xref: /netbsd-src/sys/dev/isa/if_ate.c (revision f5d3fbbc6ff4a77159fb268d247bd94cb7d7e332)
1 /*
2  * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3  *
4  * This software may be used, modified, copied, distributed, and sold, in
5  * both source and binary form provided that the above copyright, these
6  * terms and the following disclaimer are retained.  The name of the author
7  * and/or the contributor may not be used to endorse or promote products
8  * derived from this software without specific prior written permission.
9  *
10  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20  * SUCH DAMAGE.
21  */
22 
23 /*
24  * Portions copyright (C) 1993, David Greenman.  This software may be used,
25  * modified, copied, distributed, and sold, in both source and binary form
26  * provided that the above copyright and these terms are retained.  Under no
27  * circumstances is the author responsible for the proper functioning of this
28  * software, nor does the author assume any responsibility for damages
29  * incurred with its use.
30  */
31 
32 #define FE_VERSION "if_fe.c ver. 0.8"
33 
34 /*
35  * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
36  * Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
37  *
38  * This version is intended to be a generic template for various
39  * MB86960A/MB86965A based Ethernet cards.  It currently supports
40  * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
41  * Telesis AT1700 series and RE2000 series.  There are some
42  * unnecessary hooks embedded, which are primarily intended to support
43  * other types of Ethernet cards, but the author is not sure whether
44  * they are useful.
45  */
46 
47 #include "bpfilter.h"
48 #include "rnd.h"
49 
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/errno.h>
53 #include <sys/ioctl.h>
54 #include <sys/mbuf.h>
55 #include <sys/socket.h>
56 #include <sys/syslog.h>
57 #include <sys/device.h>
58 #if NRND > 0
59 #include <sys/rnd.h>
60 #endif
61 
62 #include <net/if.h>
63 #include <net/if_dl.h>
64 #include <net/if_types.h>
65 
66 #include <net/if_ether.h>
67 
68 #ifdef INET
69 #include <netinet/in.h>
70 #include <netinet/in_systm.h>
71 #include <netinet/in_var.h>
72 #include <netinet/ip.h>
73 #include <netinet/if_inarp.h>
74 #endif
75 
76 #ifdef NS
77 #include <netns/ns.h>
78 #include <netns/ns_if.h>
79 #endif
80 
81 #if NBPFILTER > 0
82 #include <net/bpf.h>
83 #include <net/bpfdesc.h>
84 #endif
85 
86 #include <machine/cpu.h>
87 #include <machine/intr.h>
88 #include <machine/pio.h>
89 
90 #include <dev/isa/isareg.h>
91 #include <dev/isa/isavar.h>
92 #include <dev/ic/mb86960reg.h>
93 #include <dev/isa/if_fereg.h>
94 
95 /*
96  * Default settings for fe driver specific options.
97  * They can be set in config file by "options" statements.
98  */
99 
100 /*
101  * Debug control.
102  * 0: No debug at all.  All debug specific codes are stripped off.
103  * 1: Silent.  No debug messages are logged except emergent ones.
104  * 2: Brief.  Lair events and/or important information are logged.
105  * 3: Detailed.  Logs all information which *may* be useful for debugging.
106  * 4: Trace.  All actions in the driver is logged.  Super verbose.
107  */
108 #ifndef FE_DEBUG
109 #define FE_DEBUG		1
110 #endif
111 
112 /*
113  * Delay padding of short transmission packets to minimum Ethernet size.
114  * This may or may not gain performance.  An EXPERIMENTAL option.
115  */
116 #ifndef FE_DELAYED_PADDING
117 #define FE_DELAYED_PADDING	0
118 #endif
119 
120 /*
121  * Transmit just one packet per a "send" command to 86960.
122  * This option is intended for performance test.  An EXPERIMENTAL option.
123  */
124 #ifndef FE_SINGLE_TRANSMISSION
125 #define FE_SINGLE_TRANSMISSION	0
126 #endif
127 
128 /*
129  * Device configuration flags.
130  */
131 
132 /* DLCR6 settings. */
133 #define FE_FLAGS_DLCR6_VALUE	0x007F
134 
135 /* Force DLCR6 override. */
136 #define FE_FLAGS_OVERRIDE_DLCR6	0x0080
137 
138 /* A cludge for PCMCIA support. */
139 #define FE_FLAGS_PCMCIA		0x8000
140 
141 /* Identification of the driver version. */
142 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
143 
144 /*
145  * Supported hardware (Ethernet card) types
146  * This information is currently used only for debugging
147  */
148 enum fe_type {
149 	/* For cards which are successfully probed but not identified. */
150 	FE_TYPE_UNKNOWN,
151 
152 	/* Fujitsu FMV-180 series. */
153 	FE_TYPE_FMV181,
154 	FE_TYPE_FMV182,
155 
156 	/* Allied-Telesis AT1700 series and RE2000 series. */
157 	FE_TYPE_AT1700T,
158 	FE_TYPE_AT1700BT,
159 	FE_TYPE_AT1700FT,
160 	FE_TYPE_AT1700AT,
161 	FE_TYPE_RE2000,
162 
163 	/* PCMCIA by Fujitsu. */
164 	FE_TYPE_MBH10302,
165 	FE_TYPE_MBH10304,
166 };
167 
168 /*
169  * fe_softc: per line info and status
170  */
171 struct fe_softc {
172 	struct	device sc_dev;
173 	void	*sc_ih;
174 
175 	struct	ethercom sc_ethercom;	/* ethernet common */
176 
177 	/* Set by probe() and not modified in later phases. */
178 	enum	fe_type type;	/* interface type code */
179 	char	*typestr;	/* printable name of the interface. */
180 	int	sc_iobase;	/* MB86960A I/O base address */
181 
182 	u_char	proto_dlcr4;	/* DLCR4 prototype. */
183 	u_char	proto_dlcr5;	/* DLCR5 prototype. */
184 	u_char	proto_dlcr6;	/* DLCR6 prototype. */
185 	u_char	proto_dlcr7;	/* DLCR7 prototype. */
186 	u_char	proto_bmpr13;	/* BMPR13 prototype. */
187 
188 	/* Vendor specific hooks. */
189 	void	(*init) __P((struct fe_softc *)); /* Just before fe_init(). */
190 	void	(*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
191 
192 	/* Transmission buffer management. */
193 	u_short	txb_size;	/* total bytes in TX buffer */
194 	u_short	txb_free;	/* free bytes in TX buffer */
195 	u_char	txb_count;	/* number of packets in TX buffer */
196 	u_char	txb_sched;	/* number of scheduled packets */
197 	u_char	txb_padding;	/* number of delayed padding bytes */
198 
199 	/* Multicast address filter management. */
200 	u_char	filter_change;	/* MARs must be changed ASAP. */
201 	u_char	filter[FE_FILTER_LEN];	/* new filter value. */
202 
203 	u_int8_t sc_enaddr[ETHER_ADDR_LEN];
204 
205 #if NRND > 0
206 	rndsource_element_t rnd_source;
207 #endif
208 };
209 
210 /* Standard driver entry points.  These can be static. */
211 int	feprobe		__P((struct device *, void *, void *));
212 void	feattach	__P((struct device *, struct device *, void *));
213 int	feintr		__P((void *));
214 void	fe_init		__P((struct fe_softc *));
215 int	fe_ioctl	__P((struct ifnet *, u_long, caddr_t));
216 void	fe_start	__P((struct ifnet *));
217 void	fe_reset	__P((struct fe_softc *));
218 void	fe_watchdog	__P((struct ifnet *));
219 
220 /* Local functions.  Order of declaration is confused.  FIXME. */
221 int	fe_probe_fmv	__P((struct fe_softc *, struct isa_attach_args *));
222 int	fe_probe_ati	__P((struct fe_softc *, struct isa_attach_args *));
223 int	fe_probe_mbh	__P((struct fe_softc *, struct isa_attach_args *));
224 void	fe_read_eeprom	__P((struct fe_softc *, u_char *));
225 void	fe_init_mbh	__P((struct fe_softc *));
226 int	fe_get_packet	__P((struct fe_softc *, int));
227 void	fe_stop		__P((struct fe_softc *));
228 void	fe_tint		__P((struct fe_softc *, u_char));
229 void	fe_rint		__P((struct fe_softc *, u_char));
230 static inline
231 void	fe_xmit		__P((struct fe_softc *));
232 void	fe_write_mbufs	__P((struct fe_softc *, struct mbuf *));
233 static inline
234 void	fe_droppacket	__P((struct fe_softc *));
235 void	fe_getmcaf	__P((struct ethercom *, u_char *));
236 void	fe_setmode	__P((struct fe_softc *));
237 void	fe_loadmar	__P((struct fe_softc *));
238 #if FE_DEBUG >= 1
239 void	fe_dump		__P((int, struct fe_softc *));
240 #endif
241 
242 struct cfattach fe_ca = {
243 	sizeof(struct fe_softc), feprobe, feattach
244 };
245 
246 struct cfdriver fe_cd = {
247 	NULL, "fe", DV_IFNET
248 };
249 
250 /* Ethernet constants.  To be defined in if_ehter.h?  FIXME. */
251 #define ETHER_MIN_LEN	60	/* with header, without CRC. */
252 #define ETHER_MAX_LEN	1514	/* with header, without CRC. */
253 #define ETHER_ADDR_LEN	6	/* number of bytes in an address. */
254 #define ETHER_HDR_SIZE	14	/* src addr, dst addr, and data type. */
255 
256 /*
257  * Fe driver specific constants which relate to 86960/86965.
258  */
259 
260 /* Interrupt masks. */
261 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
262 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
263 		  FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
264 
265 /* Maximum number of iterrations for a receive interrupt. */
266 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
267 	/* Maximum size of SRAM is 65536,
268 	 * minimum size of transmission buffer in fe is 2x2KB,
269 	 * and minimum amount of received packet including headers
270 	 * added by the chip is 64 bytes.
271 	 * Hence FE_MAX_RECV_COUNT is the upper limit for number
272 	 * of packets in the receive buffer. */
273 
274 /*
275  * Convenient routines to access contiguous I/O ports.
276  */
277 
278 static inline void
279 inblk (int addr, u_char * mem, int len)
280 {
281 	while (--len >= 0) {
282 		*mem++ = inb(addr++);
283 	}
284 }
285 
286 static inline void
287 outblk (int addr, u_char const * mem, int len)
288 {
289 	while (--len >= 0) {
290 		outb(addr++, *mem++);
291 	}
292 }
293 
294 /*
295  * Hardware probe routines.
296  */
297 
298 /*
299  * Determine if the device is present.
300  */
301 int
302 feprobe(parent, match, aux)
303 	struct device *parent;
304 	void *match, *aux;
305 {
306 	struct fe_softc *sc = match;
307 	struct isa_attach_args *ia = aux;
308 
309 #if FE_DEBUG >= 2
310 	log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
311 #endif
312 
313 	/* Probe an address. */
314 	sc->sc_iobase = ia->ia_iobase;
315 
316 	if (fe_probe_fmv(sc, ia))
317 		return (1);
318 	if (fe_probe_ati(sc, ia))
319 		return (1);
320 	if (fe_probe_mbh(sc, ia))
321 		return (1);
322 	return (0);
323 }
324 
325 /*
326  * Check for specific bits in specific registers have specific values.
327  */
328 struct fe_simple_probe_struct {
329 	u_char port;	/* Offset from the base I/O address. */
330 	u_char mask;	/* Bits to be checked. */
331 	u_char bits;	/* Values to be compared against. */
332 };
333 
334 static inline int
335 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
336 {
337 	struct fe_simple_probe_struct const * p;
338 
339 	for (p = sp; p->mask != 0; p++) {
340 		if ((inb(addr + p->port) & p->mask) != p->bits) {
341 			return (0);
342 		}
343 	}
344 	return (1);
345 }
346 
347 /*
348  * Routines to read all bytes from the config EEPROM through MB86965A.
349  * I'm not sure what exactly I'm doing here...  I was told just to follow
350  * the steps, and it worked.  Could someone tell me why the following
351  * code works?  (Or, why all similar codes I tried previously doesn't
352  * work.)  FIXME.
353  */
354 
355 static inline void
356 strobe (int bmpr16)
357 {
358 	/*
359 	 * Output same value twice.  To speed-down execution?
360 	 */
361 	outb(bmpr16, FE_B16_SELECT);
362 	outb(bmpr16, FE_B16_SELECT);
363 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
364 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
365 	outb(bmpr16, FE_B16_SELECT);
366 	outb(bmpr16, FE_B16_SELECT);
367 }
368 
369 void
370 fe_read_eeprom(sc, data)
371 	struct fe_softc *sc;
372 	u_char *data;
373 {
374 	int iobase = sc->sc_iobase;
375 	int bmpr16 = iobase + FE_BMPR16;
376 	int bmpr17 = iobase + FE_BMPR17;
377 	u_char n, val, bit;
378 
379 	/* Read bytes from EEPROM; two bytes per an iterration. */
380 	for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
381 		/* Reset the EEPROM interface. */
382 		outb(bmpr16, 0x00);
383 		outb(bmpr17, 0x00);
384 		outb(bmpr16, FE_B16_SELECT);
385 
386 		/* Start EEPROM access. */
387 		outb(bmpr17, FE_B17_DATA);
388 		strobe(bmpr16);
389 
390 		/* Pass the iterration count to the chip. */
391 		val = 0x80 | n;
392 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
393 			outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
394 			strobe(bmpr16);
395 		}
396 		outb(bmpr17, 0x00);
397 
398 		/* Read a byte. */
399 		val = 0;
400 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
401 			strobe(bmpr16);
402 			if (inb(bmpr17) & FE_B17_DATA)
403 				val |= bit;
404 		}
405 		*data++ = val;
406 
407 		/* Read one more byte. */
408 		val = 0;
409 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
410 			strobe(bmpr16);
411 			if (inb(bmpr17) & FE_B17_DATA)
412 				val |= bit;
413 		}
414 		*data++ = val;
415 	}
416 
417 #if FE_DEBUG >= 3
418 	/* Report what we got. */
419 	data -= FE_EEPROM_SIZE;
420 	log(LOG_INFO, "%s: EEPROM at %04x:"
421 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
422 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
423 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
424 	    " %02x%02x%02x%02x %02x%02x%02x%02x\n",
425 	    sc->sc_dev.dv_xname, iobase,
426 	    data[ 0], data[ 1], data[ 2], data[ 3],
427 	    data[ 4], data[ 5], data[ 6], data[ 7],
428 	    data[ 8], data[ 9], data[10], data[11],
429 	    data[12], data[13], data[14], data[15],
430 	    data[16], data[17], data[18], data[19],
431 	    data[20], data[21], data[22], data[23],
432 	    data[24], data[25], data[26], data[27],
433 	    data[28], data[29], data[30], data[31]);
434 #endif
435 }
436 
437 /*
438  * Hardware (vendor) specific probe routines.
439  */
440 
441 /*
442  * Probe and initialization for Fujitsu FMV-180 series boards
443  */
444 int
445 fe_probe_fmv(sc, ia)
446 	struct fe_softc *sc;
447 	struct isa_attach_args *ia;
448 {
449 	int i, n;
450 	int iobase = sc->sc_iobase;
451 	int irq;
452 
453 	static int const iomap[8] =
454 		{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
455 	static int const irqmap[4] =
456 		{ 3, 7, 10, 15 };
457 
458 	static struct fe_simple_probe_struct const probe_table[] = {
459 		{ FE_DLCR2, 0x70, 0x00 },
460 		{ FE_DLCR4, 0x08, 0x00 },
461 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Doesn't work. */
462 
463 		{ FE_FMV0, FE_FMV0_MAGIC_MASK,  FE_FMV0_MAGIC_VALUE },
464 		{ FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID   },
465 		{ FE_FMV3, FE_FMV3_EXTRA_MASK,  FE_FMV3_EXTRA_VALUE },
466 #if 1
467 	/*
468 	 * Test *vendor* part of the station address for Fujitsu.
469 	 * The test will gain reliability of probe process, but
470 	 * it rejects FMV-180 clone boards manufactured by other vendors.
471 	 * We have to turn the test off when such cards are made available.
472 	 */
473 		{ FE_FMV4, 0xFF, 0x00 },
474 		{ FE_FMV5, 0xFF, 0x00 },
475 		{ FE_FMV6, 0xFF, 0x0E },
476 #else
477 	/*
478 	 * We can always verify the *first* 2 bits (in Ehternet
479 	 * bit order) are "no multicast" and "no local" even for
480 	 * unknown vendors.
481 	 */
482 		{ FE_FMV4, 0x03, 0x00 },
483 #endif
484 		{ 0 }
485 	};
486 
487 #if 0
488 	/*
489 	 * Dont probe at all if the config says we are PCMCIA...
490 	 */
491 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
492 		return (0);
493 #endif
494 
495 	/*
496 	 * See if the sepcified address is possible for FMV-180 series.
497 	 */
498 	for (i = 0; i < 8; i++) {
499 		if (iomap[i] == iobase)
500 			break;
501 	}
502 	if (i == 8)
503 		return (0);
504 
505 	/* Simple probe. */
506 	if (!fe_simple_probe(iobase, probe_table))
507 		return (0);
508 
509 	/* Check if our I/O address matches config info on EEPROM. */
510 	n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
511 	if (iomap[n] != iobase)
512 		return (0);
513 
514 	/* Determine the card type. */
515 	switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
516 	case FE_FMV0_MODEL_FMV181:
517 		sc->type = FE_TYPE_FMV181;
518 		sc->typestr = "FMV-181";
519 		break;
520 	case FE_FMV0_MODEL_FMV182:
521 		sc->type = FE_TYPE_FMV182;
522 		sc->typestr = "FMV-182";
523 		break;
524 	default:
525 	  	/* Unknown card type: maybe a new model, but... */
526 		return (0);
527 	}
528 
529 	/*
530 	 * An FMV-180 has successfully been proved.
531 	 * Determine which IRQ to be used.
532 	 *
533 	 * In this version, we always get an IRQ assignment from the
534 	 * FMV-180's configuration EEPROM, ignoring that specified in
535 	 * config file.
536 	 */
537 	n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
538 	irq = irqmap[n];
539 
540 	if (ia->ia_irq != IRQUNK) {
541 		if (ia->ia_irq != irq) {
542 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
543 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
544 			return (0);
545 		}
546 	} else
547 		ia->ia_irq = irq;
548 
549 	/*
550 	 * Initialize constants in the per-line structure.
551 	 */
552 
553 	/* Get our station address from EEPROM. */
554 	inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
555 
556 	/* Make sure we got a valid station address. */
557 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
558 	  || (sc->sc_enaddr[0] == 0x00
559 	    && sc->sc_enaddr[1] == 0x00
560 	    && sc->sc_enaddr[2] == 0x00))
561 		return (0);
562 
563 	/* Register values which depend on board design. */
564 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
565 	sc->proto_dlcr5 = 0;
566 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
567 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
568 
569 	/*
570 	 * Program the 86960 as follows:
571 	 *	SRAM: 32KB, 100ns, byte-wide access.
572 	 *	Transmission buffer: 4KB x 2.
573 	 *	System bus interface: 16 bits.
574 	 * We cannot change these values but TXBSIZE, because they
575 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
576 	 * the driver performance.
577 	 */
578 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
579 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
580 
581 	/*
582 	 * Minimum initialization of the hardware.
583 	 * We write into registers; hope I/O ports have no
584 	 * overlap with other boards.
585 	 */
586 
587 	/* Initialize ASIC. */
588 	outb(iobase + FE_FMV3, 0);
589 	outb(iobase + FE_FMV10, 0);
590 
591 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
592 	delay(200);
593 
594 	/* Initialize 86960. */
595 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
596 	delay(200);
597 
598 	/* Disable all interrupts. */
599 	outb(iobase + FE_DLCR2, 0);
600 	outb(iobase + FE_DLCR3, 0);
601 
602 	/* Turn the "master interrupt control" flag of ASIC on. */
603 	outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
604 
605 	/*
606 	 * That's all.  FMV-180 occupies 32 I/O addresses, by the way.
607 	 */
608 	ia->ia_iosize = 32;
609 	ia->ia_msize = 0;
610 	return (1);
611 }
612 
613 /*
614  * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
615  */
616 int
617 fe_probe_ati(sc, ia)
618 	struct fe_softc *sc;
619 	struct isa_attach_args *ia;
620 {
621 	int i, n;
622 	int iobase = sc->sc_iobase;
623 	u_char eeprom[FE_EEPROM_SIZE];
624 	u_char save16, save17;
625 	int irq;
626 
627 	static int const iomap[8] =
628 		{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
629 	static int const irqmap[4][4] = {
630 		{  3,  4,  5,  9 },
631 		{ 10, 11, 12, 15 },
632 		{  3, 11,  5, 15 },
633 		{ 10, 11, 14, 15 },
634 	};
635 	static struct fe_simple_probe_struct const probe_table[] = {
636 		{ FE_DLCR2,  0x70, 0x00 },
637 		{ FE_DLCR4,  0x08, 0x00 },
638 		{ FE_DLCR5,  0x80, 0x00 },
639 #if 0
640 		{ FE_BMPR16, 0x1B, 0x00 },
641 		{ FE_BMPR17, 0x7F, 0x00 },
642 #endif
643 		{ 0 }
644 	};
645 
646 #if 0
647 	/*
648 	 * Don't probe at all if the config says we are PCMCIA...
649 	 */
650 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
651 		return (0);
652 #endif
653 
654 #if FE_DEBUG >= 4
655 	log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
656 	fe_dump(LOG_INFO, sc);
657 #endif
658 
659 	/*
660 	 * See if the sepcified address is possible for MB86965A JLI mode.
661 	 */
662 	for (i = 0; i < 8; i++) {
663 		if (iomap[i] == iobase)
664 			break;
665 	}
666 	if (i == 8)
667 		return (0);
668 
669 	/*
670 	 * We should test if MB86965A is on the base address now.
671 	 * Unfortunately, it is very hard to probe it reliably, since
672 	 * we have no way to reset the chip under software control.
673 	 * On cold boot, we could check the "signature" bit patterns
674 	 * described in the Fujitsu document.  On warm boot, however,
675 	 * we can predict almost nothing about register values.
676 	 */
677 	if (!fe_simple_probe(iobase, probe_table))
678 		return (0);
679 
680 	/* Save old values of the registers. */
681 	save16 = inb(iobase + FE_BMPR16);
682 	save17 = inb(iobase + FE_BMPR17);
683 
684 	/* Check if our I/O address matches config info on 86965. */
685 	n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
686 	if (iomap[n] != iobase)
687 		goto fail;
688 
689 	/*
690 	 * We are now almost sure we have an AT1700 at the given
691 	 * address.  So, read EEPROM through 86965.  We have to write
692 	 * into LSI registers to read from EEPROM.  I want to avoid it
693 	 * at this stage, but I cannot test the presense of the chip
694 	 * any further without reading EEPROM.  FIXME.
695 	 */
696 	fe_read_eeprom(sc, eeprom);
697 
698 	/* Make sure the EEPROM is turned off. */
699 	outb(iobase + FE_BMPR16, 0);
700 	outb(iobase + FE_BMPR17, 0);
701 
702 	/* Make sure that config info in EEPROM and 86965 agree. */
703 	if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
704 		goto fail;
705 
706 	/*
707 	 * Determine the card type.
708 	 */
709 	switch (eeprom[FE_ATI_EEP_MODEL]) {
710 	case FE_ATI_MODEL_AT1700T:
711 		sc->type = FE_TYPE_AT1700T;
712 		sc->typestr = "AT-1700T";
713 		break;
714 	case FE_ATI_MODEL_AT1700BT:
715 		sc->type = FE_TYPE_AT1700BT;
716 		sc->typestr = "AT-1700BT";
717 		break;
718 	case FE_ATI_MODEL_AT1700FT:
719 		sc->type = FE_TYPE_AT1700FT;
720 		sc->typestr = "AT-1700FT";
721 		break;
722 	case FE_ATI_MODEL_AT1700AT:
723 		sc->type = FE_TYPE_AT1700AT;
724 		sc->typestr = "AT-1700AT";
725 		break;
726 	default:
727 		sc->type = FE_TYPE_RE2000;
728 		sc->typestr = "unknown (RE-2000?)";
729 		break;
730 	}
731 
732 	/*
733 	 * Try to determine IRQ settings.
734 	 * Different models use different ranges of IRQs.
735 	 */
736 	n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
737 	switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
738 	case 0x30:
739 		irq = irqmap[3][n];
740 		break;
741 	case 0x10:
742 	case 0x50:
743 		irq = irqmap[2][n];
744 		break;
745 	case 0x40:
746 	case 0x60:
747 		if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
748 			irq = irqmap[1][n];
749 			break;
750 		}
751 	default:
752 		irq = irqmap[0][n];
753 		break;
754 	}
755 
756 	if (ia->ia_irq != IRQUNK) {
757 		if (ia->ia_irq != irq) {
758 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
759 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
760 			return (0);
761 		}
762 	} else
763 		ia->ia_irq = irq;
764 
765 	/*
766 	 * Initialize constants in the per-line structure.
767 	 */
768 
769 	/* Get our station address from EEPROM. */
770 	bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
771 
772 	/* Make sure we got a valid station address. */
773 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
774 	  || (sc->sc_enaddr[0] == 0x00
775 	    && sc->sc_enaddr[1] == 0x00
776 	    && sc->sc_enaddr[2] == 0x00))
777 		goto fail;
778 
779 	/* Should find all register prototypes here.  FIXME. */
780 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;  /* FIXME */
781 	sc->proto_dlcr5 = 0;
782 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
783 #if 0	/* XXXX Should we use this? */
784 	sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
785 #else
786 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
787 #endif
788 
789 	/*
790 	 * Program the 86965 as follows:
791 	 *	SRAM: 32KB, 100ns, byte-wide access.
792 	 *	Transmission buffer: 4KB x 2.
793 	 *	System bus interface: 16 bits.
794 	 * We cannot change these values but TXBSIZE, because they
795 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
796 	 * the driver performance.
797 	 */
798 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
799 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
800 
801 #if FE_DEBUG >= 3
802 	log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
803 	fe_dump(LOG_INFO, sc);
804 #endif
805 
806 	/* Initialize 86965. */
807 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
808 	delay(200);
809 
810 	/* Disable all interrupts. */
811 	outb(iobase + FE_DLCR2, 0);
812 	outb(iobase + FE_DLCR3, 0);
813 
814 #if FE_DEBUG >= 3
815 	log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
816 	fe_dump(LOG_INFO, sc);
817 #endif
818 
819 	/*
820 	 * That's all.  AT1700 occupies 32 I/O addresses, by the way.
821 	 */
822 	ia->ia_iosize = 32;
823 	ia->ia_msize = 0;
824 	return (1);
825 
826 fail:
827 	/* Restore register values, in the case we had no 86965. */
828 	outb(iobase + FE_BMPR16, save16);
829 	outb(iobase + FE_BMPR17, save17);
830 	return (0);
831 }
832 
833 /*
834  * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
835  */
836 int
837 fe_probe_mbh(sc, ia)
838 	struct fe_softc *sc;
839 	struct isa_attach_args *ia;
840 {
841 	int iobase = sc->sc_iobase;
842 
843 	static struct fe_simple_probe_struct probe_table[] = {
844 		{ FE_DLCR2, 0x70, 0x00 },
845 		{ FE_DLCR4, 0x08, 0x00 },
846 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Does not work well. */
847 #if 0
848 	/*
849 	 * Test *vendor* part of the address for Fujitsu.
850 	 * The test will gain reliability of probe process, but
851 	 * it rejects clones by other vendors, or OEM product
852 	 * supplied by resalers other than Fujitsu.
853 	 */
854 		{ FE_MBH10, 0xFF, 0x00 },
855 		{ FE_MBH11, 0xFF, 0x00 },
856 		{ FE_MBH12, 0xFF, 0x0E },
857 #else
858 	/*
859 	 * We can always verify the *first* 2 bits (in Ehternet
860 	 * bit order) are "global" and "unicast" even for
861 	 * unknown vendors.
862 	 */
863 		{ FE_MBH10, 0x03, 0x00 },
864 #endif
865         /* Just a gap?  Seems reliable, anyway. */
866 		{ 0x12, 0xFF, 0x00 },
867 		{ 0x13, 0xFF, 0x00 },
868 		{ 0x14, 0xFF, 0x00 },
869 		{ 0x15, 0xFF, 0x00 },
870 		{ 0x16, 0xFF, 0x00 },
871 		{ 0x17, 0xFF, 0x00 },
872 		{ 0x18, 0xFF, 0xFF },
873 		{ 0x19, 0xFF, 0xFF },
874 
875 		{ 0 }
876 	};
877 
878 #if 0
879 	/*
880 	 * We need a PCMCIA flag.
881 	 */
882 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
883 		return (0);
884 #endif
885 
886 	/*
887 	 * We need explicit IRQ and supported address.
888 	 */
889 	if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
890 		return (0);
891 
892 #if FE_DEBUG >= 3
893 	log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
894 	fe_dump(LOG_INFO, sc);
895 #endif
896 
897 	/*
898 	 * See if MBH10302 is on its address.
899 	 * I'm not sure the following probe code works.  FIXME.
900 	 */
901 	if (!fe_simple_probe(iobase, probe_table))
902 		return (0);
903 
904 	/* Determine the card type. */
905 	sc->type = FE_TYPE_MBH10302;
906 	sc->typestr = "MBH10302 (PCMCIA)";
907 
908 	/*
909 	 * Initialize constants in the per-line structure.
910 	 */
911 
912 	/* Get our station address from EEPROM. */
913 	inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
914 
915 	/* Make sure we got a valid station address. */
916 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
917 	  || (sc->sc_enaddr[0] == 0x00
918 	    && sc->sc_enaddr[1] == 0x00
919 	    && sc->sc_enaddr[2] == 0x00))
920 		return (0);
921 
922 	/* Should find all register prototypes here.  FIXME. */
923 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
924 	sc->proto_dlcr5 = 0;
925 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
926 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
927 
928 	/*
929 	 * Program the 86960 as follows:
930 	 *	SRAM: 32KB, 100ns, byte-wide access.
931 	 *	Transmission buffer: 4KB x 2.
932 	 *	System bus interface: 16 bits.
933 	 * We cannot change these values but TXBSIZE, because they
934 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
935 	 * the driver performance.
936 	 */
937 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
938 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
939 
940 	/* Setup hooks.  We need a special initialization procedure. */
941 	sc->init = fe_init_mbh;
942 
943 	/*
944 	 * Minimum initialization.
945 	 */
946 
947 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
948 	delay(200);
949 
950 	/* Minimul initialization of 86960. */
951 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
952 	delay(200);
953 
954 	/* Disable all interrupts. */
955 	outb(iobase + FE_DLCR2, 0);
956 	outb(iobase + FE_DLCR3, 0);
957 
958 #if 1	/* FIXME. */
959 	/* Initialize system bus interface and encoder/decoder operation. */
960 	outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
961 #endif
962 
963 	/*
964 	 * That's all.  MBH10302 occupies 32 I/O addresses, by the way.
965 	 */
966 	ia->ia_iosize = 32;
967 	ia->ia_msize = 0;
968 	return (1);
969 }
970 
971 /* MBH specific initialization routine. */
972 void
973 fe_init_mbh(sc)
974 	struct fe_softc *sc;
975 {
976 
977 	/* Probably required after hot-insertion... */
978 
979 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
980 	delay(200);
981 
982 	/* Minimul initialization of 86960. */
983 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
984 	delay(200);
985 
986 	/* Disable all interrupts. */
987 	outb(sc->sc_iobase + FE_DLCR2, 0);
988 	outb(sc->sc_iobase + FE_DLCR3, 0);
989 
990 	/* Enable master interrupt flag. */
991 	outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
992 }
993 
994 /*
995  * Install interface into kernel networking data structures
996  */
997 void
998 feattach(parent, self, aux)
999 	struct device *parent, *self;
1000 	void *aux;
1001 {
1002 	struct fe_softc *sc = (void *)self;
1003 	struct isa_attach_args *ia = aux;
1004 	struct cfdata *cf = sc->sc_dev.dv_cfdata;
1005 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1006 
1007 	/* Stop the 86960. */
1008 	fe_stop(sc);
1009 
1010 	/* Initialize ifnet structure. */
1011 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1012 	ifp->if_softc = sc;
1013 	ifp->if_start = fe_start;
1014 	ifp->if_ioctl = fe_ioctl;
1015 	ifp->if_watchdog = fe_watchdog;
1016 	ifp->if_flags =
1017 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
1018 
1019 	/*
1020 	 * Set maximum size of output queue, if it has not been set.
1021 	 * It is done here as this driver may be started after the
1022 	 * system intialization (i.e., the interface is PCMCIA.)
1023 	 *
1024 	 * I'm not sure this is really necessary, but, even if it is,
1025 	 * it should be done somewhere else, e.g., in if_attach(),
1026 	 * since it must be a common workaround for all network drivers.
1027 	 * FIXME.
1028 	 */
1029 	if (ifp->if_snd.ifq_maxlen == 0) {
1030 		extern int ifqmaxlen;		/* Don't be so shocked... */
1031 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
1032 	}
1033 
1034 #if FE_DEBUG >= 3
1035 	log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1036 	fe_dump(LOG_INFO, sc);
1037 #endif
1038 
1039 #if FE_SINGLE_TRANSMISSION
1040 	/* Override txb config to allocate minimum. */
1041 	sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1042 	sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1043 #endif
1044 
1045 	/* Modify hardware config if it is requested. */
1046 	if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1047 		sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1048 
1049 	/* Find TX buffer size, based on the hardware dependent proto. */
1050 	switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1051 	case FE_D6_TXBSIZ_2x2KB:
1052 		sc->txb_size = 2048;
1053 		break;
1054 	case FE_D6_TXBSIZ_2x4KB:
1055 		sc->txb_size = 4096;
1056 		break;
1057 	case FE_D6_TXBSIZ_2x8KB:
1058 		sc->txb_size = 8192;
1059 		break;
1060 	default:
1061 		/* Oops, we can't work with single buffer configuration. */
1062 #if FE_DEBUG >= 2
1063 		log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1064 		    sc->sc_dev.dv_xname);
1065 #endif
1066 		sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1067 		sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1068 		sc->txb_size = 2048;
1069 		break;
1070 	}
1071 
1072 	/* Attach the interface. */
1073 	if_attach(ifp);
1074 	ether_ifattach(ifp, sc->sc_enaddr);
1075 
1076 	/* Print additional info when attached. */
1077 	printf(": address %s, type %s\n",
1078 	    ether_sprintf(sc->sc_enaddr), sc->typestr);
1079 #if FE_DEBUG >= 3
1080 	{
1081 		int buf, txb, bbw, sbw, ram;
1082 
1083 		buf = txb = bbw = sbw = ram = -1;
1084 		switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1085 		case FE_D6_BUFSIZ_8KB:
1086 			buf = 8;
1087 			break;
1088 		case FE_D6_BUFSIZ_16KB:
1089 			buf = 16;
1090 			break;
1091 		case FE_D6_BUFSIZ_32KB:
1092 			buf = 32;
1093 			break;
1094 		case FE_D6_BUFSIZ_64KB:
1095 			buf = 64;
1096 			break;
1097 		}
1098 		switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1099 		case FE_D6_TXBSIZ_2x2KB:
1100 			txb = 2;
1101 			break;
1102 		case FE_D6_TXBSIZ_2x4KB:
1103 			txb = 4;
1104 			break;
1105 		case FE_D6_TXBSIZ_2x8KB:
1106 			txb = 8;
1107 			break;
1108 		}
1109 		switch (sc->proto_dlcr6 & FE_D6_BBW) {
1110 		case FE_D6_BBW_BYTE:
1111 			bbw = 8;
1112 			break;
1113 		case FE_D6_BBW_WORD:
1114 			bbw = 16;
1115 			break;
1116 		}
1117 		switch (sc->proto_dlcr6 & FE_D6_SBW) {
1118 		case FE_D6_SBW_BYTE:
1119 			sbw = 8;
1120 			break;
1121 		case FE_D6_SBW_WORD:
1122 			sbw = 16;
1123 			break;
1124 		}
1125 		switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1126 		case FE_D6_SRAM_100ns:
1127 			ram = 100;
1128 			break;
1129 		case FE_D6_SRAM_150ns:
1130 			ram = 150;
1131 			break;
1132 		}
1133 		printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1134 		    sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1135 	}
1136 #endif
1137 
1138 #if NBPFILTER > 0
1139 	/* If BPF is in the kernel, call the attach for it. */
1140 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1141 #endif
1142 
1143 	sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
1144 	    IPL_NET, feintr, sc);
1145 
1146 #if NRND > 0
1147 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1148 			  RND_TYPE_NET);
1149 #endif
1150 }
1151 
1152 /*
1153  * Reset interface.
1154  */
1155 void
1156 fe_reset(sc)
1157 	struct fe_softc *sc;
1158 {
1159 	int s;
1160 
1161 	s = splnet();
1162 	fe_stop(sc);
1163 	fe_init(sc);
1164 	splx(s);
1165 }
1166 
1167 /*
1168  * Stop everything on the interface.
1169  *
1170  * All buffered packets, both transmitting and receiving,
1171  * if any, will be lost by stopping the interface.
1172  */
1173 void
1174 fe_stop(sc)
1175 	struct fe_softc *sc;
1176 {
1177 
1178 #if FE_DEBUG >= 3
1179 	log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1180 	fe_dump(LOG_INFO, sc);
1181 #endif
1182 
1183 	/* Disable interrupts. */
1184 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1185 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1186 
1187 	/* Stop interface hardware. */
1188 	delay(200);
1189 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1190 	delay(200);
1191 
1192 	/* Clear all interrupt status. */
1193 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1194 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1195 
1196 	/* Put the chip in stand-by mode. */
1197 	delay(200);
1198 	outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1199 	delay(200);
1200 
1201 	/* MAR loading can be delayed. */
1202 	sc->filter_change = 0;
1203 
1204 	/* Call a hook. */
1205 	if (sc->stop)
1206 		sc->stop(sc);
1207 
1208 #if DEBUG >= 3
1209 	log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1210 	fe_dump(LOG_INFO, sc);
1211 #endif
1212 }
1213 
1214 /*
1215  * Device timeout/watchdog routine. Entered if the device neglects to
1216  * generate an interrupt after a transmit has been started on it.
1217  */
1218 void
1219 fe_watchdog(ifp)
1220 	struct ifnet *ifp;
1221 {
1222 	struct fe_softc *sc = ifp->if_softc;
1223 
1224 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1225 #if FE_DEBUG >= 3
1226 	fe_dump(LOG_INFO, sc);
1227 #endif
1228 
1229 	/* Record how many packets are lost by this accident. */
1230 	sc->sc_ethercom.ec_if.if_oerrors += sc->txb_sched + sc->txb_count;
1231 
1232 	fe_reset(sc);
1233 }
1234 
1235 /*
1236  * Drop (skip) a packet from receive buffer in 86960 memory.
1237  */
1238 static inline void
1239 fe_droppacket(sc)
1240 	struct fe_softc *sc;
1241 {
1242 
1243 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
1244 }
1245 
1246 /*
1247  * Initialize device.
1248  */
1249 void
1250 fe_init(sc)
1251 	struct fe_softc *sc;
1252 {
1253 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1254 	int i;
1255 
1256 #if FE_DEBUG >= 3
1257 	log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1258 	fe_dump(LOG_INFO, sc);
1259 #endif
1260 
1261 	/* Reset transmitter flags. */
1262 	ifp->if_flags &= ~IFF_OACTIVE;
1263 	ifp->if_timer = 0;
1264 
1265 	sc->txb_free = sc->txb_size;
1266 	sc->txb_count = 0;
1267 	sc->txb_sched = 0;
1268 
1269 	/* Call a hook. */
1270 	if (sc->init)
1271 		sc->init(sc);
1272 
1273 #if FE_DEBUG >= 3
1274 	log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1275 	fe_dump(LOG_INFO, sc);
1276 #endif
1277 
1278 	/*
1279 	 * Make sure to disable the chip, also.
1280 	 * This may also help re-programming the chip after
1281 	 * hot insertion of PCMCIAs.
1282 	 */
1283 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1284 
1285 	/* Power up the chip and select register bank for DLCRs. */
1286 	delay(200);
1287 	outb(sc->sc_iobase + FE_DLCR7,
1288 	    sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1289 	delay(200);
1290 
1291 	/* Feed the station address. */
1292 	outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1293 
1294 	/* Select the BMPR bank for runtime register access. */
1295 	outb(sc->sc_iobase + FE_DLCR7,
1296 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1297 
1298 	/* Initialize registers. */
1299 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1300 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1301 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1302 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1303 	outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1304 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1305 	outb(sc->sc_iobase + FE_BMPR10, 0x00);
1306 	outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1307 	outb(sc->sc_iobase + FE_BMPR12, 0x00);
1308 	outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1309 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
1310 	outb(sc->sc_iobase + FE_BMPR15, 0x00);
1311 
1312 #if FE_DEBUG >= 3
1313 	log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1314 	fe_dump(LOG_INFO, sc);
1315 #endif
1316 
1317 	/* Enable interrupts. */
1318 	outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1319 	outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1320 
1321 	/* Enable transmitter and receiver. */
1322 	delay(200);
1323 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1324 	delay(200);
1325 
1326 #if FE_DEBUG >= 3
1327 	log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1328 	fe_dump(LOG_INFO, sc);
1329 #endif
1330 
1331 	/*
1332 	 * Make sure to empty the receive buffer.
1333 	 *
1334 	 * This may be redundant, but *if* the receive buffer were full
1335 	 * at this point, the driver would hang.  I have experienced
1336 	 * some strange hangups just after UP.  I hope the following
1337 	 * code solve the problem.
1338 	 *
1339 	 * I have changed the order of hardware initialization.
1340 	 * I think the receive buffer cannot have any packets at this
1341 	 * point in this version.  The following code *must* be
1342 	 * redundant now.  FIXME.
1343 	 */
1344 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1345 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1346 			break;
1347 		fe_droppacket(sc);
1348 	}
1349 #if FE_DEBUG >= 1
1350 	if (i >= FE_MAX_RECV_COUNT) {
1351 		log(LOG_ERR, "%s: cannot empty receive buffer\n",
1352 		    sc->sc_dev.dv_xname);
1353 	}
1354 #endif
1355 #if FE_DEBUG >= 3
1356 	if (i < FE_MAX_RECV_COUNT) {
1357 		log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1358 		    sc->sc_dev.dv_xname, i);
1359 	}
1360 #endif
1361 
1362 #if FE_DEBUG >= 3
1363 	log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1364 	fe_dump(LOG_INFO, sc);
1365 #endif
1366 
1367 	/* Do we need this here? */
1368 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1369 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1370 
1371 #if FE_DEBUG >= 3
1372 	log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1373 	fe_dump(LOG_INFO, sc);
1374 #endif
1375 
1376 	/* Set 'running' flag. */
1377 	ifp->if_flags |= IFF_RUNNING;
1378 
1379 	/*
1380 	 * At this point, the interface is runnung properly,
1381 	 * except that it receives *no* packets.  we then call
1382 	 * fe_setmode() to tell the chip what packets to be
1383 	 * received, based on the if_flags and multicast group
1384 	 * list.  It completes the initialization process.
1385 	 */
1386 	fe_setmode(sc);
1387 
1388 #if FE_DEBUG >= 3
1389 	log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1390 	fe_dump(LOG_INFO, sc);
1391 #endif
1392 
1393 	/* ...and attempt to start output. */
1394 	fe_start(ifp);
1395 
1396 #if FE_DEBUG >= 3
1397 	log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1398 	fe_dump(LOG_INFO, sc);
1399 #endif
1400 }
1401 
1402 /*
1403  * This routine actually starts the transmission on the interface
1404  */
1405 static inline void
1406 fe_xmit(sc)
1407 	struct fe_softc *sc;
1408 {
1409 
1410 	/*
1411 	 * Set a timer just in case we never hear from the board again.
1412 	 * We use longer timeout for multiple packet transmission.
1413 	 * I'm not sure this timer value is appropriate.  FIXME.
1414 	 */
1415 	sc->sc_ethercom.ec_if.if_timer = 1 + sc->txb_count;
1416 
1417 	/* Update txb variables. */
1418 	sc->txb_sched = sc->txb_count;
1419 	sc->txb_count = 0;
1420 	sc->txb_free = sc->txb_size;
1421 
1422 #if FE_DELAYED_PADDING
1423 	/* Omit the postponed padding process. */
1424 	sc->txb_padding = 0;
1425 #endif
1426 
1427 	/* Start transmitter, passing packets in TX buffer. */
1428 	outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1429 }
1430 
1431 /*
1432  * Start output on interface.
1433  * We make two assumptions here:
1434  *  1) that the current priority is set to splnet _before_ this code
1435  *     is called *and* is returned to the appropriate priority after
1436  *     return
1437  *  2) that the IFF_OACTIVE flag is checked before this code is called
1438  *     (i.e. that the output part of the interface is idle)
1439  */
1440 void
1441 fe_start(ifp)
1442 	struct ifnet *ifp;
1443 {
1444 	struct fe_softc *sc = ifp->if_softc;
1445 	struct mbuf *m;
1446 
1447 #if FE_DEBUG >= 1
1448 	/* Just a sanity check. */
1449 	if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1450 		/*
1451 		 * Txb_count and txb_free co-works to manage the
1452 		 * transmission buffer.  Txb_count keeps track of the
1453 		 * used potion of the buffer, while txb_free does unused
1454 		 * potion.  So, as long as the driver runs properly,
1455 		 * txb_count is zero if and only if txb_free is same
1456 		 * as txb_size (which represents whole buffer.)
1457 		 */
1458 		log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1459 		    sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1460 		/*
1461 		 * So, what should I do, then?
1462 		 *
1463 		 * We now know txb_count and txb_free contradicts.  We
1464 		 * cannot, however, tell which is wrong.  More
1465 		 * over, we cannot peek 86960 transmission buffer or
1466 		 * reset the transmission buffer.  (In fact, we can
1467 		 * reset the entire interface.  I don't want to do it.)
1468 		 *
1469 		 * If txb_count is incorrect, leaving it as is will cause
1470 		 * sending of gabages after next interrupt.  We have to
1471 		 * avoid it.  Hence, we reset the txb_count here.  If
1472 		 * txb_free was incorrect, resetting txb_count just loose
1473 		 * some packets.  We can live with it.
1474 		 */
1475 		sc->txb_count = 0;
1476 	}
1477 #endif
1478 
1479 #if FE_DEBUG >= 1
1480 	/*
1481 	 * First, see if there are buffered packets and an idle
1482 	 * transmitter - should never happen at this point.
1483 	 */
1484 	if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1485 		log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1486 		    sc->sc_dev.dv_xname, sc->txb_count);
1487 		fe_xmit(sc);
1488 	}
1489 #endif
1490 
1491 	/*
1492 	 * Stop accepting more transmission packets temporarily, when
1493 	 * a filter change request is delayed.  Updating the MARs on
1494 	 * 86960 flushes the transmisstion buffer, so it is delayed
1495 	 * until all buffered transmission packets have been sent
1496 	 * out.
1497 	 */
1498 	if (sc->filter_change) {
1499 		/*
1500 		 * Filter change requst is delayed only when the DLC is
1501 		 * working.  DLC soon raise an interrupt after finishing
1502 		 * the work.
1503 		 */
1504 		goto indicate_active;
1505 	}
1506 
1507 	for (;;) {
1508 		/*
1509 		 * See if there is room to put another packet in the buffer.
1510 		 * We *could* do better job by peeking the send queue to
1511 		 * know the length of the next packet.  Current version just
1512 		 * tests against the worst case (i.e., longest packet).  FIXME.
1513 		 *
1514 		 * When adding the packet-peek feature, don't forget adding a
1515 		 * test on txb_count against QUEUEING_MAX.
1516 		 * There is a little chance the packet count exceeds
1517 		 * the limit.  Assume transmission buffer is 8KB (2x8KB
1518 		 * configuration) and an application sends a bunch of small
1519 		 * (i.e., minimum packet sized) packets rapidly.  An 8KB
1520 		 * buffer can hold 130 blocks of 62 bytes long...
1521 		 */
1522 		if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1523 			/* No room. */
1524 			goto indicate_active;
1525 		}
1526 
1527 #if FE_SINGLE_TRANSMISSION
1528 		if (sc->txb_count > 0) {
1529 			/* Just one packet per a transmission buffer. */
1530 			goto indicate_active;
1531 		}
1532 #endif
1533 
1534 		/*
1535 		 * Get the next mbuf chain for a packet to send.
1536 		 */
1537 		IF_DEQUEUE(&ifp->if_snd, m);
1538 		if (m == 0) {
1539 			/* No more packets to send. */
1540 			goto indicate_inactive;
1541 		}
1542 
1543 #if NBPFILTER > 0
1544 		/* Tap off here if there is a BPF listener. */
1545 		if (ifp->if_bpf)
1546 			bpf_mtap(ifp->if_bpf, m);
1547 #endif
1548 
1549 		/*
1550 		 * Copy the mbuf chain into the transmission buffer.
1551 		 * txb_* variables are updated as necessary.
1552 		 */
1553 		fe_write_mbufs(sc, m);
1554 
1555 		m_freem(m);
1556 
1557 		/* Start transmitter if it's idle. */
1558 		if (sc->txb_sched == 0)
1559 			fe_xmit(sc);
1560 	}
1561 
1562 indicate_inactive:
1563 	/*
1564 	 * We are using the !OACTIVE flag to indicate to
1565 	 * the outside world that we can accept an
1566 	 * additional packet rather than that the
1567 	 * transmitter is _actually_ active.  Indeed, the
1568 	 * transmitter may be active, but if we haven't
1569 	 * filled all the buffers with data then we still
1570 	 * want to accept more.
1571 	 */
1572 	ifp->if_flags &= ~IFF_OACTIVE;
1573 	return;
1574 
1575 indicate_active:
1576 	/*
1577 	 * The transmitter is active, and there are no room for
1578 	 * more outgoing packets in the transmission buffer.
1579 	 */
1580 	ifp->if_flags |= IFF_OACTIVE;
1581 	return;
1582 }
1583 
1584 /*
1585  * Transmission interrupt handler
1586  * The control flow of this function looks silly.  FIXME.
1587  */
1588 void
1589 fe_tint(sc, tstat)
1590 	struct fe_softc *sc;
1591 	u_char tstat;
1592 {
1593 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1594 	int left;
1595 	int col;
1596 
1597 	/*
1598 	 * Handle "excessive collision" interrupt.
1599 	 */
1600 	if (tstat & FE_D0_COLL16) {
1601 		/*
1602 		 * Find how many packets (including this collided one)
1603 		 * are left unsent in transmission buffer.
1604 		 */
1605 		left = inb(sc->sc_iobase + FE_BMPR10);
1606 
1607 #if FE_DEBUG >= 2
1608 		log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1609 		    sc->sc_dev.dv_xname, left, sc->txb_sched);
1610 #endif
1611 #if FE_DEBUG >= 3
1612 		fe_dump(LOG_INFO, sc);
1613 #endif
1614 
1615 		/*
1616 		 * Update statistics.
1617 		 */
1618 		ifp->if_collisions += 16;
1619 		ifp->if_oerrors++;
1620 		ifp->if_opackets += sc->txb_sched - left;
1621 
1622 		/*
1623 		 * Collision statistics has been updated.
1624 		 * Clear the collision flag on 86960 now to avoid confusion.
1625 		 */
1626 		outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1627 
1628 		/*
1629 		 * Restart transmitter, skipping the
1630 		 * collided packet.
1631 		 *
1632 		 * We *must* skip the packet to keep network running
1633 		 * properly.  Excessive collision error is an
1634 		 * indication of the network overload.  If we
1635 		 * tried sending the same packet after excessive
1636 		 * collision, the network would be filled with
1637 		 * out-of-time packets.  Packets belonging
1638 		 * to reliable transport (such as TCP) are resent
1639 		 * by some upper layer.
1640 		 */
1641 		outb(sc->sc_iobase + FE_BMPR11,
1642 		    FE_B11_CTRL_SKIP | FE_B11_MODE1);
1643 		sc->txb_sched = left - 1;
1644 	}
1645 
1646 	/*
1647 	 * Handle "transmission complete" interrupt.
1648 	 */
1649 	if (tstat & FE_D0_TXDONE) {
1650 		/*
1651 		 * Add in total number of collisions on last
1652 		 * transmission.  We also clear "collision occurred" flag
1653 		 * here.
1654 		 *
1655 		 * 86960 has a design flow on collision count on multiple
1656 		 * packet transmission.  When we send two or more packets
1657 		 * with one start command (that's what we do when the
1658 		 * transmission queue is clauded), 86960 informs us number
1659 		 * of collisions occured on the last packet on the
1660 		 * transmission only.  Number of collisions on previous
1661 		 * packets are lost.  I have told that the fact is clearly
1662 		 * stated in the Fujitsu document.
1663 		 *
1664 		 * I considered not to mind it seriously.  Collision
1665 		 * count is not so important, anyway.  Any comments?  FIXME.
1666 		 */
1667 
1668 		if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1669 			/* Clear collision flag. */
1670 			outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1671 
1672 			/* Extract collision count from 86960. */
1673 			col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1674 			if (col == 0) {
1675 				/*
1676 				 * Status register indicates collisions,
1677 				 * while the collision count is zero.
1678 				 * This can happen after multiple packet
1679 				 * transmission, indicating that one or more
1680 				 * previous packet(s) had been collided.
1681 				 *
1682 				 * Since the accurate number of collisions
1683 				 * has been lost, we just guess it as 1;
1684 				 * Am I too optimistic?  FIXME.
1685 				 */
1686 				col = 1;
1687 			} else
1688 				col >>= FE_D4_COL_SHIFT;
1689 			ifp->if_collisions += col;
1690 #if FE_DEBUG >= 4
1691 			log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1692 			    sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1693 			    sc->txb_sched);
1694 #endif
1695 		}
1696 
1697 		/*
1698 		 * Update total number of successfully
1699 		 * transmitted packets.
1700 		 */
1701 		ifp->if_opackets += sc->txb_sched;
1702 		sc->txb_sched = 0;
1703 	}
1704 
1705 	if (sc->txb_sched == 0) {
1706 		/*
1707 		 * The transmitter is no more active.
1708 		 * Reset output active flag and watchdog timer.
1709 		 */
1710 		ifp->if_flags &= ~IFF_OACTIVE;
1711 		ifp->if_timer = 0;
1712 
1713 		/*
1714 		 * If more data is ready to transmit in the buffer, start
1715 		 * transmitting them.  Otherwise keep transmitter idle,
1716 		 * even if more data is queued.  This gives receive
1717 		 * process a slight priority.
1718 		 */
1719 		if (sc->txb_count > 0)
1720 			fe_xmit(sc);
1721 	}
1722 }
1723 
1724 /*
1725  * Ethernet interface receiver interrupt.
1726  */
1727 void
1728 fe_rint(sc, rstat)
1729 	struct fe_softc *sc;
1730 	u_char rstat;
1731 {
1732 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1733 	int len;
1734 	u_char status;
1735 	int i;
1736 
1737 	/*
1738 	 * Update statistics if this interrupt is caused by an error.
1739 	 */
1740 	if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1741 		     FE_D1_ALGERR | FE_D1_SRTPKT)) {
1742 #if FE_DEBUG >= 3
1743 		log(LOG_WARNING, "%s: receive error: %b\n",
1744 		    sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1745 #endif
1746 		ifp->if_ierrors++;
1747 	}
1748 
1749 	/*
1750 	 * MB86960 has a flag indicating "receive queue empty."
1751 	 * We just loop cheking the flag to pull out all received
1752 	 * packets.
1753 	 *
1754 	 * We limit the number of iterrations to avoid infinite loop.
1755 	 * It can be caused by a very slow CPU (some broken
1756 	 * peripheral may insert incredible number of wait cycles)
1757 	 * or, worse, by a broken MB86960 chip.
1758 	 */
1759 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1760 		/* Stop the iterration if 86960 indicates no packets. */
1761 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1762 			break;
1763 
1764 		/*
1765 		 * Extract A receive status byte.
1766 		 * As our 86960 is in 16 bit bus access mode, we have to
1767 		 * use inw() to get the status byte.  The significant
1768 		 * value is returned in lower 8 bits.
1769 		 */
1770 		status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1771 #if FE_DEBUG >= 4
1772 		log(LOG_INFO, "%s: receive status = %02x\n",
1773 		    sc->sc_dev.dv_xname, status);
1774 #endif
1775 
1776 		/*
1777 		 * If there was an error, update statistics and drop
1778 		 * the packet, unless the interface is in promiscuous
1779 		 * mode.
1780 		 */
1781 		if ((status & 0xF0) != 0x20) {	/* XXXX ? */
1782 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
1783 				ifp->if_ierrors++;
1784 				fe_droppacket(sc);
1785 				continue;
1786 			}
1787 		}
1788 
1789 		/*
1790 		 * Extract the packet length.
1791 		 * It is a sum of a header (14 bytes) and a payload.
1792 		 * CRC has been stripped off by the 86960.
1793 		 */
1794 		len = inw(sc->sc_iobase + FE_BMPR8);
1795 
1796 		/*
1797 		 * MB86965 checks the packet length and drop big packet
1798 		 * before passing it to us.  There are no chance we can
1799 		 * get [crufty] packets.  Hence, if the length exceeds
1800 		 * the specified limit, it means some serious failure,
1801 		 * such as out-of-sync on receive buffer management.
1802 		 *
1803 		 * Is this statement true?  FIXME.
1804 		 */
1805 		if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1806 #if FE_DEBUG >= 2
1807 			log(LOG_WARNING,
1808 			    "%s: received a %s packet? (%u bytes)\n",
1809 			    sc->sc_dev.dv_xname,
1810 			    len < ETHER_HDR_SIZE ? "partial" : "big", len);
1811 #endif
1812 			ifp->if_ierrors++;
1813 			fe_droppacket(sc);
1814 			continue;
1815 		}
1816 
1817 		/*
1818 		 * Check for a short (RUNT) packet.  We *do* check
1819 		 * but do nothing other than print a message.
1820 		 * Short packets are illegal, but does nothing bad
1821 		 * if it carries data for upper layer.
1822 		 */
1823 #if FE_DEBUG >= 2
1824 		if (len < ETHER_MIN_LEN) {
1825 			log(LOG_WARNING,
1826 			     "%s: received a short packet? (%u bytes)\n",
1827 			     sc->sc_dev.dv_xname, len);
1828 		}
1829 #endif
1830 
1831 		/*
1832 		 * Go get a packet.
1833 		 */
1834 		if (!fe_get_packet(sc, len)) {
1835 			/* Skip a packet, updating statistics. */
1836 #if FE_DEBUG >= 2
1837 			log(LOG_WARNING,
1838 			    "%s: out of mbufs; dropping packet (%u bytes)\n",
1839 			    sc->sc_dev.dv_xname, len);
1840 #endif
1841 			ifp->if_ierrors++;
1842 			fe_droppacket(sc);
1843 
1844 			/*
1845 			 * We stop receiving packets, even if there are
1846 			 * more in the buffer.  We hope we can get more
1847 			 * mbufs next time.
1848 			 */
1849 			return;
1850 		}
1851 
1852 		/* Successfully received a packet.  Update stat. */
1853 		ifp->if_ipackets++;
1854 	}
1855 }
1856 
1857 /*
1858  * Ethernet interface interrupt processor
1859  */
1860 int
1861 feintr(arg)
1862 	void *arg;
1863 {
1864 	struct fe_softc *sc = arg;
1865 	u_char tstat, rstat;
1866 
1867 #if FE_DEBUG >= 4
1868 	log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1869 	fe_dump(LOG_INFO, sc);
1870 #endif
1871 
1872 	/*
1873 	 * Get interrupt conditions, masking unneeded flags.
1874 	 */
1875 	tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1876 	rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1877 	if (tstat == 0 && rstat == 0)
1878 		return (0);
1879 
1880 	/*
1881 	 * Loop until there are no more new interrupt conditions.
1882 	 */
1883 	for (;;) {
1884 		/*
1885 		 * Reset the conditions we are acknowledging.
1886 		 */
1887 		outb(sc->sc_iobase + FE_DLCR0, tstat);
1888 		outb(sc->sc_iobase + FE_DLCR1, rstat);
1889 
1890 		/*
1891 		 * Handle transmitter interrupts. Handle these first because
1892 		 * the receiver will reset the board under some conditions.
1893 		 */
1894 		if (tstat != 0)
1895 			fe_tint(sc, tstat);
1896 
1897 		/*
1898 		 * Handle receiver interrupts.
1899 		 */
1900 		if (rstat != 0)
1901 			fe_rint(sc, rstat);
1902 
1903 		/*
1904 		 * Update the multicast address filter if it is
1905 		 * needed and possible.  We do it now, because
1906 		 * we can make sure the transmission buffer is empty,
1907 		 * and there is a good chance that the receive queue
1908 		 * is empty.  It will minimize the possibility of
1909 		 * packet lossage.
1910 		 */
1911 		if (sc->filter_change &&
1912 		    sc->txb_count == 0 && sc->txb_sched == 0) {
1913 			fe_loadmar(sc);
1914 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1915 		}
1916 
1917 		/*
1918 		 * If it looks like the transmitter can take more data,
1919 		 * attempt to start output on the interface. This is done
1920 		 * after handling the receiver interrupt to give the
1921 		 * receive operation priority.
1922 		 */
1923 		if ((sc->sc_ethercom.ec_if.if_flags & IFF_OACTIVE) == 0)
1924 			fe_start(&sc->sc_ethercom.ec_if);
1925 
1926 #if NRND > 0
1927 		if (rstat != 0 || tstat != 0)
1928 			rnd_add_uint32(&sc->rnd_source, rstat + tstat);
1929 #endif
1930 
1931 		/*
1932 		 * Get interrupt conditions, masking unneeded flags.
1933 		 */
1934 		tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1935 		rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1936 		if (tstat == 0 && rstat == 0)
1937 			return (1);
1938 	}
1939 }
1940 
1941 /*
1942  * Process an ioctl request.  This code needs some work - it looks pretty ugly.
1943  */
1944 int
1945 fe_ioctl(ifp, command, data)
1946 	register struct ifnet *ifp;
1947 	u_long command;
1948 	caddr_t data;
1949 {
1950 	struct fe_softc *sc = ifp->if_softc;
1951 	register struct ifaddr *ifa = (struct ifaddr *)data;
1952 	struct ifreq *ifr = (struct ifreq *)data;
1953 	int s, error = 0;
1954 
1955 #if FE_DEBUG >= 3
1956 	log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1957 #endif
1958 
1959 	s = splnet();
1960 
1961 	switch (command) {
1962 
1963 	case SIOCSIFADDR:
1964 		ifp->if_flags |= IFF_UP;
1965 
1966 		switch (ifa->ifa_addr->sa_family) {
1967 #ifdef INET
1968 		case AF_INET:
1969 			fe_init(sc);
1970 			arp_ifinit(ifp, ifa);
1971 			break;
1972 #endif
1973 #ifdef NS
1974 		case AF_NS:
1975 		    {
1976 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1977 
1978 			if (ns_nullhost(*ina))
1979 				ina->x_host =
1980 				    *(union ns_host *)(sc->sc_enaddr);
1981 			else {
1982 				bcopy(ina->x_host.c_host, sc->sc_enaddr,
1983 				    ETHER_ADDR_LEN);
1984 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1985 				    ETHER_ADDR_LEN);
1986 			}
1987 			/* Set new address. */
1988 			fe_init(sc);
1989 			break;
1990 		    }
1991 #endif
1992 		default:
1993 			fe_init(sc);
1994 			break;
1995 		}
1996 		break;
1997 
1998 	case SIOCSIFFLAGS:
1999 		if ((ifp->if_flags & IFF_UP) == 0 &&
2000 		    (ifp->if_flags & IFF_RUNNING) != 0) {
2001 			/*
2002 			 * If interface is marked down and it is running, then
2003 			 * stop it.
2004 			 */
2005 			fe_stop(sc);
2006 			ifp->if_flags &= ~IFF_RUNNING;
2007 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
2008 			   (ifp->if_flags & IFF_RUNNING) == 0) {
2009 			/*
2010 			 * If interface is marked up and it is stopped, then
2011 			 * start it.
2012 			 */
2013 			fe_init(sc);
2014 		} else {
2015 			/*
2016 			 * Reset the interface to pick up changes in any other
2017 			 * flags that affect hardware registers.
2018 			 */
2019 			fe_setmode(sc);
2020 		}
2021 #if DEBUG >= 1
2022 		/* "ifconfig fe0 debug" to print register dump. */
2023 		if (ifp->if_flags & IFF_DEBUG) {
2024 			log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
2025 			fe_dump(LOG_DEBUG, sc);
2026 		}
2027 #endif
2028 		break;
2029 
2030 	case SIOCADDMULTI:
2031 	case SIOCDELMULTI:
2032 		/* Update our multicast list. */
2033 		error = (command == SIOCADDMULTI) ?
2034 		    ether_addmulti(ifr, &sc->sc_ethercom) :
2035 		    ether_delmulti(ifr, &sc->sc_ethercom);
2036 
2037 		if (error == ENETRESET) {
2038 			/*
2039 			 * Multicast list has changed; set the hardware filter
2040 			 * accordingly.
2041 			 */
2042 			fe_setmode(sc);
2043 			error = 0;
2044 		}
2045 		break;
2046 
2047 	default:
2048 		error = EINVAL;
2049 	}
2050 
2051 	splx(s);
2052 	return (error);
2053 }
2054 
2055 /*
2056  * Retreive packet from receive buffer and send to the next level up via
2057  * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2058  * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2059  */
2060 int
2061 fe_get_packet(sc, len)
2062 	struct fe_softc *sc;
2063 	int len;
2064 {
2065 	struct ether_header *eh;
2066 	struct mbuf *m;
2067 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2068 
2069 	/* Allocate a header mbuf. */
2070 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2071 	if (m == 0)
2072 		return (0);
2073 	m->m_pkthdr.rcvif = ifp;
2074 	m->m_pkthdr.len = len;
2075 
2076 	/* The following silliness is to make NFS happy. */
2077 #define	EROUND	((sizeof(struct ether_header) + 3) & ~3)
2078 #define	EOFF	(EROUND - sizeof(struct ether_header))
2079 
2080 	/*
2081 	 * Our strategy has one more problem.  There is a policy on
2082 	 * mbuf cluster allocation.  It says that we must have at
2083 	 * least MINCLSIZE (208 bytes) to allocate a cluster.  For a
2084 	 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
2085 	 * our code violates the rule...
2086 	 * On the other hand, the current code is short, simle,
2087 	 * and fast, however.  It does no harmful thing, just waists
2088 	 * some memory.  Any comments?  FIXME.
2089 	 */
2090 
2091 	/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2092 	if (len > MHLEN - EOFF) {
2093 		MCLGET(m, M_DONTWAIT);
2094 		if ((m->m_flags & M_EXT) == 0) {
2095 			m_freem(m);
2096 			return (0);
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * The following assumes there is room for the ether header in the
2102 	 * header mbuf.
2103 	 */
2104 	m->m_data += EOFF;
2105 	eh = mtod(m, struct ether_header *);
2106 
2107 	/* Set the length of this packet. */
2108 	m->m_len = len;
2109 
2110 	/* Get a packet. */
2111 	insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2112 
2113 #if NBPFILTER > 0
2114 	/*
2115 	 * Check if there's a BPF listener on this interface.  If so, hand off
2116 	 * the raw packet to bpf.
2117 	 */
2118 	if (ifp->if_bpf) {
2119 		bpf_mtap(ifp->if_bpf, m);
2120 
2121 		/*
2122 		 * Note that the interface cannot be in promiscuous mode if
2123 		 * there are no BPF listeners.  And if we are in promiscuous
2124 		 * mode, we have to check if this packet is really ours.
2125 		 */
2126 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2127 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2128 	  	    bcmp(eh->ether_dhost, sc->sc_enaddr,
2129 			    sizeof(eh->ether_dhost)) != 0) {
2130 			m_freem(m);
2131 			return (1);
2132 		}
2133 	}
2134 #endif
2135 
2136 	/* Fix up data start offset in mbuf to point past ether header. */
2137 	m_adj(m, sizeof(struct ether_header));
2138 	ether_input(ifp, eh, m);
2139 	return (1);
2140 }
2141 
2142 /*
2143  * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2144  * Returns number of bytes actually written, including length word.
2145  *
2146  * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2147  * Packets shorter than Ethernet minimum are legal, and we pad them
2148  * before sending out.  An exception is "partial" packets which are
2149  * shorter than mandatory Ethernet header.
2150  *
2151  * I wrote a code for an experimental "delayed padding" technique.
2152  * When employed, it postpones the padding process for short packets.
2153  * If xmit() occured at the moment, the padding process is omitted, and
2154  * garbages are sent as pad data.  If next packet is stored in the
2155  * transmission buffer before xmit(), write_mbuf() pads the previous
2156  * packet before transmitting new packet.  This *may* gain the
2157  * system performance (slightly).
2158  */
2159 void
2160 fe_write_mbufs(sc, m)
2161 	struct fe_softc *sc;
2162 	struct mbuf *m;
2163 {
2164 	int bmpr8 = sc->sc_iobase + FE_BMPR8;
2165 	u_char *data;
2166 	u_short savebyte;	/* WARNING: Architecture dependent! */
2167 	int totlen, len, wantbyte;
2168 
2169 	/* XXX thorpej 960116 - quiet bogus compiler warning. */
2170 	savebyte = 0;
2171 
2172 #if FE_DELAYED_PADDING
2173 	/* Do the "delayed padding." */
2174 	len = sc->txb_padding >> 1;
2175 	if (len > 0) {
2176 		while (--len >= 0)
2177 			outw(bmpr8, 0);
2178 		sc->txb_padding = 0;
2179 	}
2180 #endif
2181 
2182 	/* We need to use m->m_pkthdr.len, so require the header */
2183 	if ((m->m_flags & M_PKTHDR) == 0)
2184 	  	panic("fe_write_mbufs: no header mbuf");
2185 
2186 #if FE_DEBUG >= 2
2187 	/* First, count up the total number of bytes to copy. */
2188 	for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2189 		totlen += mp->m_len;
2190 	/* Check if this matches the one in the packet header. */
2191 	if (totlen != m->m_pkthdr.len)
2192 		log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2193 		    sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2194 #else
2195 	/* Just use the length value in the packet header. */
2196 	totlen = m->m_pkthdr.len;
2197 #endif
2198 
2199 #if FE_DEBUG >= 1
2200 	/*
2201 	 * Should never send big packets.  If such a packet is passed,
2202 	 * it should be a bug of upper layer.  We just ignore it.
2203 	 * ... Partial (too short) packets, neither.
2204 	 */
2205 	if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2206 		log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2207 		    sc->sc_dev.dv_xname,
2208 		    totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2209 		sc->sc_ethercom.ec_if.if_oerrors++;
2210 		return;
2211 	}
2212 #endif
2213 
2214 	/*
2215 	 * Put the length word for this frame.
2216 	 * Does 86960 accept odd length?  -- Yes.
2217 	 * Do we need to pad the length to minimum size by ourselves?
2218 	 * -- Generally yes.  But for (or will be) the last
2219 	 * packet in the transmission buffer, we can skip the
2220 	 * padding process.  It may gain performance slightly.  FIXME.
2221 	 */
2222 	outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2223 
2224 	/*
2225 	 * Update buffer status now.
2226 	 * Truncate the length up to an even number, since we use outw().
2227 	 */
2228 	totlen = (totlen + 1) & ~1;
2229 	sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2230 	sc->txb_count++;
2231 
2232 #if FE_DELAYED_PADDING
2233 	/* Postpone the packet padding if necessary. */
2234 	if (totlen < ETHER_MIN_LEN)
2235 		sc->txb_padding = ETHER_MIN_LEN - totlen;
2236 #endif
2237 
2238 	/*
2239 	 * Transfer the data from mbuf chain to the transmission buffer.
2240 	 * MB86960 seems to require that data be transferred as words, and
2241 	 * only words.  So that we require some extra code to patch
2242 	 * over odd-length mbufs.
2243 	 */
2244 	wantbyte = 0;
2245 	for (; m != 0; m = m->m_next) {
2246 		/* Ignore empty mbuf. */
2247 		len = m->m_len;
2248 		if (len == 0)
2249 			continue;
2250 
2251 		/* Find the actual data to send. */
2252 		data = mtod(m, caddr_t);
2253 
2254 		/* Finish the last byte. */
2255 		if (wantbyte) {
2256 			outw(bmpr8, savebyte | (*data << 8));
2257 			data++;
2258 			len--;
2259 			wantbyte = 0;
2260 		}
2261 
2262 		/* Output contiguous words. */
2263 		if (len > 1)
2264 			outsw(bmpr8, data, len >> 1);
2265 
2266 		/* Save remaining byte, if there is one. */
2267 		if (len & 1) {
2268 			data += len & ~1;
2269 			savebyte = *data;
2270 			wantbyte = 1;
2271 		}
2272 	}
2273 
2274 	/* Spit the last byte, if the length is odd. */
2275 	if (wantbyte)
2276 		outw(bmpr8, savebyte);
2277 
2278 #if ! FE_DELAYED_PADDING
2279 	/*
2280 	 * Pad the packet to the minimum length if necessary.
2281 	 */
2282 	len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2283 	while (--len >= 0)
2284 		outw(bmpr8, 0);
2285 #endif
2286 }
2287 
2288 /*
2289  * Compute the multicast address filter from the
2290  * list of multicast addresses we need to listen to.
2291  */
2292 void
2293 fe_getmcaf(ec, af)
2294 	struct ethercom *ec;
2295 	u_char *af;
2296 {
2297 	struct ifnet *ifp = &ec->ec_if;
2298 	struct ether_multi *enm;
2299 	register u_char *cp, c;
2300 	register u_long crc;
2301 	register int i, len;
2302 	struct ether_multistep step;
2303 
2304 	/*
2305 	 * Set up multicast address filter by passing all multicast addresses
2306 	 * through a crc generator, and then using the high order 6 bits as an
2307 	 * index into the 64 bit logical address filter.  The high order bit
2308 	 * selects the word, while the rest of the bits select the bit within
2309 	 * the word.
2310 	 */
2311 
2312 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2313 		goto allmulti;
2314 
2315 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2316 	ETHER_FIRST_MULTI(step, ec, enm);
2317 	while (enm != NULL) {
2318 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2319 		    sizeof(enm->enm_addrlo)) != 0) {
2320 			/*
2321 			 * We must listen to a range of multicast addresses.
2322 			 * For now, just accept all multicasts, rather than
2323 			 * trying to set only those filter bits needed to match
2324 			 * the range.  (At this time, the only use of address
2325 			 * ranges is for IP multicast routing, for which the
2326 			 * range is big enough to require all bits set.)
2327 			 */
2328 			goto allmulti;
2329 		}
2330 
2331 		cp = enm->enm_addrlo;
2332 		crc = 0xffffffff;
2333 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2334 			c = *cp++;
2335 			for (i = 8; --i >= 0;) {
2336 				if ((crc & 0x01) ^ (c & 0x01)) {
2337 					crc >>= 1;
2338 					crc ^= 0xedb88320;
2339 				} else
2340 					crc >>= 1;
2341 				c >>= 1;
2342 			}
2343 		}
2344 		/* Just want the 6 most significant bits. */
2345 		crc >>= 26;
2346 
2347 		/* Turn on the corresponding bit in the filter. */
2348 		af[crc >> 3] |= 1 << (crc & 7);
2349 
2350 		ETHER_NEXT_MULTI(step, enm);
2351 	}
2352 	ifp->if_flags &= ~IFF_ALLMULTI;
2353 	return;
2354 
2355 allmulti:
2356 	ifp->if_flags |= IFF_ALLMULTI;
2357 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2358 }
2359 
2360 /*
2361  * Calculate a new "multicast packet filter" and put the 86960
2362  * receiver in appropriate mode.
2363  */
2364 void
2365 fe_setmode(sc)
2366 	struct fe_softc *sc;
2367 {
2368 	int flags = sc->sc_ethercom.ec_if.if_flags;
2369 
2370 	/*
2371 	 * If the interface is not running, we postpone the update
2372 	 * process for receive modes and multicast address filter
2373 	 * until the interface is restarted.  It reduces some
2374 	 * complicated job on maintaining chip states.  (Earlier versions
2375 	 * of this driver had a bug on that point...)
2376 	 *
2377 	 * To complete the trick, fe_init() calls fe_setmode() after
2378 	 * restarting the interface.
2379 	 */
2380 	if ((flags & IFF_RUNNING) == 0)
2381 		return;
2382 
2383 	/*
2384 	 * Promiscuous mode is handled separately.
2385 	 */
2386 	if ((flags & IFF_PROMISC) != 0) {
2387 		/*
2388 		 * Program 86960 to receive all packets on the segment
2389 		 * including those directed to other stations.
2390 		 * Multicast filter stored in MARs are ignored
2391 		 * under this setting, so we don't need to update it.
2392 		 *
2393 		 * Promiscuous mode is used solely by BPF, and BPF only
2394 		 * listens to valid (no error) packets.  So, we ignore
2395 		 * errornous ones even in this mode.
2396 		 */
2397 		outb(sc->sc_iobase + FE_DLCR5,
2398 		    sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2399 		sc->filter_change = 0;
2400 
2401 #if FE_DEBUG >= 3
2402 		log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2403 #endif
2404 		return;
2405 	}
2406 
2407 	/*
2408 	 * Turn the chip to the normal (non-promiscuous) mode.
2409 	 */
2410 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2411 
2412 	/*
2413 	 * Find the new multicast filter value.
2414 	 */
2415 	fe_getmcaf(&sc->sc_ethercom, sc->filter);
2416 	sc->filter_change = 1;
2417 
2418 #if FE_DEBUG >= 3
2419 	log(LOG_INFO,
2420 	    "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2421 	    sc->sc_dev.dv_xname,
2422 	    sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2423 	    sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2424 #endif
2425 
2426 	/*
2427 	 * We have to update the multicast filter in the 86960, A.S.A.P.
2428 	 *
2429 	 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2430 	 * and receiver) must be stopped when feeding the filter, and
2431 	 * DLC trushes all packets in both transmission and receive
2432 	 * buffers when stopped.
2433 	 *
2434 	 * ... Are the above sentenses correct?  I have to check the
2435 	 *     manual of the MB86960A.  FIXME.
2436 	 *
2437 	 * To reduce the packet lossage, we delay the filter update
2438 	 * process until buffers are empty.
2439 	 */
2440 	if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2441 	    (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2442 		/*
2443 		 * Buffers are (apparently) empty.  Load
2444 		 * the new filter value into MARs now.
2445 		 */
2446 		fe_loadmar(sc);
2447 	} else {
2448 		/*
2449 		 * Buffers are not empty.  Mark that we have to update
2450 		 * the MARs.  The new filter will be loaded by feintr()
2451 		 * later.
2452 		 */
2453 #if FE_DEBUG >= 4
2454 		log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2455 #endif
2456 	}
2457 }
2458 
2459 /*
2460  * Load a new multicast address filter into MARs.
2461  *
2462  * The caller must have splnet'ed befor fe_loadmar.
2463  * This function starts the DLC upon return.  So it can be called only
2464  * when the chip is working, i.e., from the driver's point of view, when
2465  * a device is RUNNING.  (I mistook the point in previous versions.)
2466  */
2467 void
2468 fe_loadmar(sc)
2469 	struct fe_softc *sc;
2470 {
2471 
2472 	/* Stop the DLC (transmitter and receiver). */
2473 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2474 
2475 	/* Select register bank 1 for MARs. */
2476 	outb(sc->sc_iobase + FE_DLCR7,
2477 	    sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2478 
2479 	/* Copy filter value into the registers. */
2480 	outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2481 
2482 	/* Restore the bank selection for BMPRs (i.e., runtime registers). */
2483 	outb(sc->sc_iobase + FE_DLCR7,
2484 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2485 
2486 	/* Restart the DLC. */
2487 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2488 
2489 	/* We have just updated the filter. */
2490 	sc->filter_change = 0;
2491 
2492 #if FE_DEBUG >= 3
2493 	log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2494 #endif
2495 }
2496 
2497 #if FE_DEBUG >= 1
2498 void
2499 fe_dump(level, sc)
2500 	int level;
2501 	struct fe_softc *sc;
2502 {
2503 	int iobase = sc->sc_iobase;
2504 	u_char save_dlcr7;
2505 
2506 	save_dlcr7 = inb(iobase + FE_DLCR7);
2507 
2508 	log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2509 	    inb(iobase + FE_DLCR0),  inb(iobase + FE_DLCR1),
2510 	    inb(iobase + FE_DLCR2),  inb(iobase + FE_DLCR3),
2511 	    inb(iobase + FE_DLCR4),  inb(iobase + FE_DLCR5),
2512 	    inb(iobase + FE_DLCR6),  inb(iobase + FE_DLCR7));
2513 
2514 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2515 	log(level, "\t       %02x %02x %02x %02x %02x %02x %02x %02x,",
2516 	    inb(iobase + FE_DLCR8),  inb(iobase + FE_DLCR9),
2517 	    inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2518 	    inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2519 	    inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2520 
2521 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2522 	log(level, "\tMAR  = %02x %02x %02x %02x %02x %02x %02x %02x,",
2523 	    inb(iobase + FE_MAR8),   inb(iobase + FE_MAR9),
2524 	    inb(iobase + FE_MAR10),  inb(iobase + FE_MAR11),
2525 	    inb(iobase + FE_MAR12),  inb(iobase + FE_MAR13),
2526 	    inb(iobase + FE_MAR14),  inb(iobase + FE_MAR15));
2527 
2528 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2529 	log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2530 	    inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2531 	    inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2532 	    inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2533 	    inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2534 	    inb(iobase + FE_BMPR19));
2535 
2536 	outb(iobase + FE_DLCR7, save_dlcr7);
2537 }
2538 #endif
2539