_MIXER_VALUE;
2156 		dip->mixer_class = SB_INPUT_CLASS;
2157 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2158 		strcpy(dip->label.name, AudioNinput);
2159 		dip->un.v.num_channels = 2;
2160 		strcpy(dip->un.v.units.name, AudioNvolume);
2161 		return 0;
2162 
2163 	case SB_OUTPUT_GAIN:
2164 		dip->type = AUDIO_MIXER_VALUE;
2165 		dip->mixer_class = SB_OUTPUT_CLASS;
2166 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2167 		strcpy(dip->label.name, AudioNoutput);
2168 		dip->un.v.num_channels = 2;
2169 		strcpy(dip->un.v.units.name, AudioNvolume);
2170 		return 0;
2171 
2172 	case SB_AGC:
2173 		dip->type = AUDIO_MIXER_ENUM;
2174 		dip->mixer_class = SB_INPUT_CLASS;
2175 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2176 		strcpy(dip->label.name, "agc");
2177 		dip->un.e.num_mem = 2;
2178 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2179 		dip->un.e.member[0].ord = 0;
2180 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2181 		dip->un.e.member[1].ord = 1;
2182 		return 0;
2183 
2184 	case SB_EQUALIZATION_CLASS:
2185 		dip->type = AUDIO_MIXER_CLASS;
2186 		dip->mixer_class = SB_EQUALIZATION_CLASS;
2187 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2188 		strcpy(dip->label.name, AudioCequalization);
2189 		return 0;
2190 
2191 	case SB_CD_IN_MUTE:
2192 		dip->prev = SB_CD_VOL;
2193 		dip->next = SB_CD_SWAP;
2194 		dip->mixer_class = SB_INPUT_CLASS;
2195 		goto mute;
2196 
2197 	case SB_MIC_IN_MUTE:
2198 		dip->prev = SB_MIC_VOL;
2199 		dip->next = SB_MIC_SWAP;
2200 		dip->mixer_class = SB_INPUT_CLASS;
2201 		goto mute;
2202 
2203 	case SB_LINE_IN_MUTE:
2204 		dip->prev = SB_LINE_IN_VOL;
2205 		dip->next = SB_LINE_SWAP;
2206 		dip->mixer_class = SB_INPUT_CLASS;
2207 		goto mute;
2208 
2209 	case SB_MIDI_IN_MUTE:
2210 		dip->prev = SB_MIDI_VOL;
2211 		dip->next = SB_MIDI_SWAP;
2212 		dip->mixer_class = SB_INPUT_CLASS;
2213 		goto mute;
2214 
2215 	case SB_CD_SWAP:
2216 		dip->prev = SB_CD_IN_MUTE;
2217 		dip->next = SB_CD_OUT_MUTE;
2218 		goto swap;
2219 
2220 	case SB_MIC_SWAP:
2221 		dip->prev = SB_MIC_IN_MUTE;
2222 		dip->next = SB_MIC_OUT_MUTE;
2223 		goto swap;
2224 
2225 	case SB_LINE_SWAP:
2226 		dip->prev = SB_LINE_IN_MUTE;
2227 		dip->next = SB_LINE_OUT_MUTE;
2228 		goto swap;
2229 
2230 	case SB_MIDI_SWAP:
2231 		dip->prev = SB_MIDI_IN_MUTE;
2232 		dip->next = AUDIO_MIXER_LAST;
2233 	swap:
2234 		dip->mixer_class = SB_INPUT_CLASS;
2235 		strcpy(dip->label.name, AudioNswap);
2236 		goto mute1;
2237 
2238 	case SB_CD_OUT_MUTE:
2239 		dip->prev = SB_CD_SWAP;
2240 		dip->next = AUDIO_MIXER_LAST;
2241 		dip->mixer_class = SB_OUTPUT_CLASS;
2242 		goto mute;
2243 
2244 	case SB_MIC_OUT_MUTE:
2245 		dip->prev = SB_MIC_SWAP;
2246 		dip->next = AUDIO_MIXER_LAST;
2247 		dip->mixer_class = SB_OUTPUT_CLASS;
2248 		goto mute;
2249 
2250 	case SB_LINE_OUT_MUTE:
2251 		dip->prev = SB_LINE_SWAP;
2252 		dip->next = AUDIO_MIXER_LAST;
2253 		dip->mixer_class = SB_OUTPUT_CLASS;
2254 	mute:
2255 		strcpy(dip->label.name, AudioNmute);
2256 	mute1:
2257 		dip->type = AUDIO_MIXER_ENUM;
2258 		dip->un.e.num_mem = 2;
2259 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2260 		dip->un.e.member[0].ord = 0;
2261 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2262 		dip->un.e.member[1].ord = 1;
2263 		return 0;
2264 
2265 	}
2266 
2267 	return ENXIO;
2268 }
2269 
2270 void *
2271 sb_malloc(addr, direction, size, pool, flags)
2272 	void *addr;
2273 	int direction;
2274 	size_t size;
2275 	int pool, flags;
2276 {
2277 	struct sbdsp_softc *sc = addr;
2278 	int drq;
2279 
2280 	if (sc->sc_drq8 != -1)
2281 		drq = sc->sc_drq8;
2282 	else
2283 		drq = sc->sc_drq16;
2284 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2285 }
2286 
2287 void
2288 sb_free(addr, ptr, pool)
2289 	void *addr;
2290 	void *ptr;
2291 	int pool;
2292 {
2293 	isa_free(ptr, pool);
2294 }
2295 
2296 size_t
2297 sb_round_buffersize(addr, direction, size)
2298 	void *addr;
2299 	int direction;
2300 	size_t size;
2301 {
2302 	struct sbdsp_softc *sc = addr;
2303 	bus_size_t maxsize;
2304 
2305 	if (sc->sc_drq8 != -1)
2306 		maxsize = sc->sc_drq8_maxsize;
2307 	else
2308 		maxsize = sc->sc_drq16_maxsize;
2309 
2310 	if (size > maxsize)
2311 		size = maxsize;
2312 	return (size);
2313 }
2314 
2315 paddr_t
2316 sb_mappage(addr, mem, off, prot)
2317 	void *addr;
2318 	void *mem;
2319 	off_t off;
2320 	int prot;
2321 {
2322 	return isa_mappage(mem, off, prot);
2323 }
2324 
2325 int
2326 sbdsp_get_props(addr)
2327 	void *addr;
2328 {
2329 	struct sbdsp_softc *sc = addr;
2330 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2331 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2332 }
2333 
2334 #if NMPU > 0
2335 /*
2336  * MIDI related routines.
2337  */
2338 
2339 int
2340 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2341 	void *addr;
2342 	int flags;
2343 	void (*iintr)__P((void *, int));
2344 	void (*ointr)__P((void *));
2345 	void *arg;
2346 {
2347 	struct sbdsp_softc *sc = addr;
2348 
2349 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2350 
2351 	if (sc->sc_open != SB_CLOSED)
2352 		return EBUSY;
2353 	if (sbdsp_reset(sc) != 0)
2354 		return EIO;
2355 
2356 	sc->sc_open = SB_OPEN_MIDI;
2357 	sc->sc_openflags = flags;
2358 
2359 	if (sc->sc_model >= SB_20)
2360 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2361 			return EIO;
2362 
2363 	sc->sc_intr8 = sbdsp_midi_intr;
2364 	sc->sc_intrm = iintr;
2365 	sc->sc_argm = arg;
2366 
2367 	return 0;
2368 }
2369 
2370 void
2371 sbdsp_midi_close(addr)
2372 	void *addr;
2373 {
2374 	struct sbdsp_softc *sc = addr;
2375 
2376 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2377 
2378 	if (sc->sc_model >= SB_20)
2379 		sbdsp_reset(sc); /* exit UART mode */
2380 
2381 	sc->sc_intrm = 0;
2382 	sc->sc_open = SB_CLOSED;
2383 }
2384 
2385 int
2386 sbdsp_midi_output(addr, d)
2387 	void *addr;
2388 	int d;
2389 {
2390 	struct sbdsp_softc *sc = addr;
2391 
2392 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2393 		return EIO;
2394 	if (sbdsp_wdsp(sc, d))
2395 		return EIO;
2396 	return 0;
2397 }
2398 
2399 void
2400 sbdsp_midi_getinfo(addr, mi)
2401 	void *addr;
2402 	struct midi_info *mi;
2403 {
2404 	struct sbdsp_softc *sc = addr;
2405 
2406 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2407 	mi->props = MIDI_PROP_CAN_INPUT;
2408 }
2409 
2410 int
2411 sbdsp_midi_intr(addr)
2412 	void *addr;
2413 {
2414 	struct sbdsp_softc *sc = addr;
2415 
2416 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2417 	return (0);
2418 }
2419 
2420 #endif
2421 
2422