xref: /netbsd-src/sys/dev/isa/if_ate.c (revision 76dfffe33547c37f8bdd446e3e4ab0f3c16cea4b)
1 /*
2  * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
3  *
4  * This software may be used, modified, copied, distributed, and sold, in
5  * both source and binary form provided that the above copyright, these
6  * terms and the following disclaimer are retained.  The name of the author
7  * and/or the contributor may not be used to endorse or promote products
8  * derived from this software without specific prior written permission.
9  *
10  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
11  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
12  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
14  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
15  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
16  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
17  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
18  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
19  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
20  * SUCH DAMAGE.
21  */
22 
23 /*
24  * Portions copyright (C) 1993, David Greenman.  This software may be used,
25  * modified, copied, distributed, and sold, in both source and binary form
26  * provided that the above copyright and these terms are retained.  Under no
27  * circumstances is the author responsible for the proper functioning of this
28  * software, nor does the author assume any responsibility for damages
29  * incurred with its use.
30  */
31 
32 #define FE_VERSION "if_fe.c ver. 0.8"
33 
34 /*
35  * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
36  * Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
37  *
38  * This version is intended to be a generic template for various
39  * MB86960A/MB86965A based Ethernet cards.  It currently supports
40  * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
41  * Telesis AT1700 series and RE2000 series.  There are some
42  * unnecessary hooks embedded, which are primarily intended to support
43  * other types of Ethernet cards, but the author is not sure whether
44  * they are useful.
45  */
46 
47 #include "bpfilter.h"
48 
49 #include <sys/param.h>
50 #include <sys/systm.h>
51 #include <sys/errno.h>
52 #include <sys/ioctl.h>
53 #include <sys/mbuf.h>
54 #include <sys/socket.h>
55 #include <sys/syslog.h>
56 #include <sys/device.h>
57 
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/netisr.h>
62 
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_ether.h>
69 #endif
70 
71 #ifdef NS
72 #include <netns/ns.h>
73 #include <netns/ns_if.h>
74 #endif
75 
76 #if NBPFILTER > 0
77 #include <net/bpf.h>
78 #include <net/bpfdesc.h>
79 #endif
80 
81 #include <machine/cpu.h>
82 #include <machine/intr.h>
83 #include <machine/pio.h>
84 
85 #include <dev/isa/isareg.h>
86 #include <dev/isa/isavar.h>
87 #include <dev/ic/mb86960reg.h>
88 #include <dev/isa/if_fereg.h>
89 
90 /*
91  * Default settings for fe driver specific options.
92  * They can be set in config file by "options" statements.
93  */
94 
95 /*
96  * Debug control.
97  * 0: No debug at all.  All debug specific codes are stripped off.
98  * 1: Silent.  No debug messages are logged except emergent ones.
99  * 2: Brief.  Lair events and/or important information are logged.
100  * 3: Detailed.  Logs all information which *may* be useful for debugging.
101  * 4: Trace.  All actions in the driver is logged.  Super verbose.
102  */
103 #ifndef FE_DEBUG
104 #define FE_DEBUG		1
105 #endif
106 
107 /*
108  * Delay padding of short transmission packets to minimum Ethernet size.
109  * This may or may not gain performance.  An EXPERIMENTAL option.
110  */
111 #ifndef FE_DELAYED_PADDING
112 #define FE_DELAYED_PADDING	0
113 #endif
114 
115 /*
116  * Transmit just one packet per a "send" command to 86960.
117  * This option is intended for performance test.  An EXPERIMENTAL option.
118  */
119 #ifndef FE_SINGLE_TRANSMISSION
120 #define FE_SINGLE_TRANSMISSION	0
121 #endif
122 
123 /*
124  * Device configuration flags.
125  */
126 
127 /* DLCR6 settings. */
128 #define FE_FLAGS_DLCR6_VALUE	0x007F
129 
130 /* Force DLCR6 override. */
131 #define FE_FLAGS_OVERRIDE_DLCR6	0x0080
132 
133 /* A cludge for PCMCIA support. */
134 #define FE_FLAGS_PCMCIA		0x8000
135 
136 /* Identification of the driver version. */
137 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
138 
139 /*
140  * Supported hardware (Ethernet card) types
141  * This information is currently used only for debugging
142  */
143 enum fe_type {
144 	/* For cards which are successfully probed but not identified. */
145 	FE_TYPE_UNKNOWN,
146 
147 	/* Fujitsu FMV-180 series. */
148 	FE_TYPE_FMV181,
149 	FE_TYPE_FMV182,
150 
151 	/* Allied-Telesis AT1700 series and RE2000 series. */
152 	FE_TYPE_AT1700T,
153 	FE_TYPE_AT1700BT,
154 	FE_TYPE_AT1700FT,
155 	FE_TYPE_AT1700AT,
156 	FE_TYPE_RE2000,
157 
158 	/* PCMCIA by Fujitsu. */
159 	FE_TYPE_MBH10302,
160 	FE_TYPE_MBH10304,
161 };
162 
163 /*
164  * fe_softc: per line info and status
165  */
166 struct fe_softc {
167 	struct	device sc_dev;
168 	void	*sc_ih;
169 
170 	struct	arpcom sc_arpcom;	/* ethernet common */
171 
172 	/* Set by probe() and not modified in later phases. */
173 	enum	fe_type type;	/* interface type code */
174 	char	*typestr;	/* printable name of the interface. */
175 	int	sc_iobase;	/* MB86960A I/O base address */
176 
177 	u_char	proto_dlcr4;	/* DLCR4 prototype. */
178 	u_char	proto_dlcr5;	/* DLCR5 prototype. */
179 	u_char	proto_dlcr6;	/* DLCR6 prototype. */
180 	u_char	proto_dlcr7;	/* DLCR7 prototype. */
181 	u_char	proto_bmpr13;	/* BMPR13 prototype. */
182 
183 	/* Vendor specific hooks. */
184 	void	(*init) __P((struct fe_softc *)); /* Just before fe_init(). */
185 	void	(*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
186 
187 	/* Transmission buffer management. */
188 	u_short	txb_size;	/* total bytes in TX buffer */
189 	u_short	txb_free;	/* free bytes in TX buffer */
190 	u_char	txb_count;	/* number of packets in TX buffer */
191 	u_char	txb_sched;	/* number of scheduled packets */
192 	u_char	txb_padding;	/* number of delayed padding bytes */
193 
194 	/* Multicast address filter management. */
195 	u_char	filter_change;	/* MARs must be changed ASAP. */
196 	u_char	filter[FE_FILTER_LEN];	/* new filter value. */
197 };
198 
199 /* Frequently accessed members in arpcom. */
200 #define sc_enaddr	sc_arpcom.ac_enaddr
201 
202 /* Standard driver entry points.  These can be static. */
203 int	feprobe		__P((struct device *, void *, void *));
204 void	feattach	__P((struct device *, struct device *, void *));
205 int	feintr		__P((void *));
206 void	fe_init		__P((struct fe_softc *));
207 int	fe_ioctl	__P((struct ifnet *, u_long, caddr_t));
208 void	fe_start	__P((struct ifnet *));
209 void	fe_reset	__P((struct fe_softc *));
210 void	fe_watchdog	__P((struct ifnet *));
211 
212 /* Local functions.  Order of declaration is confused.  FIXME. */
213 int	fe_probe_fmv	__P((struct fe_softc *, struct isa_attach_args *));
214 int	fe_probe_ati	__P((struct fe_softc *, struct isa_attach_args *));
215 int	fe_probe_mbh	__P((struct fe_softc *, struct isa_attach_args *));
216 void	fe_read_eeprom	__P((struct fe_softc *, u_char *));
217 void	fe_init_mbh	__P((struct fe_softc *));
218 int	fe_get_packet	__P((struct fe_softc *, int));
219 void	fe_stop		__P((struct fe_softc *));
220 void	fe_tint		__P((struct fe_softc *, u_char));
221 void	fe_rint		__P((struct fe_softc *, u_char));
222 static inline
223 void	fe_xmit		__P((struct fe_softc *));
224 void	fe_write_mbufs	__P((struct fe_softc *, struct mbuf *));
225 static inline
226 void	fe_droppacket	__P((struct fe_softc *));
227 void	fe_getmcaf	__P((struct arpcom *, u_char *));
228 void	fe_setmode	__P((struct fe_softc *));
229 void	fe_loadmar	__P((struct fe_softc *));
230 #if FE_DEBUG >= 1
231 void	fe_dump		__P((int, struct fe_softc *));
232 #endif
233 
234 struct cfattach fe_ca = {
235 	sizeof(struct fe_softc), feprobe, feattach
236 };
237 
238 struct cfdriver fe_cd = {
239 	NULL, "fe", DV_IFNET
240 };
241 
242 /* Ethernet constants.  To be defined in if_ehter.h?  FIXME. */
243 #define ETHER_MIN_LEN	60	/* with header, without CRC. */
244 #define ETHER_MAX_LEN	1514	/* with header, without CRC. */
245 #define ETHER_ADDR_LEN	6	/* number of bytes in an address. */
246 #define ETHER_HDR_SIZE	14	/* src addr, dst addr, and data type. */
247 
248 /*
249  * Fe driver specific constants which relate to 86960/86965.
250  */
251 
252 /* Interrupt masks. */
253 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
254 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
255 		  FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
256 
257 /* Maximum number of iterrations for a receive interrupt. */
258 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
259 	/* Maximum size of SRAM is 65536,
260 	 * minimum size of transmission buffer in fe is 2x2KB,
261 	 * and minimum amount of received packet including headers
262 	 * added by the chip is 64 bytes.
263 	 * Hence FE_MAX_RECV_COUNT is the upper limit for number
264 	 * of packets in the receive buffer. */
265 
266 /*
267  * Convenient routines to access contiguous I/O ports.
268  */
269 
270 static inline void
271 inblk (int addr, u_char * mem, int len)
272 {
273 	while (--len >= 0) {
274 		*mem++ = inb(addr++);
275 	}
276 }
277 
278 static inline void
279 outblk (int addr, u_char const * mem, int len)
280 {
281 	while (--len >= 0) {
282 		outb(addr++, *mem++);
283 	}
284 }
285 
286 /*
287  * Hardware probe routines.
288  */
289 
290 /*
291  * Determine if the device is present.
292  */
293 int
294 feprobe(parent, match, aux)
295 	struct device *parent;
296 	void *match, *aux;
297 {
298 	struct fe_softc *sc = match;
299 	struct isa_attach_args *ia = aux;
300 
301 #if FE_DEBUG >= 2
302 	log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
303 #endif
304 
305 	/* Probe an address. */
306 	sc->sc_iobase = ia->ia_iobase;
307 
308 	if (fe_probe_fmv(sc, ia))
309 		return (1);
310 	if (fe_probe_ati(sc, ia))
311 		return (1);
312 	if (fe_probe_mbh(sc, ia))
313 		return (1);
314 	return (0);
315 }
316 
317 /*
318  * Check for specific bits in specific registers have specific values.
319  */
320 struct fe_simple_probe_struct {
321 	u_char port;	/* Offset from the base I/O address. */
322 	u_char mask;	/* Bits to be checked. */
323 	u_char bits;	/* Values to be compared against. */
324 };
325 
326 static inline int
327 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
328 {
329 	struct fe_simple_probe_struct const * p;
330 
331 	for (p = sp; p->mask != 0; p++) {
332 		if ((inb(addr + p->port) & p->mask) != p->bits) {
333 			return (0);
334 		}
335 	}
336 	return (1);
337 }
338 
339 /*
340  * Routines to read all bytes from the config EEPROM through MB86965A.
341  * I'm not sure what exactly I'm doing here...  I was told just to follow
342  * the steps, and it worked.  Could someone tell me why the following
343  * code works?  (Or, why all similar codes I tried previously doesn't
344  * work.)  FIXME.
345  */
346 
347 static inline void
348 strobe (int bmpr16)
349 {
350 	/*
351 	 * Output same value twice.  To speed-down execution?
352 	 */
353 	outb(bmpr16, FE_B16_SELECT);
354 	outb(bmpr16, FE_B16_SELECT);
355 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
356 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
357 	outb(bmpr16, FE_B16_SELECT);
358 	outb(bmpr16, FE_B16_SELECT);
359 }
360 
361 void
362 fe_read_eeprom(sc, data)
363 	struct fe_softc *sc;
364 	u_char *data;
365 {
366 	int iobase = sc->sc_iobase;
367 	int bmpr16 = iobase + FE_BMPR16;
368 	int bmpr17 = iobase + FE_BMPR17;
369 	u_char n, val, bit;
370 
371 	/* Read bytes from EEPROM; two bytes per an iterration. */
372 	for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
373 		/* Reset the EEPROM interface. */
374 		outb(bmpr16, 0x00);
375 		outb(bmpr17, 0x00);
376 		outb(bmpr16, FE_B16_SELECT);
377 
378 		/* Start EEPROM access. */
379 		outb(bmpr17, FE_B17_DATA);
380 		strobe(bmpr16);
381 
382 		/* Pass the iterration count to the chip. */
383 		val = 0x80 | n;
384 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
385 			outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
386 			strobe(bmpr16);
387 		}
388 		outb(bmpr17, 0x00);
389 
390 		/* Read a byte. */
391 		val = 0;
392 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
393 			strobe(bmpr16);
394 			if (inb(bmpr17) & FE_B17_DATA)
395 				val |= bit;
396 		}
397 		*data++ = val;
398 
399 		/* Read one more byte. */
400 		val = 0;
401 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
402 			strobe(bmpr16);
403 			if (inb(bmpr17) & FE_B17_DATA)
404 				val |= bit;
405 		}
406 		*data++ = val;
407 	}
408 
409 #if FE_DEBUG >= 3
410 	/* Report what we got. */
411 	data -= FE_EEPROM_SIZE;
412 	log(LOG_INFO, "%s: EEPROM at %04x:"
413 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
414 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
415 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
416 	    " %02x%02x%02x%02x %02x%02x%02x%02x\n",
417 	    sc->sc_dev.dv_xname, iobase,
418 	    data[ 0], data[ 1], data[ 2], data[ 3],
419 	    data[ 4], data[ 5], data[ 6], data[ 7],
420 	    data[ 8], data[ 9], data[10], data[11],
421 	    data[12], data[13], data[14], data[15],
422 	    data[16], data[17], data[18], data[19],
423 	    data[20], data[21], data[22], data[23],
424 	    data[24], data[25], data[26], data[27],
425 	    data[28], data[29], data[30], data[31]);
426 #endif
427 }
428 
429 /*
430  * Hardware (vendor) specific probe routines.
431  */
432 
433 /*
434  * Probe and initialization for Fujitsu FMV-180 series boards
435  */
436 int
437 fe_probe_fmv(sc, ia)
438 	struct fe_softc *sc;
439 	struct isa_attach_args *ia;
440 {
441 	int i, n;
442 	int iobase = sc->sc_iobase;
443 	int irq;
444 
445 	static int const iomap[8] =
446 		{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
447 	static int const irqmap[4] =
448 		{ 3, 7, 10, 15 };
449 
450 	static struct fe_simple_probe_struct const probe_table[] = {
451 		{ FE_DLCR2, 0x70, 0x00 },
452 		{ FE_DLCR4, 0x08, 0x00 },
453 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Doesn't work. */
454 
455 		{ FE_FMV0, FE_FMV0_MAGIC_MASK,  FE_FMV0_MAGIC_VALUE },
456 		{ FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID   },
457 		{ FE_FMV3, FE_FMV3_EXTRA_MASK,  FE_FMV3_EXTRA_VALUE },
458 #if 1
459 	/*
460 	 * Test *vendor* part of the station address for Fujitsu.
461 	 * The test will gain reliability of probe process, but
462 	 * it rejects FMV-180 clone boards manufactured by other vendors.
463 	 * We have to turn the test off when such cards are made available.
464 	 */
465 		{ FE_FMV4, 0xFF, 0x00 },
466 		{ FE_FMV5, 0xFF, 0x00 },
467 		{ FE_FMV6, 0xFF, 0x0E },
468 #else
469 	/*
470 	 * We can always verify the *first* 2 bits (in Ehternet
471 	 * bit order) are "no multicast" and "no local" even for
472 	 * unknown vendors.
473 	 */
474 		{ FE_FMV4, 0x03, 0x00 },
475 #endif
476 		{ 0 }
477 	};
478 
479 #if 0
480 	/*
481 	 * Dont probe at all if the config says we are PCMCIA...
482 	 */
483 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
484 		return (0);
485 #endif
486 
487 	/*
488 	 * See if the sepcified address is possible for FMV-180 series.
489 	 */
490 	for (i = 0; i < 8; i++) {
491 		if (iomap[i] == iobase)
492 			break;
493 	}
494 	if (i == 8)
495 		return (0);
496 
497 	/* Simple probe. */
498 	if (!fe_simple_probe(iobase, probe_table))
499 		return (0);
500 
501 	/* Check if our I/O address matches config info on EEPROM. */
502 	n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
503 	if (iomap[n] != iobase)
504 		return (0);
505 
506 	/* Determine the card type. */
507 	switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
508 	case FE_FMV0_MODEL_FMV181:
509 		sc->type = FE_TYPE_FMV181;
510 		sc->typestr = "FMV-181";
511 		break;
512 	case FE_FMV0_MODEL_FMV182:
513 		sc->type = FE_TYPE_FMV182;
514 		sc->typestr = "FMV-182";
515 		break;
516 	default:
517 	  	/* Unknown card type: maybe a new model, but... */
518 		return (0);
519 	}
520 
521 	/*
522 	 * An FMV-180 has successfully been proved.
523 	 * Determine which IRQ to be used.
524 	 *
525 	 * In this version, we always get an IRQ assignment from the
526 	 * FMV-180's configuration EEPROM, ignoring that specified in
527 	 * config file.
528 	 */
529 	n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
530 	irq = irqmap[n];
531 
532 	if (ia->ia_irq != IRQUNK) {
533 		if (ia->ia_irq != irq) {
534 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
535 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
536 			return (0);
537 		}
538 	} else
539 		ia->ia_irq = irq;
540 
541 	/*
542 	 * Initialize constants in the per-line structure.
543 	 */
544 
545 	/* Get our station address from EEPROM. */
546 	inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
547 
548 	/* Make sure we got a valid station address. */
549 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
550 	  || (sc->sc_enaddr[0] == 0x00
551 	    && sc->sc_enaddr[1] == 0x00
552 	    && sc->sc_enaddr[2] == 0x00))
553 		return (0);
554 
555 	/* Register values which depend on board design. */
556 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
557 	sc->proto_dlcr5 = 0;
558 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
559 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
560 
561 	/*
562 	 * Program the 86960 as follows:
563 	 *	SRAM: 32KB, 100ns, byte-wide access.
564 	 *	Transmission buffer: 4KB x 2.
565 	 *	System bus interface: 16 bits.
566 	 * We cannot change these values but TXBSIZE, because they
567 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
568 	 * the driver performance.
569 	 */
570 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
571 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
572 
573 	/*
574 	 * Minimum initialization of the hardware.
575 	 * We write into registers; hope I/O ports have no
576 	 * overlap with other boards.
577 	 */
578 
579 	/* Initialize ASIC. */
580 	outb(iobase + FE_FMV3, 0);
581 	outb(iobase + FE_FMV10, 0);
582 
583 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
584 	delay(200);
585 
586 	/* Initialize 86960. */
587 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
588 	delay(200);
589 
590 	/* Disable all interrupts. */
591 	outb(iobase + FE_DLCR2, 0);
592 	outb(iobase + FE_DLCR3, 0);
593 
594 	/* Turn the "master interrupt control" flag of ASIC on. */
595 	outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
596 
597 	/*
598 	 * That's all.  FMV-180 occupies 32 I/O addresses, by the way.
599 	 */
600 	ia->ia_iosize = 32;
601 	ia->ia_msize = 0;
602 	return (1);
603 }
604 
605 /*
606  * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
607  */
608 int
609 fe_probe_ati(sc, ia)
610 	struct fe_softc *sc;
611 	struct isa_attach_args *ia;
612 {
613 	int i, n;
614 	int iobase = sc->sc_iobase;
615 	u_char eeprom[FE_EEPROM_SIZE];
616 	u_char save16, save17;
617 	int irq;
618 
619 	static int const iomap[8] =
620 		{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
621 	static int const irqmap[4][4] = {
622 		{  3,  4,  5,  9 },
623 		{ 10, 11, 12, 15 },
624 		{  3, 11,  5, 15 },
625 		{ 10, 11, 14, 15 },
626 	};
627 	static struct fe_simple_probe_struct const probe_table[] = {
628 		{ FE_DLCR2,  0x70, 0x00 },
629 		{ FE_DLCR4,  0x08, 0x00 },
630 		{ FE_DLCR5,  0x80, 0x00 },
631 #if 0
632 		{ FE_BMPR16, 0x1B, 0x00 },
633 		{ FE_BMPR17, 0x7F, 0x00 },
634 #endif
635 		{ 0 }
636 	};
637 
638 #if 0
639 	/*
640 	 * Don't probe at all if the config says we are PCMCIA...
641 	 */
642 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
643 		return (0);
644 #endif
645 
646 #if FE_DEBUG >= 4
647 	log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
648 	fe_dump(LOG_INFO, sc);
649 #endif
650 
651 	/*
652 	 * See if the sepcified address is possible for MB86965A JLI mode.
653 	 */
654 	for (i = 0; i < 8; i++) {
655 		if (iomap[i] == iobase)
656 			break;
657 	}
658 	if (i == 8)
659 		return (0);
660 
661 	/*
662 	 * We should test if MB86965A is on the base address now.
663 	 * Unfortunately, it is very hard to probe it reliably, since
664 	 * we have no way to reset the chip under software control.
665 	 * On cold boot, we could check the "signature" bit patterns
666 	 * described in the Fujitsu document.  On warm boot, however,
667 	 * we can predict almost nothing about register values.
668 	 */
669 	if (!fe_simple_probe(iobase, probe_table))
670 		return (0);
671 
672 	/* Save old values of the registers. */
673 	save16 = inb(iobase + FE_BMPR16);
674 	save17 = inb(iobase + FE_BMPR17);
675 
676 	/* Check if our I/O address matches config info on 86965. */
677 	n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
678 	if (iomap[n] != iobase)
679 		goto fail;
680 
681 	/*
682 	 * We are now almost sure we have an AT1700 at the given
683 	 * address.  So, read EEPROM through 86965.  We have to write
684 	 * into LSI registers to read from EEPROM.  I want to avoid it
685 	 * at this stage, but I cannot test the presense of the chip
686 	 * any further without reading EEPROM.  FIXME.
687 	 */
688 	fe_read_eeprom(sc, eeprom);
689 
690 	/* Make sure the EEPROM is turned off. */
691 	outb(iobase + FE_BMPR16, 0);
692 	outb(iobase + FE_BMPR17, 0);
693 
694 	/* Make sure that config info in EEPROM and 86965 agree. */
695 	if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
696 		goto fail;
697 
698 	/*
699 	 * Determine the card type.
700 	 */
701 	switch (eeprom[FE_ATI_EEP_MODEL]) {
702 	case FE_ATI_MODEL_AT1700T:
703 		sc->type = FE_TYPE_AT1700T;
704 		sc->typestr = "AT-1700T";
705 		break;
706 	case FE_ATI_MODEL_AT1700BT:
707 		sc->type = FE_TYPE_AT1700BT;
708 		sc->typestr = "AT-1700BT";
709 		break;
710 	case FE_ATI_MODEL_AT1700FT:
711 		sc->type = FE_TYPE_AT1700FT;
712 		sc->typestr = "AT-1700FT";
713 		break;
714 	case FE_ATI_MODEL_AT1700AT:
715 		sc->type = FE_TYPE_AT1700AT;
716 		sc->typestr = "AT-1700AT";
717 		break;
718 	default:
719 		sc->type = FE_TYPE_RE2000;
720 		sc->typestr = "unknown (RE-2000?)";
721 		break;
722 	}
723 
724 	/*
725 	 * Try to determine IRQ settings.
726 	 * Different models use different ranges of IRQs.
727 	 */
728 	n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
729 	switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
730 	case 0x30:
731 		irq = irqmap[3][n];
732 		break;
733 	case 0x10:
734 	case 0x50:
735 		irq = irqmap[2][n];
736 		break;
737 	case 0x40:
738 	case 0x60:
739 		if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
740 			irq = irqmap[1][n];
741 			break;
742 		}
743 	default:
744 		irq = irqmap[0][n];
745 		break;
746 	}
747 
748 	if (ia->ia_irq != IRQUNK) {
749 		if (ia->ia_irq != irq) {
750 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
751 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
752 			return (0);
753 		}
754 	} else
755 		ia->ia_irq = irq;
756 
757 	/*
758 	 * Initialize constants in the per-line structure.
759 	 */
760 
761 	/* Get our station address from EEPROM. */
762 	bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
763 
764 	/* Make sure we got a valid station address. */
765 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
766 	  || (sc->sc_enaddr[0] == 0x00
767 	    && sc->sc_enaddr[1] == 0x00
768 	    && sc->sc_enaddr[2] == 0x00))
769 		goto fail;
770 
771 	/* Should find all register prototypes here.  FIXME. */
772 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;  /* FIXME */
773 	sc->proto_dlcr5 = 0;
774 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
775 #if 0	/* XXXX Should we use this? */
776 	sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
777 #else
778 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
779 #endif
780 
781 	/*
782 	 * Program the 86965 as follows:
783 	 *	SRAM: 32KB, 100ns, byte-wide access.
784 	 *	Transmission buffer: 4KB x 2.
785 	 *	System bus interface: 16 bits.
786 	 * We cannot change these values but TXBSIZE, because they
787 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
788 	 * the driver performance.
789 	 */
790 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
791 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
792 
793 #if FE_DEBUG >= 3
794 	log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
795 	fe_dump(LOG_INFO, sc);
796 #endif
797 
798 	/* Initialize 86965. */
799 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
800 	delay(200);
801 
802 	/* Disable all interrupts. */
803 	outb(iobase + FE_DLCR2, 0);
804 	outb(iobase + FE_DLCR3, 0);
805 
806 #if FE_DEBUG >= 3
807 	log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
808 	fe_dump(LOG_INFO, sc);
809 #endif
810 
811 	/*
812 	 * That's all.  AT1700 occupies 32 I/O addresses, by the way.
813 	 */
814 	ia->ia_iosize = 32;
815 	ia->ia_msize = 0;
816 	return (1);
817 
818 fail:
819 	/* Restore register values, in the case we had no 86965. */
820 	outb(iobase + FE_BMPR16, save16);
821 	outb(iobase + FE_BMPR17, save17);
822 	return (0);
823 }
824 
825 /*
826  * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
827  */
828 int
829 fe_probe_mbh(sc, ia)
830 	struct fe_softc *sc;
831 	struct isa_attach_args *ia;
832 {
833 	int iobase = sc->sc_iobase;
834 
835 	static struct fe_simple_probe_struct probe_table[] = {
836 		{ FE_DLCR2, 0x70, 0x00 },
837 		{ FE_DLCR4, 0x08, 0x00 },
838 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Does not work well. */
839 #if 0
840 	/*
841 	 * Test *vendor* part of the address for Fujitsu.
842 	 * The test will gain reliability of probe process, but
843 	 * it rejects clones by other vendors, or OEM product
844 	 * supplied by resalers other than Fujitsu.
845 	 */
846 		{ FE_MBH10, 0xFF, 0x00 },
847 		{ FE_MBH11, 0xFF, 0x00 },
848 		{ FE_MBH12, 0xFF, 0x0E },
849 #else
850 	/*
851 	 * We can always verify the *first* 2 bits (in Ehternet
852 	 * bit order) are "global" and "unicast" even for
853 	 * unknown vendors.
854 	 */
855 		{ FE_MBH10, 0x03, 0x00 },
856 #endif
857         /* Just a gap?  Seems reliable, anyway. */
858 		{ 0x12, 0xFF, 0x00 },
859 		{ 0x13, 0xFF, 0x00 },
860 		{ 0x14, 0xFF, 0x00 },
861 		{ 0x15, 0xFF, 0x00 },
862 		{ 0x16, 0xFF, 0x00 },
863 		{ 0x17, 0xFF, 0x00 },
864 		{ 0x18, 0xFF, 0xFF },
865 		{ 0x19, 0xFF, 0xFF },
866 
867 		{ 0 }
868 	};
869 
870 #if 0
871 	/*
872 	 * We need a PCMCIA flag.
873 	 */
874 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
875 		return (0);
876 #endif
877 
878 	/*
879 	 * We need explicit IRQ and supported address.
880 	 */
881 	if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
882 		return (0);
883 
884 #if FE_DEBUG >= 3
885 	log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
886 	fe_dump(LOG_INFO, sc);
887 #endif
888 
889 	/*
890 	 * See if MBH10302 is on its address.
891 	 * I'm not sure the following probe code works.  FIXME.
892 	 */
893 	if (!fe_simple_probe(iobase, probe_table))
894 		return (0);
895 
896 	/* Determine the card type. */
897 	sc->type = FE_TYPE_MBH10302;
898 	sc->typestr = "MBH10302 (PCMCIA)";
899 
900 	/*
901 	 * Initialize constants in the per-line structure.
902 	 */
903 
904 	/* Get our station address from EEPROM. */
905 	inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
906 
907 	/* Make sure we got a valid station address. */
908 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
909 	  || (sc->sc_enaddr[0] == 0x00
910 	    && sc->sc_enaddr[1] == 0x00
911 	    && sc->sc_enaddr[2] == 0x00))
912 		return (0);
913 
914 	/* Should find all register prototypes here.  FIXME. */
915 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
916 	sc->proto_dlcr5 = 0;
917 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
918 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
919 
920 	/*
921 	 * Program the 86960 as follows:
922 	 *	SRAM: 32KB, 100ns, byte-wide access.
923 	 *	Transmission buffer: 4KB x 2.
924 	 *	System bus interface: 16 bits.
925 	 * We cannot change these values but TXBSIZE, because they
926 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
927 	 * the driver performance.
928 	 */
929 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
930 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
931 
932 	/* Setup hooks.  We need a special initialization procedure. */
933 	sc->init = fe_init_mbh;
934 
935 	/*
936 	 * Minimum initialization.
937 	 */
938 
939 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
940 	delay(200);
941 
942 	/* Minimul initialization of 86960. */
943 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
944 	delay(200);
945 
946 	/* Disable all interrupts. */
947 	outb(iobase + FE_DLCR2, 0);
948 	outb(iobase + FE_DLCR3, 0);
949 
950 #if 1	/* FIXME. */
951 	/* Initialize system bus interface and encoder/decoder operation. */
952 	outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
953 #endif
954 
955 	/*
956 	 * That's all.  MBH10302 occupies 32 I/O addresses, by the way.
957 	 */
958 	ia->ia_iosize = 32;
959 	ia->ia_msize = 0;
960 	return (1);
961 }
962 
963 /* MBH specific initialization routine. */
964 void
965 fe_init_mbh(sc)
966 	struct fe_softc *sc;
967 {
968 
969 	/* Probably required after hot-insertion... */
970 
971 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
972 	delay(200);
973 
974 	/* Minimul initialization of 86960. */
975 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
976 	delay(200);
977 
978 	/* Disable all interrupts. */
979 	outb(sc->sc_iobase + FE_DLCR2, 0);
980 	outb(sc->sc_iobase + FE_DLCR3, 0);
981 
982 	/* Enable master interrupt flag. */
983 	outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
984 }
985 
986 /*
987  * Install interface into kernel networking data structures
988  */
989 void
990 feattach(parent, self, aux)
991 	struct device *parent, *self;
992 	void *aux;
993 {
994 	struct fe_softc *sc = (void *)self;
995 	struct isa_attach_args *ia = aux;
996 	struct cfdata *cf = sc->sc_dev.dv_cfdata;
997 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
998 
999 	/* Stop the 86960. */
1000 	fe_stop(sc);
1001 
1002 	/* Initialize ifnet structure. */
1003 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1004 	ifp->if_softc = sc;
1005 	ifp->if_start = fe_start;
1006 	ifp->if_ioctl = fe_ioctl;
1007 	ifp->if_watchdog = fe_watchdog;
1008 	ifp->if_flags =
1009 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
1010 
1011 	/*
1012 	 * Set maximum size of output queue, if it has not been set.
1013 	 * It is done here as this driver may be started after the
1014 	 * system intialization (i.e., the interface is PCMCIA.)
1015 	 *
1016 	 * I'm not sure this is really necessary, but, even if it is,
1017 	 * it should be done somewhere else, e.g., in if_attach(),
1018 	 * since it must be a common workaround for all network drivers.
1019 	 * FIXME.
1020 	 */
1021 	if (ifp->if_snd.ifq_maxlen == 0) {
1022 		extern int ifqmaxlen;		/* Don't be so shocked... */
1023 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
1024 	}
1025 
1026 #if FE_DEBUG >= 3
1027 	log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1028 	fe_dump(LOG_INFO, sc);
1029 #endif
1030 
1031 #if FE_SINGLE_TRANSMISSION
1032 	/* Override txb config to allocate minimum. */
1033 	sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1034 	sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1035 #endif
1036 
1037 	/* Modify hardware config if it is requested. */
1038 	if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1039 		sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1040 
1041 	/* Find TX buffer size, based on the hardware dependent proto. */
1042 	switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1043 	case FE_D6_TXBSIZ_2x2KB:
1044 		sc->txb_size = 2048;
1045 		break;
1046 	case FE_D6_TXBSIZ_2x4KB:
1047 		sc->txb_size = 4096;
1048 		break;
1049 	case FE_D6_TXBSIZ_2x8KB:
1050 		sc->txb_size = 8192;
1051 		break;
1052 	default:
1053 		/* Oops, we can't work with single buffer configuration. */
1054 #if FE_DEBUG >= 2
1055 		log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1056 		    sc->sc_dev.dv_xname);
1057 #endif
1058 		sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1059 		sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1060 		sc->txb_size = 2048;
1061 		break;
1062 	}
1063 
1064 	/* Attach the interface. */
1065 	if_attach(ifp);
1066 	ether_ifattach(ifp);
1067 
1068 	/* Print additional info when attached. */
1069 	printf(": address %s, type %s\n",
1070 	    ether_sprintf(sc->sc_arpcom.ac_enaddr), sc->typestr);
1071 #if FE_DEBUG >= 3
1072 	{
1073 		int buf, txb, bbw, sbw, ram;
1074 
1075 		buf = txb = bbw = sbw = ram = -1;
1076 		switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1077 		case FE_D6_BUFSIZ_8KB:
1078 			buf = 8;
1079 			break;
1080 		case FE_D6_BUFSIZ_16KB:
1081 			buf = 16;
1082 			break;
1083 		case FE_D6_BUFSIZ_32KB:
1084 			buf = 32;
1085 			break;
1086 		case FE_D6_BUFSIZ_64KB:
1087 			buf = 64;
1088 			break;
1089 		}
1090 		switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1091 		case FE_D6_TXBSIZ_2x2KB:
1092 			txb = 2;
1093 			break;
1094 		case FE_D6_TXBSIZ_2x4KB:
1095 			txb = 4;
1096 			break;
1097 		case FE_D6_TXBSIZ_2x8KB:
1098 			txb = 8;
1099 			break;
1100 		}
1101 		switch (sc->proto_dlcr6 & FE_D6_BBW) {
1102 		case FE_D6_BBW_BYTE:
1103 			bbw = 8;
1104 			break;
1105 		case FE_D6_BBW_WORD:
1106 			bbw = 16;
1107 			break;
1108 		}
1109 		switch (sc->proto_dlcr6 & FE_D6_SBW) {
1110 		case FE_D6_SBW_BYTE:
1111 			sbw = 8;
1112 			break;
1113 		case FE_D6_SBW_WORD:
1114 			sbw = 16;
1115 			break;
1116 		}
1117 		switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1118 		case FE_D6_SRAM_100ns:
1119 			ram = 100;
1120 			break;
1121 		case FE_D6_SRAM_150ns:
1122 			ram = 150;
1123 			break;
1124 		}
1125 		printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1126 		    sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1127 	}
1128 #endif
1129 
1130 #if NBPFILTER > 0
1131 	/* If BPF is in the kernel, call the attach for it. */
1132 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1133 #endif
1134 
1135 	sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
1136 	    IPL_NET, feintr, sc);
1137 }
1138 
1139 /*
1140  * Reset interface.
1141  */
1142 void
1143 fe_reset(sc)
1144 	struct fe_softc *sc;
1145 {
1146 	int s;
1147 
1148 	s = splnet();
1149 	fe_stop(sc);
1150 	fe_init(sc);
1151 	splx(s);
1152 }
1153 
1154 /*
1155  * Stop everything on the interface.
1156  *
1157  * All buffered packets, both transmitting and receiving,
1158  * if any, will be lost by stopping the interface.
1159  */
1160 void
1161 fe_stop(sc)
1162 	struct fe_softc *sc;
1163 {
1164 
1165 #if FE_DEBUG >= 3
1166 	log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1167 	fe_dump(LOG_INFO, sc);
1168 #endif
1169 
1170 	/* Disable interrupts. */
1171 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1172 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1173 
1174 	/* Stop interface hardware. */
1175 	delay(200);
1176 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1177 	delay(200);
1178 
1179 	/* Clear all interrupt status. */
1180 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1181 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1182 
1183 	/* Put the chip in stand-by mode. */
1184 	delay(200);
1185 	outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1186 	delay(200);
1187 
1188 	/* MAR loading can be delayed. */
1189 	sc->filter_change = 0;
1190 
1191 	/* Call a hook. */
1192 	if (sc->stop)
1193 		sc->stop(sc);
1194 
1195 #if DEBUG >= 3
1196 	log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1197 	fe_dump(LOG_INFO, sc);
1198 #endif
1199 }
1200 
1201 /*
1202  * Device timeout/watchdog routine. Entered if the device neglects to
1203  * generate an interrupt after a transmit has been started on it.
1204  */
1205 void
1206 fe_watchdog(ifp)
1207 	struct ifnet *ifp;
1208 {
1209 	struct fe_softc *sc = ifp->if_softc;
1210 
1211 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1212 #if FE_DEBUG >= 3
1213 	fe_dump(LOG_INFO, sc);
1214 #endif
1215 
1216 	/* Record how many packets are lost by this accident. */
1217 	sc->sc_arpcom.ac_if.if_oerrors += sc->txb_sched + sc->txb_count;
1218 
1219 	fe_reset(sc);
1220 }
1221 
1222 /*
1223  * Drop (skip) a packet from receive buffer in 86960 memory.
1224  */
1225 static inline void
1226 fe_droppacket(sc)
1227 	struct fe_softc *sc;
1228 {
1229 
1230 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
1231 }
1232 
1233 /*
1234  * Initialize device.
1235  */
1236 void
1237 fe_init(sc)
1238 	struct fe_softc *sc;
1239 {
1240 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1241 	int i;
1242 
1243 #if FE_DEBUG >= 3
1244 	log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1245 	fe_dump(LOG_INFO, sc);
1246 #endif
1247 
1248 	/* Reset transmitter flags. */
1249 	ifp->if_flags &= ~IFF_OACTIVE;
1250 	ifp->if_timer = 0;
1251 
1252 	sc->txb_free = sc->txb_size;
1253 	sc->txb_count = 0;
1254 	sc->txb_sched = 0;
1255 
1256 	/* Call a hook. */
1257 	if (sc->init)
1258 		sc->init(sc);
1259 
1260 #if FE_DEBUG >= 3
1261 	log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1262 	fe_dump(LOG_INFO, sc);
1263 #endif
1264 
1265 	/*
1266 	 * Make sure to disable the chip, also.
1267 	 * This may also help re-programming the chip after
1268 	 * hot insertion of PCMCIAs.
1269 	 */
1270 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1271 
1272 	/* Power up the chip and select register bank for DLCRs. */
1273 	delay(200);
1274 	outb(sc->sc_iobase + FE_DLCR7,
1275 	    sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1276 	delay(200);
1277 
1278 	/* Feed the station address. */
1279 	outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1280 
1281 	/* Select the BMPR bank for runtime register access. */
1282 	outb(sc->sc_iobase + FE_DLCR7,
1283 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1284 
1285 	/* Initialize registers. */
1286 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1287 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1288 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1289 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1290 	outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1291 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1292 	outb(sc->sc_iobase + FE_BMPR10, 0x00);
1293 	outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1294 	outb(sc->sc_iobase + FE_BMPR12, 0x00);
1295 	outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1296 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
1297 	outb(sc->sc_iobase + FE_BMPR15, 0x00);
1298 
1299 #if FE_DEBUG >= 3
1300 	log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1301 	fe_dump(LOG_INFO, sc);
1302 #endif
1303 
1304 	/* Enable interrupts. */
1305 	outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1306 	outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1307 
1308 	/* Enable transmitter and receiver. */
1309 	delay(200);
1310 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1311 	delay(200);
1312 
1313 #if FE_DEBUG >= 3
1314 	log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1315 	fe_dump(LOG_INFO, sc);
1316 #endif
1317 
1318 	/*
1319 	 * Make sure to empty the receive buffer.
1320 	 *
1321 	 * This may be redundant, but *if* the receive buffer were full
1322 	 * at this point, the driver would hang.  I have experienced
1323 	 * some strange hangups just after UP.  I hope the following
1324 	 * code solve the problem.
1325 	 *
1326 	 * I have changed the order of hardware initialization.
1327 	 * I think the receive buffer cannot have any packets at this
1328 	 * point in this version.  The following code *must* be
1329 	 * redundant now.  FIXME.
1330 	 */
1331 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1332 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1333 			break;
1334 		fe_droppacket(sc);
1335 	}
1336 #if FE_DEBUG >= 1
1337 	if (i >= FE_MAX_RECV_COUNT) {
1338 		log(LOG_ERR, "%s: cannot empty receive buffer\n",
1339 		    sc->sc_dev.dv_xname);
1340 	}
1341 #endif
1342 #if FE_DEBUG >= 3
1343 	if (i < FE_MAX_RECV_COUNT) {
1344 		log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1345 		    sc->sc_dev.dv_xname, i);
1346 	}
1347 #endif
1348 
1349 #if FE_DEBUG >= 3
1350 	log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1351 	fe_dump(LOG_INFO, sc);
1352 #endif
1353 
1354 	/* Do we need this here? */
1355 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1356 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1357 
1358 #if FE_DEBUG >= 3
1359 	log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1360 	fe_dump(LOG_INFO, sc);
1361 #endif
1362 
1363 	/* Set 'running' flag. */
1364 	ifp->if_flags |= IFF_RUNNING;
1365 
1366 	/*
1367 	 * At this point, the interface is runnung properly,
1368 	 * except that it receives *no* packets.  we then call
1369 	 * fe_setmode() to tell the chip what packets to be
1370 	 * received, based on the if_flags and multicast group
1371 	 * list.  It completes the initialization process.
1372 	 */
1373 	fe_setmode(sc);
1374 
1375 #if FE_DEBUG >= 3
1376 	log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1377 	fe_dump(LOG_INFO, sc);
1378 #endif
1379 
1380 	/* ...and attempt to start output. */
1381 	fe_start(ifp);
1382 
1383 #if FE_DEBUG >= 3
1384 	log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1385 	fe_dump(LOG_INFO, sc);
1386 #endif
1387 }
1388 
1389 /*
1390  * This routine actually starts the transmission on the interface
1391  */
1392 static inline void
1393 fe_xmit(sc)
1394 	struct fe_softc *sc;
1395 {
1396 
1397 	/*
1398 	 * Set a timer just in case we never hear from the board again.
1399 	 * We use longer timeout for multiple packet transmission.
1400 	 * I'm not sure this timer value is appropriate.  FIXME.
1401 	 */
1402 	sc->sc_arpcom.ac_if.if_timer = 1 + sc->txb_count;
1403 
1404 	/* Update txb variables. */
1405 	sc->txb_sched = sc->txb_count;
1406 	sc->txb_count = 0;
1407 	sc->txb_free = sc->txb_size;
1408 
1409 #if FE_DELAYED_PADDING
1410 	/* Omit the postponed padding process. */
1411 	sc->txb_padding = 0;
1412 #endif
1413 
1414 	/* Start transmitter, passing packets in TX buffer. */
1415 	outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1416 }
1417 
1418 /*
1419  * Start output on interface.
1420  * We make two assumptions here:
1421  *  1) that the current priority is set to splnet _before_ this code
1422  *     is called *and* is returned to the appropriate priority after
1423  *     return
1424  *  2) that the IFF_OACTIVE flag is checked before this code is called
1425  *     (i.e. that the output part of the interface is idle)
1426  */
1427 void
1428 fe_start(ifp)
1429 	struct ifnet *ifp;
1430 {
1431 	struct fe_softc *sc = ifp->if_softc;
1432 	struct mbuf *m;
1433 
1434 #if FE_DEBUG >= 1
1435 	/* Just a sanity check. */
1436 	if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1437 		/*
1438 		 * Txb_count and txb_free co-works to manage the
1439 		 * transmission buffer.  Txb_count keeps track of the
1440 		 * used potion of the buffer, while txb_free does unused
1441 		 * potion.  So, as long as the driver runs properly,
1442 		 * txb_count is zero if and only if txb_free is same
1443 		 * as txb_size (which represents whole buffer.)
1444 		 */
1445 		log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1446 		    sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1447 		/*
1448 		 * So, what should I do, then?
1449 		 *
1450 		 * We now know txb_count and txb_free contradicts.  We
1451 		 * cannot, however, tell which is wrong.  More
1452 		 * over, we cannot peek 86960 transmission buffer or
1453 		 * reset the transmission buffer.  (In fact, we can
1454 		 * reset the entire interface.  I don't want to do it.)
1455 		 *
1456 		 * If txb_count is incorrect, leaving it as is will cause
1457 		 * sending of gabages after next interrupt.  We have to
1458 		 * avoid it.  Hence, we reset the txb_count here.  If
1459 		 * txb_free was incorrect, resetting txb_count just loose
1460 		 * some packets.  We can live with it.
1461 		 */
1462 		sc->txb_count = 0;
1463 	}
1464 #endif
1465 
1466 #if FE_DEBUG >= 1
1467 	/*
1468 	 * First, see if there are buffered packets and an idle
1469 	 * transmitter - should never happen at this point.
1470 	 */
1471 	if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1472 		log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1473 		    sc->sc_dev.dv_xname, sc->txb_count);
1474 		fe_xmit(sc);
1475 	}
1476 #endif
1477 
1478 	/*
1479 	 * Stop accepting more transmission packets temporarily, when
1480 	 * a filter change request is delayed.  Updating the MARs on
1481 	 * 86960 flushes the transmisstion buffer, so it is delayed
1482 	 * until all buffered transmission packets have been sent
1483 	 * out.
1484 	 */
1485 	if (sc->filter_change) {
1486 		/*
1487 		 * Filter change requst is delayed only when the DLC is
1488 		 * working.  DLC soon raise an interrupt after finishing
1489 		 * the work.
1490 		 */
1491 		goto indicate_active;
1492 	}
1493 
1494 	for (;;) {
1495 		/*
1496 		 * See if there is room to put another packet in the buffer.
1497 		 * We *could* do better job by peeking the send queue to
1498 		 * know the length of the next packet.  Current version just
1499 		 * tests against the worst case (i.e., longest packet).  FIXME.
1500 		 *
1501 		 * When adding the packet-peek feature, don't forget adding a
1502 		 * test on txb_count against QUEUEING_MAX.
1503 		 * There is a little chance the packet count exceeds
1504 		 * the limit.  Assume transmission buffer is 8KB (2x8KB
1505 		 * configuration) and an application sends a bunch of small
1506 		 * (i.e., minimum packet sized) packets rapidly.  An 8KB
1507 		 * buffer can hold 130 blocks of 62 bytes long...
1508 		 */
1509 		if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1510 			/* No room. */
1511 			goto indicate_active;
1512 		}
1513 
1514 #if FE_SINGLE_TRANSMISSION
1515 		if (sc->txb_count > 0) {
1516 			/* Just one packet per a transmission buffer. */
1517 			goto indicate_active;
1518 		}
1519 #endif
1520 
1521 		/*
1522 		 * Get the next mbuf chain for a packet to send.
1523 		 */
1524 		IF_DEQUEUE(&ifp->if_snd, m);
1525 		if (m == 0) {
1526 			/* No more packets to send. */
1527 			goto indicate_inactive;
1528 		}
1529 
1530 #if NBPFILTER > 0
1531 		/* Tap off here if there is a BPF listener. */
1532 		if (ifp->if_bpf)
1533 			bpf_mtap(ifp->if_bpf, m);
1534 #endif
1535 
1536 		/*
1537 		 * Copy the mbuf chain into the transmission buffer.
1538 		 * txb_* variables are updated as necessary.
1539 		 */
1540 		fe_write_mbufs(sc, m);
1541 
1542 		m_freem(m);
1543 
1544 		/* Start transmitter if it's idle. */
1545 		if (sc->txb_sched == 0)
1546 			fe_xmit(sc);
1547 	}
1548 
1549 indicate_inactive:
1550 	/*
1551 	 * We are using the !OACTIVE flag to indicate to
1552 	 * the outside world that we can accept an
1553 	 * additional packet rather than that the
1554 	 * transmitter is _actually_ active.  Indeed, the
1555 	 * transmitter may be active, but if we haven't
1556 	 * filled all the buffers with data then we still
1557 	 * want to accept more.
1558 	 */
1559 	ifp->if_flags &= ~IFF_OACTIVE;
1560 	return;
1561 
1562 indicate_active:
1563 	/*
1564 	 * The transmitter is active, and there are no room for
1565 	 * more outgoing packets in the transmission buffer.
1566 	 */
1567 	ifp->if_flags |= IFF_OACTIVE;
1568 	return;
1569 }
1570 
1571 /*
1572  * Transmission interrupt handler
1573  * The control flow of this function looks silly.  FIXME.
1574  */
1575 void
1576 fe_tint(sc, tstat)
1577 	struct fe_softc *sc;
1578 	u_char tstat;
1579 {
1580 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1581 	int left;
1582 	int col;
1583 
1584 	/*
1585 	 * Handle "excessive collision" interrupt.
1586 	 */
1587 	if (tstat & FE_D0_COLL16) {
1588 		/*
1589 		 * Find how many packets (including this collided one)
1590 		 * are left unsent in transmission buffer.
1591 		 */
1592 		left = inb(sc->sc_iobase + FE_BMPR10);
1593 
1594 #if FE_DEBUG >= 2
1595 		log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1596 		    sc->sc_dev.dv_xname, left, sc->txb_sched);
1597 #endif
1598 #if FE_DEBUG >= 3
1599 		fe_dump(LOG_INFO, sc);
1600 #endif
1601 
1602 		/*
1603 		 * Update statistics.
1604 		 */
1605 		ifp->if_collisions += 16;
1606 		ifp->if_oerrors++;
1607 		ifp->if_opackets += sc->txb_sched - left;
1608 
1609 		/*
1610 		 * Collision statistics has been updated.
1611 		 * Clear the collision flag on 86960 now to avoid confusion.
1612 		 */
1613 		outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1614 
1615 		/*
1616 		 * Restart transmitter, skipping the
1617 		 * collided packet.
1618 		 *
1619 		 * We *must* skip the packet to keep network running
1620 		 * properly.  Excessive collision error is an
1621 		 * indication of the network overload.  If we
1622 		 * tried sending the same packet after excessive
1623 		 * collision, the network would be filled with
1624 		 * out-of-time packets.  Packets belonging
1625 		 * to reliable transport (such as TCP) are resent
1626 		 * by some upper layer.
1627 		 */
1628 		outb(sc->sc_iobase + FE_BMPR11,
1629 		    FE_B11_CTRL_SKIP | FE_B11_MODE1);
1630 		sc->txb_sched = left - 1;
1631 	}
1632 
1633 	/*
1634 	 * Handle "transmission complete" interrupt.
1635 	 */
1636 	if (tstat & FE_D0_TXDONE) {
1637 		/*
1638 		 * Add in total number of collisions on last
1639 		 * transmission.  We also clear "collision occurred" flag
1640 		 * here.
1641 		 *
1642 		 * 86960 has a design flow on collision count on multiple
1643 		 * packet transmission.  When we send two or more packets
1644 		 * with one start command (that's what we do when the
1645 		 * transmission queue is clauded), 86960 informs us number
1646 		 * of collisions occured on the last packet on the
1647 		 * transmission only.  Number of collisions on previous
1648 		 * packets are lost.  I have told that the fact is clearly
1649 		 * stated in the Fujitsu document.
1650 		 *
1651 		 * I considered not to mind it seriously.  Collision
1652 		 * count is not so important, anyway.  Any comments?  FIXME.
1653 		 */
1654 
1655 		if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1656 			/* Clear collision flag. */
1657 			outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1658 
1659 			/* Extract collision count from 86960. */
1660 			col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1661 			if (col == 0) {
1662 				/*
1663 				 * Status register indicates collisions,
1664 				 * while the collision count is zero.
1665 				 * This can happen after multiple packet
1666 				 * transmission, indicating that one or more
1667 				 * previous packet(s) had been collided.
1668 				 *
1669 				 * Since the accurate number of collisions
1670 				 * has been lost, we just guess it as 1;
1671 				 * Am I too optimistic?  FIXME.
1672 				 */
1673 				col = 1;
1674 			} else
1675 				col >>= FE_D4_COL_SHIFT;
1676 			ifp->if_collisions += col;
1677 #if FE_DEBUG >= 4
1678 			log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1679 			    sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1680 			    sc->txb_sched);
1681 #endif
1682 		}
1683 
1684 		/*
1685 		 * Update total number of successfully
1686 		 * transmitted packets.
1687 		 */
1688 		ifp->if_opackets += sc->txb_sched;
1689 		sc->txb_sched = 0;
1690 	}
1691 
1692 	if (sc->txb_sched == 0) {
1693 		/*
1694 		 * The transmitter is no more active.
1695 		 * Reset output active flag and watchdog timer.
1696 		 */
1697 		ifp->if_flags &= ~IFF_OACTIVE;
1698 		ifp->if_timer = 0;
1699 
1700 		/*
1701 		 * If more data is ready to transmit in the buffer, start
1702 		 * transmitting them.  Otherwise keep transmitter idle,
1703 		 * even if more data is queued.  This gives receive
1704 		 * process a slight priority.
1705 		 */
1706 		if (sc->txb_count > 0)
1707 			fe_xmit(sc);
1708 	}
1709 }
1710 
1711 /*
1712  * Ethernet interface receiver interrupt.
1713  */
1714 void
1715 fe_rint(sc, rstat)
1716 	struct fe_softc *sc;
1717 	u_char rstat;
1718 {
1719 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1720 	int len;
1721 	u_char status;
1722 	int i;
1723 
1724 	/*
1725 	 * Update statistics if this interrupt is caused by an error.
1726 	 */
1727 	if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1728 		     FE_D1_ALGERR | FE_D1_SRTPKT)) {
1729 #if FE_DEBUG >= 3
1730 		log(LOG_WARNING, "%s: receive error: %b\n",
1731 		    sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1732 #endif
1733 		ifp->if_ierrors++;
1734 	}
1735 
1736 	/*
1737 	 * MB86960 has a flag indicating "receive queue empty."
1738 	 * We just loop cheking the flag to pull out all received
1739 	 * packets.
1740 	 *
1741 	 * We limit the number of iterrations to avoid infinite loop.
1742 	 * It can be caused by a very slow CPU (some broken
1743 	 * peripheral may insert incredible number of wait cycles)
1744 	 * or, worse, by a broken MB86960 chip.
1745 	 */
1746 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1747 		/* Stop the iterration if 86960 indicates no packets. */
1748 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1749 			break;
1750 
1751 		/*
1752 		 * Extract A receive status byte.
1753 		 * As our 86960 is in 16 bit bus access mode, we have to
1754 		 * use inw() to get the status byte.  The significant
1755 		 * value is returned in lower 8 bits.
1756 		 */
1757 		status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1758 #if FE_DEBUG >= 4
1759 		log(LOG_INFO, "%s: receive status = %02x\n",
1760 		    sc->sc_dev.dv_xname, status);
1761 #endif
1762 
1763 		/*
1764 		 * If there was an error, update statistics and drop
1765 		 * the packet, unless the interface is in promiscuous
1766 		 * mode.
1767 		 */
1768 		if ((status & 0xF0) != 0x20) {	/* XXXX ? */
1769 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
1770 				ifp->if_ierrors++;
1771 				fe_droppacket(sc);
1772 				continue;
1773 			}
1774 		}
1775 
1776 		/*
1777 		 * Extract the packet length.
1778 		 * It is a sum of a header (14 bytes) and a payload.
1779 		 * CRC has been stripped off by the 86960.
1780 		 */
1781 		len = inw(sc->sc_iobase + FE_BMPR8);
1782 
1783 		/*
1784 		 * MB86965 checks the packet length and drop big packet
1785 		 * before passing it to us.  There are no chance we can
1786 		 * get [crufty] packets.  Hence, if the length exceeds
1787 		 * the specified limit, it means some serious failure,
1788 		 * such as out-of-sync on receive buffer management.
1789 		 *
1790 		 * Is this statement true?  FIXME.
1791 		 */
1792 		if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1793 #if FE_DEBUG >= 2
1794 			log(LOG_WARNING,
1795 			    "%s: received a %s packet? (%u bytes)\n",
1796 			    sc->sc_dev.dv_xname,
1797 			    len < ETHER_HDR_SIZE ? "partial" : "big", len);
1798 #endif
1799 			ifp->if_ierrors++;
1800 			fe_droppacket(sc);
1801 			continue;
1802 		}
1803 
1804 		/*
1805 		 * Check for a short (RUNT) packet.  We *do* check
1806 		 * but do nothing other than print a message.
1807 		 * Short packets are illegal, but does nothing bad
1808 		 * if it carries data for upper layer.
1809 		 */
1810 #if FE_DEBUG >= 2
1811 		if (len < ETHER_MIN_LEN) {
1812 			log(LOG_WARNING,
1813 			     "%s: received a short packet? (%u bytes)\n",
1814 			     sc->sc_dev.dv_xname, len);
1815 		}
1816 #endif
1817 
1818 		/*
1819 		 * Go get a packet.
1820 		 */
1821 		if (!fe_get_packet(sc, len)) {
1822 			/* Skip a packet, updating statistics. */
1823 #if FE_DEBUG >= 2
1824 			log(LOG_WARNING,
1825 			    "%s: out of mbufs; dropping packet (%u bytes)\n",
1826 			    sc->sc_dev.dv_xname, len);
1827 #endif
1828 			ifp->if_ierrors++;
1829 			fe_droppacket(sc);
1830 
1831 			/*
1832 			 * We stop receiving packets, even if there are
1833 			 * more in the buffer.  We hope we can get more
1834 			 * mbufs next time.
1835 			 */
1836 			return;
1837 		}
1838 
1839 		/* Successfully received a packet.  Update stat. */
1840 		ifp->if_ipackets++;
1841 	}
1842 }
1843 
1844 /*
1845  * Ethernet interface interrupt processor
1846  */
1847 int
1848 feintr(arg)
1849 	void *arg;
1850 {
1851 	struct fe_softc *sc = arg;
1852 	u_char tstat, rstat;
1853 
1854 #if FE_DEBUG >= 4
1855 	log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1856 	fe_dump(LOG_INFO, sc);
1857 #endif
1858 
1859 	/*
1860 	 * Get interrupt conditions, masking unneeded flags.
1861 	 */
1862 	tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1863 	rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1864 	if (tstat == 0 && rstat == 0)
1865 		return (0);
1866 
1867 	/*
1868 	 * Loop until there are no more new interrupt conditions.
1869 	 */
1870 	for (;;) {
1871 		/*
1872 		 * Reset the conditions we are acknowledging.
1873 		 */
1874 		outb(sc->sc_iobase + FE_DLCR0, tstat);
1875 		outb(sc->sc_iobase + FE_DLCR1, rstat);
1876 
1877 		/*
1878 		 * Handle transmitter interrupts. Handle these first because
1879 		 * the receiver will reset the board under some conditions.
1880 		 */
1881 		if (tstat != 0)
1882 			fe_tint(sc, tstat);
1883 
1884 		/*
1885 		 * Handle receiver interrupts.
1886 		 */
1887 		if (rstat != 0)
1888 			fe_rint(sc, rstat);
1889 
1890 		/*
1891 		 * Update the multicast address filter if it is
1892 		 * needed and possible.  We do it now, because
1893 		 * we can make sure the transmission buffer is empty,
1894 		 * and there is a good chance that the receive queue
1895 		 * is empty.  It will minimize the possibility of
1896 		 * packet lossage.
1897 		 */
1898 		if (sc->filter_change &&
1899 		    sc->txb_count == 0 && sc->txb_sched == 0) {
1900 			fe_loadmar(sc);
1901 			sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
1902 		}
1903 
1904 		/*
1905 		 * If it looks like the transmitter can take more data,
1906 		 * attempt to start output on the interface. This is done
1907 		 * after handling the receiver interrupt to give the
1908 		 * receive operation priority.
1909 		 */
1910 		if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
1911 			fe_start(&sc->sc_arpcom.ac_if);
1912 
1913 		/*
1914 		 * Get interrupt conditions, masking unneeded flags.
1915 		 */
1916 		tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1917 		rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1918 		if (tstat == 0 && rstat == 0)
1919 			return (1);
1920 	}
1921 }
1922 
1923 /*
1924  * Process an ioctl request.  This code needs some work - it looks pretty ugly.
1925  */
1926 int
1927 fe_ioctl(ifp, command, data)
1928 	register struct ifnet *ifp;
1929 	u_long command;
1930 	caddr_t data;
1931 {
1932 	struct fe_softc *sc = ifp->if_softc;
1933 	register struct ifaddr *ifa = (struct ifaddr *)data;
1934 	struct ifreq *ifr = (struct ifreq *)data;
1935 	int s, error = 0;
1936 
1937 #if FE_DEBUG >= 3
1938 	log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1939 #endif
1940 
1941 	s = splnet();
1942 
1943 	switch (command) {
1944 
1945 	case SIOCSIFADDR:
1946 		ifp->if_flags |= IFF_UP;
1947 
1948 		switch (ifa->ifa_addr->sa_family) {
1949 #ifdef INET
1950 		case AF_INET:
1951 			fe_init(sc);
1952 			arp_ifinit(&sc->sc_arpcom, ifa);
1953 			break;
1954 #endif
1955 #ifdef NS
1956 		case AF_NS:
1957 		    {
1958 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1959 
1960 			if (ns_nullhost(*ina))
1961 				ina->x_host =
1962 				    *(union ns_host *)(sc->sc_arpcom.ac_enaddr);
1963 			else
1964 				bcopy(ina->x_host.c_host,
1965 				    sc->sc_arpcom.ac_enaddr,
1966 				    sizeof(sc->sc_arpcom.ac_enaddr));
1967 			/* Set new address. */
1968 			fe_init(sc);
1969 			break;
1970 		    }
1971 #endif
1972 		default:
1973 			fe_init(sc);
1974 			break;
1975 		}
1976 		break;
1977 
1978 	case SIOCSIFFLAGS:
1979 		if ((ifp->if_flags & IFF_UP) == 0 &&
1980 		    (ifp->if_flags & IFF_RUNNING) != 0) {
1981 			/*
1982 			 * If interface is marked down and it is running, then
1983 			 * stop it.
1984 			 */
1985 			fe_stop(sc);
1986 			ifp->if_flags &= ~IFF_RUNNING;
1987 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
1988 			   (ifp->if_flags & IFF_RUNNING) == 0) {
1989 			/*
1990 			 * If interface is marked up and it is stopped, then
1991 			 * start it.
1992 			 */
1993 			fe_init(sc);
1994 		} else {
1995 			/*
1996 			 * Reset the interface to pick up changes in any other
1997 			 * flags that affect hardware registers.
1998 			 */
1999 			fe_setmode(sc);
2000 		}
2001 #if DEBUG >= 1
2002 		/* "ifconfig fe0 debug" to print register dump. */
2003 		if (ifp->if_flags & IFF_DEBUG) {
2004 			log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
2005 			fe_dump(LOG_DEBUG, sc);
2006 		}
2007 #endif
2008 		break;
2009 
2010 	case SIOCADDMULTI:
2011 	case SIOCDELMULTI:
2012 		/* Update our multicast list. */
2013 		error = (command == SIOCADDMULTI) ?
2014 		    ether_addmulti(ifr, &sc->sc_arpcom) :
2015 		    ether_delmulti(ifr, &sc->sc_arpcom);
2016 
2017 		if (error == ENETRESET) {
2018 			/*
2019 			 * Multicast list has changed; set the hardware filter
2020 			 * accordingly.
2021 			 */
2022 			fe_setmode(sc);
2023 			error = 0;
2024 		}
2025 		break;
2026 
2027 	default:
2028 		error = EINVAL;
2029 	}
2030 
2031 	splx(s);
2032 	return (error);
2033 }
2034 
2035 /*
2036  * Retreive packet from receive buffer and send to the next level up via
2037  * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2038  * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2039  */
2040 int
2041 fe_get_packet(sc, len)
2042 	struct fe_softc *sc;
2043 	int len;
2044 {
2045 	struct ether_header *eh;
2046 	struct mbuf *m;
2047 	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2048 
2049 	/* Allocate a header mbuf. */
2050 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2051 	if (m == 0)
2052 		return (0);
2053 	m->m_pkthdr.rcvif = ifp;
2054 	m->m_pkthdr.len = len;
2055 
2056 	/* The following silliness is to make NFS happy. */
2057 #define	EROUND	((sizeof(struct ether_header) + 3) & ~3)
2058 #define	EOFF	(EROUND - sizeof(struct ether_header))
2059 
2060 	/*
2061 	 * Our strategy has one more problem.  There is a policy on
2062 	 * mbuf cluster allocation.  It says that we must have at
2063 	 * least MINCLSIZE (208 bytes) to allocate a cluster.  For a
2064 	 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
2065 	 * our code violates the rule...
2066 	 * On the other hand, the current code is short, simle,
2067 	 * and fast, however.  It does no harmful thing, just waists
2068 	 * some memory.  Any comments?  FIXME.
2069 	 */
2070 
2071 	/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2072 	if (len > MHLEN - EOFF) {
2073 		MCLGET(m, M_DONTWAIT);
2074 		if ((m->m_flags & M_EXT) == 0) {
2075 			m_freem(m);
2076 			return (0);
2077 		}
2078 	}
2079 
2080 	/*
2081 	 * The following assumes there is room for the ether header in the
2082 	 * header mbuf.
2083 	 */
2084 	m->m_data += EOFF;
2085 	eh = mtod(m, struct ether_header *);
2086 
2087 	/* Set the length of this packet. */
2088 	m->m_len = len;
2089 
2090 	/* Get a packet. */
2091 	insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2092 
2093 #if NBPFILTER > 0
2094 	/*
2095 	 * Check if there's a BPF listener on this interface.  If so, hand off
2096 	 * the raw packet to bpf.
2097 	 */
2098 	if (ifp->if_bpf) {
2099 		bpf_mtap(ifp->if_bpf, m);
2100 
2101 		/*
2102 		 * Note that the interface cannot be in promiscuous mode if
2103 		 * there are no BPF listeners.  And if we are in promiscuous
2104 		 * mode, we have to check if this packet is really ours.
2105 		 */
2106 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2107 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2108 	  	    bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
2109 			    sizeof(eh->ether_dhost)) != 0) {
2110 			m_freem(m);
2111 			return (1);
2112 		}
2113 	}
2114 #endif
2115 
2116 	/* Fix up data start offset in mbuf to point past ether header. */
2117 	m_adj(m, sizeof(struct ether_header));
2118 	ether_input(ifp, eh, m);
2119 	return (1);
2120 }
2121 
2122 /*
2123  * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2124  * Returns number of bytes actually written, including length word.
2125  *
2126  * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2127  * Packets shorter than Ethernet minimum are legal, and we pad them
2128  * before sending out.  An exception is "partial" packets which are
2129  * shorter than mandatory Ethernet header.
2130  *
2131  * I wrote a code for an experimental "delayed padding" technique.
2132  * When employed, it postpones the padding process for short packets.
2133  * If xmit() occured at the moment, the padding process is omitted, and
2134  * garbages are sent as pad data.  If next packet is stored in the
2135  * transmission buffer before xmit(), write_mbuf() pads the previous
2136  * packet before transmitting new packet.  This *may* gain the
2137  * system performance (slightly).
2138  */
2139 void
2140 fe_write_mbufs(sc, m)
2141 	struct fe_softc *sc;
2142 	struct mbuf *m;
2143 {
2144 	int bmpr8 = sc->sc_iobase + FE_BMPR8;
2145 	u_char *data;
2146 	u_short savebyte;	/* WARNING: Architecture dependent! */
2147 	int totlen, len, wantbyte;
2148 
2149 	/* XXX thorpej 960116 - quiet bogus compiler warning. */
2150 	savebyte = 0;
2151 
2152 #if FE_DELAYED_PADDING
2153 	/* Do the "delayed padding." */
2154 	len = sc->txb_padding >> 1;
2155 	if (len > 0) {
2156 		while (--len >= 0)
2157 			outw(bmpr8, 0);
2158 		sc->txb_padding = 0;
2159 	}
2160 #endif
2161 
2162 	/* We need to use m->m_pkthdr.len, so require the header */
2163 	if ((m->m_flags & M_PKTHDR) == 0)
2164 	  	panic("fe_write_mbufs: no header mbuf");
2165 
2166 #if FE_DEBUG >= 2
2167 	/* First, count up the total number of bytes to copy. */
2168 	for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2169 		totlen += mp->m_len;
2170 	/* Check if this matches the one in the packet header. */
2171 	if (totlen != m->m_pkthdr.len)
2172 		log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2173 		    sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2174 #else
2175 	/* Just use the length value in the packet header. */
2176 	totlen = m->m_pkthdr.len;
2177 #endif
2178 
2179 #if FE_DEBUG >= 1
2180 	/*
2181 	 * Should never send big packets.  If such a packet is passed,
2182 	 * it should be a bug of upper layer.  We just ignore it.
2183 	 * ... Partial (too short) packets, neither.
2184 	 */
2185 	if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2186 		log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2187 		    sc->sc_dev.dv_xname,
2188 		    totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2189 		sc->sc_arpcom.ac_if.if_oerrors++;
2190 		return;
2191 	}
2192 #endif
2193 
2194 	/*
2195 	 * Put the length word for this frame.
2196 	 * Does 86960 accept odd length?  -- Yes.
2197 	 * Do we need to pad the length to minimum size by ourselves?
2198 	 * -- Generally yes.  But for (or will be) the last
2199 	 * packet in the transmission buffer, we can skip the
2200 	 * padding process.  It may gain performance slightly.  FIXME.
2201 	 */
2202 	outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2203 
2204 	/*
2205 	 * Update buffer status now.
2206 	 * Truncate the length up to an even number, since we use outw().
2207 	 */
2208 	totlen = (totlen + 1) & ~1;
2209 	sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2210 	sc->txb_count++;
2211 
2212 #if FE_DELAYED_PADDING
2213 	/* Postpone the packet padding if necessary. */
2214 	if (totlen < ETHER_MIN_LEN)
2215 		sc->txb_padding = ETHER_MIN_LEN - totlen;
2216 #endif
2217 
2218 	/*
2219 	 * Transfer the data from mbuf chain to the transmission buffer.
2220 	 * MB86960 seems to require that data be transferred as words, and
2221 	 * only words.  So that we require some extra code to patch
2222 	 * over odd-length mbufs.
2223 	 */
2224 	wantbyte = 0;
2225 	for (; m != 0; m = m->m_next) {
2226 		/* Ignore empty mbuf. */
2227 		len = m->m_len;
2228 		if (len == 0)
2229 			continue;
2230 
2231 		/* Find the actual data to send. */
2232 		data = mtod(m, caddr_t);
2233 
2234 		/* Finish the last byte. */
2235 		if (wantbyte) {
2236 			outw(bmpr8, savebyte | (*data << 8));
2237 			data++;
2238 			len--;
2239 			wantbyte = 0;
2240 		}
2241 
2242 		/* Output contiguous words. */
2243 		if (len > 1)
2244 			outsw(bmpr8, data, len >> 1);
2245 
2246 		/* Save remaining byte, if there is one. */
2247 		if (len & 1) {
2248 			data += len & ~1;
2249 			savebyte = *data;
2250 			wantbyte = 1;
2251 		}
2252 	}
2253 
2254 	/* Spit the last byte, if the length is odd. */
2255 	if (wantbyte)
2256 		outw(bmpr8, savebyte);
2257 
2258 #if ! FE_DELAYED_PADDING
2259 	/*
2260 	 * Pad the packet to the minimum length if necessary.
2261 	 */
2262 	len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2263 	while (--len >= 0)
2264 		outw(bmpr8, 0);
2265 #endif
2266 }
2267 
2268 /*
2269  * Compute the multicast address filter from the
2270  * list of multicast addresses we need to listen to.
2271  */
2272 void
2273 fe_getmcaf(ac, af)
2274 	struct arpcom *ac;
2275 	u_char *af;
2276 {
2277 	struct ifnet *ifp = &ac->ac_if;
2278 	struct ether_multi *enm;
2279 	register u_char *cp, c;
2280 	register u_long crc;
2281 	register int i, len;
2282 	struct ether_multistep step;
2283 
2284 	/*
2285 	 * Set up multicast address filter by passing all multicast addresses
2286 	 * through a crc generator, and then using the high order 6 bits as an
2287 	 * index into the 64 bit logical address filter.  The high order bit
2288 	 * selects the word, while the rest of the bits select the bit within
2289 	 * the word.
2290 	 */
2291 
2292 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2293 		goto allmulti;
2294 
2295 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2296 	ETHER_FIRST_MULTI(step, ac, enm);
2297 	while (enm != NULL) {
2298 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2299 		    sizeof(enm->enm_addrlo)) != 0) {
2300 			/*
2301 			 * We must listen to a range of multicast addresses.
2302 			 * For now, just accept all multicasts, rather than
2303 			 * trying to set only those filter bits needed to match
2304 			 * the range.  (At this time, the only use of address
2305 			 * ranges is for IP multicast routing, for which the
2306 			 * range is big enough to require all bits set.)
2307 			 */
2308 			goto allmulti;
2309 		}
2310 
2311 		cp = enm->enm_addrlo;
2312 		crc = 0xffffffff;
2313 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2314 			c = *cp++;
2315 			for (i = 8; --i >= 0;) {
2316 				if ((crc & 0x01) ^ (c & 0x01)) {
2317 					crc >>= 1;
2318 					crc ^= 0xedb88320;
2319 				} else
2320 					crc >>= 1;
2321 				c >>= 1;
2322 			}
2323 		}
2324 		/* Just want the 6 most significant bits. */
2325 		crc >>= 26;
2326 
2327 		/* Turn on the corresponding bit in the filter. */
2328 		af[crc >> 3] |= 1 << (crc & 7);
2329 
2330 		ETHER_NEXT_MULTI(step, enm);
2331 	}
2332 	ifp->if_flags &= ~IFF_ALLMULTI;
2333 	return;
2334 
2335 allmulti:
2336 	ifp->if_flags |= IFF_ALLMULTI;
2337 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2338 }
2339 
2340 /*
2341  * Calculate a new "multicast packet filter" and put the 86960
2342  * receiver in appropriate mode.
2343  */
2344 void
2345 fe_setmode(sc)
2346 	struct fe_softc *sc;
2347 {
2348 	int flags = sc->sc_arpcom.ac_if.if_flags;
2349 
2350 	/*
2351 	 * If the interface is not running, we postpone the update
2352 	 * process for receive modes and multicast address filter
2353 	 * until the interface is restarted.  It reduces some
2354 	 * complicated job on maintaining chip states.  (Earlier versions
2355 	 * of this driver had a bug on that point...)
2356 	 *
2357 	 * To complete the trick, fe_init() calls fe_setmode() after
2358 	 * restarting the interface.
2359 	 */
2360 	if ((flags & IFF_RUNNING) == 0)
2361 		return;
2362 
2363 	/*
2364 	 * Promiscuous mode is handled separately.
2365 	 */
2366 	if ((flags & IFF_PROMISC) != 0) {
2367 		/*
2368 		 * Program 86960 to receive all packets on the segment
2369 		 * including those directed to other stations.
2370 		 * Multicast filter stored in MARs are ignored
2371 		 * under this setting, so we don't need to update it.
2372 		 *
2373 		 * Promiscuous mode is used solely by BPF, and BPF only
2374 		 * listens to valid (no error) packets.  So, we ignore
2375 		 * errornous ones even in this mode.
2376 		 */
2377 		outb(sc->sc_iobase + FE_DLCR5,
2378 		    sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2379 		sc->filter_change = 0;
2380 
2381 #if FE_DEBUG >= 3
2382 		log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2383 #endif
2384 		return;
2385 	}
2386 
2387 	/*
2388 	 * Turn the chip to the normal (non-promiscuous) mode.
2389 	 */
2390 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2391 
2392 	/*
2393 	 * Find the new multicast filter value.
2394 	 */
2395 	fe_getmcaf(&sc->sc_arpcom, sc->filter);
2396 	sc->filter_change = 1;
2397 
2398 #if FE_DEBUG >= 3
2399 	log(LOG_INFO,
2400 	    "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2401 	    sc->sc_dev.dv_xname,
2402 	    sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2403 	    sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2404 #endif
2405 
2406 	/*
2407 	 * We have to update the multicast filter in the 86960, A.S.A.P.
2408 	 *
2409 	 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2410 	 * and receiver) must be stopped when feeding the filter, and
2411 	 * DLC trushes all packets in both transmission and receive
2412 	 * buffers when stopped.
2413 	 *
2414 	 * ... Are the above sentenses correct?  I have to check the
2415 	 *     manual of the MB86960A.  FIXME.
2416 	 *
2417 	 * To reduce the packet lossage, we delay the filter update
2418 	 * process until buffers are empty.
2419 	 */
2420 	if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2421 	    (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2422 		/*
2423 		 * Buffers are (apparently) empty.  Load
2424 		 * the new filter value into MARs now.
2425 		 */
2426 		fe_loadmar(sc);
2427 	} else {
2428 		/*
2429 		 * Buffers are not empty.  Mark that we have to update
2430 		 * the MARs.  The new filter will be loaded by feintr()
2431 		 * later.
2432 		 */
2433 #if FE_DEBUG >= 4
2434 		log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2435 #endif
2436 	}
2437 }
2438 
2439 /*
2440  * Load a new multicast address filter into MARs.
2441  *
2442  * The caller must have splnet'ed befor fe_loadmar.
2443  * This function starts the DLC upon return.  So it can be called only
2444  * when the chip is working, i.e., from the driver's point of view, when
2445  * a device is RUNNING.  (I mistook the point in previous versions.)
2446  */
2447 void
2448 fe_loadmar(sc)
2449 	struct fe_softc *sc;
2450 {
2451 
2452 	/* Stop the DLC (transmitter and receiver). */
2453 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2454 
2455 	/* Select register bank 1 for MARs. */
2456 	outb(sc->sc_iobase + FE_DLCR7,
2457 	    sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2458 
2459 	/* Copy filter value into the registers. */
2460 	outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2461 
2462 	/* Restore the bank selection for BMPRs (i.e., runtime registers). */
2463 	outb(sc->sc_iobase + FE_DLCR7,
2464 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2465 
2466 	/* Restart the DLC. */
2467 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2468 
2469 	/* We have just updated the filter. */
2470 	sc->filter_change = 0;
2471 
2472 #if FE_DEBUG >= 3
2473 	log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2474 #endif
2475 }
2476 
2477 #if FE_DEBUG >= 1
2478 void
2479 fe_dump(level, sc)
2480 	int level;
2481 	struct fe_softc *sc;
2482 {
2483 	int iobase = sc->sc_iobase;
2484 	u_char save_dlcr7;
2485 
2486 	save_dlcr7 = inb(iobase + FE_DLCR7);
2487 
2488 	log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2489 	    inb(iobase + FE_DLCR0),  inb(iobase + FE_DLCR1),
2490 	    inb(iobase + FE_DLCR2),  inb(iobase + FE_DLCR3),
2491 	    inb(iobase + FE_DLCR4),  inb(iobase + FE_DLCR5),
2492 	    inb(iobase + FE_DLCR6),  inb(iobase + FE_DLCR7));
2493 
2494 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2495 	log(level, "\t       %02x %02x %02x %02x %02x %02x %02x %02x,",
2496 	    inb(iobase + FE_DLCR8),  inb(iobase + FE_DLCR9),
2497 	    inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2498 	    inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2499 	    inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2500 
2501 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2502 	log(level, "\tMAR  = %02x %02x %02x %02x %02x %02x %02x %02x,",
2503 	    inb(iobase + FE_MAR8),   inb(iobase + FE_MAR9),
2504 	    inb(iobase + FE_MAR10),  inb(iobase + FE_MAR11),
2505 	    inb(iobase + FE_MAR12),  inb(iobase + FE_MAR13),
2506 	    inb(iobase + FE_MAR14),  inb(iobase + FE_MAR15));
2507 
2508 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2509 	log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2510 	    inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2511 	    inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2512 	    inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2513 	    inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2514 	    inb(iobase + FE_BMPR19));
2515 
2516 	outb(iobase + FE_DLCR7, save_dlcr7);
2517 }
2518 #endif
2519