xref: /netbsd-src/sys/dev/isa/if_ate.c (revision 81b108b45f75f89f1e3ffad9fb6f074e771c0935)
1 /*
2  * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3  *
4  * This software may be used, modified, copied, distributed, and sold, in
5  * both source and binary form provided that the above copyright, these
6  * terms and the following disclaimer are retained.  The name of the author
7  * and/or the contributor may not be used to endorse or promote products
8  * derived from this software without specific prior written permission.
9  *
10  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20  * SUCH DAMAGE.
21  */
22 
23 /*
24  * Portions copyright (C) 1993, David Greenman.  This software may be used,
25  * modified, copied, distributed, and sold, in both source and binary form
26  * provided that the above copyright and these terms are retained.  Under no
27  * circumstances is the author responsible for the proper functioning of this
28  * software, nor does the author assume any responsibility for damages
29  * incurred with its use.
30  */
31 
32 #define FE_VERSION "if_fe.c ver. 0.8"
33 
34 /*
35  * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
36  * Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
37  *
38  * This version is intended to be a generic template for various
39  * MB86960A/MB86965A based Ethernet cards.  It currently supports
40  * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
41  * Telesis AT1700 series and RE2000 series.  There are some
42  * unnecessary hooks embedded, which are primarily intended to support
43  * other types of Ethernet cards, but the author is not sure whether
44  * they are useful.
45  */
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/syslog.h>
56 #include <sys/device.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #endif
70 
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75 
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80 
81 #include <machine/cpu.h>
82 #include <machine/intr.h>
83 #include <machine/pio.h>
84 
85 #include <dev/isa/isareg.h>
86 #include <dev/isa/isavar.h>
87 #include <dev/ic/mb86960reg.h>
88 #include <dev/isa/if_fereg.h>
89 
90 /*
91  * Default settings for fe driver specific options.
92  * They can be set in config file by "options" statements.
93  */
94 
95 /*
96  * Debug control.
97  * 0: No debug at all.  All debug specific codes are stripped off.
98  * 1: Silent.  No debug messages are logged except emergent ones.
99  * 2: Brief.  Lair events and/or important information are logged.
100  * 3: Detailed.  Logs all information which *may* be useful for debugging.
101  * 4: Trace.  All actions in the driver is logged.  Super verbose.
102  */
103 #ifndef FE_DEBUG
104 #define FE_DEBUG		1
105 #endif
106 
107 /*
108  * Delay padding of short transmission packets to minimum Ethernet size.
109  * This may or may not gain performance.  An EXPERIMENTAL option.
110  */
111 #ifndef FE_DELAYED_PADDING
112 #define FE_DELAYED_PADDING	0
113 #endif
114 
115 /*
116  * Transmit just one packet per a "send" command to 86960.
117  * This option is intended for performance test.  An EXPERIMENTAL option.
118  */
119 #ifndef FE_SINGLE_TRANSMISSION
120 #define FE_SINGLE_TRANSMISSION	0
121 #endif
122 
123 /*
124  * Device configuration flags.
125  */
126 
127 /* DLCR6 settings. */
128 #define FE_FLAGS_DLCR6_VALUE	0x007F
129 
130 /* Force DLCR6 override. */
131 #define FE_FLAGS_OVERRIDE_DLCR6	0x0080
132 
133 /* A cludge for PCMCIA support. */
134 #define FE_FLAGS_PCMCIA		0x8000
135 
136 /* Identification of the driver version. */
137 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
138 
139 /*
140  * Supported hardware (Ethernet card) types
141  * This information is currently used only for debugging
142  */
143 enum fe_type {
144 	/* For cards which are successfully probed but not identified. */
145 	FE_TYPE_UNKNOWN,
146 
147 	/* Fujitsu FMV-180 series. */
148 	FE_TYPE_FMV181,
149 	FE_TYPE_FMV182,
150 
151 	/* Allied-Telesis AT1700 series and RE2000 series. */
152 	FE_TYPE_AT1700T,
153 	FE_TYPE_AT1700BT,
154 	FE_TYPE_AT1700FT,
155 	FE_TYPE_AT1700AT,
156 	FE_TYPE_RE2000,
157 
158 	/* PCMCIA by Fujitsu. */
159 	FE_TYPE_MBH10302,
160 	FE_TYPE_MBH10304,
161 };
162 
163 /*
164  * fe_softc: per line info and status
165  */
166 struct fe_softc {
167 	struct	device sc_dev;
168 	void	*sc_ih;
169 
170 	struct	arpcom sc_arpcom;	/* ethernet common */
171 
172 	/* Set by probe() and not modified in later phases. */
173 	enum	fe_type type;	/* interface type code */
174 	char	*typestr;	/* printable name of the interface. */
175 	int	sc_iobase;	/* MB86960A I/O base address */
176 
177 	u_char	proto_dlcr4;	/* DLCR4 prototype. */
178 	u_char	proto_dlcr5;	/* DLCR5 prototype. */
179 	u_char	proto_dlcr6;	/* DLCR6 prototype. */
180 	u_char	proto_dlcr7;	/* DLCR7 prototype. */
181 	u_char	proto_bmpr13;	/* BMPR13 prototype. */
182 
183 	/* Vendor specific hooks. */
184 	void	(*init) __P((struct fe_softc *)); /* Just before fe_init(). */
185 	void	(*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
186 
187 	/* Transmission buffer management. */
188 	u_short	txb_size;	/* total bytes in TX buffer */
189 	u_short	txb_free;	/* free bytes in TX buffer */
190 	u_char	txb_count;	/* number of packets in TX buffer */
191 	u_char	txb_sched;	/* number of scheduled packets */
192 	u_char	txb_padding;	/* number of delayed padding bytes */
193 
194 	/* Multicast address filter management. */
195 	u_char	filter_change;	/* MARs must be changed ASAP. */
196 	u_char	filter[FE_FILTER_LEN];	/* new filter value. */
197 };
198 
199 /* Frequently accessed members in arpcom. */
200 #define sc_enaddr	sc_arpcom.ac_enaddr
201 
202 /* Standard driver entry points.  These can be static. */
203 int	feprobe		__P((struct device *, void *, void *));
204 void	feattach	__P((struct device *, struct device *, void *));
205 int	feintr		__P((void *));
206 void	fe_init		__P((struct fe_softc *));
207 int	fe_ioctl	__P((struct ifnet *, u_long, caddr_t));
208 void	fe_start	__P((struct ifnet *));
209 void	fe_reset	__P((struct fe_softc *));
210 void	fe_watchdog	__P((struct ifnet *));
211 
212 /* Local functions.  Order of declaration is confused.  FIXME. */
213 int	fe_probe_fmv	__P((struct fe_softc *, struct isa_attach_args *));
214 int	fe_probe_ati	__P((struct fe_softc *, struct isa_attach_args *));
215 int	fe_probe_mbh	__P((struct fe_softc *, struct isa_attach_args *));
216 void	fe_init_mbh	__P((struct fe_softc *));
217 int	fe_get_packet	__P((struct fe_softc *, int));
218 void	fe_stop		__P((struct fe_softc *));
219 void	fe_tint		__P((/*struct fe_softc *, u_char*/));
220 void	fe_rint		__P((/*struct fe_softc *, u_char*/));
221 static inline
222 void	fe_xmit		__P((struct fe_softc *));
223 void	fe_write_mbufs	__P((struct fe_softc *, struct mbuf *));
224 void	fe_getmcaf	__P((struct arpcom *, u_char *));
225 void	fe_setmode	__P((struct fe_softc *));
226 void	fe_loadmar	__P((struct fe_softc *));
227 #if FE_DEBUG >= 1
228 void	fe_dump		__P((int, struct fe_softc *));
229 #endif
230 
231 struct cfattach fe_ca = {
232 	sizeof(struct fe_softc), feprobe, feattach
233 };
234 
235 struct cfdriver fe_cd = {
236 	NULL, "fe", DV_IFNET
237 };
238 
239 /* Ethernet constants.  To be defined in if_ehter.h?  FIXME. */
240 #define ETHER_MIN_LEN	60	/* with header, without CRC. */
241 #define ETHER_MAX_LEN	1514	/* with header, without CRC. */
242 #define ETHER_ADDR_LEN	6	/* number of bytes in an address. */
243 #define ETHER_HDR_SIZE	14	/* src addr, dst addr, and data type. */
244 
245 /*
246  * Fe driver specific constants which relate to 86960/86965.
247  */
248 
249 /* Interrupt masks. */
250 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
251 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
252 		  FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
253 
254 /* Maximum number of iterrations for a receive interrupt. */
255 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
256 	/* Maximum size of SRAM is 65536,
257 	 * minimum size of transmission buffer in fe is 2x2KB,
258 	 * and minimum amount of received packet including headers
259 	 * added by the chip is 64 bytes.
260 	 * Hence FE_MAX_RECV_COUNT is the upper limit for number
261 	 * of packets in the receive buffer. */
262 
263 /*
264  * Convenient routines to access contiguous I/O ports.
265  */
266 
267 static inline void
268 inblk (int addr, u_char * mem, int len)
269 {
270 	while (--len >= 0) {
271 		*mem++ = inb(addr++);
272 	}
273 }
274 
275 static inline void
276 outblk (int addr, u_char const * mem, int len)
277 {
278 	while (--len >= 0) {
279 		outb(addr++, *mem++);
280 	}
281 }
282 
283 /*
284  * Hardware probe routines.
285  */
286 
287 /*
288  * Determine if the device is present.
289  */
290 int
291 feprobe(parent, match, aux)
292 	struct device *parent;
293 	void *match, *aux;
294 {
295 	struct fe_softc *sc = match;
296 	struct isa_attach_args *ia = aux;
297 
298 #if FE_DEBUG >= 2
299 	log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
300 #endif
301 
302 	/* Probe an address. */
303 	sc->sc_iobase = ia->ia_iobase;
304 
305 	if (fe_probe_fmv(sc, ia))
306 		return (1);
307 	if (fe_probe_ati(sc, ia))
308 		return (1);
309 	if (fe_probe_mbh(sc, ia))
310 		return (1);
311 	return (0);
312 }
313 
314 /*
315  * Check for specific bits in specific registers have specific values.
316  */
317 struct fe_simple_probe_struct {
318 	u_char port;	/* Offset from the base I/O address. */
319 	u_char mask;	/* Bits to be checked. */
320 	u_char bits;	/* Values to be compared against. */
321 };
322 
323 static inline int
324 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
325 {
326 	struct fe_simple_probe_struct const * p;
327 
328 	for (p = sp; p->mask != 0; p++) {
329 		if ((inb(addr + p->port) & p->mask) != p->bits) {
330 			return (0);
331 		}
332 	}
333 	return (1);
334 }
335 
336 /*
337  * Routines to read all bytes from the config EEPROM through MB86965A.
338  * I'm not sure what exactly I'm doing here...  I was told just to follow
339  * the steps, and it worked.  Could someone tell me why the following
340  * code works?  (Or, why all similar codes I tried previously doesn't
341  * work.)  FIXME.
342  */
343 
344 static inline void
345 strobe (int bmpr16)
346 {
347 	/*
348 	 * Output same value twice.  To speed-down execution?
349 	 */
350 	outb(bmpr16, FE_B16_SELECT);
351 	outb(bmpr16, FE_B16_SELECT);
352 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
353 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
354 	outb(bmpr16, FE_B16_SELECT);
355 	outb(bmpr16, FE_B16_SELECT);
356 }
357 
358 void
359 fe_read_eeprom(sc, data)
360 	struct fe_softc *sc;
361 	u_char *data;
362 {
363 	int iobase = sc->sc_iobase;
364 	int bmpr16 = iobase + FE_BMPR16;
365 	int bmpr17 = iobase + FE_BMPR17;
366 	u_char n, val, bit;
367 
368 	/* Read bytes from EEPROM; two bytes per an iterration. */
369 	for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
370 		/* Reset the EEPROM interface. */
371 		outb(bmpr16, 0x00);
372 		outb(bmpr17, 0x00);
373 		outb(bmpr16, FE_B16_SELECT);
374 
375 		/* Start EEPROM access. */
376 		outb(bmpr17, FE_B17_DATA);
377 		strobe(bmpr16);
378 
379 		/* Pass the iterration count to the chip. */
380 		val = 0x80 | n;
381 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
382 			outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
383 			strobe(bmpr16);
384 		}
385 		outb(bmpr17, 0x00);
386 
387 		/* Read a byte. */
388 		val = 0;
389 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
390 			strobe(bmpr16);
391 			if (inb(bmpr17) & FE_B17_DATA)
392 				val |= bit;
393 		}
394 		*data++ = val;
395 
396 		/* Read one more byte. */
397 		val = 0;
398 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
399 			strobe(bmpr16);
400 			if (inb(bmpr17) & FE_B17_DATA)
401 				val |= bit;
402 		}
403 		*data++ = val;
404 	}
405 
406 #if FE_DEBUG >= 3
407 	/* Report what we got. */
408 	data -= FE_EEPROM_SIZE;
409 	log(LOG_INFO, "%s: EEPROM at %04x:"
410 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
411 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
412 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
413 	    " %02x%02x%02x%02x %02x%02x%02x%02x\n",
414 	    sc->sc_dev.dv_xname, iobase,
415 	    data[ 0], data[ 1], data[ 2], data[ 3],
416 	    data[ 4], data[ 5], data[ 6], data[ 7],
417 	    data[ 8], data[ 9], data[10], data[11],
418 	    data[12], data[13], data[14], data[15],
419 	    data[16], data[17], data[18], data[19],
420 	    data[20], data[21], data[22], data[23],
421 	    data[24], data[25], data[26], data[27],
422 	    data[28], data[29], data[30], data[31]);
423 #endif
424 }
425 
426 /*
427  * Hardware (vendor) specific probe routines.
428  */
429 
430 /*
431  * Probe and initialization for Fujitsu FMV-180 series boards
432  */
433 int
434 fe_probe_fmv(sc, ia)
435 	struct fe_softc *sc;
436 	struct isa_attach_args *ia;
437 {
438 	int i, n;
439 	int iobase = sc->sc_iobase;
440 	int irq;
441 
442 	static int const iomap[8] =
443 		{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
444 	static int const irqmap[4] =
445 		{ 3, 7, 10, 15 };
446 
447 	static struct fe_simple_probe_struct const probe_table[] = {
448 		{ FE_DLCR2, 0x70, 0x00 },
449 		{ FE_DLCR4, 0x08, 0x00 },
450 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Doesn't work. */
451 
452 		{ FE_FMV0, FE_FMV0_MAGIC_MASK,  FE_FMV0_MAGIC_VALUE },
453 		{ FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID   },
454 		{ FE_FMV3, FE_FMV3_EXTRA_MASK,  FE_FMV3_EXTRA_VALUE },
455 #if 1
456 	/*
457 	 * Test *vendor* part of the station address for Fujitsu.
458 	 * The test will gain reliability of probe process, but
459 	 * it rejects FMV-180 clone boards manufactured by other vendors.
460 	 * We have to turn the test off when such cards are made available.
461 	 */
462 		{ FE_FMV4, 0xFF, 0x00 },
463 		{ FE_FMV5, 0xFF, 0x00 },
464 		{ FE_FMV6, 0xFF, 0x0E },
465 #else
466 	/*
467 	 * We can always verify the *first* 2 bits (in Ehternet
468 	 * bit order) are "no multicast" and "no local" even for
469 	 * unknown vendors.
470 	 */
471 		{ FE_FMV4, 0x03, 0x00 },
472 #endif
473 		{ 0 }
474 	};
475 
476 #if 0
477 	/*
478 	 * Dont probe at all if the config says we are PCMCIA...
479 	 */
480 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
481 		return (0);
482 #endif
483 
484 	/*
485 	 * See if the sepcified address is possible for FMV-180 series.
486 	 */
487 	for (i = 0; i < 8; i++) {
488 		if (iomap[i] == iobase)
489 			break;
490 	}
491 	if (i == 8)
492 		return (0);
493 
494 	/* Simple probe. */
495 	if (!fe_simple_probe(iobase, probe_table))
496 		return (0);
497 
498 	/* Check if our I/O address matches config info on EEPROM. */
499 	n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
500 	if (iomap[n] != iobase)
501 		return (0);
502 
503 	/* Determine the card type. */
504 	switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
505 	case FE_FMV0_MODEL_FMV181:
506 		sc->type = FE_TYPE_FMV181;
507 		sc->typestr = "FMV-181";
508 		break;
509 	case FE_FMV0_MODEL_FMV182:
510 		sc->type = FE_TYPE_FMV182;
511 		sc->typestr = "FMV-182";
512 		break;
513 	default:
514 	  	/* Unknown card type: maybe a new model, but... */
515 		return (0);
516 	}
517 
518 	/*
519 	 * An FMV-180 has successfully been proved.
520 	 * Determine which IRQ to be used.
521 	 *
522 	 * In this version, we always get an IRQ assignment from the
523 	 * FMV-180's configuration EEPROM, ignoring that specified in
524 	 * config file.
525 	 */
526 	n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
527 	irq = irqmap[n];
528 
529 	if (ia->ia_irq != IRQUNK) {
530 		if (ia->ia_irq != irq) {
531 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
532 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
533 			return (0);
534 		}
535 	} else
536 		ia->ia_irq = irq;
537 
538 	/*
539 	 * Initialize constants in the per-line structure.
540 	 */
541 
542 	/* Get our station address from EEPROM. */
543 	inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
544 
545 	/* Make sure we got a valid station address. */
546 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
547 	  || (sc->sc_enaddr[0] == 0x00
548 	    && sc->sc_enaddr[1] == 0x00
549 	    && sc->sc_enaddr[2] == 0x00))
550 		return (0);
551 
552 	/* Register values which depend on board design. */
553 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
554 	sc->proto_dlcr5 = 0;
555 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
556 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
557 
558 	/*
559 	 * Program the 86960 as follows:
560 	 *	SRAM: 32KB, 100ns, byte-wide access.
561 	 *	Transmission buffer: 4KB x 2.
562 	 *	System bus interface: 16 bits.
563 	 * We cannot change these values but TXBSIZE, because they
564 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
565 	 * the driver performance.
566 	 */
567 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
568 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
569 
570 	/*
571 	 * Minimum initialization of the hardware.
572 	 * We write into registers; hope I/O ports have no
573 	 * overlap with other boards.
574 	 */
575 
576 	/* Initialize ASIC. */
577 	outb(iobase + FE_FMV3, 0);
578 	outb(iobase + FE_FMV10, 0);
579 
580 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
581 	delay(200);
582 
583 	/* Initialize 86960. */
584 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
585 	delay(200);
586 
587 	/* Disable all interrupts. */
588 	outb(iobase + FE_DLCR2, 0);
589 	outb(iobase + FE_DLCR3, 0);
590 
591 	/* Turn the "master interrupt control" flag of ASIC on. */
592 	outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
593 
594 	/*
595 	 * That's all.  FMV-180 occupies 32 I/O addresses, by the way.
596 	 */
597 	ia->ia_iosize = 32;
598 	ia->ia_msize = 0;
599 	return (1);
600 }
601 
602 /*
603  * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
604  */
605 int
606 fe_probe_ati(sc, ia)
607 	struct fe_softc *sc;
608 	struct isa_attach_args *ia;
609 {
610 	int i, n;
611 	int iobase = sc->sc_iobase;
612 	u_char eeprom[FE_EEPROM_SIZE];
613 	u_char save16, save17;
614 	int irq;
615 
616 	static int const iomap[8] =
617 		{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
618 	static int const irqmap[4][4] = {
619 		{  3,  4,  5,  9 },
620 		{ 10, 11, 12, 15 },
621 		{  3, 11,  5, 15 },
622 		{ 10, 11, 14, 15 },
623 	};
624 	static struct fe_simple_probe_struct const probe_table[] = {
625 		{ FE_DLCR2,  0x70, 0x00 },
626 		{ FE_DLCR4,  0x08, 0x00 },
627 		{ FE_DLCR5,  0x80, 0x00 },
628 #if 0
629 		{ FE_BMPR16, 0x1B, 0x00 },
630 		{ FE_BMPR17, 0x7F, 0x00 },
631 #endif
632 		{ 0 }
633 	};
634 
635 #if 0
636 	/*
637 	 * Don't probe at all if the config says we are PCMCIA...
638 	 */
639 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
640 		return (0);
641 #endif
642 
643 #if FE_DEBUG >= 4
644 	log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
645 	fe_dump(LOG_INFO, sc);
646 #endif
647 
648 	/*
649 	 * See if the sepcified address is possible for MB86965A JLI mode.
650 	 */
651 	for (i = 0; i < 8; i++) {
652 		if (iomap[i] == iobase)
653 			break;
654 	}
655 	if (i == 8)
656 		return (0);
657 
658 	/*
659 	 * We should test if MB86965A is on the base address now.
660 	 * Unfortunately, it is very hard to probe it reliably, since
661 	 * we have no way to reset the chip under software control.
662 	 * On cold boot, we could check the "signature" bit patterns
663 	 * described in the Fujitsu document.  On warm boot, however,
664 	 * we can predict almost nothing about register values.
665 	 */
666 	if (!fe_simple_probe(iobase, probe_table))
667 		return (0);
668 
669 	/* Save old values of the registers. */
670 	save16 = inb(iobase + FE_BMPR16);
671 	save17 = inb(iobase + FE_BMPR17);
672 
673 	/* Check if our I/O address matches config info on 86965. */
674 	n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
675 	if (iomap[n] != iobase)
676 		goto fail;
677 
678 	/*
679 	 * We are now almost sure we have an AT1700 at the given
680 	 * address.  So, read EEPROM through 86965.  We have to write
681 	 * into LSI registers to read from EEPROM.  I want to avoid it
682 	 * at this stage, but I cannot test the presense of the chip
683 	 * any further without reading EEPROM.  FIXME.
684 	 */
685 	fe_read_eeprom(sc, eeprom);
686 
687 	/* Make sure the EEPROM is turned off. */
688 	outb(iobase + FE_BMPR16, 0);
689 	outb(iobase + FE_BMPR17, 0);
690 
691 	/* Make sure that config info in EEPROM and 86965 agree. */
692 	if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
693 		goto fail;
694 
695 	/*
696 	 * Determine the card type.
697 	 */
698 	switch (eeprom[FE_ATI_EEP_MODEL]) {
699 	case FE_ATI_MODEL_AT1700T:
700 		sc->type = FE_TYPE_AT1700T;
701 		sc->typestr = "AT-1700T";
702 		break;
703 	case FE_ATI_MODEL_AT1700BT:
704 		sc->type = FE_TYPE_AT1700BT;
705 		sc->typestr = "AT-1700BT";
706 		break;
707 	case FE_ATI_MODEL_AT1700FT:
708 		sc->type = FE_TYPE_AT1700FT;
709 		sc->typestr = "AT-1700FT";
710 		break;
711 	case FE_ATI_MODEL_AT1700AT:
712 		sc->type = FE_TYPE_AT1700AT;
713 		sc->typestr = "AT-1700AT";
714 		break;
715 	default:
716 		sc->type = FE_TYPE_RE2000;
717 		sc->typestr = "unknown (RE-2000?)";
718 		break;
719 	}
720 
721 	/*
722 	 * Try to determine IRQ settings.
723 	 * Different models use different ranges of IRQs.
724 	 */
725 	n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
726 	switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
727 	case 0x30:
728 		irq = irqmap[3][n];
729 		break;
730 	case 0x10:
731 	case 0x50:
732 		irq = irqmap[2][n];
733 		break;
734 	case 0x40:
735 	case 0x60:
736 		if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
737 			irq = irqmap[1][n];
738 			break;
739 		}
740 	default:
741 		irq = irqmap[0][n];
742 		break;
743 	}
744 
745 	if (ia->ia_irq != IRQUNK) {
746 		if (ia->ia_irq != irq) {
747 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
748 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
749 			return (0);
750 		}
751 	} else
752 		ia->ia_irq = irq;
753 
754 	/*
755 	 * Initialize constants in the per-line structure.
756 	 */
757 
758 	/* Get our station address from EEPROM. */
759 	bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
760 
761 	/* Make sure we got a valid station address. */
762 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
763 	  || (sc->sc_enaddr[0] == 0x00
764 	    && sc->sc_enaddr[1] == 0x00
765 	    && sc->sc_enaddr[2] == 0x00))
766 		goto fail;
767 
768 	/* Should find all register prototypes here.  FIXME. */
769 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;  /* FIXME */
770 	sc->proto_dlcr5 = 0;
771 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
772 #if 0	/* XXXX Should we use this? */
773 	sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
774 #else
775 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
776 #endif
777 
778 	/*
779 	 * Program the 86965 as follows:
780 	 *	SRAM: 32KB, 100ns, byte-wide access.
781 	 *	Transmission buffer: 4KB x 2.
782 	 *	System bus interface: 16 bits.
783 	 * We cannot change these values but TXBSIZE, because they
784 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
785 	 * the driver performance.
786 	 */
787 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
788 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
789 
790 #if FE_DEBUG >= 3
791 	log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
792 	fe_dump(LOG_INFO, sc);
793 #endif
794 
795 	/* Initialize 86965. */
796 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
797 	delay(200);
798 
799 	/* Disable all interrupts. */
800 	outb(iobase + FE_DLCR2, 0);
801 	outb(iobase + FE_DLCR3, 0);
802 
803 #if FE_DEBUG >= 3
804 	log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
805 	fe_dump(LOG_INFO, sc);
806 #endif
807 
808 	/*
809 	 * That's all.  AT1700 occupies 32 I/O addresses, by the way.
810 	 */
811 	ia->ia_iosize = 32;
812 	ia->ia_msize = 0;
813 	return (1);
814 
815 fail:
816 	/* Restore register values, in the case we had no 86965. */
817 	outb(iobase + FE_BMPR16, save16);
818 	outb(iobase + FE_BMPR17, save17);
819 	return (0);
820 }
821 
822 /*
823  * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
824  */
825 int
826 fe_probe_mbh(sc, ia)
827 	struct fe_softc *sc;
828 	struct isa_attach_args *ia;
829 {
830 	int iobase = sc->sc_iobase;
831 
832 	static struct fe_simple_probe_struct probe_table[] = {
833 		{ FE_DLCR2, 0x70, 0x00 },
834 		{ FE_DLCR4, 0x08, 0x00 },
835 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Does not work well. */
836 #if 0
837 	/*
838 	 * Test *vendor* part of the address for Fujitsu.
839 	 * The test will gain reliability of probe process, but
840 	 * it rejects clones by other vendors, or OEM product
841 	 * supplied by resalers other than Fujitsu.
842 	 */
843 		{ FE_MBH10, 0xFF, 0x00 },
844 		{ FE_MBH11, 0xFF, 0x00 },
845 		{ FE_MBH12, 0xFF, 0x0E },
846 #else
847 	/*
848 	 * We can always verify the *first* 2 bits (in Ehternet
849 	 * bit order) are "global" and "unicast" even for
850 	 * unknown vendors.
851 	 */
852 		{ FE_MBH10, 0x03, 0x00 },
853 #endif
854         /* Just a gap?  Seems reliable, anyway. */
855 		{ 0x12, 0xFF, 0x00 },
856 		{ 0x13, 0xFF, 0x00 },
857 		{ 0x14, 0xFF, 0x00 },
858 		{ 0x15, 0xFF, 0x00 },
859 		{ 0x16, 0xFF, 0x00 },
860 		{ 0x17, 0xFF, 0x00 },
861 		{ 0x18, 0xFF, 0xFF },
862 		{ 0x19, 0xFF, 0xFF },
863 
864 		{ 0 }
865 	};
866 
867 #if 0
868 	/*
869 	 * We need a PCMCIA flag.
870 	 */
871 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
872 		return (0);
873 #endif
874 
875 	/*
876 	 * We need explicit IRQ and supported address.
877 	 */
878 	if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
879 		return (0);
880 
881 #if FE_DEBUG >= 3
882 	log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
883 	fe_dump(LOG_INFO, sc);
884 #endif
885 
886 	/*
887 	 * See if MBH10302 is on its address.
888 	 * I'm not sure the following probe code works.  FIXME.
889 	 */
890 	if (!fe_simple_probe(iobase, probe_table))
891 		return (0);
892 
893 	/* Determine the card type. */
894 	sc->type = FE_TYPE_MBH10302;
895 	sc->typestr = "MBH10302 (PCMCIA)";
896 
897 	/*
898 	 * Initialize constants in the per-line structure.
899 	 */
900 
901 	/* Get our station address from EEPROM. */
902 	inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
903 
904 	/* Make sure we got a valid station address. */
905 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
906 	  || (sc->sc_enaddr[0] == 0x00
907 	    && sc->sc_enaddr[1] == 0x00
908 	    && sc->sc_enaddr[2] == 0x00))
909 		return (0);
910 
911 	/* Should find all register prototypes here.  FIXME. */
912 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
913 	sc->proto_dlcr5 = 0;
914 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
915 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
916 
917 	/*
918 	 * Program the 86960 as follows:
919 	 *	SRAM: 32KB, 100ns, byte-wide access.
920 	 *	Transmission buffer: 4KB x 2.
921 	 *	System bus interface: 16 bits.
922 	 * We cannot change these values but TXBSIZE, because they
923 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
924 	 * the driver performance.
925 	 */
926 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
927 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
928 
929 	/* Setup hooks.  We need a special initialization procedure. */
930 	sc->init = fe_init_mbh;
931 
932 	/*
933 	 * Minimum initialization.
934 	 */
935 
936 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
937 	delay(200);
938 
939 	/* Minimul initialization of 86960. */
940 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
941 	delay(200);
942 
943 	/* Disable all interrupts. */
944 	outb(iobase + FE_DLCR2, 0);
945 	outb(iobase + FE_DLCR3, 0);
946 
947 #if 1	/* FIXME. */
948 	/* Initialize system bus interface and encoder/decoder operation. */
949 	outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
950 #endif
951 
952 	/*
953 	 * That's all.  MBH10302 occupies 32 I/O addresses, by the way.
954 	 */
955 	ia->ia_iosize = 32;
956 	ia->ia_msize = 0;
957 	return (1);
958 }
959 
960 /* MBH specific initialization routine. */
961 void
962 fe_init_mbh(sc)
963 	struct fe_softc *sc;
964 {
965 
966 	/* Probably required after hot-insertion... */
967 
968 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
969 	delay(200);
970 
971 	/* Minimul initialization of 86960. */
972 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
973 	delay(200);
974 
975 	/* Disable all interrupts. */
976 	outb(sc->sc_iobase + FE_DLCR2, 0);
977 	outb(sc->sc_iobase + FE_DLCR3, 0);
978 
979 	/* Enable master interrupt flag. */
980 	outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
981 }
982 
983 /*
984  * Install interface into kernel networking data structures
985  */
986 void
987 feattach(parent, self, aux)
988 	struct device *parent, *self;
989 	void *aux;
990 {
991 	struct fe_softc *sc = (void *)self;
992 	struct isa_attach_args *ia = aux;
993 	struct cfdata *cf = sc->sc_dev.dv_cfdata;
994 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
995 
996 	/* Stop the 86960. */
997 	fe_stop(sc);
998 
999 	/* Initialize ifnet structure. */
1000 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1001 	ifp->if_softc = sc;
1002 	ifp->if_start = fe_start;
1003 	ifp->if_ioctl = fe_ioctl;
1004 	ifp->if_watchdog = fe_watchdog;
1005 	ifp->if_flags =
1006 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
1007 
1008 	/*
1009 	 * Set maximum size of output queue, if it has not been set.
1010 	 * It is done here as this driver may be started after the
1011 	 * system intialization (i.e., the interface is PCMCIA.)
1012 	 *
1013 	 * I'm not sure this is really necessary, but, even if it is,
1014 	 * it should be done somewhere else, e.g., in if_attach(),
1015 	 * since it must be a common workaround for all network drivers.
1016 	 * FIXME.
1017 	 */
1018 	if (ifp->if_snd.ifq_maxlen == 0) {
1019 		extern int ifqmaxlen;		/* Don't be so shocked... */
1020 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
1021 	}
1022 
1023 #if FE_DEBUG >= 3
1024 	log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1025 	fe_dump(LOG_INFO, sc);
1026 #endif
1027 
1028 #if FE_SINGLE_TRANSMISSION
1029 	/* Override txb config to allocate minimum. */
1030 	sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1031 	sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1032 #endif
1033 
1034 	/* Modify hardware config if it is requested. */
1035 	if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1036 		sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1037 
1038 	/* Find TX buffer size, based on the hardware dependent proto. */
1039 	switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1040 	case FE_D6_TXBSIZ_2x2KB:
1041 		sc->txb_size = 2048;
1042 		break;
1043 	case FE_D6_TXBSIZ_2x4KB:
1044 		sc->txb_size = 4096;
1045 		break;
1046 	case FE_D6_TXBSIZ_2x8KB:
1047 		sc->txb_size = 8192;
1048 		break;
1049 	default:
1050 		/* Oops, we can't work with single buffer configuration. */
1051 #if FE_DEBUG >= 2
1052 		log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1053 		    sc->sc_dev.dv_xname);
1054 #endif
1055 		sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1056 		sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1057 		sc->txb_size = 2048;
1058 		break;
1059 	}
1060 
1061 	/* Attach the interface. */
1062 	if_attach(ifp);
1063 	ether_ifattach(ifp);
1064 
1065 	/* Print additional info when attached. */
1066 	printf(": address %s, type %s\n",
1067 	    ether_sprintf(sc->sc_arpcom.ac_enaddr), sc->typestr);
1068 #if FE_DEBUG >= 3
1069 	{
1070 		int buf, txb, bbw, sbw, ram;
1071 
1072 		buf = txb = bbw = sbw = ram = -1;
1073 		switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1074 		case FE_D6_BUFSIZ_8KB:
1075 			buf = 8;
1076 			break;
1077 		case FE_D6_BUFSIZ_16KB:
1078 			buf = 16;
1079 			break;
1080 		case FE_D6_BUFSIZ_32KB:
1081 			buf = 32;
1082 			break;
1083 		case FE_D6_BUFSIZ_64KB:
1084 			buf = 64;
1085 			break;
1086 		}
1087 		switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1088 		case FE_D6_TXBSIZ_2x2KB:
1089 			txb = 2;
1090 			break;
1091 		case FE_D6_TXBSIZ_2x4KB:
1092 			txb = 4;
1093 			break;
1094 		case FE_D6_TXBSIZ_2x8KB:
1095 			txb = 8;
1096 			break;
1097 		}
1098 		switch (sc->proto_dlcr6 & FE_D6_BBW) {
1099 		case FE_D6_BBW_BYTE:
1100 			bbw = 8;
1101 			break;
1102 		case FE_D6_BBW_WORD:
1103 			bbw = 16;
1104 			break;
1105 		}
1106 		switch (sc->proto_dlcr6 & FE_D6_SBW) {
1107 		case FE_D6_SBW_BYTE:
1108 			sbw = 8;
1109 			break;
1110 		case FE_D6_SBW_WORD:
1111 			sbw = 16;
1112 			break;
1113 		}
1114 		switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1115 		case FE_D6_SRAM_100ns:
1116 			ram = 100;
1117 			break;
1118 		case FE_D6_SRAM_150ns:
1119 			ram = 150;
1120 			break;
1121 		}
1122 		printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1123 		    sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1124 	}
1125 #endif
1126 
1127 #if NBPFILTER > 0
1128 	/* If BPF is in the kernel, call the attach for it. */
1129 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1130 #endif
1131 
1132 	sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
1133 	    IPL_NET, feintr, sc);
1134 }
1135 
1136 /*
1137  * Reset interface.
1138  */
1139 void
1140 fe_reset(sc)
1141 	struct fe_softc *sc;
1142 {
1143 	int s;
1144 
1145 	s = splnet();
1146 	fe_stop(sc);
1147 	fe_init(sc);
1148 	splx(s);
1149 }
1150 
1151 /*
1152  * Stop everything on the interface.
1153  *
1154  * All buffered packets, both transmitting and receiving,
1155  * if any, will be lost by stopping the interface.
1156  */
1157 void
1158 fe_stop(sc)
1159 	struct fe_softc *sc;
1160 {
1161 
1162 #if FE_DEBUG >= 3
1163 	log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1164 	fe_dump(LOG_INFO, sc);
1165 #endif
1166 
1167 	/* Disable interrupts. */
1168 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1169 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1170 
1171 	/* Stop interface hardware. */
1172 	delay(200);
1173 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1174 	delay(200);
1175 
1176 	/* Clear all interrupt status. */
1177 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1178 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1179 
1180 	/* Put the chip in stand-by mode. */
1181 	delay(200);
1182 	outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1183 	delay(200);
1184 
1185 	/* MAR loading can be delayed. */
1186 	sc->filter_change = 0;
1187 
1188 	/* Call a hook. */
1189 	if (sc->stop)
1190 		sc->stop(sc);
1191 
1192 #if DEBUG >= 3
1193 	log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1194 	fe_dump(LOG_INFO, sc);
1195 #endif
1196 }
1197 
1198 /*
1199  * Device timeout/watchdog routine. Entered if the device neglects to
1200  * generate an interrupt after a transmit has been started on it.
1201  */
1202 void
1203 fe_watchdog(ifp)
1204 	struct ifnet *ifp;
1205 {
1206 	struct fe_softc *sc = ifp->if_softc;
1207 
1208 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1209 #if FE_DEBUG >= 3
1210 	fe_dump(LOG_INFO, sc);
1211 #endif
1212 
1213 	/* Record how many packets are lost by this accident. */
1214 	sc->sc_arpcom.ac_if.if_oerrors += sc->txb_sched + sc->txb_count;
1215 
1216 	fe_reset(sc);
1217 }
1218 
1219 /*
1220  * Drop (skip) a packet from receive buffer in 86960 memory.
1221  */
1222 static inline void
1223 fe_droppacket(sc)
1224 	struct fe_softc *sc;
1225 {
1226 
1227 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
1228 }
1229 
1230 /*
1231  * Initialize device.
1232  */
1233 void
1234 fe_init(sc)
1235 	struct fe_softc *sc;
1236 {
1237 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1238 	int i;
1239 
1240 #if FE_DEBUG >= 3
1241 	log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1242 	fe_dump(LOG_INFO, sc);
1243 #endif
1244 
1245 	/* Reset transmitter flags. */
1246 	ifp->if_flags &= ~IFF_OACTIVE;
1247 	ifp->if_timer = 0;
1248 
1249 	sc->txb_free = sc->txb_size;
1250 	sc->txb_count = 0;
1251 	sc->txb_sched = 0;
1252 
1253 	/* Call a hook. */
1254 	if (sc->init)
1255 		sc->init(sc);
1256 
1257 #if FE_DEBUG >= 3
1258 	log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1259 	fe_dump(LOG_INFO, sc);
1260 #endif
1261 
1262 	/*
1263 	 * Make sure to disable the chip, also.
1264 	 * This may also help re-programming the chip after
1265 	 * hot insertion of PCMCIAs.
1266 	 */
1267 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1268 
1269 	/* Power up the chip and select register bank for DLCRs. */
1270 	delay(200);
1271 	outb(sc->sc_iobase + FE_DLCR7,
1272 	    sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1273 	delay(200);
1274 
1275 	/* Feed the station address. */
1276 	outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1277 
1278 	/* Select the BMPR bank for runtime register access. */
1279 	outb(sc->sc_iobase + FE_DLCR7,
1280 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1281 
1282 	/* Initialize registers. */
1283 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1284 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1285 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1286 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1287 	outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1288 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1289 	outb(sc->sc_iobase + FE_BMPR10, 0x00);
1290 	outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1291 	outb(sc->sc_iobase + FE_BMPR12, 0x00);
1292 	outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1293 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
1294 	outb(sc->sc_iobase + FE_BMPR15, 0x00);
1295 
1296 #if FE_DEBUG >= 3
1297 	log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1298 	fe_dump(LOG_INFO, sc);
1299 #endif
1300 
1301 	/* Enable interrupts. */
1302 	outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1303 	outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1304 
1305 	/* Enable transmitter and receiver. */
1306 	delay(200);
1307 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1308 	delay(200);
1309 
1310 #if FE_DEBUG >= 3
1311 	log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1312 	fe_dump(LOG_INFO, sc);
1313 #endif
1314 
1315 	/*
1316 	 * Make sure to empty the receive buffer.
1317 	 *
1318 	 * This may be redundant, but *if* the receive buffer were full
1319 	 * at this point, the driver would hang.  I have experienced
1320 	 * some strange hangups just after UP.  I hope the following
1321 	 * code solve the problem.
1322 	 *
1323 	 * I have changed the order of hardware initialization.
1324 	 * I think the receive buffer cannot have any packets at this
1325 	 * point in this version.  The following code *must* be
1326 	 * redundant now.  FIXME.
1327 	 */
1328 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1329 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1330 			break;
1331 		fe_droppacket(sc);
1332 	}
1333 #if FE_DEBUG >= 1
1334 	if (i >= FE_MAX_RECV_COUNT) {
1335 		log(LOG_ERR, "%s: cannot empty receive buffer\n",
1336 		    sc->sc_dev.dv_xname);
1337 	}
1338 #endif
1339 #if FE_DEBUG >= 3
1340 	if (i < FE_MAX_RECV_COUNT) {
1341 		log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1342 		    sc->sc_dev.dv_xname, i);
1343 	}
1344 #endif
1345 
1346 #if FE_DEBUG >= 3
1347 	log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1348 	fe_dump(LOG_INFO, sc);
1349 #endif
1350 
1351 	/* Do we need this here? */
1352 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1353 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1354 
1355 #if FE_DEBUG >= 3
1356 	log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1357 	fe_dump(LOG_INFO, sc);
1358 #endif
1359 
1360 	/* Set 'running' flag. */
1361 	ifp->if_flags |= IFF_RUNNING;
1362 
1363 	/*
1364 	 * At this point, the interface is runnung properly,
1365 	 * except that it receives *no* packets.  we then call
1366 	 * fe_setmode() to tell the chip what packets to be
1367 	 * received, based on the if_flags and multicast group
1368 	 * list.  It completes the initialization process.
1369 	 */
1370 	fe_setmode(sc);
1371 
1372 #if FE_DEBUG >= 3
1373 	log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1374 	fe_dump(LOG_INFO, sc);
1375 #endif
1376 
1377 	/* ...and attempt to start output. */
1378 	fe_start(ifp);
1379 
1380 #if FE_DEBUG >= 3
1381 	log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1382 	fe_dump(LOG_INFO, sc);
1383 #endif
1384 }
1385 
1386 /*
1387  * This routine actually starts the transmission on the interface
1388  */
1389 static inline void
1390 fe_xmit(sc)
1391 	struct fe_softc *sc;
1392 {
1393 
1394 	/*
1395 	 * Set a timer just in case we never hear from the board again.
1396 	 * We use longer timeout for multiple packet transmission.
1397 	 * I'm not sure this timer value is appropriate.  FIXME.
1398 	 */
1399 	sc->sc_arpcom.ac_if.if_timer = 1 + sc->txb_count;
1400 
1401 	/* Update txb variables. */
1402 	sc->txb_sched = sc->txb_count;
1403 	sc->txb_count = 0;
1404 	sc->txb_free = sc->txb_size;
1405 
1406 #if FE_DELAYED_PADDING
1407 	/* Omit the postponed padding process. */
1408 	sc->txb_padding = 0;
1409 #endif
1410 
1411 	/* Start transmitter, passing packets in TX buffer. */
1412 	outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1413 }
1414 
1415 /*
1416  * Start output on interface.
1417  * We make two assumptions here:
1418  *  1) that the current priority is set to splnet _before_ this code
1419  *     is called *and* is returned to the appropriate priority after
1420  *     return
1421  *  2) that the IFF_OACTIVE flag is checked before this code is called
1422  *     (i.e. that the output part of the interface is idle)
1423  */
1424 void
1425 fe_start(ifp)
1426 	struct ifnet *ifp;
1427 {
1428 	struct fe_softc *sc = ifp->if_softc;
1429 	struct mbuf *m;
1430 
1431 #if FE_DEBUG >= 1
1432 	/* Just a sanity check. */
1433 	if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1434 		/*
1435 		 * Txb_count and txb_free co-works to manage the
1436 		 * transmission buffer.  Txb_count keeps track of the
1437 		 * used potion of the buffer, while txb_free does unused
1438 		 * potion.  So, as long as the driver runs properly,
1439 		 * txb_count is zero if and only if txb_free is same
1440 		 * as txb_size (which represents whole buffer.)
1441 		 */
1442 		log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1443 		    sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1444 		/*
1445 		 * So, what should I do, then?
1446 		 *
1447 		 * We now know txb_count and txb_free contradicts.  We
1448 		 * cannot, however, tell which is wrong.  More
1449 		 * over, we cannot peek 86960 transmission buffer or
1450 		 * reset the transmission buffer.  (In fact, we can
1451 		 * reset the entire interface.  I don't want to do it.)
1452 		 *
1453 		 * If txb_count is incorrect, leaving it as is will cause
1454 		 * sending of gabages after next interrupt.  We have to
1455 		 * avoid it.  Hence, we reset the txb_count here.  If
1456 		 * txb_free was incorrect, resetting txb_count just loose
1457 		 * some packets.  We can live with it.
1458 		 */
1459 		sc->txb_count = 0;
1460 	}
1461 #endif
1462 
1463 #if FE_DEBUG >= 1
1464 	/*
1465 	 * First, see if there are buffered packets and an idle
1466 	 * transmitter - should never happen at this point.
1467 	 */
1468 	if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1469 		log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1470 		    sc->sc_dev.dv_xname, sc->txb_count);
1471 		fe_xmit(sc);
1472 	}
1473 #endif
1474 
1475 	/*
1476 	 * Stop accepting more transmission packets temporarily, when
1477 	 * a filter change request is delayed.  Updating the MARs on
1478 	 * 86960 flushes the transmisstion buffer, so it is delayed
1479 	 * until all buffered transmission packets have been sent
1480 	 * out.
1481 	 */
1482 	if (sc->filter_change) {
1483 		/*
1484 		 * Filter change requst is delayed only when the DLC is
1485 		 * working.  DLC soon raise an interrupt after finishing
1486 		 * the work.
1487 		 */
1488 		goto indicate_active;
1489 	}
1490 
1491 	for (;;) {
1492 		/*
1493 		 * See if there is room to put another packet in the buffer.
1494 		 * We *could* do better job by peeking the send queue to
1495 		 * know the length of the next packet.  Current version just
1496 		 * tests against the worst case (i.e., longest packet).  FIXME.
1497 		 *
1498 		 * When adding the packet-peek feature, don't forget adding a
1499 		 * test on txb_count against QUEUEING_MAX.
1500 		 * There is a little chance the packet count exceeds
1501 		 * the limit.  Assume transmission buffer is 8KB (2x8KB
1502 		 * configuration) and an application sends a bunch of small
1503 		 * (i.e., minimum packet sized) packets rapidly.  An 8KB
1504 		 * buffer can hold 130 blocks of 62 bytes long...
1505 		 */
1506 		if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1507 			/* No room. */
1508 			goto indicate_active;
1509 		}
1510 
1511 #if FE_SINGLE_TRANSMISSION
1512 		if (sc->txb_count > 0) {
1513 			/* Just one packet per a transmission buffer. */
1514 			goto indicate_active;
1515 		}
1516 #endif
1517 
1518 		/*
1519 		 * Get the next mbuf chain for a packet to send.
1520 		 */
1521 		IF_DEQUEUE(&ifp->if_snd, m);
1522 		if (m == 0) {
1523 			/* No more packets to send. */
1524 			goto indicate_inactive;
1525 		}
1526 
1527 #if NBPFILTER > 0
1528 		/* Tap off here if there is a BPF listener. */
1529 		if (ifp->if_bpf)
1530 			bpf_mtap(ifp->if_bpf, m);
1531 #endif
1532 
1533 		/*
1534 		 * Copy the mbuf chain into the transmission buffer.
1535 		 * txb_* variables are updated as necessary.
1536 		 */
1537 		fe_write_mbufs(sc, m);
1538 
1539 		m_freem(m);
1540 
1541 		/* Start transmitter if it's idle. */
1542 		if (sc->txb_sched == 0)
1543 			fe_xmit(sc);
1544 	}
1545 
1546 indicate_inactive:
1547 	/*
1548 	 * We are using the !OACTIVE flag to indicate to
1549 	 * the outside world that we can accept an
1550 	 * additional packet rather than that the
1551 	 * transmitter is _actually_ active.  Indeed, the
1552 	 * transmitter may be active, but if we haven't
1553 	 * filled all the buffers with data then we still
1554 	 * want to accept more.
1555 	 */
1556 	ifp->if_flags &= ~IFF_OACTIVE;
1557 	return;
1558 
1559 indicate_active:
1560 	/*
1561 	 * The transmitter is active, and there are no room for
1562 	 * more outgoing packets in the transmission buffer.
1563 	 */
1564 	ifp->if_flags |= IFF_OACTIVE;
1565 	return;
1566 }
1567 
1568 /*
1569  * Transmission interrupt handler
1570  * The control flow of this function looks silly.  FIXME.
1571  */
1572 void
1573 fe_tint(sc, tstat)
1574 	struct fe_softc *sc;
1575 	u_char tstat;
1576 {
1577 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1578 	int left;
1579 	int col;
1580 
1581 	/*
1582 	 * Handle "excessive collision" interrupt.
1583 	 */
1584 	if (tstat & FE_D0_COLL16) {
1585 		/*
1586 		 * Find how many packets (including this collided one)
1587 		 * are left unsent in transmission buffer.
1588 		 */
1589 		left = inb(sc->sc_iobase + FE_BMPR10);
1590 
1591 #if FE_DEBUG >= 2
1592 		log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1593 		    sc->sc_dev.dv_xname, left, sc->txb_sched);
1594 #endif
1595 #if FE_DEBUG >= 3
1596 		fe_dump(LOG_INFO, sc);
1597 #endif
1598 
1599 		/*
1600 		 * Update statistics.
1601 		 */
1602 		ifp->if_collisions += 16;
1603 		ifp->if_oerrors++;
1604 		ifp->if_opackets += sc->txb_sched - left;
1605 
1606 		/*
1607 		 * Collision statistics has been updated.
1608 		 * Clear the collision flag on 86960 now to avoid confusion.
1609 		 */
1610 		outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1611 
1612 		/*
1613 		 * Restart transmitter, skipping the
1614 		 * collided packet.
1615 		 *
1616 		 * We *must* skip the packet to keep network running
1617 		 * properly.  Excessive collision error is an
1618 		 * indication of the network overload.  If we
1619 		 * tried sending the same packet after excessive
1620 		 * collision, the network would be filled with
1621 		 * out-of-time packets.  Packets belonging
1622 		 * to reliable transport (such as TCP) are resent
1623 		 * by some upper layer.
1624 		 */
1625 		outb(sc->sc_iobase + FE_BMPR11,
1626 		    FE_B11_CTRL_SKIP | FE_B11_MODE1);
1627 		sc->txb_sched = left - 1;
1628 	}
1629 
1630 	/*
1631 	 * Handle "transmission complete" interrupt.
1632 	 */
1633 	if (tstat & FE_D0_TXDONE) {
1634 		/*
1635 		 * Add in total number of collisions on last
1636 		 * transmission.  We also clear "collision occurred" flag
1637 		 * here.
1638 		 *
1639 		 * 86960 has a design flow on collision count on multiple
1640 		 * packet transmission.  When we send two or more packets
1641 		 * with one start command (that's what we do when the
1642 		 * transmission queue is clauded), 86960 informs us number
1643 		 * of collisions occured on the last packet on the
1644 		 * transmission only.  Number of collisions on previous
1645 		 * packets are lost.  I have told that the fact is clearly
1646 		 * stated in the Fujitsu document.
1647 		 *
1648 		 * I considered not to mind it seriously.  Collision
1649 		 * count is not so important, anyway.  Any comments?  FIXME.
1650 		 */
1651 
1652 		if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1653 			/* Clear collision flag. */
1654 			outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1655 
1656 			/* Extract collision count from 86960. */
1657 			col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1658 			if (col == 0) {
1659 				/*
1660 				 * Status register indicates collisions,
1661 				 * while the collision count is zero.
1662 				 * This can happen after multiple packet
1663 				 * transmission, indicating that one or more
1664 				 * previous packet(s) had been collided.
1665 				 *
1666 				 * Since the accurate number of collisions
1667 				 * has been lost, we just guess it as 1;
1668 				 * Am I too optimistic?  FIXME.
1669 				 */
1670 				col = 1;
1671 			} else
1672 				col >>= FE_D4_COL_SHIFT;
1673 			ifp->if_collisions += col;
1674 #if FE_DEBUG >= 4
1675 			log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1676 			    sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1677 			    sc->txb_sched);
1678 #endif
1679 		}
1680 
1681 		/*
1682 		 * Update total number of successfully
1683 		 * transmitted packets.
1684 		 */
1685 		ifp->if_opackets += sc->txb_sched;
1686 		sc->txb_sched = 0;
1687 	}
1688 
1689 	if (sc->txb_sched == 0) {
1690 		/*
1691 		 * The transmitter is no more active.
1692 		 * Reset output active flag and watchdog timer.
1693 		 */
1694 		ifp->if_flags &= ~IFF_OACTIVE;
1695 		ifp->if_timer = 0;
1696 
1697 		/*
1698 		 * If more data is ready to transmit in the buffer, start
1699 		 * transmitting them.  Otherwise keep transmitter idle,
1700 		 * even if more data is queued.  This gives receive
1701 		 * process a slight priority.
1702 		 */
1703 		if (sc->txb_count > 0)
1704 			fe_xmit(sc);
1705 	}
1706 }
1707 
1708 /*
1709  * Ethernet interface receiver interrupt.
1710  */
1711 void
1712 fe_rint(sc, rstat)
1713 	struct fe_softc *sc;
1714 	u_char rstat;
1715 {
1716 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1717 	int len;
1718 	u_char status;
1719 	int i;
1720 
1721 	/*
1722 	 * Update statistics if this interrupt is caused by an error.
1723 	 */
1724 	if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1725 		     FE_D1_ALGERR | FE_D1_SRTPKT)) {
1726 #if FE_DEBUG >= 3
1727 		log(LOG_WARNING, "%s: receive error: %b\n",
1728 		    sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1729 #endif
1730 		ifp->if_ierrors++;
1731 	}
1732 
1733 	/*
1734 	 * MB86960 has a flag indicating "receive queue empty."
1735 	 * We just loop cheking the flag to pull out all received
1736 	 * packets.
1737 	 *
1738 	 * We limit the number of iterrations to avoid infinite loop.
1739 	 * It can be caused by a very slow CPU (some broken
1740 	 * peripheral may insert incredible number of wait cycles)
1741 	 * or, worse, by a broken MB86960 chip.
1742 	 */
1743 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1744 		/* Stop the iterration if 86960 indicates no packets. */
1745 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1746 			break;
1747 
1748 		/*
1749 		 * Extract A receive status byte.
1750 		 * As our 86960 is in 16 bit bus access mode, we have to
1751 		 * use inw() to get the status byte.  The significant
1752 		 * value is returned in lower 8 bits.
1753 		 */
1754 		status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1755 #if FE_DEBUG >= 4
1756 		log(LOG_INFO, "%s: receive status = %02x\n",
1757 		    sc->sc_dev.dv_xname, status);
1758 #endif
1759 
1760 		/*
1761 		 * If there was an error, update statistics and drop
1762 		 * the packet, unless the interface is in promiscuous
1763 		 * mode.
1764 		 */
1765 		if ((status & 0xF0) != 0x20) {	/* XXXX ? */
1766 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
1767 				ifp->if_ierrors++;
1768 				fe_droppacket(sc);
1769 				continue;
1770 			}
1771 		}
1772 
1773 		/*
1774 		 * Extract the packet length.
1775 		 * It is a sum of a header (14 bytes) and a payload.
1776 		 * CRC has been stripped off by the 86960.
1777 		 */
1778 		len = inw(sc->sc_iobase + FE_BMPR8);
1779 
1780 		/*
1781 		 * MB86965 checks the packet length and drop big packet
1782 		 * before passing it to us.  There are no chance we can
1783 		 * get [crufty] packets.  Hence, if the length exceeds
1784 		 * the specified limit, it means some serious failure,
1785 		 * such as out-of-sync on receive buffer management.
1786 		 *
1787 		 * Is this statement true?  FIXME.
1788 		 */
1789 		if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1790 #if FE_DEBUG >= 2
1791 			log(LOG_WARNING,
1792 			    "%s: received a %s packet? (%u bytes)\n",
1793 			    sc->sc_dev.dv_xname,
1794 			    len < ETHER_HDR_SIZE ? "partial" : "big", len);
1795 #endif
1796 			ifp->if_ierrors++;
1797 			fe_droppacket(sc);
1798 			continue;
1799 		}
1800 
1801 		/*
1802 		 * Check for a short (RUNT) packet.  We *do* check
1803 		 * but do nothing other than print a message.
1804 		 * Short packets are illegal, but does nothing bad
1805 		 * if it carries data for upper layer.
1806 		 */
1807 #if FE_DEBUG >= 2
1808 		if (len < ETHER_MIN_LEN) {
1809 			log(LOG_WARNING,
1810 			     "%s: received a short packet? (%u bytes)\n",
1811 			     sc->sc_dev.dv_xname, len);
1812 		}
1813 #endif
1814 
1815 		/*
1816 		 * Go get a packet.
1817 		 */
1818 		if (!fe_get_packet(sc, len)) {
1819 			/* Skip a packet, updating statistics. */
1820 #if FE_DEBUG >= 2
1821 			log(LOG_WARNING,
1822 			    "%s: out of mbufs; dropping packet (%u bytes)\n",
1823 			    sc->sc_dev.dv_xname, len);
1824 #endif
1825 			ifp->if_ierrors++;
1826 			fe_droppacket(sc);
1827 
1828 			/*
1829 			 * We stop receiving packets, even if there are
1830 			 * more in the buffer.  We hope we can get more
1831 			 * mbufs next time.
1832 			 */
1833 			return;
1834 		}
1835 
1836 		/* Successfully received a packet.  Update stat. */
1837 		ifp->if_ipackets++;
1838 	}
1839 }
1840 
1841 /*
1842  * Ethernet interface interrupt processor
1843  */
1844 int
1845 feintr(arg)
1846 	void *arg;
1847 {
1848 	struct fe_softc *sc = arg;
1849 	u_char tstat, rstat;
1850 
1851 #if FE_DEBUG >= 4
1852 	log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1853 	fe_dump(LOG_INFO, sc);
1854 #endif
1855 
1856 	/*
1857 	 * Get interrupt conditions, masking unneeded flags.
1858 	 */
1859 	tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1860 	rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1861 	if (tstat == 0 && rstat == 0)
1862 		return (0);
1863 
1864 	/*
1865 	 * Loop until there are no more new interrupt conditions.
1866 	 */
1867 	for (;;) {
1868 		/*
1869 		 * Reset the conditions we are acknowledging.
1870 		 */
1871 		outb(sc->sc_iobase + FE_DLCR0, tstat);
1872 		outb(sc->sc_iobase + FE_DLCR1, rstat);
1873 
1874 		/*
1875 		 * Handle transmitter interrupts. Handle these first because
1876 		 * the receiver will reset the board under some conditions.
1877 		 */
1878 		if (tstat != 0)
1879 			fe_tint(sc, tstat);
1880 
1881 		/*
1882 		 * Handle receiver interrupts.
1883 		 */
1884 		if (rstat != 0)
1885 			fe_rint(sc, rstat);
1886 
1887 		/*
1888 		 * Update the multicast address filter if it is
1889 		 * needed and possible.  We do it now, because
1890 		 * we can make sure the transmission buffer is empty,
1891 		 * and there is a good chance that the receive queue
1892 		 * is empty.  It will minimize the possibility of
1893 		 * packet lossage.
1894 		 */
1895 		if (sc->filter_change &&
1896 		    sc->txb_count == 0 && sc->txb_sched == 0) {
1897 			fe_loadmar(sc);
1898 			sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1899 		}
1900 
1901 		/*
1902 		 * If it looks like the transmitter can take more data,
1903 		 * attempt to start output on the interface. This is done
1904 		 * after handling the receiver interrupt to give the
1905 		 * receive operation priority.
1906 		 */
1907 		if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1908 			fe_start(&sc->sc_arpcom.ac_if);
1909 
1910 		/*
1911 		 * Get interrupt conditions, masking unneeded flags.
1912 		 */
1913 		tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1914 		rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1915 		if (tstat == 0 && rstat == 0)
1916 			return (1);
1917 	}
1918 }
1919 
1920 /*
1921  * Process an ioctl request.  This code needs some work - it looks pretty ugly.
1922  */
1923 int
1924 fe_ioctl(ifp, command, data)
1925 	register struct ifnet *ifp;
1926 	u_long command;
1927 	caddr_t data;
1928 {
1929 	struct fe_softc *sc = ifp->if_softc;
1930 	register struct ifaddr *ifa = (struct ifaddr *)data;
1931 	struct ifreq *ifr = (struct ifreq *)data;
1932 	int s, error = 0;
1933 
1934 #if FE_DEBUG >= 3
1935 	log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1936 #endif
1937 
1938 	s = splnet();
1939 
1940 	switch (command) {
1941 
1942 	case SIOCSIFADDR:
1943 		ifp->if_flags |= IFF_UP;
1944 
1945 		switch (ifa->ifa_addr->sa_family) {
1946 #ifdef INET
1947 		case AF_INET:
1948 			fe_init(sc);
1949 			arp_ifinit(&sc->sc_arpcom, ifa);
1950 			break;
1951 #endif
1952 #ifdef NS
1953 		case AF_NS:
1954 		    {
1955 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1956 
1957 			if (ns_nullhost(*ina))
1958 				ina->x_host =
1959 				    *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1960 			else
1961 				bcopy(ina->x_host.c_host,
1962 				    sc->sc_arpcom.ac_enaddr,
1963 				    sizeof(sc->sc_arpcom.ac_enaddr));
1964 			/* Set new address. */
1965 			fe_init(sc);
1966 			break;
1967 		    }
1968 #endif
1969 		default:
1970 			fe_init(sc);
1971 			break;
1972 		}
1973 		break;
1974 
1975 	case SIOCSIFFLAGS:
1976 		if ((ifp->if_flags & IFF_UP) == 0 &&
1977 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1978 			/*
1979 			 * If interface is marked down and it is running, then
1980 			 * stop it.
1981 			 */
1982 			fe_stop(sc);
1983 			ifp->if_flags &= ~IFF_RUNNING;
1984 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1985 			   (ifp->if_flags & IFF_RUNNING) == 0) {
1986 			/*
1987 			 * If interface is marked up and it is stopped, then
1988 			 * start it.
1989 			 */
1990 			fe_init(sc);
1991 		} else {
1992 			/*
1993 			 * Reset the interface to pick up changes in any other
1994 			 * flags that affect hardware registers.
1995 			 */
1996 			fe_setmode(sc);
1997 		}
1998 #if DEBUG >= 1
1999 		/* "ifconfig fe0 debug" to print register dump. */
2000 		if (ifp->if_flags & IFF_DEBUG) {
2001 			log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
2002 			fe_dump(LOG_DEBUG, sc);
2003 		}
2004 #endif
2005 		break;
2006 
2007 	case SIOCADDMULTI:
2008 	case SIOCDELMULTI:
2009 		/* Update our multicast list. */
2010 		error = (command == SIOCADDMULTI) ?
2011 		    ether_addmulti(ifr, &sc->sc_arpcom) :
2012 		    ether_delmulti(ifr, &sc->sc_arpcom);
2013 
2014 		if (error == ENETRESET) {
2015 			/*
2016 			 * Multicast list has changed; set the hardware filter
2017 			 * accordingly.
2018 			 */
2019 			fe_setmode(sc);
2020 			error = 0;
2021 		}
2022 		break;
2023 
2024 	default:
2025 		error = EINVAL;
2026 	}
2027 
2028 	splx(s);
2029 	return (error);
2030 }
2031 
2032 /*
2033  * Retreive packet from receive buffer and send to the next level up via
2034  * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2035  * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2036  */
2037 int
2038 fe_get_packet(sc, len)
2039 	struct fe_softc *sc;
2040 	int len;
2041 {
2042 	struct ether_header *eh;
2043 	struct mbuf *m;
2044 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2045 
2046 	/* Allocate a header mbuf. */
2047 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2048 	if (m == 0)
2049 		return (0);
2050 	m->m_pkthdr.rcvif = ifp;
2051 	m->m_pkthdr.len = len;
2052 
2053 	/* The following silliness is to make NFS happy. */
2054 #define	EROUND	((sizeof(struct ether_header) + 3) & ~3)
2055 #define	EOFF	(EROUND - sizeof(struct ether_header))
2056 
2057 	/*
2058 	 * Our strategy has one more problem.  There is a policy on
2059 	 * mbuf cluster allocation.  It says that we must have at
2060 	 * least MINCLSIZE (208 bytes) to allocate a cluster.  For a
2061 	 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
2062 	 * our code violates the rule...
2063 	 * On the other hand, the current code is short, simle,
2064 	 * and fast, however.  It does no harmful thing, just waists
2065 	 * some memory.  Any comments?  FIXME.
2066 	 */
2067 
2068 	/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2069 	if (len > MHLEN - EOFF) {
2070 		MCLGET(m, M_DONTWAIT);
2071 		if ((m->m_flags & M_EXT) == 0) {
2072 			m_freem(m);
2073 			return (0);
2074 		}
2075 	}
2076 
2077 	/*
2078 	 * The following assumes there is room for the ether header in the
2079 	 * header mbuf.
2080 	 */
2081 	m->m_data += EOFF;
2082 	eh = mtod(m, struct ether_header *);
2083 
2084 	/* Set the length of this packet. */
2085 	m->m_len = len;
2086 
2087 	/* Get a packet. */
2088 	insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2089 
2090 #if NBPFILTER > 0
2091 	/*
2092 	 * Check if there's a BPF listener on this interface.  If so, hand off
2093 	 * the raw packet to bpf.
2094 	 */
2095 	if (ifp->if_bpf) {
2096 		bpf_mtap(ifp->if_bpf, m);
2097 
2098 		/*
2099 		 * Note that the interface cannot be in promiscuous mode if
2100 		 * there are no BPF listeners.  And if we are in promiscuous
2101 		 * mode, we have to check if this packet is really ours.
2102 		 */
2103 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2104 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2105 	  	    bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
2106 			    sizeof(eh->ether_dhost)) != 0) {
2107 			m_freem(m);
2108 			return (1);
2109 		}
2110 	}
2111 #endif
2112 
2113 	/* Fix up data start offset in mbuf to point past ether header. */
2114 	m_adj(m, sizeof(struct ether_header));
2115 	ether_input(ifp, eh, m);
2116 	return (1);
2117 }
2118 
2119 /*
2120  * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2121  * Returns number of bytes actually written, including length word.
2122  *
2123  * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2124  * Packets shorter than Ethernet minimum are legal, and we pad them
2125  * before sending out.  An exception is "partial" packets which are
2126  * shorter than mandatory Ethernet header.
2127  *
2128  * I wrote a code for an experimental "delayed padding" technique.
2129  * When employed, it postpones the padding process for short packets.
2130  * If xmit() occured at the moment, the padding process is omitted, and
2131  * garbages are sent as pad data.  If next packet is stored in the
2132  * transmission buffer before xmit(), write_mbuf() pads the previous
2133  * packet before transmitting new packet.  This *may* gain the
2134  * system performance (slightly).
2135  */
2136 void
2137 fe_write_mbufs(sc, m)
2138 	struct fe_softc *sc;
2139 	struct mbuf *m;
2140 {
2141 	int bmpr8 = sc->sc_iobase + FE_BMPR8;
2142 	struct mbuf *mp;
2143 	u_char *data;
2144 	u_short savebyte;	/* WARNING: Architecture dependent! */
2145 	int totlen, len, wantbyte;
2146 
2147 #if FE_DELAYED_PADDING
2148 	/* Do the "delayed padding." */
2149 	len = sc->txb_padding >> 1;
2150 	if (len > 0) {
2151 		while (--len >= 0)
2152 			outw(bmpr8, 0);
2153 		sc->txb_padding = 0;
2154 	}
2155 #endif
2156 
2157 	/* We need to use m->m_pkthdr.len, so require the header */
2158 	if ((m->m_flags & M_PKTHDR) == 0)
2159 	  	panic("fe_write_mbufs: no header mbuf");
2160 
2161 #if FE_DEBUG >= 2
2162 	/* First, count up the total number of bytes to copy. */
2163 	for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2164 		totlen += mp->m_len;
2165 	/* Check if this matches the one in the packet header. */
2166 	if (totlen != m->m_pkthdr.len)
2167 		log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2168 		    sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2169 #else
2170 	/* Just use the length value in the packet header. */
2171 	totlen = m->m_pkthdr.len;
2172 #endif
2173 
2174 #if FE_DEBUG >= 1
2175 	/*
2176 	 * Should never send big packets.  If such a packet is passed,
2177 	 * it should be a bug of upper layer.  We just ignore it.
2178 	 * ... Partial (too short) packets, neither.
2179 	 */
2180 	if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2181 		log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2182 		    sc->sc_dev.dv_xname,
2183 		    totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2184 		sc->sc_arpcom.ac_if.if_oerrors++;
2185 		return;
2186 	}
2187 #endif
2188 
2189 	/*
2190 	 * Put the length word for this frame.
2191 	 * Does 86960 accept odd length?  -- Yes.
2192 	 * Do we need to pad the length to minimum size by ourselves?
2193 	 * -- Generally yes.  But for (or will be) the last
2194 	 * packet in the transmission buffer, we can skip the
2195 	 * padding process.  It may gain performance slightly.  FIXME.
2196 	 */
2197 	outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2198 
2199 	/*
2200 	 * Update buffer status now.
2201 	 * Truncate the length up to an even number, since we use outw().
2202 	 */
2203 	totlen = (totlen + 1) & ~1;
2204 	sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2205 	sc->txb_count++;
2206 
2207 #if FE_DELAYED_PADDING
2208 	/* Postpone the packet padding if necessary. */
2209 	if (totlen < ETHER_MIN_LEN)
2210 		sc->txb_padding = ETHER_MIN_LEN - totlen;
2211 #endif
2212 
2213 	/*
2214 	 * Transfer the data from mbuf chain to the transmission buffer.
2215 	 * MB86960 seems to require that data be transferred as words, and
2216 	 * only words.  So that we require some extra code to patch
2217 	 * over odd-length mbufs.
2218 	 */
2219 	wantbyte = 0;
2220 	for (; m != 0; m = m->m_next) {
2221 		/* Ignore empty mbuf. */
2222 		len = m->m_len;
2223 		if (len == 0)
2224 			continue;
2225 
2226 		/* Find the actual data to send. */
2227 		data = mtod(m, caddr_t);
2228 
2229 		/* Finish the last byte. */
2230 		if (wantbyte) {
2231 			outw(bmpr8, savebyte | (*data << 8));
2232 			data++;
2233 			len--;
2234 			wantbyte = 0;
2235 		}
2236 
2237 		/* Output contiguous words. */
2238 		if (len > 1)
2239 			outsw(bmpr8, data, len >> 1);
2240 
2241 		/* Save remaining byte, if there is one. */
2242 		if (len & 1) {
2243 			data += len & ~1;
2244 			savebyte = *data;
2245 			wantbyte = 1;
2246 		}
2247 	}
2248 
2249 	/* Spit the last byte, if the length is odd. */
2250 	if (wantbyte)
2251 		outw(bmpr8, savebyte);
2252 
2253 #if ! FE_DELAYED_PADDING
2254 	/*
2255 	 * Pad the packet to the minimum length if necessary.
2256 	 */
2257 	len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2258 	while (--len >= 0)
2259 		outw(bmpr8, 0);
2260 #endif
2261 }
2262 
2263 /*
2264  * Compute the multicast address filter from the
2265  * list of multicast addresses we need to listen to.
2266  */
2267 void
2268 fe_getmcaf(ac, af)
2269 	struct arpcom *ac;
2270 	u_char *af;
2271 {
2272 	struct ifnet *ifp = &ac->ac_if;
2273 	struct ether_multi *enm;
2274 	register u_char *cp, c;
2275 	register u_long crc;
2276 	register int i, len;
2277 	struct ether_multistep step;
2278 
2279 	/*
2280 	 * Set up multicast address filter by passing all multicast addresses
2281 	 * through a crc generator, and then using the high order 6 bits as an
2282 	 * index into the 64 bit logical address filter.  The high order bit
2283 	 * selects the word, while the rest of the bits select the bit within
2284 	 * the word.
2285 	 */
2286 
2287 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2288 		goto allmulti;
2289 
2290 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2291 	ETHER_FIRST_MULTI(step, ac, enm);
2292 	while (enm != NULL) {
2293 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2294 		    sizeof(enm->enm_addrlo)) != 0) {
2295 			/*
2296 			 * We must listen to a range of multicast addresses.
2297 			 * For now, just accept all multicasts, rather than
2298 			 * trying to set only those filter bits needed to match
2299 			 * the range.  (At this time, the only use of address
2300 			 * ranges is for IP multicast routing, for which the
2301 			 * range is big enough to require all bits set.)
2302 			 */
2303 			goto allmulti;
2304 		}
2305 
2306 		cp = enm->enm_addrlo;
2307 		crc = 0xffffffff;
2308 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2309 			c = *cp++;
2310 			for (i = 8; --i >= 0;) {
2311 				if ((crc & 0x01) ^ (c & 0x01)) {
2312 					crc >>= 1;
2313 					crc ^= 0xedb88320;
2314 				} else
2315 					crc >>= 1;
2316 				c >>= 1;
2317 			}
2318 		}
2319 		/* Just want the 6 most significant bits. */
2320 		crc >>= 26;
2321 
2322 		/* Turn on the corresponding bit in the filter. */
2323 		af[crc >> 3] |= 1 << (crc & 7);
2324 
2325 		ETHER_NEXT_MULTI(step, enm);
2326 	}
2327 	ifp->if_flags &= ~IFF_ALLMULTI;
2328 	return;
2329 
2330 allmulti:
2331 	ifp->if_flags |= IFF_ALLMULTI;
2332 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2333 }
2334 
2335 /*
2336  * Calculate a new "multicast packet filter" and put the 86960
2337  * receiver in appropriate mode.
2338  */
2339 void
2340 fe_setmode(sc)
2341 	struct fe_softc *sc;
2342 {
2343 	int flags = sc->sc_arpcom.ac_if.if_flags;
2344 
2345 	/*
2346 	 * If the interface is not running, we postpone the update
2347 	 * process for receive modes and multicast address filter
2348 	 * until the interface is restarted.  It reduces some
2349 	 * complicated job on maintaining chip states.  (Earlier versions
2350 	 * of this driver had a bug on that point...)
2351 	 *
2352 	 * To complete the trick, fe_init() calls fe_setmode() after
2353 	 * restarting the interface.
2354 	 */
2355 	if ((flags & IFF_RUNNING) == 0)
2356 		return;
2357 
2358 	/*
2359 	 * Promiscuous mode is handled separately.
2360 	 */
2361 	if ((flags & IFF_PROMISC) != 0) {
2362 		/*
2363 		 * Program 86960 to receive all packets on the segment
2364 		 * including those directed to other stations.
2365 		 * Multicast filter stored in MARs are ignored
2366 		 * under this setting, so we don't need to update it.
2367 		 *
2368 		 * Promiscuous mode is used solely by BPF, and BPF only
2369 		 * listens to valid (no error) packets.  So, we ignore
2370 		 * errornous ones even in this mode.
2371 		 */
2372 		outb(sc->sc_iobase + FE_DLCR5,
2373 		    sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2374 		sc->filter_change = 0;
2375 
2376 #if FE_DEBUG >= 3
2377 		log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2378 #endif
2379 		return;
2380 	}
2381 
2382 	/*
2383 	 * Turn the chip to the normal (non-promiscuous) mode.
2384 	 */
2385 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2386 
2387 	/*
2388 	 * Find the new multicast filter value.
2389 	 */
2390 	fe_getmcaf(&sc->sc_arpcom, sc->filter);
2391 	sc->filter_change = 1;
2392 
2393 #if FE_DEBUG >= 3
2394 	log(LOG_INFO,
2395 	    "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2396 	    sc->sc_dev.dv_xname,
2397 	    sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2398 	    sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2399 #endif
2400 
2401 	/*
2402 	 * We have to update the multicast filter in the 86960, A.S.A.P.
2403 	 *
2404 	 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2405 	 * and receiver) must be stopped when feeding the filter, and
2406 	 * DLC trushes all packets in both transmission and receive
2407 	 * buffers when stopped.
2408 	 *
2409 	 * ... Are the above sentenses correct?  I have to check the
2410 	 *     manual of the MB86960A.  FIXME.
2411 	 *
2412 	 * To reduce the packet lossage, we delay the filter update
2413 	 * process until buffers are empty.
2414 	 */
2415 	if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2416 	    (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2417 		/*
2418 		 * Buffers are (apparently) empty.  Load
2419 		 * the new filter value into MARs now.
2420 		 */
2421 		fe_loadmar(sc);
2422 	} else {
2423 		/*
2424 		 * Buffers are not empty.  Mark that we have to update
2425 		 * the MARs.  The new filter will be loaded by feintr()
2426 		 * later.
2427 		 */
2428 #if FE_DEBUG >= 4
2429 		log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2430 #endif
2431 	}
2432 }
2433 
2434 /*
2435  * Load a new multicast address filter into MARs.
2436  *
2437  * The caller must have splnet'ed befor fe_loadmar.
2438  * This function starts the DLC upon return.  So it can be called only
2439  * when the chip is working, i.e., from the driver's point of view, when
2440  * a device is RUNNING.  (I mistook the point in previous versions.)
2441  */
2442 void
2443 fe_loadmar(sc)
2444 	struct fe_softc *sc;
2445 {
2446 
2447 	/* Stop the DLC (transmitter and receiver). */
2448 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2449 
2450 	/* Select register bank 1 for MARs. */
2451 	outb(sc->sc_iobase + FE_DLCR7,
2452 	    sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2453 
2454 	/* Copy filter value into the registers. */
2455 	outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2456 
2457 	/* Restore the bank selection for BMPRs (i.e., runtime registers). */
2458 	outb(sc->sc_iobase + FE_DLCR7,
2459 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2460 
2461 	/* Restart the DLC. */
2462 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2463 
2464 	/* We have just updated the filter. */
2465 	sc->filter_change = 0;
2466 
2467 #if FE_DEBUG >= 3
2468 	log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2469 #endif
2470 }
2471 
2472 #if FE_DEBUG >= 1
2473 void
2474 fe_dump(level, sc)
2475 	int level;
2476 	struct fe_softc *sc;
2477 {
2478 	int iobase = sc->sc_iobase;
2479 	u_char save_dlcr7;
2480 
2481 	save_dlcr7 = inb(iobase + FE_DLCR7);
2482 
2483 	log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2484 	    inb(iobase + FE_DLCR0),  inb(iobase + FE_DLCR1),
2485 	    inb(iobase + FE_DLCR2),  inb(iobase + FE_DLCR3),
2486 	    inb(iobase + FE_DLCR4),  inb(iobase + FE_DLCR5),
2487 	    inb(iobase + FE_DLCR6),  inb(iobase + FE_DLCR7));
2488 
2489 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2490 	log(level, "\t       %02x %02x %02x %02x %02x %02x %02x %02x,",
2491 	    inb(iobase + FE_DLCR8),  inb(iobase + FE_DLCR9),
2492 	    inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2493 	    inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2494 	    inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2495 
2496 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2497 	log(level, "\tMAR  = %02x %02x %02x %02x %02x %02x %02x %02x,",
2498 	    inb(iobase + FE_MAR8),   inb(iobase + FE_MAR9),
2499 	    inb(iobase + FE_MAR10),  inb(iobase + FE_MAR11),
2500 	    inb(iobase + FE_MAR12),  inb(iobase + FE_MAR13),
2501 	    inb(iobase + FE_MAR14),  inb(iobase + FE_MAR15));
2502 
2503 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2504 	log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2505 	    inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2506 	    inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2507 	    inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2508 	    inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2509 	    inb(iobase + FE_BMPR19));
2510 
2511 	outb(iobase + FE_DLCR7, save_dlcr7);
2512 }
2513 #endif
2514