xref: /netbsd-src/sys/dev/isa/sbdsp.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: sbdsp.c,v 1.107 2001/02/22 15:23:31 minoura Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *	  Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1991-1993 Regents of the University of California.
41  * All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by the Computer Systems
54  *	Engineering Group at Lawrence Berkeley Laboratory.
55  * 4. Neither the name of the University nor of the Laboratory may be used
56  *    to endorse or promote products derived from this software without
57  *    specific prior written permission.
58  *
59  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
63  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69  * SUCH DAMAGE.
70  *
71  */
72 
73 /*
74  * SoundBlaster Pro code provided by John Kohl, based on lots of
75  * information he gleaned from Steve Haehnichen <steve@vigra.com>'s
76  * SBlast driver for 386BSD and DOS driver code from Daniel Sachs
77  * <sachs@meibm15.cen.uiuc.edu>.
78  * Lots of rewrites by Lennart Augustsson <augustss@cs.chalmers.se>
79  * with information from SB "Hardware Programming Guide" and the
80  * Linux drivers.
81  */
82 
83 #include "midi.h"
84 #include "mpu.h"
85 
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/kernel.h>
89 #include <sys/errno.h>
90 #include <sys/ioctl.h>
91 #include <sys/syslog.h>
92 #include <sys/device.h>
93 #include <sys/proc.h>
94 #include <sys/buf.h>
95 
96 #include <machine/cpu.h>
97 #include <machine/intr.h>
98 #include <machine/bus.h>
99 
100 #include <sys/audioio.h>
101 #include <dev/audio_if.h>
102 #include <dev/midi_if.h>
103 #include <dev/mulaw.h>
104 #include <dev/auconv.h>
105 
106 #include <dev/isa/isavar.h>
107 #include <dev/isa/isadmavar.h>
108 
109 #include <dev/isa/sbreg.h>
110 #include <dev/isa/sbdspvar.h>
111 
112 
113 #ifdef AUDIO_DEBUG
114 #define DPRINTF(x)	if (sbdspdebug) printf x
115 #define DPRINTFN(n,x)	if (sbdspdebug >= (n)) printf x
116 int	sbdspdebug = 0;
117 #else
118 #define DPRINTF(x)
119 #define DPRINTFN(n,x)
120 #endif
121 
122 #ifndef SBDSP_NPOLL
123 #define SBDSP_NPOLL 3000
124 #endif
125 
126 struct {
127 	int wdsp;
128 	int rdsp;
129 	int wmidi;
130 } sberr;
131 
132 /*
133  * Time constant routines follow.  See SBK, section 12.
134  * Although they don't come out and say it (in the docs),
135  * the card clearly uses a 1MHz countdown timer, as the
136  * low-speed formula (p. 12-4) is:
137  *	tc = 256 - 10^6 / sr
138  * In high-speed mode, the constant is the upper byte of a 16-bit counter,
139  * and a 256MHz clock is used:
140  *	tc = 65536 - 256 * 10^ 6 / sr
141  * Since we can only use the upper byte of the HS TC, the two formulae
142  * are equivalent.  (Why didn't they say so?)  E.g.,
143  * 	(65536 - 256 * 10 ^ 6 / x) >> 8 = 256 - 10^6 / x
144  *
145  * The crossover point (from low- to high-speed modes) is different
146  * for the SBPRO and SB20.  The table on p. 12-5 gives the following data:
147  *
148  *				SBPRO			SB20
149  *				-----			--------
150  * input ls min			4	KHz		4	KHz
151  * input ls max			23	KHz		13	KHz
152  * input hs max			44.1	KHz		15	KHz
153  * output ls min		4	KHz		4	KHz
154  * output ls max		23	KHz		23	KHz
155  * output hs max		44.1	KHz		44.1	KHz
156  */
157 /* XXX Should we round the tc?
158 #define SB_RATE_TO_TC(x) (((65536 - 256 * 1000000 / (x)) + 128) >> 8)
159 */
160 #define SB_RATE_TO_TC(x) (256 - 1000000 / (x))
161 #define SB_TC_TO_RATE(tc) (1000000 / (256 - (tc)))
162 
163 struct sbmode {
164 	short	model;
165 	u_char	channels;
166 	u_char	precision;
167 	u_short	lowrate, highrate;
168 	u_char	cmd;
169 	u_char	halt, cont;
170 	u_char	cmdchan;
171 };
172 static struct sbmode sbpmodes[] = {
173  { SB_1,   1, 8, 4000,22727,SB_DSP_WDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
174  { SB_20,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
175  { SB_2x,  1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
176  { SB_2x,  1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
177  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
178  { SB_PRO, 1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
179  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  },
180  /* Yes, we write the record mode to set 16-bit playback mode. weird, huh? */
181  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
182  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
183  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
184  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
185  { SB_JAZZ,1,16, 4000,22727,SB_DSP_WDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
186  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_OUTPUT,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
187  { SB_16,  1, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
188  { SB_16,  2, 8, 5000,45000,SB_DSP16_WDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
189 #define PLAY16 15 /* must be the index of the next entry in the table */
190  { SB_16,  1,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
191  { SB_16,  2,16, 5000,45000,SB_DSP16_WDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
192  { -1 }
193 };
194 static struct sbmode sbrmodes[] = {
195  { SB_1,   1, 8, 4000,12987,SB_DSP_RDMA     ,SB_DSP_HALT  ,SB_DSP_CONT  },
196  { SB_20,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
197  { SB_2x,  1, 8,12987,14925,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  },
198  { SB_2x,  1, 8, 4000,12987,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  },
199  { SB_PRO, 1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
200  { SB_PRO, 1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
201  { SB_PRO, 2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
202  { SB_JAZZ,1, 8,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
203  { SB_JAZZ,1, 8, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_MONO },
204  { SB_JAZZ,2, 8,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,SB_DSP_RECORD_STEREO },
205  { SB_JAZZ,1,16,22727,45454,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
206  { SB_JAZZ,1,16, 4000,22727,SB_DSP_RDMA_LOOP,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_MONO },
207  { SB_JAZZ,2,16,11025,22727,SB_DSP_HS_INPUT ,SB_DSP_HALT  ,SB_DSP_CONT  ,JAZZ16_RECORD_STEREO },
208  { SB_16,  1, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
209  { SB_16,  2, 8, 5000,45000,SB_DSP16_RDMA_8 ,SB_DSP_HALT  ,SB_DSP_CONT  },
210  { SB_16,  1,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
211  { SB_16,  2,16, 5000,45000,SB_DSP16_RDMA_16,SB_DSP16_HALT,SB_DSP16_CONT},
212  { -1 }
213 };
214 
215 void	sbversion __P((struct sbdsp_softc *));
216 void	sbdsp_jazz16_probe __P((struct sbdsp_softc *));
217 void	sbdsp_set_mixer_gain __P((struct sbdsp_softc *sc, int port));
218 void	sbdsp_pause __P((struct sbdsp_softc *));
219 int	sbdsp_set_timeconst __P((struct sbdsp_softc *, int));
220 int	sbdsp16_set_rate __P((struct sbdsp_softc *, int, int));
221 int	sbdsp_set_in_ports __P((struct sbdsp_softc *, int));
222 void	sbdsp_set_ifilter __P((void *, int));
223 int	sbdsp_get_ifilter __P((void *));
224 
225 int	sbdsp_block_output __P((void *));
226 int	sbdsp_block_input __P((void *));
227 static	int sbdsp_adjust __P((int, int));
228 
229 int	sbdsp_midi_intr __P((void *));
230 
231 static void	sbdsp_powerhook __P((int, void*));
232 
233 #ifdef AUDIO_DEBUG
234 void	sb_printsc __P((struct sbdsp_softc *));
235 
236 void
237 sb_printsc(sc)
238 	struct sbdsp_softc *sc;
239 {
240 	int i;
241 
242 	printf("open %d dmachan %d/%d %d/%d iobase 0x%x irq %d\n",
243 	    (int)sc->sc_open, sc->sc_i.run, sc->sc_o.run,
244 	    sc->sc_drq8, sc->sc_drq16,
245 	    sc->sc_iobase, sc->sc_irq);
246 	printf("irate %d itc %x orate %d otc %x\n",
247 	    sc->sc_i.rate, sc->sc_i.tc,
248 	    sc->sc_o.rate, sc->sc_o.tc);
249 	printf("spkron %u nintr %lu\n",
250 	    sc->spkr_state, sc->sc_interrupts);
251 	printf("intr8 %p intr16 %p\n",
252 	    sc->sc_intr8, sc->sc_intr16);
253 	printf("gain:");
254 	for (i = 0; i < SB_NDEVS; i++)
255 		printf(" %u,%u", sc->gain[i][SB_LEFT], sc->gain[i][SB_RIGHT]);
256 	printf("\n");
257 }
258 #endif /* AUDIO_DEBUG */
259 
260 /*
261  * Probe / attach routines.
262  */
263 
264 /*
265  * Probe for the soundblaster hardware.
266  */
267 int
268 sbdsp_probe(sc)
269 	struct sbdsp_softc *sc;
270 {
271 
272 	if (sbdsp_reset(sc) < 0) {
273 		DPRINTF(("sbdsp: couldn't reset card\n"));
274 		return 0;
275 	}
276 	/* if flags set, go and probe the jazz16 stuff */
277 	if (sc->sc_dev.dv_cfdata->cf_flags & 1)
278 		sbdsp_jazz16_probe(sc);
279 	else
280 		sbversion(sc);
281 	if (sc->sc_model == SB_UNK) {
282 		/* Unknown SB model found. */
283 		DPRINTF(("sbdsp: unknown SB model found\n"));
284 		return 0;
285 	}
286 	return 1;
287 }
288 
289 /*
290  * Try add-on stuff for Jazz16.
291  */
292 void
293 sbdsp_jazz16_probe(sc)
294 	struct sbdsp_softc *sc;
295 {
296 	static u_char jazz16_irq_conf[16] = {
297 	    -1, -1, 0x02, 0x03,
298 	    -1, 0x01, -1, 0x04,
299 	    -1, 0x02, 0x05, -1,
300 	    -1, -1, -1, 0x06};
301 	static u_char jazz16_drq_conf[8] = {
302 	    -1, 0x01, -1, 0x02,
303 	    -1, 0x03, -1, 0x04};
304 
305 	bus_space_tag_t iot = sc->sc_iot;
306 	bus_space_handle_t ioh;
307 
308 	sbversion(sc);
309 
310 	DPRINTF(("jazz16 probe\n"));
311 
312 	if (bus_space_map(iot, JAZZ16_CONFIG_PORT, 1, 0, &ioh)) {
313 		DPRINTF(("bus map failed\n"));
314 		return;
315 	}
316 
317 	if (jazz16_drq_conf[sc->sc_drq8] == (u_char)-1 ||
318 	    jazz16_irq_conf[sc->sc_irq] == (u_char)-1) {
319 		DPRINTF(("drq/irq check failed\n"));
320 		goto done;		/* give up, we can't do it. */
321 	}
322 
323 	bus_space_write_1(iot, ioh, 0, JAZZ16_WAKEUP);
324 	delay(10000);			/* delay 10 ms */
325 	bus_space_write_1(iot, ioh, 0, JAZZ16_SETBASE);
326 	bus_space_write_1(iot, ioh, 0, sc->sc_iobase & 0x70);
327 
328 	if (sbdsp_reset(sc) < 0) {
329 		DPRINTF(("sbdsp_reset check failed\n"));
330 		goto done;		/* XXX? what else could we do? */
331 	}
332 
333 	if (sbdsp_wdsp(sc, JAZZ16_READ_VER)) {
334 		DPRINTF(("read16 setup failed\n"));
335 		goto done;
336 	}
337 
338 	if (sbdsp_rdsp(sc) != JAZZ16_VER_JAZZ) {
339 		DPRINTF(("read16 failed\n"));
340 		goto done;
341 	}
342 
343 	/* XXX set both 8 & 16-bit drq to same channel, it works fine. */
344 	sc->sc_drq16 = sc->sc_drq8;
345 	if (sbdsp_wdsp(sc, JAZZ16_SET_DMAINTR) ||
346 	    sbdsp_wdsp(sc, (jazz16_drq_conf[sc->sc_drq16] << 4) |
347 		jazz16_drq_conf[sc->sc_drq8]) ||
348 	    sbdsp_wdsp(sc, jazz16_irq_conf[sc->sc_irq])) {
349 		DPRINTF(("sbdsp: can't write jazz16 probe stuff\n"));
350 	} else {
351 		DPRINTF(("jazz16 detected!\n"));
352 		sc->sc_model = SB_JAZZ;
353 		sc->sc_mixer_model = SBM_CT1345; /* XXX really? */
354 	}
355 
356 done:
357 	bus_space_unmap(iot, ioh, 1);
358 }
359 
360 /*
361  * Attach hardware to driver, attach hardware driver to audio
362  * pseudo-device driver .
363  */
364 void
365 sbdsp_attach(sc)
366 	struct sbdsp_softc *sc;
367 {
368 	struct audio_params pparams, rparams;
369 	int i;
370 	u_int v;
371 
372 	pparams = audio_default;
373 	rparams = audio_default;
374 	sbdsp_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
375 
376 	sbdsp_set_in_ports(sc, 1 << SB_MIC_VOL);
377 
378 	if (sc->sc_mixer_model != SBM_NONE) {
379 		/* Reset the mixer.*/
380 		sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
381 		/* And set our own default values */
382 		for (i = 0; i < SB_NDEVS; i++) {
383 			switch(i) {
384 			case SB_MIC_VOL:
385 			case SB_LINE_IN_VOL:
386 				v = 0;
387 				break;
388 			case SB_BASS:
389 			case SB_TREBLE:
390 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
391 				break;
392 			case SB_CD_IN_MUTE:
393 			case SB_MIC_IN_MUTE:
394 			case SB_LINE_IN_MUTE:
395 			case SB_MIDI_IN_MUTE:
396 			case SB_CD_SWAP:
397 			case SB_MIC_SWAP:
398 			case SB_LINE_SWAP:
399 			case SB_MIDI_SWAP:
400 			case SB_CD_OUT_MUTE:
401 			case SB_MIC_OUT_MUTE:
402 			case SB_LINE_OUT_MUTE:
403 				v = 0;
404 				break;
405 			default:
406 				v = SB_ADJUST_GAIN(sc, AUDIO_MAX_GAIN / 2);
407 				break;
408 			}
409 			sc->gain[i][SB_LEFT] = sc->gain[i][SB_RIGHT] = v;
410 			sbdsp_set_mixer_gain(sc, i);
411 		}
412 		sc->in_filter = 0;	/* no filters turned on, please */
413 	}
414 
415 	printf(": dsp v%d.%02d%s\n",
416 	       SBVER_MAJOR(sc->sc_version), SBVER_MINOR(sc->sc_version),
417 	       sc->sc_model == SB_JAZZ ? ": <Jazz16>" : "");
418 
419 	sc->sc_fullduplex = ISSB16CLASS(sc) &&
420 	    sc->sc_drq8 != -1 && sc->sc_drq16 != -1 &&
421 	    sc->sc_drq8 != sc->sc_drq16;
422 
423 	if (sc->sc_drq8 != -1)
424 		sc->sc_drq8_maxsize = isa_dmamaxsize(sc->sc_ic,
425 		    sc->sc_drq8);
426 
427 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
428 		sc->sc_drq16_maxsize = isa_dmamaxsize(sc->sc_ic,
429 		    sc->sc_drq16);
430 
431 	powerhook_establish (sbdsp_powerhook, sc);
432 }
433 
434 static void
435 sbdsp_powerhook (why, arg)
436 	int why;
437 	void *arg;
438 {
439 	struct sbdsp_softc *sc = arg;
440 	int i;
441 
442 	if (!sc || why != PWR_RESUME)
443 		return;
444 
445 	/* Reset the mixer. */
446 	sbdsp_mix_write(sc, SBP_MIX_RESET, SBP_MIX_RESET);
447 	for (i = 0; i < SB_NDEVS; i++)
448 		sbdsp_set_mixer_gain (sc, i);
449 }
450 
451 void
452 sbdsp_mix_write(sc, mixerport, val)
453 	struct sbdsp_softc *sc;
454 	int mixerport;
455 	int val;
456 {
457 	bus_space_tag_t iot = sc->sc_iot;
458 	bus_space_handle_t ioh = sc->sc_ioh;
459 	int s;
460 
461 	s = splaudio();
462 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
463 	delay(20);
464 	bus_space_write_1(iot, ioh, SBP_MIXER_DATA, val);
465 	delay(30);
466 	splx(s);
467 }
468 
469 int
470 sbdsp_mix_read(sc, mixerport)
471 	struct sbdsp_softc *sc;
472 	int mixerport;
473 {
474 	bus_space_tag_t iot = sc->sc_iot;
475 	bus_space_handle_t ioh = sc->sc_ioh;
476 	int val;
477 	int s;
478 
479 	s = splaudio();
480 	bus_space_write_1(iot, ioh, SBP_MIXER_ADDR, mixerport);
481 	delay(20);
482 	val = bus_space_read_1(iot, ioh, SBP_MIXER_DATA);
483 	delay(30);
484 	splx(s);
485 	return val;
486 }
487 
488 /*
489  * Various routines to interface to higher level audio driver
490  */
491 
492 int
493 sbdsp_query_encoding(addr, fp)
494 	void *addr;
495 	struct audio_encoding *fp;
496 {
497 	struct sbdsp_softc *sc = addr;
498 	int emul;
499 
500 	emul = ISSB16CLASS(sc) ? 0 : AUDIO_ENCODINGFLAG_EMULATED;
501 
502 	switch (fp->index) {
503 	case 0:
504 		strcpy(fp->name, AudioEulinear);
505 		fp->encoding = AUDIO_ENCODING_ULINEAR;
506 		fp->precision = 8;
507 		fp->flags = 0;
508 		return 0;
509 	case 1:
510 		strcpy(fp->name, AudioEmulaw);
511 		fp->encoding = AUDIO_ENCODING_ULAW;
512 		fp->precision = 8;
513 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
514 		return 0;
515 	case 2:
516 		strcpy(fp->name, AudioEalaw);
517 		fp->encoding = AUDIO_ENCODING_ALAW;
518 		fp->precision = 8;
519 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
520 		return 0;
521 	case 3:
522 		strcpy(fp->name, AudioEslinear);
523 		fp->encoding = AUDIO_ENCODING_SLINEAR;
524 		fp->precision = 8;
525 		fp->flags = emul;
526 		return 0;
527 	}
528 	if (!ISSB16CLASS(sc) && sc->sc_model != SB_JAZZ)
529 		return EINVAL;
530 
531 	switch(fp->index) {
532 	case 4:
533 		strcpy(fp->name, AudioEslinear_le);
534 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
535 		fp->precision = 16;
536 		fp->flags = 0;
537 		return 0;
538 	case 5:
539 		strcpy(fp->name, AudioEulinear_le);
540 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
541 		fp->precision = 16;
542 		fp->flags = emul;
543 		return 0;
544 	case 6:
545 		strcpy(fp->name, AudioEslinear_be);
546 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
547 		fp->precision = 16;
548 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
549 		return 0;
550 	case 7:
551 		strcpy(fp->name, AudioEulinear_be);
552 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
553 		fp->precision = 16;
554 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
555 		return 0;
556 	default:
557 		return EINVAL;
558 	}
559 	return 0;
560 }
561 
562 int
563 sbdsp_set_params(addr, setmode, usemode, play, rec)
564 	void *addr;
565 	int setmode, usemode;
566 	struct audio_params *play, *rec;
567 {
568 	struct sbdsp_softc *sc = addr;
569 	struct sbmode *m;
570 	u_int rate, tc, bmode;
571 	void (*swcode) __P((void *, u_char *buf, int cnt));
572 	int factor;
573 	int model;
574 	int chan;
575 	struct audio_params *p;
576 	int mode;
577 
578 	if (sc->sc_open == SB_OPEN_MIDI)
579 		return EBUSY;
580 
581 	/* Later models work like SB16. */
582 	model = min(sc->sc_model, SB_16);
583 
584 	/*
585 	 * Prior to the SB16, we have only one clock, so make the sample
586 	 * rates match.
587 	 */
588 	if (!ISSB16CLASS(sc) &&
589 	    play->sample_rate != rec->sample_rate &&
590 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
591 		if (setmode == AUMODE_PLAY) {
592 			rec->sample_rate = play->sample_rate;
593 			setmode |= AUMODE_RECORD;
594 		} else if (setmode == AUMODE_RECORD) {
595 			play->sample_rate = rec->sample_rate;
596 			setmode |= AUMODE_PLAY;
597 		} else
598 			return (EINVAL);
599 	}
600 
601 	/* Set first record info, then play info */
602 	for (mode = AUMODE_RECORD; mode != -1;
603 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
604 		if ((setmode & mode) == 0)
605 			continue;
606 
607 		p = mode == AUMODE_PLAY ? play : rec;
608 		/* Locate proper commands */
609 		for (m = mode == AUMODE_PLAY ? sbpmodes : sbrmodes;
610 		    m->model != -1; m++) {
611 			if (model == m->model &&
612 			    p->channels == m->channels &&
613 			    p->precision == m->precision &&
614 			    p->sample_rate >= m->lowrate &&
615 			    p->sample_rate <= m->highrate)
616 				break;
617 		}
618 		if (m->model == -1)
619 			return EINVAL;
620 		rate = p->sample_rate;
621 		swcode = 0;
622 		factor = 1;
623 		tc = 1;
624 		bmode = -1;
625 		if (model == SB_16) {
626 			switch (p->encoding) {
627 			case AUDIO_ENCODING_SLINEAR_BE:
628 				if (p->precision == 16)
629 					swcode = swap_bytes;
630 				/* fall into */
631 			case AUDIO_ENCODING_SLINEAR_LE:
632 				bmode = SB_BMODE_SIGNED;
633 				break;
634 			case AUDIO_ENCODING_ULINEAR_BE:
635 				if (p->precision == 16)
636 					swcode = swap_bytes;
637 				/* fall into */
638 			case AUDIO_ENCODING_ULINEAR_LE:
639 				bmode = SB_BMODE_UNSIGNED;
640 				break;
641 			case AUDIO_ENCODING_ULAW:
642 				if (mode == AUMODE_PLAY) {
643 					swcode = mulaw_to_ulinear16_le;
644 					factor = 2;
645 					m = &sbpmodes[PLAY16];
646 				} else
647 					swcode = ulinear8_to_mulaw;
648 				bmode = SB_BMODE_UNSIGNED;
649 				break;
650 			case AUDIO_ENCODING_ALAW:
651 				if (mode == AUMODE_PLAY) {
652 					swcode = alaw_to_ulinear16_le;
653 					factor = 2;
654 					m = &sbpmodes[PLAY16];
655 				} else
656 					swcode = ulinear8_to_alaw;
657 				bmode = SB_BMODE_UNSIGNED;
658 				break;
659 			default:
660 				return EINVAL;
661 			}
662 			if (p->channels == 2)
663 				bmode |= SB_BMODE_STEREO;
664 		} else if (m->model == SB_JAZZ && m->precision == 16) {
665 			switch (p->encoding) {
666 			case AUDIO_ENCODING_SLINEAR_LE:
667 				break;
668 			case AUDIO_ENCODING_ULINEAR_LE:
669 				swcode = change_sign16_le;
670 				break;
671 			case AUDIO_ENCODING_SLINEAR_BE:
672 				swcode = swap_bytes;
673 				break;
674 			case AUDIO_ENCODING_ULINEAR_BE:
675 				swcode = mode == AUMODE_PLAY ?
676 					swap_bytes_change_sign16_le :
677 					change_sign16_swap_bytes_le;
678 				break;
679 			case AUDIO_ENCODING_ULAW:
680 				swcode = mode == AUMODE_PLAY ?
681 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
682 				break;
683 			case AUDIO_ENCODING_ALAW:
684 				swcode = mode == AUMODE_PLAY ?
685 					alaw_to_ulinear8 : ulinear8_to_alaw;
686 				break;
687 			default:
688 				return EINVAL;
689 			}
690 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
691 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
692 		} else {
693 			switch (p->encoding) {
694 			case AUDIO_ENCODING_SLINEAR_BE:
695 			case AUDIO_ENCODING_SLINEAR_LE:
696 				swcode = change_sign8;
697 				break;
698 			case AUDIO_ENCODING_ULINEAR_BE:
699 			case AUDIO_ENCODING_ULINEAR_LE:
700 				break;
701 			case AUDIO_ENCODING_ULAW:
702 				swcode = mode == AUMODE_PLAY ?
703 					mulaw_to_ulinear8 : ulinear8_to_mulaw;
704 				break;
705 			case AUDIO_ENCODING_ALAW:
706 				swcode = mode == AUMODE_PLAY ?
707 					alaw_to_ulinear8 : ulinear8_to_alaw;
708 				break;
709 			default:
710 				return EINVAL;
711 			}
712 			tc = SB_RATE_TO_TC(p->sample_rate * p->channels);
713 			p->sample_rate = SB_TC_TO_RATE(tc) / p->channels;
714 		}
715 
716 		chan = m->precision == 16 ? sc->sc_drq16 : sc->sc_drq8;
717 		if (mode == AUMODE_PLAY) {
718 			sc->sc_o.rate = rate;
719 			sc->sc_o.tc = tc;
720 			sc->sc_o.modep = m;
721 			sc->sc_o.bmode = bmode;
722 			sc->sc_o.dmachan = chan;
723 		} else {
724 			sc->sc_i.rate = rate;
725 			sc->sc_i.tc = tc;
726 			sc->sc_i.modep = m;
727 			sc->sc_i.bmode = bmode;
728 			sc->sc_i.dmachan = chan;
729 		}
730 
731 		p->sw_code = swcode;
732 		p->factor = factor;
733 		DPRINTF(("sbdsp_set_params: model=%d, mode=%d, rate=%ld, prec=%d, chan=%d, enc=%d -> tc=%02x, cmd=%02x, bmode=%02x, cmdchan=%02x, swcode=%p, factor=%d\n",
734 			 sc->sc_model, mode, p->sample_rate, p->precision, p->channels,
735 			 p->encoding, tc, m->cmd, bmode, m->cmdchan, swcode, factor));
736 
737 	}
738 
739 	if (sc->sc_fullduplex &&
740 	    usemode == (AUMODE_PLAY | AUMODE_RECORD) &&
741 	    sc->sc_i.dmachan == sc->sc_o.dmachan) {
742 		DPRINTF(("sbdsp_set_params: fd=%d, usemode=%d, idma=%d, odma=%d\n", sc->sc_fullduplex, usemode, sc->sc_i.dmachan, sc->sc_o.dmachan));
743 		if (sc->sc_o.dmachan == sc->sc_drq8) {
744 			/* Use 16 bit DMA for playing by expanding the samples. */
745 			play->sw_code = linear8_to_linear16_le;
746 			play->factor = 2;
747 			sc->sc_o.modep = &sbpmodes[PLAY16];
748 			sc->sc_o.dmachan = sc->sc_drq16;
749 		} else {
750 			return EINVAL;
751 		}
752 	}
753 	DPRINTF(("sbdsp_set_params ichan=%d, ochan=%d\n",
754 		 sc->sc_i.dmachan, sc->sc_o.dmachan));
755 
756 	return (0);
757 }
758 
759 void
760 sbdsp_set_ifilter(addr, which)
761 	void *addr;
762 	int which;
763 {
764 	struct sbdsp_softc *sc = addr;
765 	int mixval;
766 
767 	mixval = sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK;
768 	switch (which) {
769 	case 0:
770 		mixval |= SBP_FILTER_OFF;
771 		break;
772 	case SB_TREBLE:
773 		mixval |= SBP_FILTER_ON | SBP_IFILTER_HIGH;
774 		break;
775 	case SB_BASS:
776 		mixval |= SBP_FILTER_ON | SBP_IFILTER_LOW;
777 		break;
778 	default:
779 		return;
780 	}
781 	sc->in_filter = mixval & SBP_IFILTER_MASK;
782 	sbdsp_mix_write(sc, SBP_INFILTER, mixval);
783 }
784 
785 int
786 sbdsp_get_ifilter(addr)
787 	void *addr;
788 {
789 	struct sbdsp_softc *sc = addr;
790 
791 	sc->in_filter =
792 		sbdsp_mix_read(sc, SBP_INFILTER) & SBP_IFILTER_MASK;
793 	switch (sc->in_filter) {
794 	case SBP_FILTER_ON|SBP_IFILTER_HIGH:
795 		return SB_TREBLE;
796 	case SBP_FILTER_ON|SBP_IFILTER_LOW:
797 		return SB_BASS;
798 	default:
799 		return 0;
800 	}
801 }
802 
803 int
804 sbdsp_set_in_ports(sc, mask)
805 	struct sbdsp_softc *sc;
806 	int mask;
807 {
808 	int bitsl, bitsr;
809 	int sbport;
810 
811 	if (sc->sc_open == SB_OPEN_MIDI)
812 		return EBUSY;
813 
814 	DPRINTF(("sbdsp_set_in_ports: model=%d, mask=%x\n",
815 		 sc->sc_mixer_model, mask));
816 
817 	switch(sc->sc_mixer_model) {
818 	case SBM_NONE:
819 		return EINVAL;
820 	case SBM_CT1335:
821 		if (mask != (1 << SB_MIC_VOL))
822 			return EINVAL;
823 		break;
824 	case SBM_CT1345:
825 		switch (mask) {
826 		case 1 << SB_MIC_VOL:
827 			sbport = SBP_FROM_MIC;
828 			break;
829 		case 1 << SB_LINE_IN_VOL:
830 			sbport = SBP_FROM_LINE;
831 			break;
832 		case 1 << SB_CD_VOL:
833 			sbport = SBP_FROM_CD;
834 			break;
835 		default:
836 			return (EINVAL);
837 		}
838 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE, sbport | sc->in_filter);
839 		break;
840 	case SBM_CT1XX5:
841 	case SBM_CT1745:
842 		if (mask & ~((1<<SB_MIDI_VOL) | (1<<SB_LINE_IN_VOL) |
843 			     (1<<SB_CD_VOL) | (1<<SB_MIC_VOL)))
844 			return EINVAL;
845 		bitsr = 0;
846 		if (mask & (1<<SB_MIDI_VOL))    bitsr |= SBP_MIDI_SRC_R;
847 		if (mask & (1<<SB_LINE_IN_VOL)) bitsr |= SBP_LINE_SRC_R;
848 		if (mask & (1<<SB_CD_VOL))      bitsr |= SBP_CD_SRC_R;
849 		bitsl = SB_SRC_R_TO_L(bitsr);
850 		if (mask & (1<<SB_MIC_VOL)) {
851 			bitsl |= SBP_MIC_SRC;
852 			bitsr |= SBP_MIC_SRC;
853 		}
854 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_L, bitsl);
855 		sbdsp_mix_write(sc, SBP_RECORD_SOURCE_R, bitsr);
856 		break;
857 	}
858 	sc->in_mask = mask;
859 
860 	return 0;
861 }
862 
863 int
864 sbdsp_speaker_ctl(addr, newstate)
865 	void *addr;
866 	int newstate;
867 {
868 	struct sbdsp_softc *sc = addr;
869 
870 	if (sc->sc_open == SB_OPEN_MIDI)
871 		return EBUSY;
872 
873 	if ((newstate == SPKR_ON) &&
874 	    (sc->spkr_state == SPKR_OFF)) {
875 		sbdsp_spkron(sc);
876 		sc->spkr_state = SPKR_ON;
877 	}
878 	if ((newstate == SPKR_OFF) &&
879 	    (sc->spkr_state == SPKR_ON)) {
880 		sbdsp_spkroff(sc);
881 		sc->spkr_state = SPKR_OFF;
882 	}
883 	return 0;
884 }
885 
886 int
887 sbdsp_round_blocksize(addr, blk)
888 	void *addr;
889 	int blk;
890 {
891 	return blk & -4;	/* round to biggest sample size */
892 }
893 
894 int
895 sbdsp_open(addr, flags)
896 	void *addr;
897 	int flags;
898 {
899 	struct sbdsp_softc *sc = addr;
900 	int error, state;
901 
902 	DPRINTF(("sbdsp_open: sc=%p\n", sc));
903 
904 	if (sc->sc_open != SB_CLOSED)
905 		return (EBUSY);
906 	sc->sc_open = SB_OPEN_AUDIO;
907 	sc->sc_openflags = flags;
908 	state = 0;
909 
910 	if (sc->sc_drq8 != -1) {
911 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq8,
912 		    sc->sc_drq8_maxsize, BUS_DMA_NOWAIT);
913 		if (error) {
914 			printf("%s: can't create map for drq %d\n",
915 			    sc->sc_dev.dv_xname, sc->sc_drq8);
916 			goto bad;
917 		}
918 		state |= 1;
919 	}
920 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8) {
921 		error = isa_dmamap_create(sc->sc_ic, sc->sc_drq16,
922 		    sc->sc_drq16_maxsize, BUS_DMA_NOWAIT);
923 		if (error) {
924 			printf("%s: can't create map for drq %d\n",
925 			    sc->sc_dev.dv_xname, sc->sc_drq16);
926 			goto bad;
927 		}
928 		state |= 2;
929 	}
930 
931 	if (sbdsp_reset(sc) != 0) {
932 		error = EIO;
933 		goto bad;
934 	}
935 
936 	if (ISSBPRO(sc) &&
937 	    sbdsp_wdsp(sc, SB_DSP_RECORD_MONO) < 0) {
938 		DPRINTF(("sbdsp_open: can't set mono mode\n"));
939 		/* we'll readjust when it's time for DMA. */
940 	}
941 
942 	/*
943 	 * Leave most things as they were; users must change things if
944 	 * the previous process didn't leave it they way they wanted.
945 	 * Looked at another way, it's easy to set up a configuration
946 	 * in one program and leave it for another to inherit.
947 	 */
948 	DPRINTF(("sbdsp_open: opened\n"));
949 
950 	return (0);
951 
952 bad:
953 	if (state & 1)
954 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
955 	if (state & 2)
956 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
957 
958 	sc->sc_open = SB_CLOSED;
959 	return (error);
960 }
961 
962 void
963 sbdsp_close(addr)
964 	void *addr;
965 {
966 	struct sbdsp_softc *sc = addr;
967 
968 	DPRINTF(("sbdsp_close: sc=%p\n", sc));
969 
970 	sbdsp_spkroff(sc);
971 	sc->spkr_state = SPKR_OFF;
972 
973 	sbdsp_halt_output(sc);
974 	sbdsp_halt_input(sc);
975 
976 	sc->sc_intr8 = 0;
977 	sc->sc_intr16 = 0;
978 
979 	if (sc->sc_drq8 != -1)
980 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq8);
981 	if (sc->sc_drq16 != -1 && sc->sc_drq16 != sc->sc_drq8)
982 		isa_dmamap_destroy(sc->sc_ic, sc->sc_drq16);
983 
984 	sc->sc_open = SB_CLOSED;
985 	DPRINTF(("sbdsp_close: closed\n"));
986 }
987 
988 /*
989  * Lower-level routines
990  */
991 
992 /*
993  * Reset the card.
994  * Return non-zero if the card isn't detected.
995  */
996 int
997 sbdsp_reset(sc)
998 	struct sbdsp_softc *sc;
999 {
1000 	bus_space_tag_t iot = sc->sc_iot;
1001 	bus_space_handle_t ioh = sc->sc_ioh;
1002 
1003 	sc->sc_intr8 = 0;
1004 	sc->sc_intr16 = 0;
1005 	sc->sc_intrm = 0;
1006 
1007 	/*
1008 	 * See SBK, section 11.3.
1009 	 * We pulse a reset signal into the card.
1010 	 * Gee, what a brilliant hardware design.
1011 	 */
1012 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 1);
1013 	delay(10);
1014 	bus_space_write_1(iot, ioh, SBP_DSP_RESET, 0);
1015 	delay(30);
1016 	if (sbdsp_rdsp(sc) != SB_MAGIC)
1017 		return -1;
1018 
1019 	return 0;
1020 }
1021 
1022 /*
1023  * Write a byte to the dsp.
1024  * We are at the mercy of the card as we use a
1025  * polling loop and wait until it can take the byte.
1026  */
1027 int
1028 sbdsp_wdsp(sc, v)
1029 	struct sbdsp_softc *sc;
1030 	int v;
1031 {
1032 	bus_space_tag_t iot = sc->sc_iot;
1033 	bus_space_handle_t ioh = sc->sc_ioh;
1034 	int i;
1035 	u_char x;
1036 
1037 	for (i = SBDSP_NPOLL; --i >= 0; ) {
1038 		x = bus_space_read_1(iot, ioh, SBP_DSP_WSTAT);
1039 		delay(10);
1040 		if ((x & SB_DSP_BUSY) == 0) {
1041 			bus_space_write_1(iot, ioh, SBP_DSP_WRITE, v);
1042 			delay(10);
1043 			return 0;
1044 		}
1045 	}
1046 	++sberr.wdsp;
1047 	return -1;
1048 }
1049 
1050 /*
1051  * Read a byte from the DSP, using polling.
1052  */
1053 int
1054 sbdsp_rdsp(sc)
1055 	struct sbdsp_softc *sc;
1056 {
1057 	bus_space_tag_t iot = sc->sc_iot;
1058 	bus_space_handle_t ioh = sc->sc_ioh;
1059 	int i;
1060 	u_char x;
1061 
1062 	for (i = SBDSP_NPOLL; --i >= 0; ) {
1063 		x = bus_space_read_1(iot, ioh, SBP_DSP_RSTAT);
1064 		delay(10);
1065 		if (x & SB_DSP_READY) {
1066 			x = bus_space_read_1(iot, ioh, SBP_DSP_READ);
1067 			delay(10);
1068 			return x;
1069 		}
1070 	}
1071 	++sberr.rdsp;
1072 	return -1;
1073 }
1074 
1075 void
1076 sbdsp_pause(sc)
1077 	struct sbdsp_softc *sc;
1078 {
1079 
1080 	(void) tsleep(sbdsp_pause, PWAIT, "sbpause", hz / 8);
1081 }
1082 
1083 /*
1084  * Turn on the speaker.  The SBK documention says this operation
1085  * can take up to 1/10 of a second.  Higher level layers should
1086  * probably let the task sleep for this amount of time after
1087  * calling here.  Otherwise, things might not work (because
1088  * sbdsp_wdsp() and sbdsp_rdsp() will probably timeout.)
1089  *
1090  * These engineers had their heads up their ass when
1091  * they designed this card.
1092  */
1093 void
1094 sbdsp_spkron(sc)
1095 	struct sbdsp_softc *sc;
1096 {
1097 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_ON);
1098 	sbdsp_pause(sc);
1099 }
1100 
1101 /*
1102  * Turn off the speaker; see comment above.
1103  */
1104 void
1105 sbdsp_spkroff(sc)
1106 	struct sbdsp_softc *sc;
1107 {
1108 	(void)sbdsp_wdsp(sc, SB_DSP_SPKR_OFF);
1109 	sbdsp_pause(sc);
1110 }
1111 
1112 /*
1113  * Read the version number out of the card.
1114  * Store version information in the softc.
1115  */
1116 void
1117 sbversion(sc)
1118 	struct sbdsp_softc *sc;
1119 {
1120 	int v;
1121 
1122 	sc->sc_model = SB_UNK;
1123 	sc->sc_version = 0;
1124 	if (sbdsp_wdsp(sc, SB_DSP_VERSION) < 0)
1125 		return;
1126 	v = sbdsp_rdsp(sc) << 8;
1127 	v |= sbdsp_rdsp(sc);
1128 	if (v < 0)
1129 		return;
1130 	sc->sc_version = v;
1131 	switch(SBVER_MAJOR(v)) {
1132 	case 1:
1133 		sc->sc_mixer_model = SBM_NONE;
1134 		sc->sc_model = SB_1;
1135 		break;
1136 	case 2:
1137 		/* Some SB2 have a mixer, some don't. */
1138 		sbdsp_mix_write(sc, SBP_1335_MASTER_VOL, 0x04);
1139 		sbdsp_mix_write(sc, SBP_1335_MIDI_VOL,   0x06);
1140 		/* Check if we can read back the mixer values. */
1141 		if ((sbdsp_mix_read(sc, SBP_1335_MASTER_VOL) & 0x0e) == 0x04 &&
1142 		    (sbdsp_mix_read(sc, SBP_1335_MIDI_VOL)   & 0x0e) == 0x06)
1143 			sc->sc_mixer_model = SBM_CT1335;
1144 		else
1145 			sc->sc_mixer_model = SBM_NONE;
1146 		if (SBVER_MINOR(v) == 0)
1147 			sc->sc_model = SB_20;
1148 		else
1149 			sc->sc_model = SB_2x;
1150 		break;
1151 	case 3:
1152 		sc->sc_mixer_model = SBM_CT1345;
1153 		sc->sc_model = SB_PRO;
1154 		break;
1155 	case 4:
1156 #if 0
1157 /* XXX This does not work */
1158 		/* Most SB16 have a tone controls, but some don't. */
1159 		sbdsp_mix_write(sc, SB16P_TREBLE_L, 0x80);
1160 		/* Check if we can read back the mixer value. */
1161 		if ((sbdsp_mix_read(sc, SB16P_TREBLE_L) & 0xf0) == 0x80)
1162 			sc->sc_mixer_model = SBM_CT1745;
1163 		else
1164 			sc->sc_mixer_model = SBM_CT1XX5;
1165 #else
1166 		sc->sc_mixer_model = SBM_CT1745;
1167 #endif
1168 #if 0
1169 /* XXX figure out a good way of determining the model */
1170 		/* XXX what about SB_32 */
1171 		if (SBVER_MINOR(v) == 16)
1172 			sc->sc_model = SB_64;
1173 		else
1174 #endif
1175 			sc->sc_model = SB_16;
1176 		break;
1177 	}
1178 }
1179 
1180 int
1181 sbdsp_set_timeconst(sc, tc)
1182 	struct sbdsp_softc *sc;
1183 	int tc;
1184 {
1185 	DPRINTF(("sbdsp_set_timeconst: sc=%p tc=%d\n", sc, tc));
1186 
1187 	if (sbdsp_wdsp(sc, SB_DSP_TIMECONST) < 0 ||
1188 	    sbdsp_wdsp(sc, tc) < 0)
1189 		return EIO;
1190 
1191 	return 0;
1192 }
1193 
1194 int
1195 sbdsp16_set_rate(sc, cmd, rate)
1196 	struct sbdsp_softc *sc;
1197 	int cmd, rate;
1198 {
1199 	DPRINTF(("sbdsp16_set_rate: sc=%p cmd=0x%02x rate=%d\n", sc, cmd, rate));
1200 
1201 	if (sbdsp_wdsp(sc, cmd) < 0 ||
1202 	    sbdsp_wdsp(sc, rate >> 8) < 0 ||
1203 	    sbdsp_wdsp(sc, rate) < 0)
1204 		return EIO;
1205 	return 0;
1206 }
1207 
1208 int
1209 sbdsp_trigger_input(addr, start, end, blksize, intr, arg, param)
1210 	void *addr;
1211 	void *start, *end;
1212 	int blksize;
1213 	void (*intr) __P((void *));
1214 	void *arg;
1215 	struct audio_params *param;
1216 {
1217 	struct sbdsp_softc *sc = addr;
1218 	int stereo = param->channels == 2;
1219 	int width = param->precision * param->factor;
1220 	int filter;
1221 
1222 #ifdef DIAGNOSTIC
1223 	if (stereo && (blksize & 1)) {
1224 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1225 		return (EIO);
1226 	}
1227 	if (sc->sc_i.run != SB_NOTRUNNING)
1228 		printf("sbdsp_trigger_input: already running\n");
1229 #endif
1230 
1231 	sc->sc_intrr = intr;
1232 	sc->sc_argr = arg;
1233 
1234 	if (width == 8) {
1235 #ifdef DIAGNOSTIC
1236 		if (sc->sc_i.dmachan != sc->sc_drq8) {
1237 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1238 			    width, sc->sc_i.dmachan);
1239 			return (EIO);
1240 		}
1241 #endif
1242 		sc->sc_intr8 = sbdsp_block_input;
1243 	} else {
1244 #ifdef DIAGNOSTIC
1245 		if (sc->sc_i.dmachan != sc->sc_drq16) {
1246 			printf("sbdsp_trigger_input: width=%d bad chan %d\n",
1247 			    width, sc->sc_i.dmachan);
1248 			return (EIO);
1249 		}
1250 #endif
1251 		sc->sc_intr16 = sbdsp_block_input;
1252 	}
1253 
1254 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_i.dmachan > 3) : (width == 16))
1255 		blksize >>= 1;
1256 	--blksize;
1257 	sc->sc_i.blksize = blksize;
1258 
1259 	if (ISSBPRO(sc)) {
1260 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmdchan) < 0)
1261 			return (EIO);
1262 		filter = stereo ? SBP_FILTER_OFF : sc->in_filter;
1263 		sbdsp_mix_write(sc, SBP_INFILTER,
1264 		    (sbdsp_mix_read(sc, SBP_INFILTER) & ~SBP_IFILTER_MASK) |
1265 		    filter);
1266 	}
1267 
1268 	if (ISSB16CLASS(sc)) {
1269 		if (sbdsp16_set_rate(sc, SB_DSP16_INPUTRATE, sc->sc_i.rate)) {
1270 			DPRINTF(("sbdsp_trigger_input: rate=%d set failed\n",
1271 				 sc->sc_i.rate));
1272 			return (EIO);
1273 		}
1274 	} else {
1275 		if (sbdsp_set_timeconst(sc, sc->sc_i.tc)) {
1276 			DPRINTF(("sbdsp_trigger_input: tc=%d set failed\n",
1277 				 sc->sc_i.rate));
1278 			return (EIO);
1279 		}
1280 	}
1281 
1282 	DPRINTF(("sbdsp: dma start loop input start=%p end=%p chan=%d\n",
1283 	    start, end, sc->sc_i.dmachan));
1284 	isa_dmastart(sc->sc_ic, sc->sc_i.dmachan, start,
1285 	    (char *)end - (char *)start, NULL,
1286 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1287 
1288 	return sbdsp_block_input(addr);
1289 }
1290 
1291 int
1292 sbdsp_block_input(addr)
1293 	void *addr;
1294 {
1295 	struct sbdsp_softc *sc = addr;
1296 	int cc = sc->sc_i.blksize;
1297 
1298 	DPRINTFN(2, ("sbdsp_block_input: sc=%p cc=%d\n", addr, cc));
1299 
1300 	if (sc->sc_i.run != SB_NOTRUNNING)
1301 		sc->sc_intrr(sc->sc_argr);
1302 
1303 	if (sc->sc_model == SB_1) {
1304 		/* Non-looping mode, start DMA */
1305 		if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1306 		    sbdsp_wdsp(sc, cc) < 0 ||
1307 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
1308 			DPRINTF(("sbdsp_block_input: SB1 DMA start failed\n"));
1309 			return (EIO);
1310 		}
1311 		sc->sc_i.run = SB_RUNNING;
1312 	} else if (sc->sc_i.run == SB_NOTRUNNING) {
1313 		/* Initialize looping PCM */
1314 		if (ISSB16CLASS(sc)) {
1315 			DPRINTFN(3, ("sbdsp16 input command cmd=0x%02x bmode=0x%02x cc=%d\n",
1316 			    sc->sc_i.modep->cmd, sc->sc_i.bmode, cc));
1317 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0 ||
1318 			    sbdsp_wdsp(sc, sc->sc_i.bmode) < 0 ||
1319 			    sbdsp_wdsp(sc, cc) < 0 ||
1320 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1321 				DPRINTF(("sbdsp_block_input: SB16 DMA start failed\n"));
1322 				return (EIO);
1323 			}
1324 		} else {
1325 			DPRINTF(("sbdsp_block_input: set blocksize=%d\n", cc));
1326 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1327 			    sbdsp_wdsp(sc, cc) < 0 ||
1328 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1329 				DPRINTF(("sbdsp_block_input: SB2 DMA blocksize failed\n"));
1330 				return (EIO);
1331 			}
1332 			if (sbdsp_wdsp(sc, sc->sc_i.modep->cmd) < 0) {
1333 				DPRINTF(("sbdsp_block_input: SB2 DMA start failed\n"));
1334 				return (EIO);
1335 			}
1336 		}
1337 		sc->sc_i.run = SB_LOOPING;
1338 	}
1339 
1340 	return (0);
1341 }
1342 
1343 int
1344 sbdsp_trigger_output(addr, start, end, blksize, intr, arg, param)
1345 	void *addr;
1346 	void *start, *end;
1347 	int blksize;
1348 	void (*intr) __P((void *));
1349 	void *arg;
1350 	struct audio_params *param;
1351 {
1352 	struct sbdsp_softc *sc = addr;
1353 	int stereo = param->channels == 2;
1354 	int width = param->precision * param->factor;
1355 	int cmd;
1356 
1357 #ifdef DIAGNOSTIC
1358 	if (stereo && (blksize & 1)) {
1359 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1360 		return (EIO);
1361 	}
1362 	if (sc->sc_o.run != SB_NOTRUNNING)
1363 		printf("sbdsp_trigger_output: already running\n");
1364 #endif
1365 
1366 	sc->sc_intrp = intr;
1367 	sc->sc_argp = arg;
1368 
1369 	if (width == 8) {
1370 #ifdef DIAGNOSTIC
1371 		if (sc->sc_o.dmachan != sc->sc_drq8) {
1372 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1373 			    width, sc->sc_o.dmachan);
1374 			return (EIO);
1375 		}
1376 #endif
1377 		sc->sc_intr8 = sbdsp_block_output;
1378 	} else {
1379 #ifdef DIAGNOSTIC
1380 		if (sc->sc_o.dmachan != sc->sc_drq16) {
1381 			printf("sbdsp_trigger_output: width=%d bad chan %d\n",
1382 			    width, sc->sc_o.dmachan);
1383 			return (EIO);
1384 		}
1385 #endif
1386 		sc->sc_intr16 = sbdsp_block_output;
1387 	}
1388 
1389 	if ((sc->sc_model == SB_JAZZ) ? (sc->sc_o.dmachan > 3) : (width == 16))
1390 		blksize >>= 1;
1391 	--blksize;
1392 	sc->sc_o.blksize = blksize;
1393 
1394 	if (ISSBPRO(sc)) {
1395 		/* make sure we re-set stereo mixer bit when we start output. */
1396 		sbdsp_mix_write(sc, SBP_STEREO,
1397 		    (sbdsp_mix_read(sc, SBP_STEREO) & ~SBP_PLAYMODE_MASK) |
1398 		    (stereo ?  SBP_PLAYMODE_STEREO : SBP_PLAYMODE_MONO));
1399 		cmd = sc->sc_o.modep->cmdchan;
1400 		if (cmd && sbdsp_wdsp(sc, cmd) < 0)
1401 			return (EIO);
1402 	}
1403 
1404 	if (ISSB16CLASS(sc)) {
1405 		if (sbdsp16_set_rate(sc, SB_DSP16_OUTPUTRATE, sc->sc_o.rate)) {
1406 			DPRINTF(("sbdsp_trigger_output: rate=%d set failed\n",
1407 				 sc->sc_o.rate));
1408 			return (EIO);
1409 		}
1410 	} else {
1411 		if (sbdsp_set_timeconst(sc, sc->sc_o.tc)) {
1412 			DPRINTF(("sbdsp_trigger_output: tc=%d set failed\n",
1413 				 sc->sc_o.rate));
1414 			return (EIO);
1415 		}
1416 	}
1417 
1418 	DPRINTF(("sbdsp: dma start loop output start=%p end=%p chan=%d\n",
1419 	    start, end, sc->sc_o.dmachan));
1420 	isa_dmastart(sc->sc_ic, sc->sc_o.dmachan, start,
1421 	    (char *)end - (char *)start, NULL,
1422 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1423 
1424 	return sbdsp_block_output(addr);
1425 }
1426 
1427 int
1428 sbdsp_block_output(addr)
1429 	void *addr;
1430 {
1431 	struct sbdsp_softc *sc = addr;
1432 	int cc = sc->sc_o.blksize;
1433 
1434 	DPRINTFN(2, ("sbdsp_block_output: sc=%p cc=%d\n", addr, cc));
1435 
1436 	if (sc->sc_o.run != SB_NOTRUNNING)
1437 		sc->sc_intrp(sc->sc_argp);
1438 
1439 	if (sc->sc_model == SB_1) {
1440 		/* Non-looping mode, initialized. Start DMA and PCM */
1441 		if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1442 		    sbdsp_wdsp(sc, cc) < 0 ||
1443 		    sbdsp_wdsp(sc, cc >> 8) < 0) {
1444 			DPRINTF(("sbdsp_block_output: SB1 DMA start failed\n"));
1445 			return (EIO);
1446 		}
1447 		sc->sc_o.run = SB_RUNNING;
1448 	} else if (sc->sc_o.run == SB_NOTRUNNING) {
1449 		/* Initialize looping PCM */
1450 		if (ISSB16CLASS(sc)) {
1451 			DPRINTF(("sbdsp_block_output: SB16 cmd=0x%02x bmode=0x%02x cc=%d\n",
1452 			    sc->sc_o.modep->cmd,sc->sc_o.bmode, cc));
1453 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0 ||
1454 			    sbdsp_wdsp(sc, sc->sc_o.bmode) < 0 ||
1455 			    sbdsp_wdsp(sc, cc) < 0 ||
1456 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1457 				DPRINTF(("sbdsp_block_output: SB16 DMA start failed\n"));
1458 				return (EIO);
1459 			}
1460 		} else {
1461 			DPRINTF(("sbdsp_block_output: set blocksize=%d\n", cc));
1462 			if (sbdsp_wdsp(sc, SB_DSP_BLOCKSIZE) < 0 ||
1463 			    sbdsp_wdsp(sc, cc) < 0 ||
1464 			    sbdsp_wdsp(sc, cc >> 8) < 0) {
1465 				DPRINTF(("sbdsp_block_output: SB2 DMA blocksize failed\n"));
1466 				return (EIO);
1467 			}
1468 			if (sbdsp_wdsp(sc, sc->sc_o.modep->cmd) < 0) {
1469 				DPRINTF(("sbdsp_block_output: SB2 DMA start failed\n"));
1470 				return (EIO);
1471 			}
1472 		}
1473 		sc->sc_o.run = SB_LOOPING;
1474 	}
1475 
1476 	return (0);
1477 }
1478 
1479 int
1480 sbdsp_halt_output(addr)
1481 	void *addr;
1482 {
1483 	struct sbdsp_softc *sc = addr;
1484 
1485 	if (sc->sc_o.run != SB_NOTRUNNING) {
1486 		if (sbdsp_wdsp(sc, sc->sc_o.modep->halt) < 0)
1487 			printf("sbdsp_halt_output: failed to halt\n");
1488 		isa_dmaabort(sc->sc_ic, sc->sc_o.dmachan);
1489 		sc->sc_o.run = SB_NOTRUNNING;
1490 	}
1491 
1492 	return (0);
1493 }
1494 
1495 int
1496 sbdsp_halt_input(addr)
1497 	void *addr;
1498 {
1499 	struct sbdsp_softc *sc = addr;
1500 
1501 	if (sc->sc_i.run != SB_NOTRUNNING) {
1502 		if (sbdsp_wdsp(sc, sc->sc_i.modep->halt) < 0)
1503 			printf("sbdsp_halt_input: failed to halt\n");
1504 		isa_dmaabort(sc->sc_ic, sc->sc_i.dmachan);
1505 		sc->sc_i.run = SB_NOTRUNNING;
1506 	}
1507 
1508 	return (0);
1509 }
1510 
1511 /*
1512  * Only the DSP unit on the sound blaster generates interrupts.
1513  * There are three cases of interrupt: reception of a midi byte
1514  * (when mode is enabled), completion of dma transmission, or
1515  * completion of a dma reception.
1516  *
1517  * If there is interrupt sharing or a spurious interrupt occurs
1518  * there is no way to distinguish this on an SB2.  So if you have
1519  * an SB2 and experience problems, buy an SB16 (it's only $40).
1520  */
1521 int
1522 sbdsp_intr(arg)
1523 	void *arg;
1524 {
1525 	struct sbdsp_softc *sc = arg;
1526 	u_char irq;
1527 
1528 	DPRINTFN(2, ("sbdsp_intr: intr8=%p, intr16=%p\n",
1529 		   sc->sc_intr8, sc->sc_intr16));
1530 	if (ISSB16CLASS(sc)) {
1531 		irq = sbdsp_mix_read(sc, SBP_IRQ_STATUS);
1532 		if ((irq & (SBP_IRQ_DMA8 | SBP_IRQ_DMA16 | SBP_IRQ_MPU401)) == 0) {
1533 			DPRINTF(("sbdsp_intr: Spurious interrupt 0x%x\n", irq));
1534 			return 0;
1535 		}
1536 	} else {
1537 		/* XXXX CHECK FOR INTERRUPT */
1538 		irq = SBP_IRQ_DMA8;
1539 	}
1540 
1541 	sc->sc_interrupts++;
1542 	delay(10);		/* XXX why? */
1543 
1544 	/* clear interrupt */
1545 	if (irq & SBP_IRQ_DMA8) {
1546 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK8);
1547 		if (sc->sc_intr8)
1548 			sc->sc_intr8(arg);
1549 	}
1550 	if (irq & SBP_IRQ_DMA16) {
1551 		bus_space_read_1(sc->sc_iot, sc->sc_ioh, SBP_DSP_IRQACK16);
1552 		if (sc->sc_intr16)
1553 			sc->sc_intr16(arg);
1554 	}
1555 #if NMPU > 0
1556 	if ((irq & SBP_IRQ_MPU401) && sc->sc_mpudev) {
1557 		mpu_intr(sc->sc_mpudev);
1558 	}
1559 #endif
1560 	return 1;
1561 }
1562 
1563 /* Like val & mask, but make sure the result is correctly rounded. */
1564 #define MAXVAL 256
1565 static int
1566 sbdsp_adjust(val, mask)
1567 	int val, mask;
1568 {
1569 	val += (MAXVAL - mask) >> 1;
1570 	if (val >= MAXVAL)
1571 		val = MAXVAL-1;
1572 	return val & mask;
1573 }
1574 
1575 void
1576 sbdsp_set_mixer_gain(sc, port)
1577 	struct sbdsp_softc *sc;
1578 	int port;
1579 {
1580 	int src, gain;
1581 
1582 	switch(sc->sc_mixer_model) {
1583 	case SBM_NONE:
1584 		return;
1585 	case SBM_CT1335:
1586 		gain = SB_1335_GAIN(sc->gain[port][SB_LEFT]);
1587 		switch(port) {
1588 		case SB_MASTER_VOL:
1589 			src = SBP_1335_MASTER_VOL;
1590 			break;
1591 		case SB_MIDI_VOL:
1592 			src = SBP_1335_MIDI_VOL;
1593 			break;
1594 		case SB_CD_VOL:
1595 			src = SBP_1335_CD_VOL;
1596 			break;
1597 		case SB_VOICE_VOL:
1598 			src = SBP_1335_VOICE_VOL;
1599 			gain = SB_1335_MASTER_GAIN(sc->gain[port][SB_LEFT]);
1600 			break;
1601 		default:
1602 			return;
1603 		}
1604 		sbdsp_mix_write(sc, src, gain);
1605 		break;
1606 	case SBM_CT1345:
1607 		gain = SB_STEREO_GAIN(sc->gain[port][SB_LEFT],
1608 				      sc->gain[port][SB_RIGHT]);
1609 		switch (port) {
1610 		case SB_MIC_VOL:
1611 			src = SBP_MIC_VOL;
1612 			gain = SB_MIC_GAIN(sc->gain[port][SB_LEFT]);
1613 			break;
1614 		case SB_MASTER_VOL:
1615 			src = SBP_MASTER_VOL;
1616 			break;
1617 		case SB_LINE_IN_VOL:
1618 			src = SBP_LINE_VOL;
1619 			break;
1620 		case SB_VOICE_VOL:
1621 			src = SBP_VOICE_VOL;
1622 			break;
1623 		case SB_MIDI_VOL:
1624 			src = SBP_MIDI_VOL;
1625 			break;
1626 		case SB_CD_VOL:
1627 			src = SBP_CD_VOL;
1628 			break;
1629 		default:
1630 			return;
1631 		}
1632 		sbdsp_mix_write(sc, src, gain);
1633 		break;
1634 	case SBM_CT1XX5:
1635 	case SBM_CT1745:
1636 		switch (port) {
1637 		case SB_MIC_VOL:
1638 			src = SB16P_MIC_L;
1639 			break;
1640 		case SB_MASTER_VOL:
1641 			src = SB16P_MASTER_L;
1642 			break;
1643 		case SB_LINE_IN_VOL:
1644 			src = SB16P_LINE_L;
1645 			break;
1646 		case SB_VOICE_VOL:
1647 			src = SB16P_VOICE_L;
1648 			break;
1649 		case SB_MIDI_VOL:
1650 			src = SB16P_MIDI_L;
1651 			break;
1652 		case SB_CD_VOL:
1653 			src = SB16P_CD_L;
1654 			break;
1655 		case SB_INPUT_GAIN:
1656 			src = SB16P_INPUT_GAIN_L;
1657 			break;
1658 		case SB_OUTPUT_GAIN:
1659 			src = SB16P_OUTPUT_GAIN_L;
1660 			break;
1661 		case SB_TREBLE:
1662 			src = SB16P_TREBLE_L;
1663 			break;
1664 		case SB_BASS:
1665 			src = SB16P_BASS_L;
1666 			break;
1667 		case SB_PCSPEAKER:
1668 			sbdsp_mix_write(sc, SB16P_PCSPEAKER, sc->gain[port][SB_LEFT]);
1669 			return;
1670 		default:
1671 			return;
1672 		}
1673 		sbdsp_mix_write(sc, src, sc->gain[port][SB_LEFT]);
1674 		sbdsp_mix_write(sc, SB16P_L_TO_R(src), sc->gain[port][SB_RIGHT]);
1675 		break;
1676 	}
1677 }
1678 
1679 int
1680 sbdsp_mixer_set_port(addr, cp)
1681 	void *addr;
1682 	mixer_ctrl_t *cp;
1683 {
1684 	struct sbdsp_softc *sc = addr;
1685 	int lgain, rgain;
1686 	int mask, bits;
1687 	int lmask, rmask, lbits, rbits;
1688 	int mute, swap;
1689 
1690 	if (sc->sc_open == SB_OPEN_MIDI)
1691 		return EBUSY;
1692 
1693 	DPRINTF(("sbdsp_mixer_set_port: port=%d num_channels=%d\n", cp->dev,
1694 	    cp->un.value.num_channels));
1695 
1696 	if (sc->sc_mixer_model == SBM_NONE)
1697 		return EINVAL;
1698 
1699 	switch (cp->dev) {
1700 	case SB_TREBLE:
1701 	case SB_BASS:
1702 		if (sc->sc_mixer_model == SBM_CT1345 ||
1703 		    sc->sc_mixer_model == SBM_CT1XX5) {
1704 			if (cp->type != AUDIO_MIXER_ENUM)
1705 				return EINVAL;
1706 			switch (cp->dev) {
1707 			case SB_TREBLE:
1708 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_TREBLE : 0);
1709 				return 0;
1710 			case SB_BASS:
1711 				sbdsp_set_ifilter(addr, cp->un.ord ? SB_BASS : 0);
1712 				return 0;
1713 			}
1714 		}
1715 	case SB_PCSPEAKER:
1716 	case SB_INPUT_GAIN:
1717 	case SB_OUTPUT_GAIN:
1718 		if (!ISSBM1745(sc))
1719 			return EINVAL;
1720 	case SB_MIC_VOL:
1721 	case SB_LINE_IN_VOL:
1722 		if (sc->sc_mixer_model == SBM_CT1335)
1723 			return EINVAL;
1724 	case SB_VOICE_VOL:
1725 	case SB_MIDI_VOL:
1726 	case SB_CD_VOL:
1727 	case SB_MASTER_VOL:
1728 		if (cp->type != AUDIO_MIXER_VALUE)
1729 			return EINVAL;
1730 
1731 		/*
1732 		 * All the mixer ports are stereo except for the microphone.
1733 		 * If we get a single-channel gain value passed in, then we
1734 		 * duplicate it to both left and right channels.
1735 		 */
1736 
1737 		switch (cp->dev) {
1738 		case SB_MIC_VOL:
1739 			if (cp->un.value.num_channels != 1)
1740 				return EINVAL;
1741 
1742 			lgain = rgain = SB_ADJUST_MIC_GAIN(sc,
1743 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1744 			break;
1745 		case SB_PCSPEAKER:
1746 			if (cp->un.value.num_channels != 1)
1747 				return EINVAL;
1748 			/* fall into */
1749 		case SB_INPUT_GAIN:
1750 		case SB_OUTPUT_GAIN:
1751 			lgain = rgain = SB_ADJUST_2_GAIN(sc,
1752 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1753 			break;
1754 		default:
1755 			switch (cp->un.value.num_channels) {
1756 			case 1:
1757 				lgain = rgain = SB_ADJUST_GAIN(sc,
1758 				  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1759 				break;
1760 			case 2:
1761 				if (sc->sc_mixer_model == SBM_CT1335)
1762 					return EINVAL;
1763 				lgain = SB_ADJUST_GAIN(sc,
1764 				  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1765 				rgain = SB_ADJUST_GAIN(sc,
1766 				  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1767 				break;
1768 			default:
1769 				return EINVAL;
1770 			}
1771 			break;
1772 		}
1773 		sc->gain[cp->dev][SB_LEFT]  = lgain;
1774 		sc->gain[cp->dev][SB_RIGHT] = rgain;
1775 
1776 		sbdsp_set_mixer_gain(sc, cp->dev);
1777 		break;
1778 
1779 	case SB_RECORD_SOURCE:
1780 		if (ISSBM1745(sc)) {
1781 			if (cp->type != AUDIO_MIXER_SET)
1782 				return EINVAL;
1783 			return sbdsp_set_in_ports(sc, cp->un.mask);
1784 		} else {
1785 			if (cp->type != AUDIO_MIXER_ENUM)
1786 				return EINVAL;
1787 			sc->in_port = cp->un.ord;
1788 			return sbdsp_set_in_ports(sc, 1 << cp->un.ord);
1789 		}
1790 		break;
1791 
1792 	case SB_AGC:
1793 		if (!ISSBM1745(sc) || cp->type != AUDIO_MIXER_ENUM)
1794 			return EINVAL;
1795 		sbdsp_mix_write(sc, SB16P_AGC, cp->un.ord & 1);
1796 		break;
1797 
1798 	case SB_CD_OUT_MUTE:
1799 		mask = SB16P_SW_CD;
1800 		goto omute;
1801 	case SB_MIC_OUT_MUTE:
1802 		mask = SB16P_SW_MIC;
1803 		goto omute;
1804 	case SB_LINE_OUT_MUTE:
1805 		mask = SB16P_SW_LINE;
1806 	omute:
1807 		if (cp->type != AUDIO_MIXER_ENUM)
1808 			return EINVAL;
1809 		bits = sbdsp_mix_read(sc, SB16P_OSWITCH);
1810 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1811 		if (cp->un.ord)
1812 			bits = bits & ~mask;
1813 		else
1814 			bits = bits | mask;
1815 		sbdsp_mix_write(sc, SB16P_OSWITCH, bits);
1816 		break;
1817 
1818 	case SB_MIC_IN_MUTE:
1819 	case SB_MIC_SWAP:
1820 		lmask = rmask = SB16P_SW_MIC;
1821 		goto imute;
1822 	case SB_CD_IN_MUTE:
1823 	case SB_CD_SWAP:
1824 		lmask = SB16P_SW_CD_L;
1825 		rmask = SB16P_SW_CD_R;
1826 		goto imute;
1827 	case SB_LINE_IN_MUTE:
1828 	case SB_LINE_SWAP:
1829 		lmask = SB16P_SW_LINE_L;
1830 		rmask = SB16P_SW_LINE_R;
1831 		goto imute;
1832 	case SB_MIDI_IN_MUTE:
1833 	case SB_MIDI_SWAP:
1834 		lmask = SB16P_SW_MIDI_L;
1835 		rmask = SB16P_SW_MIDI_R;
1836 	imute:
1837 		if (cp->type != AUDIO_MIXER_ENUM)
1838 			return EINVAL;
1839 		mask = lmask | rmask;
1840 		lbits = sbdsp_mix_read(sc, SB16P_ISWITCH_L) & ~mask;
1841 		rbits = sbdsp_mix_read(sc, SB16P_ISWITCH_R) & ~mask;
1842 		sc->gain[cp->dev][SB_LR] = cp->un.ord != 0;
1843 		if (SB_IS_IN_MUTE(cp->dev)) {
1844 			mute = cp->dev;
1845 			swap = mute - SB_CD_IN_MUTE + SB_CD_SWAP;
1846 		} else {
1847 			swap = cp->dev;
1848 			mute = swap + SB_CD_IN_MUTE - SB_CD_SWAP;
1849 		}
1850 		if (sc->gain[swap][SB_LR]) {
1851 			mask = lmask;
1852 			lmask = rmask;
1853 			rmask = mask;
1854 		}
1855 		if (!sc->gain[mute][SB_LR]) {
1856 			lbits = lbits | lmask;
1857 			rbits = rbits | rmask;
1858 		}
1859 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, lbits);
1860 		sbdsp_mix_write(sc, SB16P_ISWITCH_L, rbits);
1861 		break;
1862 
1863 	default:
1864 		return EINVAL;
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 int
1871 sbdsp_mixer_get_port(addr, cp)
1872 	void *addr;
1873 	mixer_ctrl_t *cp;
1874 {
1875 	struct sbdsp_softc *sc = addr;
1876 
1877 	if (sc->sc_open == SB_OPEN_MIDI)
1878 		return EBUSY;
1879 
1880 	DPRINTF(("sbdsp_mixer_get_port: port=%d\n", cp->dev));
1881 
1882 	if (sc->sc_mixer_model == SBM_NONE)
1883 		return EINVAL;
1884 
1885 	switch (cp->dev) {
1886 	case SB_TREBLE:
1887 	case SB_BASS:
1888 		if (sc->sc_mixer_model == SBM_CT1345 ||
1889 		    sc->sc_mixer_model == SBM_CT1XX5) {
1890 			switch (cp->dev) {
1891 			case SB_TREBLE:
1892 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_TREBLE;
1893 				return 0;
1894 			case SB_BASS:
1895 				cp->un.ord = sbdsp_get_ifilter(addr) == SB_BASS;
1896 				return 0;
1897 			}
1898 		}
1899 	case SB_PCSPEAKER:
1900 	case SB_INPUT_GAIN:
1901 	case SB_OUTPUT_GAIN:
1902 		if (!ISSBM1745(sc))
1903 			return EINVAL;
1904 	case SB_MIC_VOL:
1905 	case SB_LINE_IN_VOL:
1906 		if (sc->sc_mixer_model == SBM_CT1335)
1907 			return EINVAL;
1908 	case SB_VOICE_VOL:
1909 	case SB_MIDI_VOL:
1910 	case SB_CD_VOL:
1911 	case SB_MASTER_VOL:
1912 		switch (cp->dev) {
1913 		case SB_MIC_VOL:
1914 		case SB_PCSPEAKER:
1915 			if (cp->un.value.num_channels != 1)
1916 				return EINVAL;
1917 			/* fall into */
1918 		default:
1919 			switch (cp->un.value.num_channels) {
1920 			case 1:
1921 				cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1922 					sc->gain[cp->dev][SB_LEFT];
1923 				break;
1924 			case 2:
1925 				cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1926 					sc->gain[cp->dev][SB_LEFT];
1927 				cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1928 					sc->gain[cp->dev][SB_RIGHT];
1929 				break;
1930 			default:
1931 				return EINVAL;
1932 			}
1933 			break;
1934 		}
1935 		break;
1936 
1937 	case SB_RECORD_SOURCE:
1938 		if (ISSBM1745(sc))
1939 			cp->un.mask = sc->in_mask;
1940 		else
1941 			cp->un.ord = sc->in_port;
1942 		break;
1943 
1944 	case SB_AGC:
1945 		if (!ISSBM1745(sc))
1946 			return EINVAL;
1947 		cp->un.ord = sbdsp_mix_read(sc, SB16P_AGC);
1948 		break;
1949 
1950 	case SB_CD_IN_MUTE:
1951 	case SB_MIC_IN_MUTE:
1952 	case SB_LINE_IN_MUTE:
1953 	case SB_MIDI_IN_MUTE:
1954 	case SB_CD_SWAP:
1955 	case SB_MIC_SWAP:
1956 	case SB_LINE_SWAP:
1957 	case SB_MIDI_SWAP:
1958 	case SB_CD_OUT_MUTE:
1959 	case SB_MIC_OUT_MUTE:
1960 	case SB_LINE_OUT_MUTE:
1961 		cp->un.ord = sc->gain[cp->dev][SB_LR];
1962 		break;
1963 
1964 	default:
1965 		return EINVAL;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 int
1972 sbdsp_mixer_query_devinfo(addr, dip)
1973 	void *addr;
1974 	mixer_devinfo_t *dip;
1975 {
1976 	struct sbdsp_softc *sc = addr;
1977 	int chan, class, is1745;
1978 
1979 	DPRINTF(("sbdsp_mixer_query_devinfo: model=%d index=%d\n",
1980 		 sc->sc_mixer_model, dip->index));
1981 
1982 	if (sc->sc_mixer_model == SBM_NONE)
1983 		return ENXIO;
1984 
1985 	chan = sc->sc_mixer_model == SBM_CT1335 ? 1 : 2;
1986 	is1745 = ISSBM1745(sc);
1987 	class = is1745 ? SB_INPUT_CLASS : SB_OUTPUT_CLASS;
1988 
1989 	switch (dip->index) {
1990 	case SB_MASTER_VOL:
1991 		dip->type = AUDIO_MIXER_VALUE;
1992 		dip->mixer_class = SB_OUTPUT_CLASS;
1993 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1994 		strcpy(dip->label.name, AudioNmaster);
1995 		dip->un.v.num_channels = chan;
1996 		strcpy(dip->un.v.units.name, AudioNvolume);
1997 		return 0;
1998 	case SB_MIDI_VOL:
1999 		dip->type = AUDIO_MIXER_VALUE;
2000 		dip->mixer_class = class;
2001 		dip->prev = AUDIO_MIXER_LAST;
2002 		dip->next = is1745 ? SB_MIDI_IN_MUTE : AUDIO_MIXER_LAST;
2003 		strcpy(dip->label.name, AudioNfmsynth);
2004 		dip->un.v.num_channels = chan;
2005 		strcpy(dip->un.v.units.name, AudioNvolume);
2006 		return 0;
2007 	case SB_CD_VOL:
2008 		dip->type = AUDIO_MIXER_VALUE;
2009 		dip->mixer_class = class;
2010 		dip->prev = AUDIO_MIXER_LAST;
2011 		dip->next = is1745 ? SB_CD_IN_MUTE : AUDIO_MIXER_LAST;
2012 		strcpy(dip->label.name, AudioNcd);
2013 		dip->un.v.num_channels = chan;
2014 		strcpy(dip->un.v.units.name, AudioNvolume);
2015 		return 0;
2016 	case SB_VOICE_VOL:
2017 		dip->type = AUDIO_MIXER_VALUE;
2018 		dip->mixer_class = class;
2019 		dip->prev = AUDIO_MIXER_LAST;
2020 		dip->next = AUDIO_MIXER_LAST;
2021 		strcpy(dip->label.name, AudioNdac);
2022 		dip->un.v.num_channels = chan;
2023 		strcpy(dip->un.v.units.name, AudioNvolume);
2024 		return 0;
2025 	case SB_OUTPUT_CLASS:
2026 		dip->type = AUDIO_MIXER_CLASS;
2027 		dip->mixer_class = SB_OUTPUT_CLASS;
2028 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2029 		strcpy(dip->label.name, AudioCoutputs);
2030 		return 0;
2031 	}
2032 
2033 	if (sc->sc_mixer_model == SBM_CT1335)
2034 		return ENXIO;
2035 
2036 	switch (dip->index) {
2037 	case SB_MIC_VOL:
2038 		dip->type = AUDIO_MIXER_VALUE;
2039 		dip->mixer_class = class;
2040 		dip->prev = AUDIO_MIXER_LAST;
2041 		dip->next = is1745 ? SB_MIC_IN_MUTE : AUDIO_MIXER_LAST;
2042 		strcpy(dip->label.name, AudioNmicrophone);
2043 		dip->un.v.num_channels = 1;
2044 		strcpy(dip->un.v.units.name, AudioNvolume);
2045 		return 0;
2046 
2047 	case SB_LINE_IN_VOL:
2048 		dip->type = AUDIO_MIXER_VALUE;
2049 		dip->mixer_class = class;
2050 		dip->prev = AUDIO_MIXER_LAST;
2051 		dip->next = is1745 ? SB_LINE_IN_MUTE : AUDIO_MIXER_LAST;
2052 		strcpy(dip->label.name, AudioNline);
2053 		dip->un.v.num_channels = 2;
2054 		strcpy(dip->un.v.units.name, AudioNvolume);
2055 		return 0;
2056 
2057 	case SB_RECORD_SOURCE:
2058 		dip->mixer_class = SB_RECORD_CLASS;
2059 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2060 		strcpy(dip->label.name, AudioNsource);
2061 		if (ISSBM1745(sc)) {
2062 			dip->type = AUDIO_MIXER_SET;
2063 			dip->un.s.num_mem = 4;
2064 			strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
2065 			dip->un.s.member[0].mask = 1 << SB_MIC_VOL;
2066 			strcpy(dip->un.s.member[1].label.name, AudioNcd);
2067 			dip->un.s.member[1].mask = 1 << SB_CD_VOL;
2068 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2069 			dip->un.s.member[2].mask = 1 << SB_LINE_IN_VOL;
2070 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2071 			dip->un.s.member[3].mask = 1 << SB_MIDI_VOL;
2072 		} else {
2073 			dip->type = AUDIO_MIXER_ENUM;
2074 			dip->un.e.num_mem = 3;
2075 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2076 			dip->un.e.member[0].ord = SB_MIC_VOL;
2077 			strcpy(dip->un.e.member[1].label.name, AudioNcd);
2078 			dip->un.e.member[1].ord = SB_CD_VOL;
2079 			strcpy(dip->un.e.member[2].label.name, AudioNline);
2080 			dip->un.e.member[2].ord = SB_LINE_IN_VOL;
2081 		}
2082 		return 0;
2083 
2084 	case SB_BASS:
2085 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2086 		strcpy(dip->label.name, AudioNbass);
2087 		if (sc->sc_mixer_model == SBM_CT1745) {
2088 			dip->type = AUDIO_MIXER_VALUE;
2089 			dip->mixer_class = SB_EQUALIZATION_CLASS;
2090 			dip->un.v.num_channels = 2;
2091 			strcpy(dip->un.v.units.name, AudioNbass);
2092 		} else {
2093 			dip->type = AUDIO_MIXER_ENUM;
2094 			dip->mixer_class = SB_INPUT_CLASS;
2095 			dip->un.e.num_mem = 2;
2096 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
2097 			dip->un.e.member[0].ord = 0;
2098 			strcpy(dip->un.e.member[1].label.name, AudioNon);
2099 			dip->un.e.member[1].ord = 1;
2100 		}
2101 		return 0;
2102 
2103 	case SB_TREBLE:
2104 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2105 		strcpy(dip->label.name, AudioNtreble);
2106 		if (sc->sc_mixer_model == SBM_CT1745) {
2107 			dip->type = AUDIO_MIXER_VALUE;
2108 			dip->mixer_class = SB_EQUALIZATION_CLASS;
2109 			dip->un.v.num_channels = 2;
2110 			strcpy(dip->un.v.units.name, AudioNtreble);
2111 		} else {
2112 			dip->type = AUDIO_MIXER_ENUM;
2113 			dip->mixer_class = SB_INPUT_CLASS;
2114 			dip->un.e.num_mem = 2;
2115 			strcpy(dip->un.e.member[0].label.name, AudioNoff);
2116 			dip->un.e.member[0].ord = 0;
2117 			strcpy(dip->un.e.member[1].label.name, AudioNon);
2118 			dip->un.e.member[1].ord = 1;
2119 		}
2120 		return 0;
2121 
2122 	case SB_RECORD_CLASS:			/* record source class */
2123 		dip->type = AUDIO_MIXER_CLASS;
2124 		dip->mixer_class = SB_RECORD_CLASS;
2125 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2126 		strcpy(dip->label.name, AudioCrecord);
2127 		return 0;
2128 
2129 	case SB_INPUT_CLASS:
2130 		dip->type = AUDIO_MIXER_CLASS;
2131 		dip->mixer_class = SB_INPUT_CLASS;
2132 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2133 		strcpy(dip->label.name, AudioCinputs);
2134 		return 0;
2135 
2136 	}
2137 
2138 	if (sc->sc_mixer_model == SBM_CT1345)
2139 		return ENXIO;
2140 
2141 	switch(dip->index) {
2142 	case SB_PCSPEAKER:
2143 		dip->type = AUDIO_MIXER_VALUE;
2144 		dip->mixer_class = SB_INPUT_CLASS;
2145 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2146 		strcpy(dip->label.name, "pc_speaker");
2147 		dip->un.v.num_channels = 1;
2148 		strcpy(dip->un.v.units.name, AudioNvolume);
2149 		return 0;
2150 
2151 	case SB_INPUT_GAIN:
2152 		dip->type = AUDIO_MIXER_VALUE;
2153 		dip->mixer_class = SB_INPUT_CLASS;
2154 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2155 		strcpy(dip->label.name, AudioNinput);
2156 		dip->un.v.num_channels = 2;
2157 		strcpy(dip->un.v.units.name, AudioNvolume);
2158 		return 0;
2159 
2160 	case SB_OUTPUT_GAIN:
2161 		dip->type = AUDIO_MIXER_VALUE;
2162 		dip->mixer_class = SB_OUTPUT_CLASS;
2163 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2164 		strcpy(dip->label.name, AudioNoutput);
2165 		dip->un.v.num_channels = 2;
2166 		strcpy(dip->un.v.units.name, AudioNvolume);
2167 		return 0;
2168 
2169 	case SB_AGC:
2170 		dip->type = AUDIO_MIXER_ENUM;
2171 		dip->mixer_class = SB_INPUT_CLASS;
2172 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2173 		strcpy(dip->label.name, "agc");
2174 		dip->un.e.num_mem = 2;
2175 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2176 		dip->un.e.member[0].ord = 0;
2177 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2178 		dip->un.e.member[1].ord = 1;
2179 		return 0;
2180 
2181 	case SB_EQUALIZATION_CLASS:
2182 		dip->type = AUDIO_MIXER_CLASS;
2183 		dip->mixer_class = SB_EQUALIZATION_CLASS;
2184 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2185 		strcpy(dip->label.name, AudioCequalization);
2186 		return 0;
2187 
2188 	case SB_CD_IN_MUTE:
2189 		dip->prev = SB_CD_VOL;
2190 		dip->next = SB_CD_SWAP;
2191 		dip->mixer_class = SB_INPUT_CLASS;
2192 		goto mute;
2193 
2194 	case SB_MIC_IN_MUTE:
2195 		dip->prev = SB_MIC_VOL;
2196 		dip->next = SB_MIC_SWAP;
2197 		dip->mixer_class = SB_INPUT_CLASS;
2198 		goto mute;
2199 
2200 	case SB_LINE_IN_MUTE:
2201 		dip->prev = SB_LINE_IN_VOL;
2202 		dip->next = SB_LINE_SWAP;
2203 		dip->mixer_class = SB_INPUT_CLASS;
2204 		goto mute;
2205 
2206 	case SB_MIDI_IN_MUTE:
2207 		dip->prev = SB_MIDI_VOL;
2208 		dip->next = SB_MIDI_SWAP;
2209 		dip->mixer_class = SB_INPUT_CLASS;
2210 		goto mute;
2211 
2212 	case SB_CD_SWAP:
2213 		dip->prev = SB_CD_IN_MUTE;
2214 		dip->next = SB_CD_OUT_MUTE;
2215 		goto swap;
2216 
2217 	case SB_MIC_SWAP:
2218 		dip->prev = SB_MIC_IN_MUTE;
2219 		dip->next = SB_MIC_OUT_MUTE;
2220 		goto swap;
2221 
2222 	case SB_LINE_SWAP:
2223 		dip->prev = SB_LINE_IN_MUTE;
2224 		dip->next = SB_LINE_OUT_MUTE;
2225 		goto swap;
2226 
2227 	case SB_MIDI_SWAP:
2228 		dip->prev = SB_MIDI_IN_MUTE;
2229 		dip->next = AUDIO_MIXER_LAST;
2230 	swap:
2231 		dip->mixer_class = SB_INPUT_CLASS;
2232 		strcpy(dip->label.name, AudioNswap);
2233 		goto mute1;
2234 
2235 	case SB_CD_OUT_MUTE:
2236 		dip->prev = SB_CD_SWAP;
2237 		dip->next = AUDIO_MIXER_LAST;
2238 		dip->mixer_class = SB_OUTPUT_CLASS;
2239 		goto mute;
2240 
2241 	case SB_MIC_OUT_MUTE:
2242 		dip->prev = SB_MIC_SWAP;
2243 		dip->next = AUDIO_MIXER_LAST;
2244 		dip->mixer_class = SB_OUTPUT_CLASS;
2245 		goto mute;
2246 
2247 	case SB_LINE_OUT_MUTE:
2248 		dip->prev = SB_LINE_SWAP;
2249 		dip->next = AUDIO_MIXER_LAST;
2250 		dip->mixer_class = SB_OUTPUT_CLASS;
2251 	mute:
2252 		strcpy(dip->label.name, AudioNmute);
2253 	mute1:
2254 		dip->type = AUDIO_MIXER_ENUM;
2255 		dip->un.e.num_mem = 2;
2256 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2257 		dip->un.e.member[0].ord = 0;
2258 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2259 		dip->un.e.member[1].ord = 1;
2260 		return 0;
2261 
2262 	}
2263 
2264 	return ENXIO;
2265 }
2266 
2267 void *
2268 sb_malloc(addr, direction, size, pool, flags)
2269 	void *addr;
2270 	int direction;
2271 	size_t size;
2272 	int pool, flags;
2273 {
2274 	struct sbdsp_softc *sc = addr;
2275 	int drq;
2276 
2277 	if (sc->sc_drq8 != -1)
2278 		drq = sc->sc_drq8;
2279 	else
2280 		drq = sc->sc_drq16;
2281 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2282 }
2283 
2284 void
2285 sb_free(addr, ptr, pool)
2286 	void *addr;
2287 	void *ptr;
2288 	int pool;
2289 {
2290 	isa_free(ptr, pool);
2291 }
2292 
2293 size_t
2294 sb_round_buffersize(addr, direction, size)
2295 	void *addr;
2296 	int direction;
2297 	size_t size;
2298 {
2299 	struct sbdsp_softc *sc = addr;
2300 	bus_size_t maxsize;
2301 
2302 	if (sc->sc_drq8 != -1)
2303 		maxsize = sc->sc_drq8_maxsize;
2304 	else
2305 		maxsize = sc->sc_drq16_maxsize;
2306 
2307 	if (size > maxsize)
2308 		size = maxsize;
2309 	return (size);
2310 }
2311 
2312 paddr_t
2313 sb_mappage(addr, mem, off, prot)
2314 	void *addr;
2315 	void *mem;
2316 	off_t off;
2317 	int prot;
2318 {
2319 	return isa_mappage(mem, off, prot);
2320 }
2321 
2322 int
2323 sbdsp_get_props(addr)
2324 	void *addr;
2325 {
2326 	struct sbdsp_softc *sc = addr;
2327 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
2328 	       (sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
2329 }
2330 
2331 #if NMPU > 0
2332 /*
2333  * MIDI related routines.
2334  */
2335 
2336 int
2337 sbdsp_midi_open(addr, flags, iintr, ointr, arg)
2338 	void *addr;
2339 	int flags;
2340 	void (*iintr)__P((void *, int));
2341 	void (*ointr)__P((void *));
2342 	void *arg;
2343 {
2344 	struct sbdsp_softc *sc = addr;
2345 
2346 	DPRINTF(("sbdsp_midi_open: sc=%p\n", sc));
2347 
2348 	if (sc->sc_open != SB_CLOSED)
2349 		return EBUSY;
2350 	if (sbdsp_reset(sc) != 0)
2351 		return EIO;
2352 
2353 	sc->sc_open = SB_OPEN_MIDI;
2354 	sc->sc_openflags = flags;
2355 
2356 	if (sc->sc_model >= SB_20)
2357 		if (sbdsp_wdsp(sc, SB_MIDI_UART_INTR)) /* enter UART mode */
2358 			return EIO;
2359 
2360 	sc->sc_intr8 = sbdsp_midi_intr;
2361 	sc->sc_intrm = iintr;
2362 	sc->sc_argm = arg;
2363 
2364 	return 0;
2365 }
2366 
2367 void
2368 sbdsp_midi_close(addr)
2369 	void *addr;
2370 {
2371 	struct sbdsp_softc *sc = addr;
2372 
2373 	DPRINTF(("sbdsp_midi_close: sc=%p\n", sc));
2374 
2375 	if (sc->sc_model >= SB_20)
2376 		sbdsp_reset(sc); /* exit UART mode */
2377 
2378 	sc->sc_intrm = 0;
2379 	sc->sc_open = SB_CLOSED;
2380 }
2381 
2382 int
2383 sbdsp_midi_output(addr, d)
2384 	void *addr;
2385 	int d;
2386 {
2387 	struct sbdsp_softc *sc = addr;
2388 
2389 	if (sc->sc_model < SB_20 && sbdsp_wdsp(sc, SB_MIDI_WRITE))
2390 		return EIO;
2391 	if (sbdsp_wdsp(sc, d))
2392 		return EIO;
2393 	return 0;
2394 }
2395 
2396 void
2397 sbdsp_midi_getinfo(addr, mi)
2398 	void *addr;
2399 	struct midi_info *mi;
2400 {
2401 	struct sbdsp_softc *sc = addr;
2402 
2403 	mi->name = sc->sc_model < SB_20 ? "SB MIDI cmd" : "SB MIDI UART";
2404 	mi->props = MIDI_PROP_CAN_INPUT;
2405 }
2406 
2407 int
2408 sbdsp_midi_intr(addr)
2409 	void *addr;
2410 {
2411 	struct sbdsp_softc *sc = addr;
2412 
2413 	sc->sc_intrm(sc->sc_argm, sbdsp_rdsp(sc));
2414 	return (0);
2415 }
2416 
2417 #endif
2418 
2419