xref: /netbsd-src/sys/dev/isa/if_ate.c (revision 9573504567626934c7ee01c7dce0c4bb1dfe7403)
1 /*
2  * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3  *
4  * This software may be used, modified, copied, distributed, and sold, in
5  * both source and binary form provided that the above copyright, these
6  * terms and the following disclaimer are retained.  The name of the author
7  * and/or the contributor may not be used to endorse or promote products
8  * derived from this software without specific prior written permission.
9  *
10  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20  * SUCH DAMAGE.
21  */
22 
23 /*
24  * Portions copyright (C) 1993, David Greenman.  This software may be used,
25  * modified, copied, distributed, and sold, in both source and binary form
26  * provided that the above copyright and these terms are retained.  Under no
27  * circumstances is the author responsible for the proper functioning of this
28  * software, nor does the author assume any responsibility for damages
29  * incurred with its use.
30  */
31 
32 #define FE_VERSION "if_fe.c ver. 0.8"
33 
34 /*
35  * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
36  * Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
37  *
38  * This version is intended to be a generic template for various
39  * MB86960A/MB86965A based Ethernet cards.  It currently supports
40  * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
41  * Telesis AT1700 series and RE2000 series.  There are some
42  * unnecessary hooks embedded, which are primarily intended to support
43  * other types of Ethernet cards, but the author is not sure whether
44  * they are useful.
45  */
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/syslog.h>
56 #include <sys/device.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #endif
70 
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75 
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80 
81 #include <machine/cpu.h>
82 #include <machine/pio.h>
83 
84 #include <dev/isa/isareg.h>
85 #include <dev/isa/isavar.h>
86 #include <dev/ic/mb86960reg.h>
87 #include <dev/isa/if_fereg.h>
88 
89 /*
90  * Default settings for fe driver specific options.
91  * They can be set in config file by "options" statements.
92  */
93 
94 /*
95  * Debug control.
96  * 0: No debug at all.  All debug specific codes are stripped off.
97  * 1: Silent.  No debug messages are logged except emergent ones.
98  * 2: Brief.  Lair events and/or important information are logged.
99  * 3: Detailed.  Logs all information which *may* be useful for debugging.
100  * 4: Trace.  All actions in the driver is logged.  Super verbose.
101  */
102 #ifndef FE_DEBUG
103 #define FE_DEBUG		1
104 #endif
105 
106 /*
107  * Delay padding of short transmission packets to minimum Ethernet size.
108  * This may or may not gain performance.  An EXPERIMENTAL option.
109  */
110 #ifndef FE_DELAYED_PADDING
111 #define FE_DELAYED_PADDING	0
112 #endif
113 
114 /*
115  * Transmit just one packet per a "send" command to 86960.
116  * This option is intended for performance test.  An EXPERIMENTAL option.
117  */
118 #ifndef FE_SINGLE_TRANSMISSION
119 #define FE_SINGLE_TRANSMISSION	0
120 #endif
121 
122 /*
123  * Device configuration flags.
124  */
125 
126 /* DLCR6 settings. */
127 #define FE_FLAGS_DLCR6_VALUE	0x007F
128 
129 /* Force DLCR6 override. */
130 #define FE_FLAGS_OVERRIDE_DLCR6	0x0080
131 
132 /* A cludge for PCMCIA support. */
133 #define FE_FLAGS_PCMCIA		0x8000
134 
135 /* Identification of the driver version. */
136 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
137 
138 /*
139  * Supported hardware (Ethernet card) types
140  * This information is currently used only for debugging
141  */
142 enum fe_type {
143 	/* For cards which are successfully probed but not identified. */
144 	FE_TYPE_UNKNOWN,
145 
146 	/* Fujitsu FMV-180 series. */
147 	FE_TYPE_FMV181,
148 	FE_TYPE_FMV182,
149 
150 	/* Allied-Telesis AT1700 series and RE2000 series. */
151 	FE_TYPE_AT1700T,
152 	FE_TYPE_AT1700BT,
153 	FE_TYPE_AT1700FT,
154 	FE_TYPE_AT1700AT,
155 	FE_TYPE_RE2000,
156 
157 	/* PCMCIA by Fujitsu. */
158 	FE_TYPE_MBH10302,
159 	FE_TYPE_MBH10304,
160 };
161 
162 /*
163  * fe_softc: per line info and status
164  */
165 struct fe_softc {
166 	struct	device sc_dev;
167 	void	*sc_ih;
168 
169 	struct	arpcom sc_arpcom;	/* ethernet common */
170 
171 	/* Set by probe() and not modified in later phases. */
172 	enum	fe_type type;	/* interface type code */
173 	char	*typestr;	/* printable name of the interface. */
174 	int	sc_iobase;	/* MB86960A I/O base address */
175 
176 	u_char	proto_dlcr4;	/* DLCR4 prototype. */
177 	u_char	proto_dlcr5;	/* DLCR5 prototype. */
178 	u_char	proto_dlcr6;	/* DLCR6 prototype. */
179 	u_char	proto_dlcr7;	/* DLCR7 prototype. */
180 	u_char	proto_bmpr13;	/* BMPR13 prototype. */
181 
182 	/* Vendor specific hooks. */
183 	void	(*init) __P((struct fe_softc *)); /* Just before fe_init(). */
184 	void	(*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
185 
186 	/* Transmission buffer management. */
187 	u_short	txb_size;	/* total bytes in TX buffer */
188 	u_short	txb_free;	/* free bytes in TX buffer */
189 	u_char	txb_count;	/* number of packets in TX buffer */
190 	u_char	txb_sched;	/* number of scheduled packets */
191 	u_char	txb_padding;	/* number of delayed padding bytes */
192 
193 	/* Multicast address filter management. */
194 	u_char	filter_change;	/* MARs must be changed ASAP. */
195 	u_char	filter[FE_FILTER_LEN];	/* new filter value. */
196 };
197 
198 /* Frequently accessed members in arpcom. */
199 #define sc_enaddr	sc_arpcom.ac_enaddr
200 
201 /* Standard driver entry points.  These can be static. */
202 int	feprobe		__P((struct device *, void *, void *));
203 void	feattach	__P((struct device *, struct device *, void *));
204 int	feintr		__P((void *));
205 void	fe_init		__P((struct fe_softc *));
206 int	fe_ioctl	__P((struct ifnet *, u_long, caddr_t));
207 void	fe_start	__P((struct ifnet *));
208 void	fe_reset	__P((struct fe_softc *));
209 void	fe_watchdog	__P((int));
210 
211 /* Local functions.  Order of declaration is confused.  FIXME. */
212 int	fe_probe_fmv	__P((struct fe_softc *, struct isa_attach_args *));
213 int	fe_probe_ati	__P((struct fe_softc *, struct isa_attach_args *));
214 int	fe_probe_mbh	__P((struct fe_softc *, struct isa_attach_args *));
215 void	fe_init_mbh	__P((struct fe_softc *));
216 int	fe_get_packet	__P((struct fe_softc *, int));
217 void	fe_stop		__P((struct fe_softc *));
218 void	fe_tint		__P((/*struct fe_softc *, u_char*/));
219 void	fe_rint		__P((/*struct fe_softc *, u_char*/));
220 static inline
221 void	fe_xmit		__P((struct fe_softc *));
222 void	fe_write_mbufs	__P((struct fe_softc *, struct mbuf *));
223 void	fe_getmcaf	__P((struct arpcom *, u_char *));
224 void	fe_setmode	__P((struct fe_softc *));
225 void	fe_loadmar	__P((struct fe_softc *));
226 #if FE_DEBUG >= 1
227 void	fe_dump		__P((int, struct fe_softc *));
228 #endif
229 
230 struct cfdriver fecd = {
231 	NULL, "fe", feprobe, feattach, DV_IFNET, sizeof(struct fe_softc)
232 };
233 
234 /* Ethernet constants.  To be defined in if_ehter.h?  FIXME. */
235 #define ETHER_MIN_LEN	60	/* with header, without CRC. */
236 #define ETHER_MAX_LEN	1514	/* with header, without CRC. */
237 #define ETHER_ADDR_LEN	6	/* number of bytes in an address. */
238 #define ETHER_HDR_SIZE	14	/* src addr, dst addr, and data type. */
239 
240 /*
241  * Fe driver specific constants which relate to 86960/86965.
242  */
243 
244 /* Interrupt masks. */
245 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
246 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
247 		  FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
248 
249 /* Maximum number of iterrations for a receive interrupt. */
250 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
251 	/* Maximum size of SRAM is 65536,
252 	 * minimum size of transmission buffer in fe is 2x2KB,
253 	 * and minimum amount of received packet including headers
254 	 * added by the chip is 64 bytes.
255 	 * Hence FE_MAX_RECV_COUNT is the upper limit for number
256 	 * of packets in the receive buffer. */
257 
258 /*
259  * Convenient routines to access contiguous I/O ports.
260  */
261 
262 static inline void
263 inblk (int addr, u_char * mem, int len)
264 {
265 	while (--len >= 0) {
266 		*mem++ = inb(addr++);
267 	}
268 }
269 
270 static inline void
271 outblk (int addr, u_char const * mem, int len)
272 {
273 	while (--len >= 0) {
274 		outb(addr++, *mem++);
275 	}
276 }
277 
278 /*
279  * Hardware probe routines.
280  */
281 
282 /*
283  * Determine if the device is present.
284  */
285 int
286 feprobe(parent, match, aux)
287 	struct device *parent;
288 	void *match, *aux;
289 {
290 	struct fe_softc *sc = match;
291 	struct isa_attach_args *ia = aux;
292 
293 #if FE_DEBUG >= 2
294 	log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
295 #endif
296 
297 	/* Probe an address. */
298 	sc->sc_iobase = ia->ia_iobase;
299 
300 	if (fe_probe_fmv(sc, ia))
301 		return (1);
302 	if (fe_probe_ati(sc, ia))
303 		return (1);
304 	if (fe_probe_mbh(sc, ia))
305 		return (1);
306 	return (0);
307 }
308 
309 /*
310  * Check for specific bits in specific registers have specific values.
311  */
312 struct fe_simple_probe_struct {
313 	u_char port;	/* Offset from the base I/O address. */
314 	u_char mask;	/* Bits to be checked. */
315 	u_char bits;	/* Values to be compared against. */
316 };
317 
318 static inline int
319 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
320 {
321 	struct fe_simple_probe_struct const * p;
322 
323 	for (p = sp; p->mask != 0; p++) {
324 		if ((inb(addr + p->port) & p->mask) != p->bits) {
325 			return (0);
326 		}
327 	}
328 	return (1);
329 }
330 
331 /*
332  * Routines to read all bytes from the config EEPROM through MB86965A.
333  * I'm not sure what exactly I'm doing here...  I was told just to follow
334  * the steps, and it worked.  Could someone tell me why the following
335  * code works?  (Or, why all similar codes I tried previously doesn't
336  * work.)  FIXME.
337  */
338 
339 static inline void
340 strobe (int bmpr16)
341 {
342 	/*
343 	 * Output same value twice.  To speed-down execution?
344 	 */
345 	outb(bmpr16, FE_B16_SELECT);
346 	outb(bmpr16, FE_B16_SELECT);
347 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
348 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
349 	outb(bmpr16, FE_B16_SELECT);
350 	outb(bmpr16, FE_B16_SELECT);
351 }
352 
353 void
354 fe_read_eeprom(sc, data)
355 	struct fe_softc *sc;
356 	u_char *data;
357 {
358 	int iobase = sc->sc_iobase;
359 	int bmpr16 = iobase + FE_BMPR16;
360 	int bmpr17 = iobase + FE_BMPR17;
361 	u_char n, val, bit;
362 
363 	/* Read bytes from EEPROM; two bytes per an iterration. */
364 	for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
365 		/* Reset the EEPROM interface. */
366 		outb(bmpr16, 0x00);
367 		outb(bmpr17, 0x00);
368 		outb(bmpr16, FE_B16_SELECT);
369 
370 		/* Start EEPROM access. */
371 		outb(bmpr17, FE_B17_DATA);
372 		strobe(bmpr16);
373 
374 		/* Pass the iterration count to the chip. */
375 		val = 0x80 | n;
376 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
377 			outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
378 			strobe(bmpr16);
379 		}
380 		outb(bmpr17, 0x00);
381 
382 		/* Read a byte. */
383 		val = 0;
384 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
385 			strobe(bmpr16);
386 			if (inb(bmpr17) & FE_B17_DATA)
387 				val |= bit;
388 		}
389 		*data++ = val;
390 
391 		/* Read one more byte. */
392 		val = 0;
393 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
394 			strobe(bmpr16);
395 			if (inb(bmpr17) & FE_B17_DATA)
396 				val |= bit;
397 		}
398 		*data++ = val;
399 	}
400 
401 #if FE_DEBUG >= 3
402 	/* Report what we got. */
403 	data -= FE_EEPROM_SIZE;
404 	log(LOG_INFO, "%s: EEPROM at %04x:"
405 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
406 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
407 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
408 	    " %02x%02x%02x%02x %02x%02x%02x%02x\n",
409 	    sc->sc_dev.dv_xname, iobase,
410 	    data[ 0], data[ 1], data[ 2], data[ 3],
411 	    data[ 4], data[ 5], data[ 6], data[ 7],
412 	    data[ 8], data[ 9], data[10], data[11],
413 	    data[12], data[13], data[14], data[15],
414 	    data[16], data[17], data[18], data[19],
415 	    data[20], data[21], data[22], data[23],
416 	    data[24], data[25], data[26], data[27],
417 	    data[28], data[29], data[30], data[31]);
418 #endif
419 }
420 
421 /*
422  * Hardware (vendor) specific probe routines.
423  */
424 
425 /*
426  * Probe and initialization for Fujitsu FMV-180 series boards
427  */
428 int
429 fe_probe_fmv(sc, ia)
430 	struct fe_softc *sc;
431 	struct isa_attach_args *ia;
432 {
433 	int i, n;
434 	int iobase = sc->sc_iobase;
435 	int irq;
436 
437 	static int const iomap[8] =
438 		{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
439 	static int const irqmap[4] =
440 		{ 3, 7, 10, 15 };
441 
442 	static struct fe_simple_probe_struct const probe_table[] = {
443 		{ FE_DLCR2, 0x70, 0x00 },
444 		{ FE_DLCR4, 0x08, 0x00 },
445 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Doesn't work. */
446 
447 		{ FE_FMV0, FE_FMV0_MAGIC_MASK,  FE_FMV0_MAGIC_VALUE },
448 		{ FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID   },
449 		{ FE_FMV3, FE_FMV3_EXTRA_MASK,  FE_FMV3_EXTRA_VALUE },
450 #if 1
451 	/*
452 	 * Test *vendor* part of the station address for Fujitsu.
453 	 * The test will gain reliability of probe process, but
454 	 * it rejects FMV-180 clone boards manufactured by other vendors.
455 	 * We have to turn the test off when such cards are made available.
456 	 */
457 		{ FE_FMV4, 0xFF, 0x00 },
458 		{ FE_FMV5, 0xFF, 0x00 },
459 		{ FE_FMV6, 0xFF, 0x0E },
460 #else
461 	/*
462 	 * We can always verify the *first* 2 bits (in Ehternet
463 	 * bit order) are "no multicast" and "no local" even for
464 	 * unknown vendors.
465 	 */
466 		{ FE_FMV4, 0x03, 0x00 },
467 #endif
468 		{ 0 }
469 	};
470 
471 #if 0
472 	/*
473 	 * Dont probe at all if the config says we are PCMCIA...
474 	 */
475 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
476 		return (0);
477 #endif
478 
479 	/*
480 	 * See if the sepcified address is possible for FMV-180 series.
481 	 */
482 	for (i = 0; i < 8; i++) {
483 		if (iomap[i] == iobase)
484 			break;
485 	}
486 	if (i == 8)
487 		return (0);
488 
489 	/* Simple probe. */
490 	if (!fe_simple_probe(iobase, probe_table))
491 		return (0);
492 
493 	/* Check if our I/O address matches config info on EEPROM. */
494 	n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
495 	if (iomap[n] != iobase)
496 		return (0);
497 
498 	/* Determine the card type. */
499 	switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
500 	case FE_FMV0_MODEL_FMV181:
501 		sc->type = FE_TYPE_FMV181;
502 		sc->typestr = "FMV-181";
503 		break;
504 	case FE_FMV0_MODEL_FMV182:
505 		sc->type = FE_TYPE_FMV182;
506 		sc->typestr = "FMV-182";
507 		break;
508 	default:
509 	  	/* Unknown card type: maybe a new model, but... */
510 		return (0);
511 	}
512 
513 	/*
514 	 * An FMV-180 has successfully been proved.
515 	 * Determine which IRQ to be used.
516 	 *
517 	 * In this version, we always get an IRQ assignment from the
518 	 * FMV-180's configuration EEPROM, ignoring that specified in
519 	 * config file.
520 	 */
521 	n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
522 	irq = irqmap[n];
523 
524 	if (ia->ia_irq != IRQUNK) {
525 		if (ia->ia_irq != irq) {
526 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
527 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
528 			return (0);
529 		}
530 	} else
531 		ia->ia_irq = irq;
532 
533 	/*
534 	 * Initialize constants in the per-line structure.
535 	 */
536 
537 	/* Get our station address from EEPROM. */
538 	inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
539 
540 	/* Make sure we got a valid station address. */
541 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
542 	  || (sc->sc_enaddr[0] == 0x00
543 	    && sc->sc_enaddr[1] == 0x00
544 	    && sc->sc_enaddr[2] == 0x00))
545 		return (0);
546 
547 	/* Register values which depend on board design. */
548 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
549 	sc->proto_dlcr5 = 0;
550 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
551 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
552 
553 	/*
554 	 * Program the 86960 as follows:
555 	 *	SRAM: 32KB, 100ns, byte-wide access.
556 	 *	Transmission buffer: 4KB x 2.
557 	 *	System bus interface: 16 bits.
558 	 * We cannot change these values but TXBSIZE, because they
559 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
560 	 * the driver performance.
561 	 */
562 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
563 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
564 
565 	/*
566 	 * Minimum initialization of the hardware.
567 	 * We write into registers; hope I/O ports have no
568 	 * overlap with other boards.
569 	 */
570 
571 	/* Initialize ASIC. */
572 	outb(iobase + FE_FMV3, 0);
573 	outb(iobase + FE_FMV10, 0);
574 
575 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
576 	delay(200);
577 
578 	/* Initialize 86960. */
579 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
580 	delay(200);
581 
582 	/* Disable all interrupts. */
583 	outb(iobase + FE_DLCR2, 0);
584 	outb(iobase + FE_DLCR3, 0);
585 
586 	/* Turn the "master interrupt control" flag of ASIC on. */
587 	outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
588 
589 	/*
590 	 * That's all.  FMV-180 occupies 32 I/O addresses, by the way.
591 	 */
592 	ia->ia_iosize = 32;
593 	ia->ia_msize = 0;
594 	return (1);
595 }
596 
597 /*
598  * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
599  */
600 int
601 fe_probe_ati(sc, ia)
602 	struct fe_softc *sc;
603 	struct isa_attach_args *ia;
604 {
605 	int i, n;
606 	int iobase = sc->sc_iobase;
607 	u_char eeprom[FE_EEPROM_SIZE];
608 	u_char save16, save17;
609 	int irq;
610 
611 	static int const iomap[8] =
612 		{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
613 	static int const irqmap[4][4] = {
614 		{  3,  4,  5,  9 },
615 		{ 10, 11, 12, 15 },
616 		{  3, 11,  5, 15 },
617 		{ 10, 11, 14, 15 },
618 	};
619 	static struct fe_simple_probe_struct const probe_table[] = {
620 		{ FE_DLCR2,  0x70, 0x00 },
621 		{ FE_DLCR4,  0x08, 0x00 },
622 		{ FE_DLCR5,  0x80, 0x00 },
623 #if 0
624 		{ FE_BMPR16, 0x1B, 0x00 },
625 		{ FE_BMPR17, 0x7F, 0x00 },
626 #endif
627 		{ 0 }
628 	};
629 
630 #if 0
631 	/*
632 	 * Don't probe at all if the config says we are PCMCIA...
633 	 */
634 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
635 		return (0);
636 #endif
637 
638 #if FE_DEBUG >= 4
639 	log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
640 	fe_dump(LOG_INFO, sc);
641 #endif
642 
643 	/*
644 	 * See if the sepcified address is possible for MB86965A JLI mode.
645 	 */
646 	for (i = 0; i < 8; i++) {
647 		if (iomap[i] == iobase)
648 			break;
649 	}
650 	if (i == 8)
651 		return (0);
652 
653 	/*
654 	 * We should test if MB86965A is on the base address now.
655 	 * Unfortunately, it is very hard to probe it reliably, since
656 	 * we have no way to reset the chip under software control.
657 	 * On cold boot, we could check the "signature" bit patterns
658 	 * described in the Fujitsu document.  On warm boot, however,
659 	 * we can predict almost nothing about register values.
660 	 */
661 	if (!fe_simple_probe(iobase, probe_table))
662 		return (0);
663 
664 	/* Save old values of the registers. */
665 	save16 = inb(iobase + FE_BMPR16);
666 	save17 = inb(iobase + FE_BMPR17);
667 
668 	/* Check if our I/O address matches config info on 86965. */
669 	n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
670 	if (iomap[n] != iobase)
671 		goto fail;
672 
673 	/*
674 	 * We are now almost sure we have an AT1700 at the given
675 	 * address.  So, read EEPROM through 86965.  We have to write
676 	 * into LSI registers to read from EEPROM.  I want to avoid it
677 	 * at this stage, but I cannot test the presense of the chip
678 	 * any further without reading EEPROM.  FIXME.
679 	 */
680 	fe_read_eeprom(sc, eeprom);
681 
682 	/* Make sure the EEPROM is turned off. */
683 	outb(iobase + FE_BMPR16, 0);
684 	outb(iobase + FE_BMPR17, 0);
685 
686 	/* Make sure that config info in EEPROM and 86965 agree. */
687 	if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
688 		goto fail;
689 
690 	/*
691 	 * Determine the card type.
692 	 */
693 	switch (eeprom[FE_ATI_EEP_MODEL]) {
694 	case FE_ATI_MODEL_AT1700T:
695 		sc->type = FE_TYPE_AT1700T;
696 		sc->typestr = "AT-1700T";
697 		break;
698 	case FE_ATI_MODEL_AT1700BT:
699 		sc->type = FE_TYPE_AT1700BT;
700 		sc->typestr = "AT-1700BT";
701 		break;
702 	case FE_ATI_MODEL_AT1700FT:
703 		sc->type = FE_TYPE_AT1700FT;
704 		sc->typestr = "AT-1700FT";
705 		break;
706 	case FE_ATI_MODEL_AT1700AT:
707 		sc->type = FE_TYPE_AT1700AT;
708 		sc->typestr = "AT-1700AT";
709 		break;
710 	default:
711 		sc->type = FE_TYPE_RE2000;
712 		sc->typestr = "unknown (RE-2000?)";
713 		break;
714 	}
715 
716 	/*
717 	 * Try to determine IRQ settings.
718 	 * Different models use different ranges of IRQs.
719 	 */
720 	n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
721 	switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
722 	case 0x30:
723 		irq = irqmap[3][n];
724 		break;
725 	case 0x10:
726 	case 0x50:
727 		irq = irqmap[2][n];
728 		break;
729 	case 0x40:
730 	case 0x60:
731 		if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
732 			irq = irqmap[1][n];
733 			break;
734 		}
735 	default:
736 		irq = irqmap[0][n];
737 		break;
738 	}
739 
740 	if (ia->ia_irq != IRQUNK) {
741 		if (ia->ia_irq != irq) {
742 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
743 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
744 			return (0);
745 		}
746 	} else
747 		ia->ia_irq = irq;
748 
749 	/*
750 	 * Initialize constants in the per-line structure.
751 	 */
752 
753 	/* Get our station address from EEPROM. */
754 	bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
755 
756 	/* Make sure we got a valid station address. */
757 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
758 	  || (sc->sc_enaddr[0] == 0x00
759 	    && sc->sc_enaddr[1] == 0x00
760 	    && sc->sc_enaddr[2] == 0x00))
761 		goto fail;
762 
763 	/* Should find all register prototypes here.  FIXME. */
764 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;  /* FIXME */
765 	sc->proto_dlcr5 = 0;
766 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
767 #if 0	/* XXXX Should we use this? */
768 	sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
769 #else
770 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
771 #endif
772 
773 	/*
774 	 * Program the 86965 as follows:
775 	 *	SRAM: 32KB, 100ns, byte-wide access.
776 	 *	Transmission buffer: 4KB x 2.
777 	 *	System bus interface: 16 bits.
778 	 * We cannot change these values but TXBSIZE, because they
779 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
780 	 * the driver performance.
781 	 */
782 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
783 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
784 
785 #if FE_DEBUG >= 3
786 	log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
787 	fe_dump(LOG_INFO, sc);
788 #endif
789 
790 	/* Initialize 86965. */
791 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
792 	delay(200);
793 
794 	/* Disable all interrupts. */
795 	outb(iobase + FE_DLCR2, 0);
796 	outb(iobase + FE_DLCR3, 0);
797 
798 #if FE_DEBUG >= 3
799 	log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
800 	fe_dump(LOG_INFO, sc);
801 #endif
802 
803 	/*
804 	 * That's all.  AT1700 occupies 32 I/O addresses, by the way.
805 	 */
806 	ia->ia_iosize = 32;
807 	ia->ia_msize = 0;
808 	return (1);
809 
810 fail:
811 	/* Restore register values, in the case we had no 86965. */
812 	outb(iobase + FE_BMPR16, save16);
813 	outb(iobase + FE_BMPR17, save17);
814 	return (0);
815 }
816 
817 /*
818  * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
819  */
820 int
821 fe_probe_mbh(sc, ia)
822 	struct fe_softc *sc;
823 	struct isa_attach_args *ia;
824 {
825 	int iobase = sc->sc_iobase;
826 
827 	static struct fe_simple_probe_struct probe_table[] = {
828 		{ FE_DLCR2, 0x70, 0x00 },
829 		{ FE_DLCR4, 0x08, 0x00 },
830 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Does not work well. */
831 #if 0
832 	/*
833 	 * Test *vendor* part of the address for Fujitsu.
834 	 * The test will gain reliability of probe process, but
835 	 * it rejects clones by other vendors, or OEM product
836 	 * supplied by resalers other than Fujitsu.
837 	 */
838 		{ FE_MBH10, 0xFF, 0x00 },
839 		{ FE_MBH11, 0xFF, 0x00 },
840 		{ FE_MBH12, 0xFF, 0x0E },
841 #else
842 	/*
843 	 * We can always verify the *first* 2 bits (in Ehternet
844 	 * bit order) are "global" and "unicast" even for
845 	 * unknown vendors.
846 	 */
847 		{ FE_MBH10, 0x03, 0x00 },
848 #endif
849         /* Just a gap?  Seems reliable, anyway. */
850 		{ 0x12, 0xFF, 0x00 },
851 		{ 0x13, 0xFF, 0x00 },
852 		{ 0x14, 0xFF, 0x00 },
853 		{ 0x15, 0xFF, 0x00 },
854 		{ 0x16, 0xFF, 0x00 },
855 		{ 0x17, 0xFF, 0x00 },
856 		{ 0x18, 0xFF, 0xFF },
857 		{ 0x19, 0xFF, 0xFF },
858 
859 		{ 0 }
860 	};
861 
862 #if 0
863 	/*
864 	 * We need a PCMCIA flag.
865 	 */
866 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
867 		return (0);
868 #endif
869 
870 	/*
871 	 * We need explicit IRQ and supported address.
872 	 */
873 	if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
874 		return (0);
875 
876 #if FE_DEBUG >= 3
877 	log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
878 	fe_dump(LOG_INFO, sc);
879 #endif
880 
881 	/*
882 	 * See if MBH10302 is on its address.
883 	 * I'm not sure the following probe code works.  FIXME.
884 	 */
885 	if (!fe_simple_probe(iobase, probe_table))
886 		return (0);
887 
888 	/* Determine the card type. */
889 	sc->type = FE_TYPE_MBH10302;
890 	sc->typestr = "MBH10302 (PCMCIA)";
891 
892 	/*
893 	 * Initialize constants in the per-line structure.
894 	 */
895 
896 	/* Get our station address from EEPROM. */
897 	inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
898 
899 	/* Make sure we got a valid station address. */
900 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
901 	  || (sc->sc_enaddr[0] == 0x00
902 	    && sc->sc_enaddr[1] == 0x00
903 	    && sc->sc_enaddr[2] == 0x00))
904 		return (0);
905 
906 	/* Should find all register prototypes here.  FIXME. */
907 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
908 	sc->proto_dlcr5 = 0;
909 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
910 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
911 
912 	/*
913 	 * Program the 86960 as follows:
914 	 *	SRAM: 32KB, 100ns, byte-wide access.
915 	 *	Transmission buffer: 4KB x 2.
916 	 *	System bus interface: 16 bits.
917 	 * We cannot change these values but TXBSIZE, because they
918 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
919 	 * the driver performance.
920 	 */
921 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
922 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
923 
924 	/* Setup hooks.  We need a special initialization procedure. */
925 	sc->init = fe_init_mbh;
926 
927 	/*
928 	 * Minimum initialization.
929 	 */
930 
931 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
932 	delay(200);
933 
934 	/* Minimul initialization of 86960. */
935 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
936 	delay(200);
937 
938 	/* Disable all interrupts. */
939 	outb(iobase + FE_DLCR2, 0);
940 	outb(iobase + FE_DLCR3, 0);
941 
942 #if 1	/* FIXME. */
943 	/* Initialize system bus interface and encoder/decoder operation. */
944 	outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
945 #endif
946 
947 	/*
948 	 * That's all.  MBH10302 occupies 32 I/O addresses, by the way.
949 	 */
950 	ia->ia_iosize = 32;
951 	ia->ia_msize = 0;
952 	return (1);
953 }
954 
955 /* MBH specific initialization routine. */
956 void
957 fe_init_mbh(sc)
958 	struct fe_softc *sc;
959 {
960 
961 	/* Probably required after hot-insertion... */
962 
963 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
964 	delay(200);
965 
966 	/* Minimul initialization of 86960. */
967 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
968 	delay(200);
969 
970 	/* Disable all interrupts. */
971 	outb(sc->sc_iobase + FE_DLCR2, 0);
972 	outb(sc->sc_iobase + FE_DLCR3, 0);
973 
974 	/* Enable master interrupt flag. */
975 	outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
976 }
977 
978 /*
979  * Install interface into kernel networking data structures
980  */
981 void
982 feattach(parent, self, aux)
983 	struct device *parent, *self;
984 	void *aux;
985 {
986 	struct fe_softc *sc = (void *)self;
987 	struct isa_attach_args *ia = aux;
988 	struct cfdata *cf = sc->sc_dev.dv_cfdata;
989 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
990 
991 	/* Stop the 86960. */
992 	fe_stop(sc);
993 
994 	/* Initialize ifnet structure. */
995 	ifp->if_unit = sc->sc_dev.dv_unit;
996 	ifp->if_name = fecd.cd_name;
997 	ifp->if_start = fe_start;
998 	ifp->if_ioctl = fe_ioctl;
999 	ifp->if_watchdog = fe_watchdog;
1000 	ifp->if_flags =
1001 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
1002 
1003 	/*
1004 	 * Set maximum size of output queue, if it has not been set.
1005 	 * It is done here as this driver may be started after the
1006 	 * system intialization (i.e., the interface is PCMCIA.)
1007 	 *
1008 	 * I'm not sure this is really necessary, but, even if it is,
1009 	 * it should be done somewhere else, e.g., in if_attach(),
1010 	 * since it must be a common workaround for all network drivers.
1011 	 * FIXME.
1012 	 */
1013 	if (ifp->if_snd.ifq_maxlen == 0) {
1014 		extern int ifqmaxlen;		/* Don't be so shocked... */
1015 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
1016 	}
1017 
1018 #if FE_DEBUG >= 3
1019 	log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1020 	fe_dump(LOG_INFO, sc);
1021 #endif
1022 
1023 #if FE_SINGLE_TRANSMISSION
1024 	/* Override txb config to allocate minimum. */
1025 	sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1026 	sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1027 #endif
1028 
1029 	/* Modify hardware config if it is requested. */
1030 	if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1031 		sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1032 
1033 	/* Find TX buffer size, based on the hardware dependent proto. */
1034 	switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1035 	case FE_D6_TXBSIZ_2x2KB:
1036 		sc->txb_size = 2048;
1037 		break;
1038 	case FE_D6_TXBSIZ_2x4KB:
1039 		sc->txb_size = 4096;
1040 		break;
1041 	case FE_D6_TXBSIZ_2x8KB:
1042 		sc->txb_size = 8192;
1043 		break;
1044 	default:
1045 		/* Oops, we can't work with single buffer configuration. */
1046 #if FE_DEBUG >= 2
1047 		log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1048 		    sc->sc_dev.dv_xname);
1049 #endif
1050 		sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1051 		sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1052 		sc->txb_size = 2048;
1053 		break;
1054 	}
1055 
1056 	/* Attach the interface. */
1057 	if_attach(ifp);
1058 	ether_ifattach(ifp);
1059 
1060 	/* Print additional info when attached. */
1061 	printf(": address %s, type %s\n",
1062 	    ether_sprintf(sc->sc_arpcom.ac_enaddr), sc->typestr);
1063 #if FE_DEBUG >= 3
1064 	{
1065 		int buf, txb, bbw, sbw, ram;
1066 
1067 		buf = txb = bbw = sbw = ram = -1;
1068 		switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1069 		case FE_D6_BUFSIZ_8KB:
1070 			buf = 8;
1071 			break;
1072 		case FE_D6_BUFSIZ_16KB:
1073 			buf = 16;
1074 			break;
1075 		case FE_D6_BUFSIZ_32KB:
1076 			buf = 32;
1077 			break;
1078 		case FE_D6_BUFSIZ_64KB:
1079 			buf = 64;
1080 			break;
1081 		}
1082 		switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1083 		case FE_D6_TXBSIZ_2x2KB:
1084 			txb = 2;
1085 			break;
1086 		case FE_D6_TXBSIZ_2x4KB:
1087 			txb = 4;
1088 			break;
1089 		case FE_D6_TXBSIZ_2x8KB:
1090 			txb = 8;
1091 			break;
1092 		}
1093 		switch (sc->proto_dlcr6 & FE_D6_BBW) {
1094 		case FE_D6_BBW_BYTE:
1095 			bbw = 8;
1096 			break;
1097 		case FE_D6_BBW_WORD:
1098 			bbw = 16;
1099 			break;
1100 		}
1101 		switch (sc->proto_dlcr6 & FE_D6_SBW) {
1102 		case FE_D6_SBW_BYTE:
1103 			sbw = 8;
1104 			break;
1105 		case FE_D6_SBW_WORD:
1106 			sbw = 16;
1107 			break;
1108 		}
1109 		switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1110 		case FE_D6_SRAM_100ns:
1111 			ram = 100;
1112 			break;
1113 		case FE_D6_SRAM_150ns:
1114 			ram = 150;
1115 			break;
1116 		}
1117 		printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1118 		    sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1119 	}
1120 #endif
1121 
1122 #if NBPFILTER > 0
1123 	/* If BPF is in the kernel, call the attach for it. */
1124 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1125 #endif
1126 
1127 	sc->sc_ih = isa_intr_establish(ia->ia_irq, ISA_IST_EDGE, ISA_IPL_NET,
1128 	    feintr, sc);
1129 }
1130 
1131 /*
1132  * Reset interface.
1133  */
1134 void
1135 fe_reset(sc)
1136 	struct fe_softc *sc;
1137 {
1138 	int s;
1139 
1140 	s = splimp();
1141 	fe_stop(sc);
1142 	fe_init(sc);
1143 	splx(s);
1144 }
1145 
1146 /*
1147  * Stop everything on the interface.
1148  *
1149  * All buffered packets, both transmitting and receiving,
1150  * if any, will be lost by stopping the interface.
1151  */
1152 void
1153 fe_stop(sc)
1154 	struct fe_softc *sc;
1155 {
1156 
1157 #if FE_DEBUG >= 3
1158 	log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1159 	fe_dump(LOG_INFO, sc);
1160 #endif
1161 
1162 	/* Disable interrupts. */
1163 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1164 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1165 
1166 	/* Stop interface hardware. */
1167 	delay(200);
1168 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1169 	delay(200);
1170 
1171 	/* Clear all interrupt status. */
1172 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1173 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1174 
1175 	/* Put the chip in stand-by mode. */
1176 	delay(200);
1177 	outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1178 	delay(200);
1179 
1180 	/* MAR loading can be delayed. */
1181 	sc->filter_change = 0;
1182 
1183 	/* Call a hook. */
1184 	if (sc->stop)
1185 		sc->stop(sc);
1186 
1187 #if DEBUG >= 3
1188 	log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1189 	fe_dump(LOG_INFO, sc);
1190 #endif
1191 }
1192 
1193 /*
1194  * Device timeout/watchdog routine. Entered if the device neglects to
1195  * generate an interrupt after a transmit has been started on it.
1196  */
1197 void
1198 fe_watchdog(unit)
1199 	int unit;
1200 {
1201 	struct fe_softc *sc = fecd.cd_devs[unit];
1202 
1203 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1204 #if FE_DEBUG >= 3
1205 	fe_dump(LOG_INFO, sc);
1206 #endif
1207 
1208 	/* Record how many packets are lost by this accident. */
1209 	sc->sc_arpcom.ac_if.if_oerrors += sc->txb_sched + sc->txb_count;
1210 
1211 	fe_reset(sc);
1212 }
1213 
1214 /*
1215  * Drop (skip) a packet from receive buffer in 86960 memory.
1216  */
1217 static inline void
1218 fe_droppacket(sc)
1219 	struct fe_softc *sc;
1220 {
1221 
1222 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
1223 }
1224 
1225 /*
1226  * Initialize device.
1227  */
1228 void
1229 fe_init(sc)
1230 	struct fe_softc *sc;
1231 {
1232 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1233 	int i;
1234 
1235 #if FE_DEBUG >= 3
1236 	log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1237 	fe_dump(LOG_INFO, sc);
1238 #endif
1239 
1240 	/* Reset transmitter flags. */
1241 	ifp->if_flags &= ~IFF_OACTIVE;
1242 	ifp->if_timer = 0;
1243 
1244 	sc->txb_free = sc->txb_size;
1245 	sc->txb_count = 0;
1246 	sc->txb_sched = 0;
1247 
1248 	/* Call a hook. */
1249 	if (sc->init)
1250 		sc->init(sc);
1251 
1252 #if FE_DEBUG >= 3
1253 	log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1254 	fe_dump(LOG_INFO, sc);
1255 #endif
1256 
1257 	/*
1258 	 * Make sure to disable the chip, also.
1259 	 * This may also help re-programming the chip after
1260 	 * hot insertion of PCMCIAs.
1261 	 */
1262 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1263 
1264 	/* Power up the chip and select register bank for DLCRs. */
1265 	delay(200);
1266 	outb(sc->sc_iobase + FE_DLCR7,
1267 	    sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1268 	delay(200);
1269 
1270 	/* Feed the station address. */
1271 	outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1272 
1273 	/* Select the BMPR bank for runtime register access. */
1274 	outb(sc->sc_iobase + FE_DLCR7,
1275 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1276 
1277 	/* Initialize registers. */
1278 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1279 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1280 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1281 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1282 	outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1283 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1284 	outb(sc->sc_iobase + FE_BMPR10, 0x00);
1285 	outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1286 	outb(sc->sc_iobase + FE_BMPR12, 0x00);
1287 	outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1288 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
1289 	outb(sc->sc_iobase + FE_BMPR15, 0x00);
1290 
1291 #if FE_DEBUG >= 3
1292 	log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1293 	fe_dump(LOG_INFO, sc);
1294 #endif
1295 
1296 	/* Enable interrupts. */
1297 	outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1298 	outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1299 
1300 	/* Enable transmitter and receiver. */
1301 	delay(200);
1302 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1303 	delay(200);
1304 
1305 #if FE_DEBUG >= 3
1306 	log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1307 	fe_dump(LOG_INFO, sc);
1308 #endif
1309 
1310 	/*
1311 	 * Make sure to empty the receive buffer.
1312 	 *
1313 	 * This may be redundant, but *if* the receive buffer were full
1314 	 * at this point, the driver would hang.  I have experienced
1315 	 * some strange hangups just after UP.  I hope the following
1316 	 * code solve the problem.
1317 	 *
1318 	 * I have changed the order of hardware initialization.
1319 	 * I think the receive buffer cannot have any packets at this
1320 	 * point in this version.  The following code *must* be
1321 	 * redundant now.  FIXME.
1322 	 */
1323 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1324 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1325 			break;
1326 		fe_droppacket(sc);
1327 	}
1328 #if FE_DEBUG >= 1
1329 	if (i >= FE_MAX_RECV_COUNT) {
1330 		log(LOG_ERR, "%s: cannot empty receive buffer\n",
1331 		    sc->sc_dev.dv_xname);
1332 	}
1333 #endif
1334 #if FE_DEBUG >= 3
1335 	if (i < FE_MAX_RECV_COUNT) {
1336 		log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1337 		    sc->sc_dev.dv_xname, i);
1338 	}
1339 #endif
1340 
1341 #if FE_DEBUG >= 3
1342 	log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1343 	fe_dump(LOG_INFO, sc);
1344 #endif
1345 
1346 	/* Do we need this here? */
1347 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1348 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1349 
1350 #if FE_DEBUG >= 3
1351 	log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1352 	fe_dump(LOG_INFO, sc);
1353 #endif
1354 
1355 	/* Set 'running' flag. */
1356 	ifp->if_flags |= IFF_RUNNING;
1357 
1358 	/*
1359 	 * At this point, the interface is runnung properly,
1360 	 * except that it receives *no* packets.  we then call
1361 	 * fe_setmode() to tell the chip what packets to be
1362 	 * received, based on the if_flags and multicast group
1363 	 * list.  It completes the initialization process.
1364 	 */
1365 	fe_setmode(sc);
1366 
1367 #if FE_DEBUG >= 3
1368 	log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1369 	fe_dump(LOG_INFO, sc);
1370 #endif
1371 
1372 	/* ...and attempt to start output. */
1373 	fe_start(ifp);
1374 
1375 #if FE_DEBUG >= 3
1376 	log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1377 	fe_dump(LOG_INFO, sc);
1378 #endif
1379 }
1380 
1381 /*
1382  * This routine actually starts the transmission on the interface
1383  */
1384 static inline void
1385 fe_xmit(sc)
1386 	struct fe_softc *sc;
1387 {
1388 
1389 	/*
1390 	 * Set a timer just in case we never hear from the board again.
1391 	 * We use longer timeout for multiple packet transmission.
1392 	 * I'm not sure this timer value is appropriate.  FIXME.
1393 	 */
1394 	sc->sc_arpcom.ac_if.if_timer = 1 + sc->txb_count;
1395 
1396 	/* Update txb variables. */
1397 	sc->txb_sched = sc->txb_count;
1398 	sc->txb_count = 0;
1399 	sc->txb_free = sc->txb_size;
1400 
1401 #if FE_DELAYED_PADDING
1402 	/* Omit the postponed padding process. */
1403 	sc->txb_padding = 0;
1404 #endif
1405 
1406 	/* Start transmitter, passing packets in TX buffer. */
1407 	outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1408 }
1409 
1410 /*
1411  * Start output on interface.
1412  * We make two assumptions here:
1413  *  1) that the current priority is set to splimp _before_ this code
1414  *     is called *and* is returned to the appropriate priority after
1415  *     return
1416  *  2) that the IFF_OACTIVE flag is checked before this code is called
1417  *     (i.e. that the output part of the interface is idle)
1418  */
1419 void
1420 fe_start(ifp)
1421 	struct ifnet *ifp;
1422 {
1423 	struct fe_softc *sc = fecd.cd_devs[ifp->if_unit];
1424 	struct mbuf *m;
1425 
1426 #if FE_DEBUG >= 1
1427 	/* Just a sanity check. */
1428 	if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1429 		/*
1430 		 * Txb_count and txb_free co-works to manage the
1431 		 * transmission buffer.  Txb_count keeps track of the
1432 		 * used potion of the buffer, while txb_free does unused
1433 		 * potion.  So, as long as the driver runs properly,
1434 		 * txb_count is zero if and only if txb_free is same
1435 		 * as txb_size (which represents whole buffer.)
1436 		 */
1437 		log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1438 		    sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1439 		/*
1440 		 * So, what should I do, then?
1441 		 *
1442 		 * We now know txb_count and txb_free contradicts.  We
1443 		 * cannot, however, tell which is wrong.  More
1444 		 * over, we cannot peek 86960 transmission buffer or
1445 		 * reset the transmission buffer.  (In fact, we can
1446 		 * reset the entire interface.  I don't want to do it.)
1447 		 *
1448 		 * If txb_count is incorrect, leaving it as is will cause
1449 		 * sending of gabages after next interrupt.  We have to
1450 		 * avoid it.  Hence, we reset the txb_count here.  If
1451 		 * txb_free was incorrect, resetting txb_count just loose
1452 		 * some packets.  We can live with it.
1453 		 */
1454 		sc->txb_count = 0;
1455 	}
1456 #endif
1457 
1458 #if FE_DEBUG >= 1
1459 	/*
1460 	 * First, see if there are buffered packets and an idle
1461 	 * transmitter - should never happen at this point.
1462 	 */
1463 	if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1464 		log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1465 		    sc->sc_dev.dv_xname, sc->txb_count);
1466 		fe_xmit(sc);
1467 	}
1468 #endif
1469 
1470 	/*
1471 	 * Stop accepting more transmission packets temporarily, when
1472 	 * a filter change request is delayed.  Updating the MARs on
1473 	 * 86960 flushes the transmisstion buffer, so it is delayed
1474 	 * until all buffered transmission packets have been sent
1475 	 * out.
1476 	 */
1477 	if (sc->filter_change) {
1478 		/*
1479 		 * Filter change requst is delayed only when the DLC is
1480 		 * working.  DLC soon raise an interrupt after finishing
1481 		 * the work.
1482 		 */
1483 		goto indicate_active;
1484 	}
1485 
1486 	for (;;) {
1487 		/*
1488 		 * See if there is room to put another packet in the buffer.
1489 		 * We *could* do better job by peeking the send queue to
1490 		 * know the length of the next packet.  Current version just
1491 		 * tests against the worst case (i.e., longest packet).  FIXME.
1492 		 *
1493 		 * When adding the packet-peek feature, don't forget adding a
1494 		 * test on txb_count against QUEUEING_MAX.
1495 		 * There is a little chance the packet count exceeds
1496 		 * the limit.  Assume transmission buffer is 8KB (2x8KB
1497 		 * configuration) and an application sends a bunch of small
1498 		 * (i.e., minimum packet sized) packets rapidly.  An 8KB
1499 		 * buffer can hold 130 blocks of 62 bytes long...
1500 		 */
1501 		if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1502 			/* No room. */
1503 			goto indicate_active;
1504 		}
1505 
1506 #if FE_SINGLE_TRANSMISSION
1507 		if (sc->txb_count > 0) {
1508 			/* Just one packet per a transmission buffer. */
1509 			goto indicate_active;
1510 		}
1511 #endif
1512 
1513 		/*
1514 		 * Get the next mbuf chain for a packet to send.
1515 		 */
1516 		IF_DEQUEUE(&ifp->if_snd, m);
1517 		if (m == 0) {
1518 			/* No more packets to send. */
1519 			goto indicate_inactive;
1520 		}
1521 
1522 #if NBPFILTER > 0
1523 		/* Tap off here if there is a BPF listener. */
1524 		if (ifp->if_bpf)
1525 			bpf_mtap(ifp->if_bpf, m);
1526 #endif
1527 
1528 		/*
1529 		 * Copy the mbuf chain into the transmission buffer.
1530 		 * txb_* variables are updated as necessary.
1531 		 */
1532 		fe_write_mbufs(sc, m);
1533 
1534 		m_freem(m);
1535 
1536 		/* Start transmitter if it's idle. */
1537 		if (sc->txb_sched == 0)
1538 			fe_xmit(sc);
1539 	}
1540 
1541 indicate_inactive:
1542 	/*
1543 	 * We are using the !OACTIVE flag to indicate to
1544 	 * the outside world that we can accept an
1545 	 * additional packet rather than that the
1546 	 * transmitter is _actually_ active.  Indeed, the
1547 	 * transmitter may be active, but if we haven't
1548 	 * filled all the buffers with data then we still
1549 	 * want to accept more.
1550 	 */
1551 	ifp->if_flags &= ~IFF_OACTIVE;
1552 	return;
1553 
1554 indicate_active:
1555 	/*
1556 	 * The transmitter is active, and there are no room for
1557 	 * more outgoing packets in the transmission buffer.
1558 	 */
1559 	ifp->if_flags |= IFF_OACTIVE;
1560 	return;
1561 }
1562 
1563 /*
1564  * Transmission interrupt handler
1565  * The control flow of this function looks silly.  FIXME.
1566  */
1567 void
1568 fe_tint(sc, tstat)
1569 	struct fe_softc *sc;
1570 	u_char tstat;
1571 {
1572 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1573 	int left;
1574 	int col;
1575 
1576 	/*
1577 	 * Handle "excessive collision" interrupt.
1578 	 */
1579 	if (tstat & FE_D0_COLL16) {
1580 		/*
1581 		 * Find how many packets (including this collided one)
1582 		 * are left unsent in transmission buffer.
1583 		 */
1584 		left = inb(sc->sc_iobase + FE_BMPR10);
1585 
1586 #if FE_DEBUG >= 2
1587 		log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1588 		    sc->sc_dev.dv_xname, left, sc->txb_sched);
1589 #endif
1590 #if FE_DEBUG >= 3
1591 		fe_dump(LOG_INFO, sc);
1592 #endif
1593 
1594 		/*
1595 		 * Update statistics.
1596 		 */
1597 		ifp->if_collisions += 16;
1598 		ifp->if_oerrors++;
1599 		ifp->if_opackets += sc->txb_sched - left;
1600 
1601 		/*
1602 		 * Collision statistics has been updated.
1603 		 * Clear the collision flag on 86960 now to avoid confusion.
1604 		 */
1605 		outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1606 
1607 		/*
1608 		 * Restart transmitter, skipping the
1609 		 * collided packet.
1610 		 *
1611 		 * We *must* skip the packet to keep network running
1612 		 * properly.  Excessive collision error is an
1613 		 * indication of the network overload.  If we
1614 		 * tried sending the same packet after excessive
1615 		 * collision, the network would be filled with
1616 		 * out-of-time packets.  Packets belonging
1617 		 * to reliable transport (such as TCP) are resent
1618 		 * by some upper layer.
1619 		 */
1620 		outb(sc->sc_iobase + FE_BMPR11,
1621 		    FE_B11_CTRL_SKIP | FE_B11_MODE1);
1622 		sc->txb_sched = left - 1;
1623 	}
1624 
1625 	/*
1626 	 * Handle "transmission complete" interrupt.
1627 	 */
1628 	if (tstat & FE_D0_TXDONE) {
1629 		/*
1630 		 * Add in total number of collisions on last
1631 		 * transmission.  We also clear "collision occurred" flag
1632 		 * here.
1633 		 *
1634 		 * 86960 has a design flow on collision count on multiple
1635 		 * packet transmission.  When we send two or more packets
1636 		 * with one start command (that's what we do when the
1637 		 * transmission queue is clauded), 86960 informs us number
1638 		 * of collisions occured on the last packet on the
1639 		 * transmission only.  Number of collisions on previous
1640 		 * packets are lost.  I have told that the fact is clearly
1641 		 * stated in the Fujitsu document.
1642 		 *
1643 		 * I considered not to mind it seriously.  Collision
1644 		 * count is not so important, anyway.  Any comments?  FIXME.
1645 		 */
1646 
1647 		if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1648 			/* Clear collision flag. */
1649 			outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1650 
1651 			/* Extract collision count from 86960. */
1652 			col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1653 			if (col == 0) {
1654 				/*
1655 				 * Status register indicates collisions,
1656 				 * while the collision count is zero.
1657 				 * This can happen after multiple packet
1658 				 * transmission, indicating that one or more
1659 				 * previous packet(s) had been collided.
1660 				 *
1661 				 * Since the accurate number of collisions
1662 				 * has been lost, we just guess it as 1;
1663 				 * Am I too optimistic?  FIXME.
1664 				 */
1665 				col = 1;
1666 			} else
1667 				col >>= FE_D4_COL_SHIFT;
1668 			ifp->if_collisions += col;
1669 #if FE_DEBUG >= 4
1670 			log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1671 			    sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1672 			    sc->txb_sched);
1673 #endif
1674 		}
1675 
1676 		/*
1677 		 * Update total number of successfully
1678 		 * transmitted packets.
1679 		 */
1680 		ifp->if_opackets += sc->txb_sched;
1681 		sc->txb_sched = 0;
1682 
1683 		/*
1684 		 * The transmitter is no more active.
1685 		 * Reset output active flag and watchdog timer.
1686 		 */
1687 		ifp->if_flags &= ~IFF_OACTIVE;
1688 		ifp->if_timer = 0;
1689 
1690 		/*
1691 		 * If more data is ready to transmit in the buffer, start
1692 		 * transmitting them.  Otherwise keep transmitter idle,
1693 		 * even if more data is queued.  This gives receive
1694 		 * process a slight priority.
1695 		 */
1696 		if (sc->txb_count > 0)
1697 			fe_xmit(sc);
1698 	}
1699 }
1700 
1701 /*
1702  * Ethernet interface receiver interrupt.
1703  */
1704 void
1705 fe_rint(sc, rstat)
1706 	struct fe_softc *sc;
1707 	u_char rstat;
1708 {
1709 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1710 	int len;
1711 	u_char status;
1712 	int i;
1713 
1714 	/*
1715 	 * Update statistics if this interrupt is caused by an error.
1716 	 */
1717 	if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1718 		     FE_D1_ALGERR | FE_D1_SRTPKT)) {
1719 #if FE_DEBUG >= 3
1720 		log(LOG_WARNING, "%s: receive error: %b\n",
1721 		    sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1722 #endif
1723 		ifp->if_ierrors++;
1724 	}
1725 
1726 	/*
1727 	 * MB86960 has a flag indicating "receive queue empty."
1728 	 * We just loop cheking the flag to pull out all received
1729 	 * packets.
1730 	 *
1731 	 * We limit the number of iterrations to avoid infinite loop.
1732 	 * It can be caused by a very slow CPU (some broken
1733 	 * peripheral may insert incredible number of wait cycles)
1734 	 * or, worse, by a broken MB86960 chip.
1735 	 */
1736 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1737 		/* Stop the iterration if 86960 indicates no packets. */
1738 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1739 			break;
1740 
1741 		/*
1742 		 * Extract A receive status byte.
1743 		 * As our 86960 is in 16 bit bus access mode, we have to
1744 		 * use inw() to get the status byte.  The significant
1745 		 * value is returned in lower 8 bits.
1746 		 */
1747 		status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1748 #if FE_DEBUG >= 4
1749 		log(LOG_INFO, "%s: receive status = %02x\n",
1750 		    sc->sc_dev.dv_xname, status);
1751 #endif
1752 
1753 		/*
1754 		 * If there was an error, update statistics and drop
1755 		 * the packet, unless the interface is in promiscuous
1756 		 * mode.
1757 		 */
1758 		if ((status & 0xF0) != 0x20) {	/* XXXX ? */
1759 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
1760 				ifp->if_ierrors++;
1761 				fe_droppacket(sc);
1762 				continue;
1763 			}
1764 		}
1765 
1766 		/*
1767 		 * Extract the packet length.
1768 		 * It is a sum of a header (14 bytes) and a payload.
1769 		 * CRC has been stripped off by the 86960.
1770 		 */
1771 		len = inw(sc->sc_iobase + FE_BMPR8);
1772 
1773 		/*
1774 		 * MB86965 checks the packet length and drop big packet
1775 		 * before passing it to us.  There are no chance we can
1776 		 * get [crufty] packets.  Hence, if the length exceeds
1777 		 * the specified limit, it means some serious failure,
1778 		 * such as out-of-sync on receive buffer management.
1779 		 *
1780 		 * Is this statement true?  FIXME.
1781 		 */
1782 		if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1783 #if FE_DEBUG >= 2
1784 			log(LOG_WARNING,
1785 			    "%s: received a %s packet? (%u bytes)\n",
1786 			    sc->sc_dev.dv_xname,
1787 			    len < ETHER_HDR_SIZE ? "partial" : "big", len);
1788 #endif
1789 			ifp->if_ierrors++;
1790 			fe_droppacket(sc);
1791 			continue;
1792 		}
1793 
1794 		/*
1795 		 * Check for a short (RUNT) packet.  We *do* check
1796 		 * but do nothing other than print a message.
1797 		 * Short packets are illegal, but does nothing bad
1798 		 * if it carries data for upper layer.
1799 		 */
1800 #if FE_DEBUG >= 2
1801 		if (len < ETHER_MIN_LEN) {
1802 			log(LOG_WARNING,
1803 			     "%s: received a short packet? (%u bytes)\n",
1804 			     sc->sc_dev.dv_xname, len);
1805 		}
1806 #endif
1807 
1808 		/*
1809 		 * Go get a packet.
1810 		 */
1811 		if (!fe_get_packet(sc, len)) {
1812 			/* Skip a packet, updating statistics. */
1813 #if FE_DEBUG >= 2
1814 			log(LOG_WARNING,
1815 			    "%s: out of mbufs; dropping packet (%u bytes)\n",
1816 			    sc->sc_dev.dv_xname, len);
1817 #endif
1818 			ifp->if_ierrors++;
1819 			fe_droppacket(sc);
1820 
1821 			/*
1822 			 * We stop receiving packets, even if there are
1823 			 * more in the buffer.  We hope we can get more
1824 			 * mbufs next time.
1825 			 */
1826 			return;
1827 		}
1828 
1829 		/* Successfully received a packet.  Update stat. */
1830 		ifp->if_ipackets++;
1831 	}
1832 }
1833 
1834 /*
1835  * Ethernet interface interrupt processor
1836  */
1837 int
1838 feintr(arg)
1839 	void *arg;
1840 {
1841 	struct fe_softc *sc = arg;
1842 	u_char tstat, rstat;
1843 
1844 #if FE_DEBUG >= 4
1845 	log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1846 	fe_dump(LOG_INFO, sc);
1847 #endif
1848 
1849 	/*
1850 	 * Get interrupt conditions, masking unneeded flags.
1851 	 */
1852 	tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1853 	rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1854 	if (tstat == 0 && rstat == 0)
1855 		return (0);
1856 
1857 	/*
1858 	 * Loop until there are no more new interrupt conditions.
1859 	 */
1860 	for (;;) {
1861 		/*
1862 		 * Reset the conditions we are acknowledging.
1863 		 */
1864 		outb(sc->sc_iobase + FE_DLCR0, tstat);
1865 		outb(sc->sc_iobase + FE_DLCR1, rstat);
1866 
1867 		/*
1868 		 * Handle transmitter interrupts. Handle these first because
1869 		 * the receiver will reset the board under some conditions.
1870 		 */
1871 		if (tstat != 0)
1872 			fe_tint(sc, tstat);
1873 
1874 		/*
1875 		 * Handle receiver interrupts.
1876 		 */
1877 		if (rstat != 0)
1878 			fe_rint(sc, rstat);
1879 
1880 		/*
1881 		 * Update the multicast address filter if it is
1882 		 * needed and possible.  We do it now, because
1883 		 * we can make sure the transmission buffer is empty,
1884 		 * and there is a good chance that the receive queue
1885 		 * is empty.  It will minimize the possibility of
1886 		 * packet lossage.
1887 		 */
1888 		if (sc->filter_change &&
1889 		    sc->txb_count == 0 && sc->txb_sched == 0) {
1890 			fe_loadmar(sc);
1891 			sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1892 		}
1893 
1894 		/*
1895 		 * If it looks like the transmitter can take more data,
1896 		 * attempt to start output on the interface. This is done
1897 		 * after handling the receiver interrupt to give the
1898 		 * receive operation priority.
1899 		 */
1900 		if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1901 			fe_start(&sc->sc_arpcom.ac_if);
1902 
1903 		/*
1904 		 * Get interrupt conditions, masking unneeded flags.
1905 		 */
1906 		tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1907 		rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1908 		if (tstat == 0 && rstat == 0)
1909 			return (1);
1910 	}
1911 }
1912 
1913 /*
1914  * Process an ioctl request.  This code needs some work - it looks pretty ugly.
1915  */
1916 int
1917 fe_ioctl(ifp, command, data)
1918 	register struct ifnet *ifp;
1919 	u_long command;
1920 	caddr_t data;
1921 {
1922 	struct fe_softc *sc = fecd.cd_devs[ifp->if_unit];
1923 	register struct ifaddr *ifa = (struct ifaddr *)data;
1924 	struct ifreq *ifr = (struct ifreq *)data;
1925 	int s, error = 0;
1926 
1927 #if FE_DEBUG >= 3
1928 	log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1929 #endif
1930 
1931 	s = splimp();
1932 
1933 	switch (command) {
1934 
1935 	case SIOCSIFADDR:
1936 		ifp->if_flags |= IFF_UP;
1937 
1938 		switch (ifa->ifa_addr->sa_family) {
1939 #ifdef INET
1940 		case AF_INET:
1941 			fe_init(sc);
1942 			arp_ifinit(&sc->sc_arpcom, ifa);
1943 			break;
1944 #endif
1945 #ifdef NS
1946 		case AF_NS:
1947 		    {
1948 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1949 
1950 			if (ns_nullhost(*ina))
1951 				ina->x_host =
1952 				    *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1953 			else
1954 				bcopy(ina->x_host.c_host,
1955 				    sc->sc_arpcom.ac_enaddr,
1956 				    sizeof(sc->sc_arpcom.ac_enaddr));
1957 			/* Set new address. */
1958 			fe_init(sc);
1959 			break;
1960 		    }
1961 #endif
1962 		default:
1963 			fe_init(sc);
1964 			break;
1965 		}
1966 		break;
1967 
1968 	case SIOCSIFFLAGS:
1969 		if ((ifp->if_flags & IFF_UP) == 0 &&
1970 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1971 			/*
1972 			 * If interface is marked down and it is running, then
1973 			 * stop it.
1974 			 */
1975 			fe_stop(sc);
1976 			ifp->if_flags &= ~IFF_RUNNING;
1977 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1978 			   (ifp->if_flags & IFF_RUNNING) == 0) {
1979 			/*
1980 			 * If interface is marked up and it is stopped, then
1981 			 * start it.
1982 			 */
1983 			fe_init(sc);
1984 		} else {
1985 			/*
1986 			 * Reset the interface to pick up changes in any other
1987 			 * flags that affect hardware registers.
1988 			 */
1989 			fe_setmode(sc);
1990 		}
1991 #if DEBUG >= 1
1992 		/* "ifconfig fe0 debug" to print register dump. */
1993 		if (ifp->if_flags & IFF_DEBUG) {
1994 			log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
1995 			fe_dump(LOG_DEBUG, sc);
1996 		}
1997 #endif
1998 		break;
1999 
2000 	case SIOCADDMULTI:
2001 	case SIOCDELMULTI:
2002 		/* Update our multicast list. */
2003 		error = (command == SIOCADDMULTI) ?
2004 		    ether_addmulti(ifr, &sc->sc_arpcom) :
2005 		    ether_delmulti(ifr, &sc->sc_arpcom);
2006 
2007 		if (error == ENETRESET) {
2008 			/*
2009 			 * Multicast list has changed; set the hardware filter
2010 			 * accordingly.
2011 			 */
2012 			fe_setmode(sc);
2013 			error = 0;
2014 		}
2015 		break;
2016 
2017 	default:
2018 		error = EINVAL;
2019 	}
2020 
2021 	splx(s);
2022 	return (error);
2023 }
2024 
2025 /*
2026  * Retreive packet from receive buffer and send to the next level up via
2027  * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2028  * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2029  */
2030 int
2031 fe_get_packet(sc, len)
2032 	struct fe_softc *sc;
2033 	int len;
2034 {
2035 	struct ether_header *eh;
2036 	struct mbuf *m;
2037 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2038 
2039 	/* Allocate a header mbuf. */
2040 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2041 	if (m == 0)
2042 		return (0);
2043 	m->m_pkthdr.rcvif = ifp;
2044 	m->m_pkthdr.len = len;
2045 
2046 	/* The following silliness is to make NFS happy. */
2047 #define	EROUND	((sizeof(struct ether_header) + 3) & ~3)
2048 #define	EOFF	(EROUND - sizeof(struct ether_header))
2049 
2050 	/*
2051 	 * Our strategy has one more problem.  There is a policy on
2052 	 * mbuf cluster allocation.  It says that we must have at
2053 	 * least MINCLSIZE (208 bytes) to allocate a cluster.  For a
2054 	 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
2055 	 * our code violates the rule...
2056 	 * On the other hand, the current code is short, simle,
2057 	 * and fast, however.  It does no harmful thing, just waists
2058 	 * some memory.  Any comments?  FIXME.
2059 	 */
2060 
2061 	/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2062 	if (len > MHLEN - EOFF) {
2063 		MCLGET(m, M_DONTWAIT);
2064 		if ((m->m_flags & M_EXT) == 0) {
2065 			m_freem(m);
2066 			return (0);
2067 		}
2068 	}
2069 
2070 	/*
2071 	 * The following assumes there is room for the ether header in the
2072 	 * header mbuf.
2073 	 */
2074 	m->m_data += EOFF;
2075 	eh = mtod(m, struct ether_header *);
2076 
2077 	/* Set the length of this packet. */
2078 	m->m_len = len;
2079 
2080 	/* Get a packet. */
2081 	insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2082 
2083 #if NBPFILTER > 0
2084 	/*
2085 	 * Check if there's a BPF listener on this interface.  If so, hand off
2086 	 * the raw packet to bpf.
2087 	 */
2088 	if (ifp->if_bpf) {
2089 		bpf_mtap(ifp->if_bpf, m);
2090 
2091 		/*
2092 		 * Note that the interface cannot be in promiscuous mode if
2093 		 * there are no BPF listeners.  And if we are in promiscuous
2094 		 * mode, we have to check if this packet is really ours.
2095 		 */
2096 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2097 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2098 	  	    bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
2099 			    sizeof(eh->ether_dhost)) != 0) {
2100 			m_freem(m);
2101 			return (1);
2102 		}
2103 	}
2104 #endif
2105 
2106 	/* Fix up data start offset in mbuf to point past ether header. */
2107 	m_adj(m, sizeof(struct ether_header));
2108 	ether_input(ifp, eh, m);
2109 	return (1);
2110 }
2111 
2112 /*
2113  * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2114  * Returns number of bytes actually written, including length word.
2115  *
2116  * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2117  * Packets shorter than Ethernet minimum are legal, and we pad them
2118  * before sending out.  An exception is "partial" packets which are
2119  * shorter than mandatory Ethernet header.
2120  *
2121  * I wrote a code for an experimental "delayed padding" technique.
2122  * When employed, it postpones the padding process for short packets.
2123  * If xmit() occured at the moment, the padding process is omitted, and
2124  * garbages are sent as pad data.  If next packet is stored in the
2125  * transmission buffer before xmit(), write_mbuf() pads the previous
2126  * packet before transmitting new packet.  This *may* gain the
2127  * system performance (slightly).
2128  */
2129 void
2130 fe_write_mbufs(sc, m)
2131 	struct fe_softc *sc;
2132 	struct mbuf *m;
2133 {
2134 	int bmpr8 = sc->sc_iobase + FE_BMPR8;
2135 	struct mbuf *mp;
2136 	u_char *data;
2137 	u_short savebyte;	/* WARNING: Architecture dependent! */
2138 	int totlen, len, wantbyte;
2139 
2140 #if FE_DELAYED_PADDING
2141 	/* Do the "delayed padding." */
2142 	len = sc->txb_padding >> 1;
2143 	if (len > 0) {
2144 		while (--len >= 0)
2145 			outw(bmpr8, 0);
2146 		sc->txb_padding = 0;
2147 	}
2148 #endif
2149 
2150 	/* We need to use m->m_pkthdr.len, so require the header */
2151 	if ((m->m_flags & M_PKTHDR) == 0)
2152 	  	panic("fe_write_mbufs: no header mbuf");
2153 
2154 #if FE_DEBUG >= 2
2155 	/* First, count up the total number of bytes to copy. */
2156 	for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2157 		totlen += mp->m_len;
2158 	/* Check if this matches the one in the packet header. */
2159 	if (totlen != m->m_pkthdr.len)
2160 		log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2161 		    sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2162 #else
2163 	/* Just use the length value in the packet header. */
2164 	totlen = m->m_pkthdr.len;
2165 #endif
2166 
2167 #if FE_DEBUG >= 1
2168 	/*
2169 	 * Should never send big packets.  If such a packet is passed,
2170 	 * it should be a bug of upper layer.  We just ignore it.
2171 	 * ... Partial (too short) packets, neither.
2172 	 */
2173 	if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2174 		log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2175 		    sc->sc_dev.dv_xname,
2176 		    totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2177 		sc->sc_arpcom.ac_if.if_oerrors++;
2178 		return;
2179 	}
2180 #endif
2181 
2182 	/*
2183 	 * Put the length word for this frame.
2184 	 * Does 86960 accept odd length?  -- Yes.
2185 	 * Do we need to pad the length to minimum size by ourselves?
2186 	 * -- Generally yes.  But for (or will be) the last
2187 	 * packet in the transmission buffer, we can skip the
2188 	 * padding process.  It may gain performance slightly.  FIXME.
2189 	 */
2190 	outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2191 
2192 	/*
2193 	 * Update buffer status now.
2194 	 * Truncate the length up to an even number, since we use outw().
2195 	 */
2196 	totlen = (totlen + 1) & ~1;
2197 	sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2198 	sc->txb_count++;
2199 
2200 #if FE_DELAYED_PADDING
2201 	/* Postpone the packet padding if necessary. */
2202 	if (totlen < ETHER_MIN_LEN)
2203 		sc->txb_padding = ETHER_MIN_LEN - totlen;
2204 #endif
2205 
2206 	/*
2207 	 * Transfer the data from mbuf chain to the transmission buffer.
2208 	 * MB86960 seems to require that data be transferred as words, and
2209 	 * only words.  So that we require some extra code to patch
2210 	 * over odd-length mbufs.
2211 	 */
2212 	wantbyte = 0;
2213 	for (; m != 0; m = m->m_next) {
2214 		/* Ignore empty mbuf. */
2215 		len = m->m_len;
2216 		if (len == 0)
2217 			continue;
2218 
2219 		/* Find the actual data to send. */
2220 		data = mtod(m, caddr_t);
2221 
2222 		/* Finish the last byte. */
2223 		if (wantbyte) {
2224 			outw(bmpr8, savebyte | (*data << 8));
2225 			data++;
2226 			len--;
2227 			wantbyte = 0;
2228 		}
2229 
2230 		/* Output contiguous words. */
2231 		if (len > 1)
2232 			outsw(bmpr8, data, len >> 1);
2233 
2234 		/* Save remaining byte, if there is one. */
2235 		if (len & 1) {
2236 			data += len & ~1;
2237 			savebyte = *data;
2238 			wantbyte = 1;
2239 		}
2240 	}
2241 
2242 	/* Spit the last byte, if the length is odd. */
2243 	if (wantbyte)
2244 		outw(bmpr8, savebyte);
2245 
2246 #if ! FE_DELAYED_PADDING
2247 	/*
2248 	 * Pad the packet to the minimum length if necessary.
2249 	 */
2250 	len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2251 	while (--len >= 0)
2252 		outw(bmpr8, 0);
2253 #endif
2254 }
2255 
2256 /*
2257  * Compute the multicast address filter from the
2258  * list of multicast addresses we need to listen to.
2259  */
2260 void
2261 fe_getmcaf(ac, af)
2262 	struct arpcom *ac;
2263 	u_char *af;
2264 {
2265 	struct ifnet *ifp = &ac->ac_if;
2266 	struct ether_multi *enm;
2267 	register u_char *cp, c;
2268 	register u_long crc;
2269 	register int i, len;
2270 	struct ether_multistep step;
2271 
2272 	/*
2273 	 * Set up multicast address filter by passing all multicast addresses
2274 	 * through a crc generator, and then using the high order 6 bits as an
2275 	 * index into the 64 bit logical address filter.  The high order bit
2276 	 * selects the word, while the rest of the bits select the bit within
2277 	 * the word.
2278 	 */
2279 
2280 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2281 		goto allmulti;
2282 
2283 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2284 	ETHER_FIRST_MULTI(step, ac, enm);
2285 	while (enm != NULL) {
2286 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2287 		    sizeof(enm->enm_addrlo)) != 0) {
2288 			/*
2289 			 * We must listen to a range of multicast addresses.
2290 			 * For now, just accept all multicasts, rather than
2291 			 * trying to set only those filter bits needed to match
2292 			 * the range.  (At this time, the only use of address
2293 			 * ranges is for IP multicast routing, for which the
2294 			 * range is big enough to require all bits set.)
2295 			 */
2296 			goto allmulti;
2297 		}
2298 
2299 		cp = enm->enm_addrlo;
2300 		crc = 0xffffffff;
2301 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2302 			c = *cp++;
2303 			for (i = 8; --i >= 0;) {
2304 				if ((crc & 0x01) ^ (c & 0x01)) {
2305 					crc >>= 1;
2306 					crc ^= 0xedb88320;
2307 				} else
2308 					crc >>= 1;
2309 				c >>= 1;
2310 			}
2311 		}
2312 		/* Just want the 6 most significant bits. */
2313 		crc >>= 26;
2314 
2315 		/* Turn on the corresponding bit in the filter. */
2316 		af[crc >> 3] |= 1 << (crc & 7);
2317 
2318 		ETHER_NEXT_MULTI(step, enm);
2319 	}
2320 	ifp->if_flags &= ~IFF_ALLMULTI;
2321 	return;
2322 
2323 allmulti:
2324 	ifp->if_flags |= IFF_ALLMULTI;
2325 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2326 }
2327 
2328 /*
2329  * Calculate a new "multicast packet filter" and put the 86960
2330  * receiver in appropriate mode.
2331  */
2332 void
2333 fe_setmode(sc)
2334 	struct fe_softc *sc;
2335 {
2336 	int flags = sc->sc_arpcom.ac_if.if_flags;
2337 
2338 	/*
2339 	 * If the interface is not running, we postpone the update
2340 	 * process for receive modes and multicast address filter
2341 	 * until the interface is restarted.  It reduces some
2342 	 * complicated job on maintaining chip states.  (Earlier versions
2343 	 * of this driver had a bug on that point...)
2344 	 *
2345 	 * To complete the trick, fe_init() calls fe_setmode() after
2346 	 * restarting the interface.
2347 	 */
2348 	if ((flags & IFF_RUNNING) == 0)
2349 		return;
2350 
2351 	/*
2352 	 * Promiscuous mode is handled separately.
2353 	 */
2354 	if ((flags & IFF_PROMISC) != 0) {
2355 		/*
2356 		 * Program 86960 to receive all packets on the segment
2357 		 * including those directed to other stations.
2358 		 * Multicast filter stored in MARs are ignored
2359 		 * under this setting, so we don't need to update it.
2360 		 *
2361 		 * Promiscuous mode is used solely by BPF, and BPF only
2362 		 * listens to valid (no error) packets.  So, we ignore
2363 		 * errornous ones even in this mode.
2364 		 */
2365 		outb(sc->sc_iobase + FE_DLCR5,
2366 		    sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2367 		sc->filter_change = 0;
2368 
2369 #if FE_DEBUG >= 3
2370 		log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2371 #endif
2372 		return;
2373 	}
2374 
2375 	/*
2376 	 * Turn the chip to the normal (non-promiscuous) mode.
2377 	 */
2378 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2379 
2380 	/*
2381 	 * Find the new multicast filter value.
2382 	 */
2383 	fe_getmcaf(&sc->sc_arpcom, sc->filter);
2384 	sc->filter_change = 1;
2385 
2386 #if FE_DEBUG >= 3
2387 	log(LOG_INFO,
2388 	    "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2389 	    sc->sc_dev.dv_xname,
2390 	    sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2391 	    sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2392 #endif
2393 
2394 	/*
2395 	 * We have to update the multicast filter in the 86960, A.S.A.P.
2396 	 *
2397 	 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2398 	 * and receiver) must be stopped when feeding the filter, and
2399 	 * DLC trushes all packets in both transmission and receive
2400 	 * buffers when stopped.
2401 	 *
2402 	 * ... Are the above sentenses correct?  I have to check the
2403 	 *     manual of the MB86960A.  FIXME.
2404 	 *
2405 	 * To reduce the packet lossage, we delay the filter update
2406 	 * process until buffers are empty.
2407 	 */
2408 	if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2409 	    (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2410 		/*
2411 		 * Buffers are (apparently) empty.  Load
2412 		 * the new filter value into MARs now.
2413 		 */
2414 		fe_loadmar(sc);
2415 	} else {
2416 		/*
2417 		 * Buffers are not empty.  Mark that we have to update
2418 		 * the MARs.  The new filter will be loaded by feintr()
2419 		 * later.
2420 		 */
2421 #if FE_DEBUG >= 4
2422 		log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2423 #endif
2424 	}
2425 }
2426 
2427 /*
2428  * Load a new multicast address filter into MARs.
2429  *
2430  * The caller must have splimp'ed befor fe_loadmar.
2431  * This function starts the DLC upon return.  So it can be called only
2432  * when the chip is working, i.e., from the driver's point of view, when
2433  * a device is RUNNING.  (I mistook the point in previous versions.)
2434  */
2435 void
2436 fe_loadmar(sc)
2437 	struct fe_softc *sc;
2438 {
2439 
2440 	/* Stop the DLC (transmitter and receiver). */
2441 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2442 
2443 	/* Select register bank 1 for MARs. */
2444 	outb(sc->sc_iobase + FE_DLCR7,
2445 	    sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2446 
2447 	/* Copy filter value into the registers. */
2448 	outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2449 
2450 	/* Restore the bank selection for BMPRs (i.e., runtime registers). */
2451 	outb(sc->sc_iobase + FE_DLCR7,
2452 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2453 
2454 	/* Restart the DLC. */
2455 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2456 
2457 	/* We have just updated the filter. */
2458 	sc->filter_change = 0;
2459 
2460 #if FE_DEBUG >= 3
2461 	log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2462 #endif
2463 }
2464 
2465 #if FE_DEBUG >= 1
2466 void
2467 fe_dump(level, sc)
2468 	int level;
2469 	struct fe_softc *sc;
2470 {
2471 	int iobase = sc->sc_iobase;
2472 	u_char save_dlcr7;
2473 
2474 	save_dlcr7 = inb(iobase + FE_DLCR7);
2475 
2476 	log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2477 	    inb(iobase + FE_DLCR0),  inb(iobase + FE_DLCR1),
2478 	    inb(iobase + FE_DLCR2),  inb(iobase + FE_DLCR3),
2479 	    inb(iobase + FE_DLCR4),  inb(iobase + FE_DLCR5),
2480 	    inb(iobase + FE_DLCR6),  inb(iobase + FE_DLCR7));
2481 
2482 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2483 	log(level, "\t       %02x %02x %02x %02x %02x %02x %02x %02x,",
2484 	    inb(iobase + FE_DLCR8),  inb(iobase + FE_DLCR9),
2485 	    inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2486 	    inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2487 	    inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2488 
2489 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2490 	log(level, "\tMAR  = %02x %02x %02x %02x %02x %02x %02x %02x,",
2491 	    inb(iobase + FE_MAR8),   inb(iobase + FE_MAR9),
2492 	    inb(iobase + FE_MAR10),  inb(iobase + FE_MAR11),
2493 	    inb(iobase + FE_MAR12),  inb(iobase + FE_MAR13),
2494 	    inb(iobase + FE_MAR14),  inb(iobase + FE_MAR15));
2495 
2496 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2497 	log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2498 	    inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2499 	    inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2500 	    inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2501 	    inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2502 	    inb(iobase + FE_BMPR19));
2503 
2504 	outb(iobase + FE_DLCR7, save_dlcr7);
2505 }
2506 #endif
2507