xref: /netbsd-src/sys/dev/isa/if_ate.c (revision 2a399c6883d870daece976daec6ffa7bb7f934ce)
1 /*	$NetBSD: if_ate.c,v 1.19 1998/01/05 07:31:08 perry Exp $	*/
2 
3 /*
4  * All Rights Reserved, Copyright (C) Fujitsu Limited 1995
5  *
6  * This software may be used, modified, copied, distributed, and sold, in
7  * both source and binary form provided that the above copyright, these
8  * terms and the following disclaimer are retained.  The name of the author
9  * and/or the contributor may not be used to endorse or promote products
10  * derived from this software without specific prior written permission.
11  *
12  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND THE CONTRIBUTOR ``AS IS'' AND
13  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
14  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
15  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR THE CONTRIBUTOR BE LIABLE
16  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
17  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
18  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION.
19  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
21  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
22  * SUCH DAMAGE.
23  */
24 
25 /*
26  * Portions copyright (C) 1993, David Greenman.  This software may be used,
27  * modified, copied, distributed, and sold, in both source and binary form
28  * provided that the above copyright and these terms are retained.  Under no
29  * circumstances is the author responsible for the proper functioning of this
30  * software, nor does the author assume any responsibility for damages
31  * incurred with its use.
32  */
33 
34 #define FE_VERSION "if_fe.c ver. 0.8"
35 
36 /*
37  * Device driver for Fujitsu MB86960A/MB86965A based Ethernet cards.
38  * Contributed by M.S. <seki@sysrap.cs.fujitsu.co.jp>
39  *
40  * This version is intended to be a generic template for various
41  * MB86960A/MB86965A based Ethernet cards.  It currently supports
42  * Fujitsu FMV-180 series (i.e., FMV-181 and FMV-182) and Allied-
43  * Telesis AT1700 series and RE2000 series.  There are some
44  * unnecessary hooks embedded, which are primarily intended to support
45  * other types of Ethernet cards, but the author is not sure whether
46  * they are useful.
47  */
48 
49 #include "bpfilter.h"
50 #include "rnd.h"
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/mbuf.h>
57 #include <sys/socket.h>
58 #include <sys/syslog.h>
59 #include <sys/device.h>
60 #if NRND > 0
61 #include <sys/rnd.h>
62 #endif
63 
64 #include <net/if.h>
65 #include <net/if_dl.h>
66 #include <net/if_types.h>
67 
68 #include <net/if_ether.h>
69 
70 #ifdef INET
71 #include <netinet/in.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/in_var.h>
74 #include <netinet/ip.h>
75 #include <netinet/if_inarp.h>
76 #endif
77 
78 #ifdef NS
79 #include <netns/ns.h>
80 #include <netns/ns_if.h>
81 #endif
82 
83 #if NBPFILTER > 0
84 #include <net/bpf.h>
85 #include <net/bpfdesc.h>
86 #endif
87 
88 #include <machine/cpu.h>
89 #include <machine/intr.h>
90 #include <machine/pio.h>
91 
92 #include <dev/isa/isareg.h>
93 #include <dev/isa/isavar.h>
94 #include <dev/ic/mb86960reg.h>
95 #include <dev/isa/if_fereg.h>
96 
97 /*
98  * Default settings for fe driver specific options.
99  * They can be set in config file by "options" statements.
100  */
101 
102 /*
103  * Debug control.
104  * 0: No debug at all.  All debug specific codes are stripped off.
105  * 1: Silent.  No debug messages are logged except emergent ones.
106  * 2: Brief.  Lair events and/or important information are logged.
107  * 3: Detailed.  Logs all information which *may* be useful for debugging.
108  * 4: Trace.  All actions in the driver is logged.  Super verbose.
109  */
110 #ifndef FE_DEBUG
111 #define FE_DEBUG		1
112 #endif
113 
114 /*
115  * Delay padding of short transmission packets to minimum Ethernet size.
116  * This may or may not gain performance.  An EXPERIMENTAL option.
117  */
118 #ifndef FE_DELAYED_PADDING
119 #define FE_DELAYED_PADDING	0
120 #endif
121 
122 /*
123  * Transmit just one packet per a "send" command to 86960.
124  * This option is intended for performance test.  An EXPERIMENTAL option.
125  */
126 #ifndef FE_SINGLE_TRANSMISSION
127 #define FE_SINGLE_TRANSMISSION	0
128 #endif
129 
130 /*
131  * Device configuration flags.
132  */
133 
134 /* DLCR6 settings. */
135 #define FE_FLAGS_DLCR6_VALUE	0x007F
136 
137 /* Force DLCR6 override. */
138 #define FE_FLAGS_OVERRIDE_DLCR6	0x0080
139 
140 /* A cludge for PCMCIA support. */
141 #define FE_FLAGS_PCMCIA		0x8000
142 
143 /* Identification of the driver version. */
144 static char const fe_version[] = FE_VERSION " / " FE_REG_VERSION;
145 
146 /*
147  * Supported hardware (Ethernet card) types
148  * This information is currently used only for debugging
149  */
150 enum fe_type {
151 	/* For cards which are successfully probed but not identified. */
152 	FE_TYPE_UNKNOWN,
153 
154 	/* Fujitsu FMV-180 series. */
155 	FE_TYPE_FMV181,
156 	FE_TYPE_FMV182,
157 
158 	/* Allied-Telesis AT1700 series and RE2000 series. */
159 	FE_TYPE_AT1700T,
160 	FE_TYPE_AT1700BT,
161 	FE_TYPE_AT1700FT,
162 	FE_TYPE_AT1700AT,
163 	FE_TYPE_RE2000,
164 
165 	/* PCMCIA by Fujitsu. */
166 	FE_TYPE_MBH10302,
167 	FE_TYPE_MBH10304,
168 };
169 
170 /*
171  * fe_softc: per line info and status
172  */
173 struct fe_softc {
174 	struct	device sc_dev;
175 	void	*sc_ih;
176 
177 	struct	ethercom sc_ethercom;	/* ethernet common */
178 
179 	/* Set by probe() and not modified in later phases. */
180 	enum	fe_type type;	/* interface type code */
181 	char	*typestr;	/* printable name of the interface. */
182 	int	sc_iobase;	/* MB86960A I/O base address */
183 
184 	u_char	proto_dlcr4;	/* DLCR4 prototype. */
185 	u_char	proto_dlcr5;	/* DLCR5 prototype. */
186 	u_char	proto_dlcr6;	/* DLCR6 prototype. */
187 	u_char	proto_dlcr7;	/* DLCR7 prototype. */
188 	u_char	proto_bmpr13;	/* BMPR13 prototype. */
189 
190 	/* Vendor specific hooks. */
191 	void	(*init) __P((struct fe_softc *)); /* Just before fe_init(). */
192 	void	(*stop) __P((struct fe_softc *)); /* Just after fe_stop(). */
193 
194 	/* Transmission buffer management. */
195 	u_short	txb_size;	/* total bytes in TX buffer */
196 	u_short	txb_free;	/* free bytes in TX buffer */
197 	u_char	txb_count;	/* number of packets in TX buffer */
198 	u_char	txb_sched;	/* number of scheduled packets */
199 	u_char	txb_padding;	/* number of delayed padding bytes */
200 
201 	/* Multicast address filter management. */
202 	u_char	filter_change;	/* MARs must be changed ASAP. */
203 	u_char	filter[FE_FILTER_LEN];	/* new filter value. */
204 
205 	u_int8_t sc_enaddr[ETHER_ADDR_LEN];
206 
207 #if NRND > 0
208 	rndsource_element_t rnd_source;
209 #endif
210 };
211 
212 /* Standard driver entry points.  These can be static. */
213 int	feprobe		__P((struct device *, void *, void *));
214 void	feattach	__P((struct device *, struct device *, void *));
215 int	feintr		__P((void *));
216 void	fe_init		__P((struct fe_softc *));
217 int	fe_ioctl	__P((struct ifnet *, u_long, caddr_t));
218 void	fe_start	__P((struct ifnet *));
219 void	fe_reset	__P((struct fe_softc *));
220 void	fe_watchdog	__P((struct ifnet *));
221 
222 /* Local functions.  Order of declaration is confused.  FIXME. */
223 int	fe_probe_fmv	__P((struct fe_softc *, struct isa_attach_args *));
224 int	fe_probe_ati	__P((struct fe_softc *, struct isa_attach_args *));
225 int	fe_probe_mbh	__P((struct fe_softc *, struct isa_attach_args *));
226 void	fe_read_eeprom	__P((struct fe_softc *, u_char *));
227 void	fe_init_mbh	__P((struct fe_softc *));
228 int	fe_get_packet	__P((struct fe_softc *, int));
229 void	fe_stop		__P((struct fe_softc *));
230 void	fe_tint		__P((struct fe_softc *, u_char));
231 void	fe_rint		__P((struct fe_softc *, u_char));
232 static inline
233 void	fe_xmit		__P((struct fe_softc *));
234 void	fe_write_mbufs	__P((struct fe_softc *, struct mbuf *));
235 static inline
236 void	fe_droppacket	__P((struct fe_softc *));
237 void	fe_getmcaf	__P((struct ethercom *, u_char *));
238 void	fe_setmode	__P((struct fe_softc *));
239 void	fe_loadmar	__P((struct fe_softc *));
240 #if FE_DEBUG >= 1
241 void	fe_dump		__P((int, struct fe_softc *));
242 #endif
243 
244 struct cfattach fe_ca = {
245 	sizeof(struct fe_softc), feprobe, feattach
246 };
247 
248 struct cfdriver fe_cd = {
249 	NULL, "fe", DV_IFNET
250 };
251 
252 /* Ethernet constants.  To be defined in if_ehter.h?  FIXME. */
253 #define ETHER_MIN_LEN	60	/* with header, without CRC. */
254 #define ETHER_MAX_LEN	1514	/* with header, without CRC. */
255 #define ETHER_ADDR_LEN	6	/* number of bytes in an address. */
256 #define ETHER_HDR_SIZE	14	/* src addr, dst addr, and data type. */
257 
258 /*
259  * Fe driver specific constants which relate to 86960/86965.
260  */
261 
262 /* Interrupt masks. */
263 #define FE_TMASK (FE_D2_COLL16 | FE_D2_TXDONE)
264 #define FE_RMASK (FE_D3_OVRFLO | FE_D3_CRCERR | \
265 		  FE_D3_ALGERR | FE_D3_SRTPKT | FE_D3_PKTRDY)
266 
267 /* Maximum number of iterrations for a receive interrupt. */
268 #define FE_MAX_RECV_COUNT ((65536 - 2048 * 2) / 64)
269 	/* Maximum size of SRAM is 65536,
270 	 * minimum size of transmission buffer in fe is 2x2KB,
271 	 * and minimum amount of received packet including headers
272 	 * added by the chip is 64 bytes.
273 	 * Hence FE_MAX_RECV_COUNT is the upper limit for number
274 	 * of packets in the receive buffer. */
275 
276 /*
277  * Convenient routines to access contiguous I/O ports.
278  */
279 
280 static inline void
281 inblk (int addr, u_char * mem, int len)
282 {
283 	while (--len >= 0) {
284 		*mem++ = inb(addr++);
285 	}
286 }
287 
288 static inline void
289 outblk (int addr, u_char const * mem, int len)
290 {
291 	while (--len >= 0) {
292 		outb(addr++, *mem++);
293 	}
294 }
295 
296 /*
297  * Hardware probe routines.
298  */
299 
300 /*
301  * Determine if the device is present.
302  */
303 int
304 feprobe(parent, match, aux)
305 	struct device *parent;
306 	void *match, *aux;
307 {
308 	struct fe_softc *sc = match;
309 	struct isa_attach_args *ia = aux;
310 
311 #if FE_DEBUG >= 2
312 	log(LOG_INFO, "%s: %s\n", sc->sc_dev.dv_xname, fe_version);
313 #endif
314 
315 	/* Probe an address. */
316 	sc->sc_iobase = ia->ia_iobase;
317 
318 	if (fe_probe_fmv(sc, ia))
319 		return (1);
320 	if (fe_probe_ati(sc, ia))
321 		return (1);
322 	if (fe_probe_mbh(sc, ia))
323 		return (1);
324 	return (0);
325 }
326 
327 /*
328  * Check for specific bits in specific registers have specific values.
329  */
330 struct fe_simple_probe_struct {
331 	u_char port;	/* Offset from the base I/O address. */
332 	u_char mask;	/* Bits to be checked. */
333 	u_char bits;	/* Values to be compared against. */
334 };
335 
336 static inline int
337 fe_simple_probe (int addr, struct fe_simple_probe_struct const * sp)
338 {
339 	struct fe_simple_probe_struct const * p;
340 
341 	for (p = sp; p->mask != 0; p++) {
342 		if ((inb(addr + p->port) & p->mask) != p->bits) {
343 			return (0);
344 		}
345 	}
346 	return (1);
347 }
348 
349 /*
350  * Routines to read all bytes from the config EEPROM through MB86965A.
351  * I'm not sure what exactly I'm doing here...  I was told just to follow
352  * the steps, and it worked.  Could someone tell me why the following
353  * code works?  (Or, why all similar codes I tried previously doesn't
354  * work.)  FIXME.
355  */
356 
357 static inline void
358 strobe (int bmpr16)
359 {
360 	/*
361 	 * Output same value twice.  To speed-down execution?
362 	 */
363 	outb(bmpr16, FE_B16_SELECT);
364 	outb(bmpr16, FE_B16_SELECT);
365 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
366 	outb(bmpr16, FE_B16_SELECT | FE_B16_CLOCK);
367 	outb(bmpr16, FE_B16_SELECT);
368 	outb(bmpr16, FE_B16_SELECT);
369 }
370 
371 void
372 fe_read_eeprom(sc, data)
373 	struct fe_softc *sc;
374 	u_char *data;
375 {
376 	int iobase = sc->sc_iobase;
377 	int bmpr16 = iobase + FE_BMPR16;
378 	int bmpr17 = iobase + FE_BMPR17;
379 	u_char n, val, bit;
380 
381 	/* Read bytes from EEPROM; two bytes per an iterration. */
382 	for (n = 0; n < FE_EEPROM_SIZE / 2; n++) {
383 		/* Reset the EEPROM interface. */
384 		outb(bmpr16, 0x00);
385 		outb(bmpr17, 0x00);
386 		outb(bmpr16, FE_B16_SELECT);
387 
388 		/* Start EEPROM access. */
389 		outb(bmpr17, FE_B17_DATA);
390 		strobe(bmpr16);
391 
392 		/* Pass the iterration count to the chip. */
393 		val = 0x80 | n;
394 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
395 			outb(bmpr17, (val & bit) ? FE_B17_DATA : 0);
396 			strobe(bmpr16);
397 		}
398 		outb(bmpr17, 0x00);
399 
400 		/* Read a byte. */
401 		val = 0;
402 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
403 			strobe(bmpr16);
404 			if (inb(bmpr17) & FE_B17_DATA)
405 				val |= bit;
406 		}
407 		*data++ = val;
408 
409 		/* Read one more byte. */
410 		val = 0;
411 		for (bit = 0x80; bit != 0x00; bit >>= 1) {
412 			strobe(bmpr16);
413 			if (inb(bmpr17) & FE_B17_DATA)
414 				val |= bit;
415 		}
416 		*data++ = val;
417 	}
418 
419 #if FE_DEBUG >= 3
420 	/* Report what we got. */
421 	data -= FE_EEPROM_SIZE;
422 	log(LOG_INFO, "%s: EEPROM at %04x:"
423 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
424 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
425 	    " %02x%02x%02x%02x %02x%02x%02x%02x -"
426 	    " %02x%02x%02x%02x %02x%02x%02x%02x\n",
427 	    sc->sc_dev.dv_xname, iobase,
428 	    data[ 0], data[ 1], data[ 2], data[ 3],
429 	    data[ 4], data[ 5], data[ 6], data[ 7],
430 	    data[ 8], data[ 9], data[10], data[11],
431 	    data[12], data[13], data[14], data[15],
432 	    data[16], data[17], data[18], data[19],
433 	    data[20], data[21], data[22], data[23],
434 	    data[24], data[25], data[26], data[27],
435 	    data[28], data[29], data[30], data[31]);
436 #endif
437 }
438 
439 /*
440  * Hardware (vendor) specific probe routines.
441  */
442 
443 /*
444  * Probe and initialization for Fujitsu FMV-180 series boards
445  */
446 int
447 fe_probe_fmv(sc, ia)
448 	struct fe_softc *sc;
449 	struct isa_attach_args *ia;
450 {
451 	int i, n;
452 	int iobase = sc->sc_iobase;
453 	int irq;
454 
455 	static int const iomap[8] =
456 		{ 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x300, 0x340 };
457 	static int const irqmap[4] =
458 		{ 3, 7, 10, 15 };
459 
460 	static struct fe_simple_probe_struct const probe_table[] = {
461 		{ FE_DLCR2, 0x70, 0x00 },
462 		{ FE_DLCR4, 0x08, 0x00 },
463 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Doesn't work. */
464 
465 		{ FE_FMV0, FE_FMV0_MAGIC_MASK,  FE_FMV0_MAGIC_VALUE },
466 		{ FE_FMV1, FE_FMV1_CARDID_MASK, FE_FMV1_CARDID_ID   },
467 		{ FE_FMV3, FE_FMV3_EXTRA_MASK,  FE_FMV3_EXTRA_VALUE },
468 #if 1
469 	/*
470 	 * Test *vendor* part of the station address for Fujitsu.
471 	 * The test will gain reliability of probe process, but
472 	 * it rejects FMV-180 clone boards manufactured by other vendors.
473 	 * We have to turn the test off when such cards are made available.
474 	 */
475 		{ FE_FMV4, 0xFF, 0x00 },
476 		{ FE_FMV5, 0xFF, 0x00 },
477 		{ FE_FMV6, 0xFF, 0x0E },
478 #else
479 	/*
480 	 * We can always verify the *first* 2 bits (in Ehternet
481 	 * bit order) are "no multicast" and "no local" even for
482 	 * unknown vendors.
483 	 */
484 		{ FE_FMV4, 0x03, 0x00 },
485 #endif
486 		{ 0 }
487 	};
488 
489 #if 0
490 	/*
491 	 * Dont probe at all if the config says we are PCMCIA...
492 	 */
493 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
494 		return (0);
495 #endif
496 
497 	/*
498 	 * See if the sepcified address is possible for FMV-180 series.
499 	 */
500 	for (i = 0; i < 8; i++) {
501 		if (iomap[i] == iobase)
502 			break;
503 	}
504 	if (i == 8)
505 		return (0);
506 
507 	/* Simple probe. */
508 	if (!fe_simple_probe(iobase, probe_table))
509 		return (0);
510 
511 	/* Check if our I/O address matches config info on EEPROM. */
512 	n = (inb(iobase + FE_FMV2) & FE_FMV2_ADDR) >> FE_FMV2_ADDR_SHIFT;
513 	if (iomap[n] != iobase)
514 		return (0);
515 
516 	/* Determine the card type. */
517 	switch (inb(iobase + FE_FMV0) & FE_FMV0_MODEL) {
518 	case FE_FMV0_MODEL_FMV181:
519 		sc->type = FE_TYPE_FMV181;
520 		sc->typestr = "FMV-181";
521 		break;
522 	case FE_FMV0_MODEL_FMV182:
523 		sc->type = FE_TYPE_FMV182;
524 		sc->typestr = "FMV-182";
525 		break;
526 	default:
527 	  	/* Unknown card type: maybe a new model, but... */
528 		return (0);
529 	}
530 
531 	/*
532 	 * An FMV-180 has successfully been proved.
533 	 * Determine which IRQ to be used.
534 	 *
535 	 * In this version, we always get an IRQ assignment from the
536 	 * FMV-180's configuration EEPROM, ignoring that specified in
537 	 * config file.
538 	 */
539 	n = (inb(iobase + FE_FMV2) & FE_FMV2_IRQ) >> FE_FMV2_IRQ_SHIFT;
540 	irq = irqmap[n];
541 
542 	if (ia->ia_irq != IRQUNK) {
543 		if (ia->ia_irq != irq) {
544 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
545 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
546 			return (0);
547 		}
548 	} else
549 		ia->ia_irq = irq;
550 
551 	/*
552 	 * Initialize constants in the per-line structure.
553 	 */
554 
555 	/* Get our station address from EEPROM. */
556 	inblk(iobase + FE_FMV4, sc->sc_enaddr, ETHER_ADDR_LEN);
557 
558 	/* Make sure we got a valid station address. */
559 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
560 	  || (sc->sc_enaddr[0] == 0x00
561 	    && sc->sc_enaddr[1] == 0x00
562 	    && sc->sc_enaddr[2] == 0x00))
563 		return (0);
564 
565 	/* Register values which depend on board design. */
566 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
567 	sc->proto_dlcr5 = 0;
568 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
569 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
570 
571 	/*
572 	 * Program the 86960 as follows:
573 	 *	SRAM: 32KB, 100ns, byte-wide access.
574 	 *	Transmission buffer: 4KB x 2.
575 	 *	System bus interface: 16 bits.
576 	 * We cannot change these values but TXBSIZE, because they
577 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
578 	 * the driver performance.
579 	 */
580 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
581 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
582 
583 	/*
584 	 * Minimum initialization of the hardware.
585 	 * We write into registers; hope I/O ports have no
586 	 * overlap with other boards.
587 	 */
588 
589 	/* Initialize ASIC. */
590 	outb(iobase + FE_FMV3, 0);
591 	outb(iobase + FE_FMV10, 0);
592 
593 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
594 	delay(200);
595 
596 	/* Initialize 86960. */
597 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
598 	delay(200);
599 
600 	/* Disable all interrupts. */
601 	outb(iobase + FE_DLCR2, 0);
602 	outb(iobase + FE_DLCR3, 0);
603 
604 	/* Turn the "master interrupt control" flag of ASIC on. */
605 	outb(iobase + FE_FMV3, FE_FMV3_ENABLE_FLAG);
606 
607 	/*
608 	 * That's all.  FMV-180 occupies 32 I/O addresses, by the way.
609 	 */
610 	ia->ia_iosize = 32;
611 	ia->ia_msize = 0;
612 	return (1);
613 }
614 
615 /*
616  * Probe and initialization for Allied-Telesis AT1700/RE2000 series.
617  */
618 int
619 fe_probe_ati(sc, ia)
620 	struct fe_softc *sc;
621 	struct isa_attach_args *ia;
622 {
623 	int i, n;
624 	int iobase = sc->sc_iobase;
625 	u_char eeprom[FE_EEPROM_SIZE];
626 	u_char save16, save17;
627 	int irq;
628 
629 	static int const iomap[8] =
630 		{ 0x260, 0x280, 0x2A0, 0x240, 0x340, 0x320, 0x380, 0x300 };
631 	static int const irqmap[4][4] = {
632 		{  3,  4,  5,  9 },
633 		{ 10, 11, 12, 15 },
634 		{  3, 11,  5, 15 },
635 		{ 10, 11, 14, 15 },
636 	};
637 	static struct fe_simple_probe_struct const probe_table[] = {
638 		{ FE_DLCR2,  0x70, 0x00 },
639 		{ FE_DLCR4,  0x08, 0x00 },
640 		{ FE_DLCR5,  0x80, 0x00 },
641 #if 0
642 		{ FE_BMPR16, 0x1B, 0x00 },
643 		{ FE_BMPR17, 0x7F, 0x00 },
644 #endif
645 		{ 0 }
646 	};
647 
648 #if 0
649 	/*
650 	 * Don't probe at all if the config says we are PCMCIA...
651 	 */
652 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) != 0)
653 		return (0);
654 #endif
655 
656 #if FE_DEBUG >= 4
657 	log(LOG_INFO, "%s: probe (0x%x) for ATI\n", sc->sc_dev.dv_xname, iobase);
658 	fe_dump(LOG_INFO, sc);
659 #endif
660 
661 	/*
662 	 * See if the sepcified address is possible for MB86965A JLI mode.
663 	 */
664 	for (i = 0; i < 8; i++) {
665 		if (iomap[i] == iobase)
666 			break;
667 	}
668 	if (i == 8)
669 		return (0);
670 
671 	/*
672 	 * We should test if MB86965A is on the base address now.
673 	 * Unfortunately, it is very hard to probe it reliably, since
674 	 * we have no way to reset the chip under software control.
675 	 * On cold boot, we could check the "signature" bit patterns
676 	 * described in the Fujitsu document.  On warm boot, however,
677 	 * we can predict almost nothing about register values.
678 	 */
679 	if (!fe_simple_probe(iobase, probe_table))
680 		return (0);
681 
682 	/* Save old values of the registers. */
683 	save16 = inb(iobase + FE_BMPR16);
684 	save17 = inb(iobase + FE_BMPR17);
685 
686 	/* Check if our I/O address matches config info on 86965. */
687 	n = (inb(iobase + FE_BMPR19) & FE_B19_ADDR) >> FE_B19_ADDR_SHIFT;
688 	if (iomap[n] != iobase)
689 		goto fail;
690 
691 	/*
692 	 * We are now almost sure we have an AT1700 at the given
693 	 * address.  So, read EEPROM through 86965.  We have to write
694 	 * into LSI registers to read from EEPROM.  I want to avoid it
695 	 * at this stage, but I cannot test the presense of the chip
696 	 * any further without reading EEPROM.  FIXME.
697 	 */
698 	fe_read_eeprom(sc, eeprom);
699 
700 	/* Make sure the EEPROM is turned off. */
701 	outb(iobase + FE_BMPR16, 0);
702 	outb(iobase + FE_BMPR17, 0);
703 
704 	/* Make sure that config info in EEPROM and 86965 agree. */
705 	if (eeprom[FE_EEPROM_CONF] != inb(iobase + FE_BMPR19))
706 		goto fail;
707 
708 	/*
709 	 * Determine the card type.
710 	 */
711 	switch (eeprom[FE_ATI_EEP_MODEL]) {
712 	case FE_ATI_MODEL_AT1700T:
713 		sc->type = FE_TYPE_AT1700T;
714 		sc->typestr = "AT-1700T";
715 		break;
716 	case FE_ATI_MODEL_AT1700BT:
717 		sc->type = FE_TYPE_AT1700BT;
718 		sc->typestr = "AT-1700BT";
719 		break;
720 	case FE_ATI_MODEL_AT1700FT:
721 		sc->type = FE_TYPE_AT1700FT;
722 		sc->typestr = "AT-1700FT";
723 		break;
724 	case FE_ATI_MODEL_AT1700AT:
725 		sc->type = FE_TYPE_AT1700AT;
726 		sc->typestr = "AT-1700AT";
727 		break;
728 	default:
729 		sc->type = FE_TYPE_RE2000;
730 		sc->typestr = "unknown (RE-2000?)";
731 		break;
732 	}
733 
734 	/*
735 	 * Try to determine IRQ settings.
736 	 * Different models use different ranges of IRQs.
737 	 */
738 	n = (inb(iobase + FE_BMPR19) & FE_B19_IRQ) >> FE_B19_IRQ_SHIFT;
739 	switch (eeprom[FE_ATI_EEP_REVISION] & 0xf0) {
740 	case 0x30:
741 		irq = irqmap[3][n];
742 		break;
743 	case 0x10:
744 	case 0x50:
745 		irq = irqmap[2][n];
746 		break;
747 	case 0x40:
748 	case 0x60:
749 		if (eeprom[FE_ATI_EEP_MAGIC] & 0x04) {
750 			irq = irqmap[1][n];
751 			break;
752 		}
753 	default:
754 		irq = irqmap[0][n];
755 		break;
756 	}
757 
758 	if (ia->ia_irq != IRQUNK) {
759 		if (ia->ia_irq != irq) {
760 			printf("%s: irq mismatch; kernel configured %d != board configured %d\n",
761 			    sc->sc_dev.dv_xname, ia->ia_irq, irq);
762 			return (0);
763 		}
764 	} else
765 		ia->ia_irq = irq;
766 
767 	/*
768 	 * Initialize constants in the per-line structure.
769 	 */
770 
771 	/* Get our station address from EEPROM. */
772 	bcopy(eeprom + FE_ATI_EEP_ADDR, sc->sc_enaddr, ETHER_ADDR_LEN);
773 
774 	/* Make sure we got a valid station address. */
775 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
776 	  || (sc->sc_enaddr[0] == 0x00
777 	    && sc->sc_enaddr[1] == 0x00
778 	    && sc->sc_enaddr[2] == 0x00))
779 		goto fail;
780 
781 	/* Should find all register prototypes here.  FIXME. */
782 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;  /* FIXME */
783 	sc->proto_dlcr5 = 0;
784 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_EC;
785 #if 0	/* XXXX Should we use this? */
786 	sc->proto_bmpr13 = eeprom[FE_ATI_EEP_MEDIA];
787 #else
788 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
789 #endif
790 
791 	/*
792 	 * Program the 86965 as follows:
793 	 *	SRAM: 32KB, 100ns, byte-wide access.
794 	 *	Transmission buffer: 4KB x 2.
795 	 *	System bus interface: 16 bits.
796 	 * We cannot change these values but TXBSIZE, because they
797 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
798 	 * the driver performance.
799 	 */
800 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
801 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
802 
803 #if FE_DEBUG >= 3
804 	log(LOG_INFO, "%s: ATI found\n", sc->sc_dev.dv_xname);
805 	fe_dump(LOG_INFO, sc);
806 #endif
807 
808 	/* Initialize 86965. */
809 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
810 	delay(200);
811 
812 	/* Disable all interrupts. */
813 	outb(iobase + FE_DLCR2, 0);
814 	outb(iobase + FE_DLCR3, 0);
815 
816 #if FE_DEBUG >= 3
817 	log(LOG_INFO, "%s: end of fe_probe_ati()\n", sc->sc_dev.dv_xname);
818 	fe_dump(LOG_INFO, sc);
819 #endif
820 
821 	/*
822 	 * That's all.  AT1700 occupies 32 I/O addresses, by the way.
823 	 */
824 	ia->ia_iosize = 32;
825 	ia->ia_msize = 0;
826 	return (1);
827 
828 fail:
829 	/* Restore register values, in the case we had no 86965. */
830 	outb(iobase + FE_BMPR16, save16);
831 	outb(iobase + FE_BMPR17, save17);
832 	return (0);
833 }
834 
835 /*
836  * Probe and initialization for Fujitsu MBH10302 PCMCIA Ethernet interface.
837  */
838 int
839 fe_probe_mbh(sc, ia)
840 	struct fe_softc *sc;
841 	struct isa_attach_args *ia;
842 {
843 	int iobase = sc->sc_iobase;
844 
845 	static struct fe_simple_probe_struct probe_table[] = {
846 		{ FE_DLCR2, 0x70, 0x00 },
847 		{ FE_DLCR4, 0x08, 0x00 },
848 	    /*	{ FE_DLCR5, 0x80, 0x00 },	Does not work well. */
849 #if 0
850 	/*
851 	 * Test *vendor* part of the address for Fujitsu.
852 	 * The test will gain reliability of probe process, but
853 	 * it rejects clones by other vendors, or OEM product
854 	 * supplied by resalers other than Fujitsu.
855 	 */
856 		{ FE_MBH10, 0xFF, 0x00 },
857 		{ FE_MBH11, 0xFF, 0x00 },
858 		{ FE_MBH12, 0xFF, 0x0E },
859 #else
860 	/*
861 	 * We can always verify the *first* 2 bits (in Ehternet
862 	 * bit order) are "global" and "unicast" even for
863 	 * unknown vendors.
864 	 */
865 		{ FE_MBH10, 0x03, 0x00 },
866 #endif
867         /* Just a gap?  Seems reliable, anyway. */
868 		{ 0x12, 0xFF, 0x00 },
869 		{ 0x13, 0xFF, 0x00 },
870 		{ 0x14, 0xFF, 0x00 },
871 		{ 0x15, 0xFF, 0x00 },
872 		{ 0x16, 0xFF, 0x00 },
873 		{ 0x17, 0xFF, 0x00 },
874 		{ 0x18, 0xFF, 0xFF },
875 		{ 0x19, 0xFF, 0xFF },
876 
877 		{ 0 }
878 	};
879 
880 #if 0
881 	/*
882 	 * We need a PCMCIA flag.
883 	 */
884 	if ((cf->cf_flags & FE_FLAGS_PCMCIA) == 0)
885 		return (0);
886 #endif
887 
888 	/*
889 	 * We need explicit IRQ and supported address.
890 	 */
891 	if (ia->ia_irq == IRQUNK || (iobase & ~0x3E0) != 0)
892 		return (0);
893 
894 #if FE_DEBUG >= 3
895 	log(LOG_INFO, "%s: top of fe_probe_mbh()\n", sc->sc_dev.dv_xname);
896 	fe_dump(LOG_INFO, sc);
897 #endif
898 
899 	/*
900 	 * See if MBH10302 is on its address.
901 	 * I'm not sure the following probe code works.  FIXME.
902 	 */
903 	if (!fe_simple_probe(iobase, probe_table))
904 		return (0);
905 
906 	/* Determine the card type. */
907 	sc->type = FE_TYPE_MBH10302;
908 	sc->typestr = "MBH10302 (PCMCIA)";
909 
910 	/*
911 	 * Initialize constants in the per-line structure.
912 	 */
913 
914 	/* Get our station address from EEPROM. */
915 	inblk(iobase + FE_MBH10, sc->sc_enaddr, ETHER_ADDR_LEN);
916 
917 	/* Make sure we got a valid station address. */
918 	if ((sc->sc_enaddr[0] & 0x03) != 0x00
919 	  || (sc->sc_enaddr[0] == 0x00
920 	    && sc->sc_enaddr[1] == 0x00
921 	    && sc->sc_enaddr[2] == 0x00))
922 		return (0);
923 
924 	/* Should find all register prototypes here.  FIXME. */
925 	sc->proto_dlcr4 = FE_D4_LBC_DISABLE | FE_D4_CNTRL;
926 	sc->proto_dlcr5 = 0;
927 	sc->proto_dlcr7 = FE_D7_BYTSWP_LH | FE_D7_IDENT_NICE;
928 	sc->proto_bmpr13 = FE_B13_TPTYPE_UTP | FE_B13_PORT_AUTO;
929 
930 	/*
931 	 * Program the 86960 as follows:
932 	 *	SRAM: 32KB, 100ns, byte-wide access.
933 	 *	Transmission buffer: 4KB x 2.
934 	 *	System bus interface: 16 bits.
935 	 * We cannot change these values but TXBSIZE, because they
936 	 * are hard-wired on the board.  Modifying TXBSIZE will affect
937 	 * the driver performance.
938 	 */
939 	sc->proto_dlcr6 = FE_D6_BUFSIZ_32KB | FE_D6_TXBSIZ_2x4KB
940 		| FE_D6_BBW_BYTE | FE_D6_SBW_WORD | FE_D6_SRAM_100ns;
941 
942 	/* Setup hooks.  We need a special initialization procedure. */
943 	sc->init = fe_init_mbh;
944 
945 	/*
946 	 * Minimum initialization.
947 	 */
948 
949 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
950 	delay(200);
951 
952 	/* Minimul initialization of 86960. */
953 	outb(iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
954 	delay(200);
955 
956 	/* Disable all interrupts. */
957 	outb(iobase + FE_DLCR2, 0);
958 	outb(iobase + FE_DLCR3, 0);
959 
960 #if 1	/* FIXME. */
961 	/* Initialize system bus interface and encoder/decoder operation. */
962 	outb(iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_DISABLE);
963 #endif
964 
965 	/*
966 	 * That's all.  MBH10302 occupies 32 I/O addresses, by the way.
967 	 */
968 	ia->ia_iosize = 32;
969 	ia->ia_msize = 0;
970 	return (1);
971 }
972 
973 /* MBH specific initialization routine. */
974 void
975 fe_init_mbh(sc)
976 	struct fe_softc *sc;
977 {
978 
979 	/* Probably required after hot-insertion... */
980 
981 	/* Wait for a while.  I'm not sure this is necessary.  FIXME. */
982 	delay(200);
983 
984 	/* Minimul initialization of 86960. */
985 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
986 	delay(200);
987 
988 	/* Disable all interrupts. */
989 	outb(sc->sc_iobase + FE_DLCR2, 0);
990 	outb(sc->sc_iobase + FE_DLCR3, 0);
991 
992 	/* Enable master interrupt flag. */
993 	outb(sc->sc_iobase + FE_MBH0, FE_MBH0_MAGIC | FE_MBH0_INTR_ENABLE);
994 }
995 
996 /*
997  * Install interface into kernel networking data structures
998  */
999 void
1000 feattach(parent, self, aux)
1001 	struct device *parent, *self;
1002 	void *aux;
1003 {
1004 	struct fe_softc *sc = (void *)self;
1005 	struct isa_attach_args *ia = aux;
1006 	struct cfdata *cf = sc->sc_dev.dv_cfdata;
1007 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1008 
1009 	/* Stop the 86960. */
1010 	fe_stop(sc);
1011 
1012 	/* Initialize ifnet structure. */
1013 	bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
1014 	ifp->if_softc = sc;
1015 	ifp->if_start = fe_start;
1016 	ifp->if_ioctl = fe_ioctl;
1017 	ifp->if_watchdog = fe_watchdog;
1018 	ifp->if_flags =
1019 	    IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
1020 
1021 	/*
1022 	 * Set maximum size of output queue, if it has not been set.
1023 	 * It is done here as this driver may be started after the
1024 	 * system intialization (i.e., the interface is PCMCIA.)
1025 	 *
1026 	 * I'm not sure this is really necessary, but, even if it is,
1027 	 * it should be done somewhere else, e.g., in if_attach(),
1028 	 * since it must be a common workaround for all network drivers.
1029 	 * FIXME.
1030 	 */
1031 	if (ifp->if_snd.ifq_maxlen == 0) {
1032 		extern int ifqmaxlen;		/* Don't be so shocked... */
1033 		ifp->if_snd.ifq_maxlen = ifqmaxlen;
1034 	}
1035 
1036 #if FE_DEBUG >= 3
1037 	log(LOG_INFO, "%s: feattach()\n", sc->sc_dev.dv_xname);
1038 	fe_dump(LOG_INFO, sc);
1039 #endif
1040 
1041 #if FE_SINGLE_TRANSMISSION
1042 	/* Override txb config to allocate minimum. */
1043 	sc->proto_dlcr6 &= ~FE_D6_TXBSIZ
1044 	sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1045 #endif
1046 
1047 	/* Modify hardware config if it is requested. */
1048 	if ((cf->cf_flags & FE_FLAGS_OVERRIDE_DLCR6) != 0)
1049 		sc->proto_dlcr6 = cf->cf_flags & FE_FLAGS_DLCR6_VALUE;
1050 
1051 	/* Find TX buffer size, based on the hardware dependent proto. */
1052 	switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1053 	case FE_D6_TXBSIZ_2x2KB:
1054 		sc->txb_size = 2048;
1055 		break;
1056 	case FE_D6_TXBSIZ_2x4KB:
1057 		sc->txb_size = 4096;
1058 		break;
1059 	case FE_D6_TXBSIZ_2x8KB:
1060 		sc->txb_size = 8192;
1061 		break;
1062 	default:
1063 		/* Oops, we can't work with single buffer configuration. */
1064 #if FE_DEBUG >= 2
1065 		log(LOG_WARNING, "%s: strange TXBSIZ config; fixing\n",
1066 		    sc->sc_dev.dv_xname);
1067 #endif
1068 		sc->proto_dlcr6 &= ~FE_D6_TXBSIZ;
1069 		sc->proto_dlcr6 |=  FE_D6_TXBSIZ_2x2KB;
1070 		sc->txb_size = 2048;
1071 		break;
1072 	}
1073 
1074 	/* Attach the interface. */
1075 	if_attach(ifp);
1076 	ether_ifattach(ifp, sc->sc_enaddr);
1077 
1078 	/* Print additional info when attached. */
1079 	printf(": address %s, type %s\n",
1080 	    ether_sprintf(sc->sc_enaddr), sc->typestr);
1081 #if FE_DEBUG >= 3
1082 	{
1083 		int buf, txb, bbw, sbw, ram;
1084 
1085 		buf = txb = bbw = sbw = ram = -1;
1086 		switch (sc->proto_dlcr6 & FE_D6_BUFSIZ) {
1087 		case FE_D6_BUFSIZ_8KB:
1088 			buf = 8;
1089 			break;
1090 		case FE_D6_BUFSIZ_16KB:
1091 			buf = 16;
1092 			break;
1093 		case FE_D6_BUFSIZ_32KB:
1094 			buf = 32;
1095 			break;
1096 		case FE_D6_BUFSIZ_64KB:
1097 			buf = 64;
1098 			break;
1099 		}
1100 		switch (sc->proto_dlcr6 & FE_D6_TXBSIZ) {
1101 		case FE_D6_TXBSIZ_2x2KB:
1102 			txb = 2;
1103 			break;
1104 		case FE_D6_TXBSIZ_2x4KB:
1105 			txb = 4;
1106 			break;
1107 		case FE_D6_TXBSIZ_2x8KB:
1108 			txb = 8;
1109 			break;
1110 		}
1111 		switch (sc->proto_dlcr6 & FE_D6_BBW) {
1112 		case FE_D6_BBW_BYTE:
1113 			bbw = 8;
1114 			break;
1115 		case FE_D6_BBW_WORD:
1116 			bbw = 16;
1117 			break;
1118 		}
1119 		switch (sc->proto_dlcr6 & FE_D6_SBW) {
1120 		case FE_D6_SBW_BYTE:
1121 			sbw = 8;
1122 			break;
1123 		case FE_D6_SBW_WORD:
1124 			sbw = 16;
1125 			break;
1126 		}
1127 		switch (sc->proto_dlcr6 & FE_D6_SRAM) {
1128 		case FE_D6_SRAM_100ns:
1129 			ram = 100;
1130 			break;
1131 		case FE_D6_SRAM_150ns:
1132 			ram = 150;
1133 			break;
1134 		}
1135 		printf("%s: SRAM %dKB %dbit %dns, TXB %dKBx2, %dbit I/O\n",
1136 		    sc->sc_dev.dv_xname, buf, bbw, ram, txb, sbw);
1137 	}
1138 #endif
1139 
1140 #if NBPFILTER > 0
1141 	/* If BPF is in the kernel, call the attach for it. */
1142 	bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
1143 #endif
1144 
1145 	sc->sc_ih = isa_intr_establish(ia->ia_ic, ia->ia_irq, IST_EDGE,
1146 	    IPL_NET, feintr, sc);
1147 
1148 #if NRND > 0
1149 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
1150 			  RND_TYPE_NET);
1151 #endif
1152 }
1153 
1154 /*
1155  * Reset interface.
1156  */
1157 void
1158 fe_reset(sc)
1159 	struct fe_softc *sc;
1160 {
1161 	int s;
1162 
1163 	s = splnet();
1164 	fe_stop(sc);
1165 	fe_init(sc);
1166 	splx(s);
1167 }
1168 
1169 /*
1170  * Stop everything on the interface.
1171  *
1172  * All buffered packets, both transmitting and receiving,
1173  * if any, will be lost by stopping the interface.
1174  */
1175 void
1176 fe_stop(sc)
1177 	struct fe_softc *sc;
1178 {
1179 
1180 #if FE_DEBUG >= 3
1181 	log(LOG_INFO, "%s: top of fe_stop()\n", sc->sc_dev.dv_xname);
1182 	fe_dump(LOG_INFO, sc);
1183 #endif
1184 
1185 	/* Disable interrupts. */
1186 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1187 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1188 
1189 	/* Stop interface hardware. */
1190 	delay(200);
1191 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1192 	delay(200);
1193 
1194 	/* Clear all interrupt status. */
1195 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);
1196 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);
1197 
1198 	/* Put the chip in stand-by mode. */
1199 	delay(200);
1200 	outb(sc->sc_iobase + FE_DLCR7, sc->proto_dlcr7 | FE_D7_POWER_DOWN);
1201 	delay(200);
1202 
1203 	/* MAR loading can be delayed. */
1204 	sc->filter_change = 0;
1205 
1206 	/* Call a hook. */
1207 	if (sc->stop)
1208 		sc->stop(sc);
1209 
1210 #if DEBUG >= 3
1211 	log(LOG_INFO, "%s: end of fe_stop()\n", sc->sc_dev.dv_xname);
1212 	fe_dump(LOG_INFO, sc);
1213 #endif
1214 }
1215 
1216 /*
1217  * Device timeout/watchdog routine. Entered if the device neglects to
1218  * generate an interrupt after a transmit has been started on it.
1219  */
1220 void
1221 fe_watchdog(ifp)
1222 	struct ifnet *ifp;
1223 {
1224 	struct fe_softc *sc = ifp->if_softc;
1225 
1226 	log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
1227 #if FE_DEBUG >= 3
1228 	fe_dump(LOG_INFO, sc);
1229 #endif
1230 
1231 	/* Record how many packets are lost by this accident. */
1232 	sc->sc_ethercom.ec_if.if_oerrors += sc->txb_sched + sc->txb_count;
1233 
1234 	fe_reset(sc);
1235 }
1236 
1237 /*
1238  * Drop (skip) a packet from receive buffer in 86960 memory.
1239  */
1240 static inline void
1241 fe_droppacket(sc)
1242 	struct fe_softc *sc;
1243 {
1244 
1245 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER | FE_B14_SKIP);
1246 }
1247 
1248 /*
1249  * Initialize device.
1250  */
1251 void
1252 fe_init(sc)
1253 	struct fe_softc *sc;
1254 {
1255 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1256 	int i;
1257 
1258 #if FE_DEBUG >= 3
1259 	log(LOG_INFO, "%s: top of fe_init()\n", sc->sc_dev.dv_xname);
1260 	fe_dump(LOG_INFO, sc);
1261 #endif
1262 
1263 	/* Reset transmitter flags. */
1264 	ifp->if_flags &= ~IFF_OACTIVE;
1265 	ifp->if_timer = 0;
1266 
1267 	sc->txb_free = sc->txb_size;
1268 	sc->txb_count = 0;
1269 	sc->txb_sched = 0;
1270 
1271 	/* Call a hook. */
1272 	if (sc->init)
1273 		sc->init(sc);
1274 
1275 #if FE_DEBUG >= 3
1276 	log(LOG_INFO, "%s: after init hook\n", sc->sc_dev.dv_xname);
1277 	fe_dump(LOG_INFO, sc);
1278 #endif
1279 
1280 	/*
1281 	 * Make sure to disable the chip, also.
1282 	 * This may also help re-programming the chip after
1283 	 * hot insertion of PCMCIAs.
1284 	 */
1285 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
1286 
1287 	/* Power up the chip and select register bank for DLCRs. */
1288 	delay(200);
1289 	outb(sc->sc_iobase + FE_DLCR7,
1290 	    sc->proto_dlcr7 | FE_D7_RBS_DLCR | FE_D7_POWER_UP);
1291 	delay(200);
1292 
1293 	/* Feed the station address. */
1294 	outblk(sc->sc_iobase + FE_DLCR8, sc->sc_enaddr, ETHER_ADDR_LEN);
1295 
1296 	/* Select the BMPR bank for runtime register access. */
1297 	outb(sc->sc_iobase + FE_DLCR7,
1298 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
1299 
1300 	/* Initialize registers. */
1301 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1302 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1303 	outb(sc->sc_iobase + FE_DLCR2, 0x00);
1304 	outb(sc->sc_iobase + FE_DLCR3, 0x00);
1305 	outb(sc->sc_iobase + FE_DLCR4, sc->proto_dlcr4);
1306 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5);
1307 	outb(sc->sc_iobase + FE_BMPR10, 0x00);
1308 	outb(sc->sc_iobase + FE_BMPR11, FE_B11_CTRL_SKIP);
1309 	outb(sc->sc_iobase + FE_BMPR12, 0x00);
1310 	outb(sc->sc_iobase + FE_BMPR13, sc->proto_bmpr13);
1311 	outb(sc->sc_iobase + FE_BMPR14, FE_B14_FILTER);
1312 	outb(sc->sc_iobase + FE_BMPR15, 0x00);
1313 
1314 #if FE_DEBUG >= 3
1315 	log(LOG_INFO, "%s: just before enabling DLC\n", sc->sc_dev.dv_xname);
1316 	fe_dump(LOG_INFO, sc);
1317 #endif
1318 
1319 	/* Enable interrupts. */
1320 	outb(sc->sc_iobase + FE_DLCR2, FE_TMASK);
1321 	outb(sc->sc_iobase + FE_DLCR3, FE_RMASK);
1322 
1323 	/* Enable transmitter and receiver. */
1324 	delay(200);
1325 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
1326 	delay(200);
1327 
1328 #if FE_DEBUG >= 3
1329 	log(LOG_INFO, "%s: just after enabling DLC\n", sc->sc_dev.dv_xname);
1330 	fe_dump(LOG_INFO, sc);
1331 #endif
1332 
1333 	/*
1334 	 * Make sure to empty the receive buffer.
1335 	 *
1336 	 * This may be redundant, but *if* the receive buffer were full
1337 	 * at this point, the driver would hang.  I have experienced
1338 	 * some strange hangups just after UP.  I hope the following
1339 	 * code solve the problem.
1340 	 *
1341 	 * I have changed the order of hardware initialization.
1342 	 * I think the receive buffer cannot have any packets at this
1343 	 * point in this version.  The following code *must* be
1344 	 * redundant now.  FIXME.
1345 	 */
1346 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1347 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1348 			break;
1349 		fe_droppacket(sc);
1350 	}
1351 #if FE_DEBUG >= 1
1352 	if (i >= FE_MAX_RECV_COUNT) {
1353 		log(LOG_ERR, "%s: cannot empty receive buffer\n",
1354 		    sc->sc_dev.dv_xname);
1355 	}
1356 #endif
1357 #if FE_DEBUG >= 3
1358 	if (i < FE_MAX_RECV_COUNT) {
1359 		log(LOG_INFO, "%s: receive buffer emptied (%d)\n",
1360 		    sc->sc_dev.dv_xname, i);
1361 	}
1362 #endif
1363 
1364 #if FE_DEBUG >= 3
1365 	log(LOG_INFO, "%s: after ERB loop\n", sc->sc_dev.dv_xname);
1366 	fe_dump(LOG_INFO, sc);
1367 #endif
1368 
1369 	/* Do we need this here? */
1370 	outb(sc->sc_iobase + FE_DLCR0, 0xFF);	/* Clear all bits. */
1371 	outb(sc->sc_iobase + FE_DLCR1, 0xFF);	/* ditto. */
1372 
1373 #if FE_DEBUG >= 3
1374 	log(LOG_INFO, "%s: after FIXME\n", sc->sc_dev.dv_xname);
1375 	fe_dump(LOG_INFO, sc);
1376 #endif
1377 
1378 	/* Set 'running' flag. */
1379 	ifp->if_flags |= IFF_RUNNING;
1380 
1381 	/*
1382 	 * At this point, the interface is runnung properly,
1383 	 * except that it receives *no* packets.  we then call
1384 	 * fe_setmode() to tell the chip what packets to be
1385 	 * received, based on the if_flags and multicast group
1386 	 * list.  It completes the initialization process.
1387 	 */
1388 	fe_setmode(sc);
1389 
1390 #if FE_DEBUG >= 3
1391 	log(LOG_INFO, "%s: after setmode\n", sc->sc_dev.dv_xname);
1392 	fe_dump(LOG_INFO, sc);
1393 #endif
1394 
1395 	/* ...and attempt to start output. */
1396 	fe_start(ifp);
1397 
1398 #if FE_DEBUG >= 3
1399 	log(LOG_INFO, "%s: end of fe_init()\n", sc->sc_dev.dv_xname);
1400 	fe_dump(LOG_INFO, sc);
1401 #endif
1402 }
1403 
1404 /*
1405  * This routine actually starts the transmission on the interface
1406  */
1407 static inline void
1408 fe_xmit(sc)
1409 	struct fe_softc *sc;
1410 {
1411 
1412 	/*
1413 	 * Set a timer just in case we never hear from the board again.
1414 	 * We use longer timeout for multiple packet transmission.
1415 	 * I'm not sure this timer value is appropriate.  FIXME.
1416 	 */
1417 	sc->sc_ethercom.ec_if.if_timer = 1 + sc->txb_count;
1418 
1419 	/* Update txb variables. */
1420 	sc->txb_sched = sc->txb_count;
1421 	sc->txb_count = 0;
1422 	sc->txb_free = sc->txb_size;
1423 
1424 #if FE_DELAYED_PADDING
1425 	/* Omit the postponed padding process. */
1426 	sc->txb_padding = 0;
1427 #endif
1428 
1429 	/* Start transmitter, passing packets in TX buffer. */
1430 	outb(sc->sc_iobase + FE_BMPR10, sc->txb_sched | FE_B10_START);
1431 }
1432 
1433 /*
1434  * Start output on interface.
1435  * We make two assumptions here:
1436  *  1) that the current priority is set to splnet _before_ this code
1437  *     is called *and* is returned to the appropriate priority after
1438  *     return
1439  *  2) that the IFF_OACTIVE flag is checked before this code is called
1440  *     (i.e. that the output part of the interface is idle)
1441  */
1442 void
1443 fe_start(ifp)
1444 	struct ifnet *ifp;
1445 {
1446 	struct fe_softc *sc = ifp->if_softc;
1447 	struct mbuf *m;
1448 
1449 #if FE_DEBUG >= 1
1450 	/* Just a sanity check. */
1451 	if ((sc->txb_count == 0) != (sc->txb_free == sc->txb_size)) {
1452 		/*
1453 		 * Txb_count and txb_free co-works to manage the
1454 		 * transmission buffer.  Txb_count keeps track of the
1455 		 * used potion of the buffer, while txb_free does unused
1456 		 * potion.  So, as long as the driver runs properly,
1457 		 * txb_count is zero if and only if txb_free is same
1458 		 * as txb_size (which represents whole buffer.)
1459 		 */
1460 		log(LOG_ERR, "%s: inconsistent txb variables (%d, %d)\n",
1461 		    sc->sc_dev.dv_xname, sc->txb_count, sc->txb_free);
1462 		/*
1463 		 * So, what should I do, then?
1464 		 *
1465 		 * We now know txb_count and txb_free contradicts.  We
1466 		 * cannot, however, tell which is wrong.  More
1467 		 * over, we cannot peek 86960 transmission buffer or
1468 		 * reset the transmission buffer.  (In fact, we can
1469 		 * reset the entire interface.  I don't want to do it.)
1470 		 *
1471 		 * If txb_count is incorrect, leaving it as is will cause
1472 		 * sending of gabages after next interrupt.  We have to
1473 		 * avoid it.  Hence, we reset the txb_count here.  If
1474 		 * txb_free was incorrect, resetting txb_count just loose
1475 		 * some packets.  We can live with it.
1476 		 */
1477 		sc->txb_count = 0;
1478 	}
1479 #endif
1480 
1481 #if FE_DEBUG >= 1
1482 	/*
1483 	 * First, see if there are buffered packets and an idle
1484 	 * transmitter - should never happen at this point.
1485 	 */
1486 	if ((sc->txb_count > 0) && (sc->txb_sched == 0)) {
1487 		log(LOG_ERR, "%s: transmitter idle with %d buffered packets\n",
1488 		    sc->sc_dev.dv_xname, sc->txb_count);
1489 		fe_xmit(sc);
1490 	}
1491 #endif
1492 
1493 	/*
1494 	 * Stop accepting more transmission packets temporarily, when
1495 	 * a filter change request is delayed.  Updating the MARs on
1496 	 * 86960 flushes the transmisstion buffer, so it is delayed
1497 	 * until all buffered transmission packets have been sent
1498 	 * out.
1499 	 */
1500 	if (sc->filter_change) {
1501 		/*
1502 		 * Filter change requst is delayed only when the DLC is
1503 		 * working.  DLC soon raise an interrupt after finishing
1504 		 * the work.
1505 		 */
1506 		goto indicate_active;
1507 	}
1508 
1509 	for (;;) {
1510 		/*
1511 		 * See if there is room to put another packet in the buffer.
1512 		 * We *could* do better job by peeking the send queue to
1513 		 * know the length of the next packet.  Current version just
1514 		 * tests against the worst case (i.e., longest packet).  FIXME.
1515 		 *
1516 		 * When adding the packet-peek feature, don't forget adding a
1517 		 * test on txb_count against QUEUEING_MAX.
1518 		 * There is a little chance the packet count exceeds
1519 		 * the limit.  Assume transmission buffer is 8KB (2x8KB
1520 		 * configuration) and an application sends a bunch of small
1521 		 * (i.e., minimum packet sized) packets rapidly.  An 8KB
1522 		 * buffer can hold 130 blocks of 62 bytes long...
1523 		 */
1524 		if (sc->txb_free < ETHER_MAX_LEN + FE_DATA_LEN_LEN) {
1525 			/* No room. */
1526 			goto indicate_active;
1527 		}
1528 
1529 #if FE_SINGLE_TRANSMISSION
1530 		if (sc->txb_count > 0) {
1531 			/* Just one packet per a transmission buffer. */
1532 			goto indicate_active;
1533 		}
1534 #endif
1535 
1536 		/*
1537 		 * Get the next mbuf chain for a packet to send.
1538 		 */
1539 		IF_DEQUEUE(&ifp->if_snd, m);
1540 		if (m == 0) {
1541 			/* No more packets to send. */
1542 			goto indicate_inactive;
1543 		}
1544 
1545 #if NBPFILTER > 0
1546 		/* Tap off here if there is a BPF listener. */
1547 		if (ifp->if_bpf)
1548 			bpf_mtap(ifp->if_bpf, m);
1549 #endif
1550 
1551 		/*
1552 		 * Copy the mbuf chain into the transmission buffer.
1553 		 * txb_* variables are updated as necessary.
1554 		 */
1555 		fe_write_mbufs(sc, m);
1556 
1557 		m_freem(m);
1558 
1559 		/* Start transmitter if it's idle. */
1560 		if (sc->txb_sched == 0)
1561 			fe_xmit(sc);
1562 	}
1563 
1564 indicate_inactive:
1565 	/*
1566 	 * We are using the !OACTIVE flag to indicate to
1567 	 * the outside world that we can accept an
1568 	 * additional packet rather than that the
1569 	 * transmitter is _actually_ active.  Indeed, the
1570 	 * transmitter may be active, but if we haven't
1571 	 * filled all the buffers with data then we still
1572 	 * want to accept more.
1573 	 */
1574 	ifp->if_flags &= ~IFF_OACTIVE;
1575 	return;
1576 
1577 indicate_active:
1578 	/*
1579 	 * The transmitter is active, and there are no room for
1580 	 * more outgoing packets in the transmission buffer.
1581 	 */
1582 	ifp->if_flags |= IFF_OACTIVE;
1583 	return;
1584 }
1585 
1586 /*
1587  * Transmission interrupt handler
1588  * The control flow of this function looks silly.  FIXME.
1589  */
1590 void
1591 fe_tint(sc, tstat)
1592 	struct fe_softc *sc;
1593 	u_char tstat;
1594 {
1595 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1596 	int left;
1597 	int col;
1598 
1599 	/*
1600 	 * Handle "excessive collision" interrupt.
1601 	 */
1602 	if (tstat & FE_D0_COLL16) {
1603 		/*
1604 		 * Find how many packets (including this collided one)
1605 		 * are left unsent in transmission buffer.
1606 		 */
1607 		left = inb(sc->sc_iobase + FE_BMPR10);
1608 
1609 #if FE_DEBUG >= 2
1610 		log(LOG_WARNING, "%s: excessive collision (%d/%d)\n",
1611 		    sc->sc_dev.dv_xname, left, sc->txb_sched);
1612 #endif
1613 #if FE_DEBUG >= 3
1614 		fe_dump(LOG_INFO, sc);
1615 #endif
1616 
1617 		/*
1618 		 * Update statistics.
1619 		 */
1620 		ifp->if_collisions += 16;
1621 		ifp->if_oerrors++;
1622 		ifp->if_opackets += sc->txb_sched - left;
1623 
1624 		/*
1625 		 * Collision statistics has been updated.
1626 		 * Clear the collision flag on 86960 now to avoid confusion.
1627 		 */
1628 		outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1629 
1630 		/*
1631 		 * Restart transmitter, skipping the
1632 		 * collided packet.
1633 		 *
1634 		 * We *must* skip the packet to keep network running
1635 		 * properly.  Excessive collision error is an
1636 		 * indication of the network overload.  If we
1637 		 * tried sending the same packet after excessive
1638 		 * collision, the network would be filled with
1639 		 * out-of-time packets.  Packets belonging
1640 		 * to reliable transport (such as TCP) are resent
1641 		 * by some upper layer.
1642 		 */
1643 		outb(sc->sc_iobase + FE_BMPR11,
1644 		    FE_B11_CTRL_SKIP | FE_B11_MODE1);
1645 		sc->txb_sched = left - 1;
1646 	}
1647 
1648 	/*
1649 	 * Handle "transmission complete" interrupt.
1650 	 */
1651 	if (tstat & FE_D0_TXDONE) {
1652 		/*
1653 		 * Add in total number of collisions on last
1654 		 * transmission.  We also clear "collision occurred" flag
1655 		 * here.
1656 		 *
1657 		 * 86960 has a design flow on collision count on multiple
1658 		 * packet transmission.  When we send two or more packets
1659 		 * with one start command (that's what we do when the
1660 		 * transmission queue is clauded), 86960 informs us number
1661 		 * of collisions occured on the last packet on the
1662 		 * transmission only.  Number of collisions on previous
1663 		 * packets are lost.  I have told that the fact is clearly
1664 		 * stated in the Fujitsu document.
1665 		 *
1666 		 * I considered not to mind it seriously.  Collision
1667 		 * count is not so important, anyway.  Any comments?  FIXME.
1668 		 */
1669 
1670 		if (inb(sc->sc_iobase + FE_DLCR0) & FE_D0_COLLID) {
1671 			/* Clear collision flag. */
1672 			outb(sc->sc_iobase + FE_DLCR0, FE_D0_COLLID);
1673 
1674 			/* Extract collision count from 86960. */
1675 			col = inb(sc->sc_iobase + FE_DLCR4) & FE_D4_COL;
1676 			if (col == 0) {
1677 				/*
1678 				 * Status register indicates collisions,
1679 				 * while the collision count is zero.
1680 				 * This can happen after multiple packet
1681 				 * transmission, indicating that one or more
1682 				 * previous packet(s) had been collided.
1683 				 *
1684 				 * Since the accurate number of collisions
1685 				 * has been lost, we just guess it as 1;
1686 				 * Am I too optimistic?  FIXME.
1687 				 */
1688 				col = 1;
1689 			} else
1690 				col >>= FE_D4_COL_SHIFT;
1691 			ifp->if_collisions += col;
1692 #if FE_DEBUG >= 4
1693 			log(LOG_WARNING, "%s: %d collision%s (%d)\n",
1694 			    sc->sc_dev.dv_xname, col, col == 1 ? "" : "s",
1695 			    sc->txb_sched);
1696 #endif
1697 		}
1698 
1699 		/*
1700 		 * Update total number of successfully
1701 		 * transmitted packets.
1702 		 */
1703 		ifp->if_opackets += sc->txb_sched;
1704 		sc->txb_sched = 0;
1705 	}
1706 
1707 	if (sc->txb_sched == 0) {
1708 		/*
1709 		 * The transmitter is no more active.
1710 		 * Reset output active flag and watchdog timer.
1711 		 */
1712 		ifp->if_flags &= ~IFF_OACTIVE;
1713 		ifp->if_timer = 0;
1714 
1715 		/*
1716 		 * If more data is ready to transmit in the buffer, start
1717 		 * transmitting them.  Otherwise keep transmitter idle,
1718 		 * even if more data is queued.  This gives receive
1719 		 * process a slight priority.
1720 		 */
1721 		if (sc->txb_count > 0)
1722 			fe_xmit(sc);
1723 	}
1724 }
1725 
1726 /*
1727  * Ethernet interface receiver interrupt.
1728  */
1729 void
1730 fe_rint(sc, rstat)
1731 	struct fe_softc *sc;
1732 	u_char rstat;
1733 {
1734 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1735 	int len;
1736 	u_char status;
1737 	int i;
1738 
1739 	/*
1740 	 * Update statistics if this interrupt is caused by an error.
1741 	 */
1742 	if (rstat & (FE_D1_OVRFLO | FE_D1_CRCERR |
1743 		     FE_D1_ALGERR | FE_D1_SRTPKT)) {
1744 #if FE_DEBUG >= 3
1745 		log(LOG_WARNING, "%s: receive error: %b\n",
1746 		    sc->sc_dev.dv_xname, rstat, FE_D1_ERRBITS);
1747 #endif
1748 		ifp->if_ierrors++;
1749 	}
1750 
1751 	/*
1752 	 * MB86960 has a flag indicating "receive queue empty."
1753 	 * We just loop cheking the flag to pull out all received
1754 	 * packets.
1755 	 *
1756 	 * We limit the number of iterrations to avoid infinite loop.
1757 	 * It can be caused by a very slow CPU (some broken
1758 	 * peripheral may insert incredible number of wait cycles)
1759 	 * or, worse, by a broken MB86960 chip.
1760 	 */
1761 	for (i = 0; i < FE_MAX_RECV_COUNT; i++) {
1762 		/* Stop the iterration if 86960 indicates no packets. */
1763 		if (inb(sc->sc_iobase + FE_DLCR5) & FE_D5_BUFEMP)
1764 			break;
1765 
1766 		/*
1767 		 * Extract A receive status byte.
1768 		 * As our 86960 is in 16 bit bus access mode, we have to
1769 		 * use inw() to get the status byte.  The significant
1770 		 * value is returned in lower 8 bits.
1771 		 */
1772 		status = (u_char)inw(sc->sc_iobase + FE_BMPR8);
1773 #if FE_DEBUG >= 4
1774 		log(LOG_INFO, "%s: receive status = %02x\n",
1775 		    sc->sc_dev.dv_xname, status);
1776 #endif
1777 
1778 		/*
1779 		 * If there was an error, update statistics and drop
1780 		 * the packet, unless the interface is in promiscuous
1781 		 * mode.
1782 		 */
1783 		if ((status & 0xF0) != 0x20) {	/* XXXX ? */
1784 			if ((ifp->if_flags & IFF_PROMISC) == 0) {
1785 				ifp->if_ierrors++;
1786 				fe_droppacket(sc);
1787 				continue;
1788 			}
1789 		}
1790 
1791 		/*
1792 		 * Extract the packet length.
1793 		 * It is a sum of a header (14 bytes) and a payload.
1794 		 * CRC has been stripped off by the 86960.
1795 		 */
1796 		len = inw(sc->sc_iobase + FE_BMPR8);
1797 
1798 		/*
1799 		 * MB86965 checks the packet length and drop big packet
1800 		 * before passing it to us.  There are no chance we can
1801 		 * get [crufty] packets.  Hence, if the length exceeds
1802 		 * the specified limit, it means some serious failure,
1803 		 * such as out-of-sync on receive buffer management.
1804 		 *
1805 		 * Is this statement true?  FIXME.
1806 		 */
1807 		if (len > ETHER_MAX_LEN || len < ETHER_HDR_SIZE) {
1808 #if FE_DEBUG >= 2
1809 			log(LOG_WARNING,
1810 			    "%s: received a %s packet? (%u bytes)\n",
1811 			    sc->sc_dev.dv_xname,
1812 			    len < ETHER_HDR_SIZE ? "partial" : "big", len);
1813 #endif
1814 			ifp->if_ierrors++;
1815 			fe_droppacket(sc);
1816 			continue;
1817 		}
1818 
1819 		/*
1820 		 * Check for a short (RUNT) packet.  We *do* check
1821 		 * but do nothing other than print a message.
1822 		 * Short packets are illegal, but does nothing bad
1823 		 * if it carries data for upper layer.
1824 		 */
1825 #if FE_DEBUG >= 2
1826 		if (len < ETHER_MIN_LEN) {
1827 			log(LOG_WARNING,
1828 			     "%s: received a short packet? (%u bytes)\n",
1829 			     sc->sc_dev.dv_xname, len);
1830 		}
1831 #endif
1832 
1833 		/*
1834 		 * Go get a packet.
1835 		 */
1836 		if (!fe_get_packet(sc, len)) {
1837 			/* Skip a packet, updating statistics. */
1838 #if FE_DEBUG >= 2
1839 			log(LOG_WARNING,
1840 			    "%s: out of mbufs; dropping packet (%u bytes)\n",
1841 			    sc->sc_dev.dv_xname, len);
1842 #endif
1843 			ifp->if_ierrors++;
1844 			fe_droppacket(sc);
1845 
1846 			/*
1847 			 * We stop receiving packets, even if there are
1848 			 * more in the buffer.  We hope we can get more
1849 			 * mbufs next time.
1850 			 */
1851 			return;
1852 		}
1853 
1854 		/* Successfully received a packet.  Update stat. */
1855 		ifp->if_ipackets++;
1856 	}
1857 }
1858 
1859 /*
1860  * Ethernet interface interrupt processor
1861  */
1862 int
1863 feintr(arg)
1864 	void *arg;
1865 {
1866 	struct fe_softc *sc = arg;
1867 	u_char tstat, rstat;
1868 
1869 #if FE_DEBUG >= 4
1870 	log(LOG_INFO, "%s: feintr()\n", sc->sc_dev.dv_xname);
1871 	fe_dump(LOG_INFO, sc);
1872 #endif
1873 
1874 	/*
1875 	 * Get interrupt conditions, masking unneeded flags.
1876 	 */
1877 	tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1878 	rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1879 	if (tstat == 0 && rstat == 0)
1880 		return (0);
1881 
1882 	/*
1883 	 * Loop until there are no more new interrupt conditions.
1884 	 */
1885 	for (;;) {
1886 		/*
1887 		 * Reset the conditions we are acknowledging.
1888 		 */
1889 		outb(sc->sc_iobase + FE_DLCR0, tstat);
1890 		outb(sc->sc_iobase + FE_DLCR1, rstat);
1891 
1892 		/*
1893 		 * Handle transmitter interrupts. Handle these first because
1894 		 * the receiver will reset the board under some conditions.
1895 		 */
1896 		if (tstat != 0)
1897 			fe_tint(sc, tstat);
1898 
1899 		/*
1900 		 * Handle receiver interrupts.
1901 		 */
1902 		if (rstat != 0)
1903 			fe_rint(sc, rstat);
1904 
1905 		/*
1906 		 * Update the multicast address filter if it is
1907 		 * needed and possible.  We do it now, because
1908 		 * we can make sure the transmission buffer is empty,
1909 		 * and there is a good chance that the receive queue
1910 		 * is empty.  It will minimize the possibility of
1911 		 * packet lossage.
1912 		 */
1913 		if (sc->filter_change &&
1914 		    sc->txb_count == 0 && sc->txb_sched == 0) {
1915 			fe_loadmar(sc);
1916 			sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
1917 		}
1918 
1919 		/*
1920 		 * If it looks like the transmitter can take more data,
1921 		 * attempt to start output on the interface. This is done
1922 		 * after handling the receiver interrupt to give the
1923 		 * receive operation priority.
1924 		 */
1925 		if ((sc->sc_ethercom.ec_if.if_flags & IFF_OACTIVE) == 0)
1926 			fe_start(&sc->sc_ethercom.ec_if);
1927 
1928 #if NRND > 0
1929 		if (rstat != 0 || tstat != 0)
1930 			rnd_add_uint32(&sc->rnd_source, rstat + tstat);
1931 #endif
1932 
1933 		/*
1934 		 * Get interrupt conditions, masking unneeded flags.
1935 		 */
1936 		tstat = inb(sc->sc_iobase + FE_DLCR0) & FE_TMASK;
1937 		rstat = inb(sc->sc_iobase + FE_DLCR1) & FE_RMASK;
1938 		if (tstat == 0 && rstat == 0)
1939 			return (1);
1940 	}
1941 }
1942 
1943 /*
1944  * Process an ioctl request.  This code needs some work - it looks pretty ugly.
1945  */
1946 int
1947 fe_ioctl(ifp, command, data)
1948 	register struct ifnet *ifp;
1949 	u_long command;
1950 	caddr_t data;
1951 {
1952 	struct fe_softc *sc = ifp->if_softc;
1953 	register struct ifaddr *ifa = (struct ifaddr *)data;
1954 	struct ifreq *ifr = (struct ifreq *)data;
1955 	int s, error = 0;
1956 
1957 #if FE_DEBUG >= 3
1958 	log(LOG_INFO, "%s: ioctl(%x)\n", sc->sc_dev.dv_xname, command);
1959 #endif
1960 
1961 	s = splnet();
1962 
1963 	switch (command) {
1964 
1965 	case SIOCSIFADDR:
1966 		ifp->if_flags |= IFF_UP;
1967 
1968 		switch (ifa->ifa_addr->sa_family) {
1969 #ifdef INET
1970 		case AF_INET:
1971 			fe_init(sc);
1972 			arp_ifinit(ifp, ifa);
1973 			break;
1974 #endif
1975 #ifdef NS
1976 		case AF_NS:
1977 		    {
1978 			register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
1979 
1980 			if (ns_nullhost(*ina))
1981 				ina->x_host =
1982 				    *(union ns_host *)(sc->sc_enaddr);
1983 			else {
1984 				bcopy(ina->x_host.c_host, sc->sc_enaddr,
1985 				    ETHER_ADDR_LEN);
1986 				bcopy(ina->x_host.c_host, LLADDR(ifp->if_sadl),
1987 				    ETHER_ADDR_LEN);
1988 			}
1989 			/* Set new address. */
1990 			fe_init(sc);
1991 			break;
1992 		    }
1993 #endif
1994 		default:
1995 			fe_init(sc);
1996 			break;
1997 		}
1998 		break;
1999 
2000 	case SIOCSIFFLAGS:
2001 		if ((ifp->if_flags & IFF_UP) == 0 &&
2002 		    (ifp->if_flags & IFF_RUNNING) != 0) {
2003 			/*
2004 			 * If interface is marked down and it is running, then
2005 			 * stop it.
2006 			 */
2007 			fe_stop(sc);
2008 			ifp->if_flags &= ~IFF_RUNNING;
2009 		} else if ((ifp->if_flags & IFF_UP) != 0 &&
2010 			   (ifp->if_flags & IFF_RUNNING) == 0) {
2011 			/*
2012 			 * If interface is marked up and it is stopped, then
2013 			 * start it.
2014 			 */
2015 			fe_init(sc);
2016 		} else {
2017 			/*
2018 			 * Reset the interface to pick up changes in any other
2019 			 * flags that affect hardware registers.
2020 			 */
2021 			fe_setmode(sc);
2022 		}
2023 #if DEBUG >= 1
2024 		/* "ifconfig fe0 debug" to print register dump. */
2025 		if (ifp->if_flags & IFF_DEBUG) {
2026 			log(LOG_INFO, "%s: SIOCSIFFLAGS(DEBUG)\n", sc->sc_dev.dv_xname);
2027 			fe_dump(LOG_DEBUG, sc);
2028 		}
2029 #endif
2030 		break;
2031 
2032 	case SIOCADDMULTI:
2033 	case SIOCDELMULTI:
2034 		/* Update our multicast list. */
2035 		error = (command == SIOCADDMULTI) ?
2036 		    ether_addmulti(ifr, &sc->sc_ethercom) :
2037 		    ether_delmulti(ifr, &sc->sc_ethercom);
2038 
2039 		if (error == ENETRESET) {
2040 			/*
2041 			 * Multicast list has changed; set the hardware filter
2042 			 * accordingly.
2043 			 */
2044 			fe_setmode(sc);
2045 			error = 0;
2046 		}
2047 		break;
2048 
2049 	default:
2050 		error = EINVAL;
2051 	}
2052 
2053 	splx(s);
2054 	return (error);
2055 }
2056 
2057 /*
2058  * Retreive packet from receive buffer and send to the next level up via
2059  * ether_input(). If there is a BPF listener, give a copy to BPF, too.
2060  * Returns 0 if success, -1 if error (i.e., mbuf allocation failure).
2061  */
2062 int
2063 fe_get_packet(sc, len)
2064 	struct fe_softc *sc;
2065 	int len;
2066 {
2067 	struct ether_header *eh;
2068 	struct mbuf *m;
2069 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2070 
2071 	/* Allocate a header mbuf. */
2072 	MGETHDR(m, M_DONTWAIT, MT_DATA);
2073 	if (m == 0)
2074 		return (0);
2075 	m->m_pkthdr.rcvif = ifp;
2076 	m->m_pkthdr.len = len;
2077 
2078 	/* The following silliness is to make NFS happy. */
2079 #define	EROUND	((sizeof(struct ether_header) + 3) & ~3)
2080 #define	EOFF	(EROUND - sizeof(struct ether_header))
2081 
2082 	/*
2083 	 * Our strategy has one more problem.  There is a policy on
2084 	 * mbuf cluster allocation.  It says that we must have at
2085 	 * least MINCLSIZE (208 bytes) to allocate a cluster.  For a
2086 	 * packet of a size between (MHLEN - 2) to (MINCLSIZE - 2),
2087 	 * our code violates the rule...
2088 	 * On the other hand, the current code is short, simle,
2089 	 * and fast, however.  It does no harmful thing, just waists
2090 	 * some memory.  Any comments?  FIXME.
2091 	 */
2092 
2093 	/* Attach a cluster if this packet doesn't fit in a normal mbuf. */
2094 	if (len > MHLEN - EOFF) {
2095 		MCLGET(m, M_DONTWAIT);
2096 		if ((m->m_flags & M_EXT) == 0) {
2097 			m_freem(m);
2098 			return (0);
2099 		}
2100 	}
2101 
2102 	/*
2103 	 * The following assumes there is room for the ether header in the
2104 	 * header mbuf.
2105 	 */
2106 	m->m_data += EOFF;
2107 	eh = mtod(m, struct ether_header *);
2108 
2109 	/* Set the length of this packet. */
2110 	m->m_len = len;
2111 
2112 	/* Get a packet. */
2113 	insw(sc->sc_iobase + FE_BMPR8, m->m_data, (len + 1) >> 1);
2114 
2115 #if NBPFILTER > 0
2116 	/*
2117 	 * Check if there's a BPF listener on this interface.  If so, hand off
2118 	 * the raw packet to bpf.
2119 	 */
2120 	if (ifp->if_bpf) {
2121 		bpf_mtap(ifp->if_bpf, m);
2122 
2123 		/*
2124 		 * Note that the interface cannot be in promiscuous mode if
2125 		 * there are no BPF listeners.  And if we are in promiscuous
2126 		 * mode, we have to check if this packet is really ours.
2127 		 */
2128 		if ((ifp->if_flags & IFF_PROMISC) != 0 &&
2129 		    (eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
2130 	  	    bcmp(eh->ether_dhost, sc->sc_enaddr,
2131 			    sizeof(eh->ether_dhost)) != 0) {
2132 			m_freem(m);
2133 			return (1);
2134 		}
2135 	}
2136 #endif
2137 
2138 	/* Fix up data start offset in mbuf to point past ether header. */
2139 	m_adj(m, sizeof(struct ether_header));
2140 	ether_input(ifp, eh, m);
2141 	return (1);
2142 }
2143 
2144 /*
2145  * Write an mbuf chain to the transmission buffer memory using 16 bit PIO.
2146  * Returns number of bytes actually written, including length word.
2147  *
2148  * If an mbuf chain is too long for an Ethernet frame, it is not sent.
2149  * Packets shorter than Ethernet minimum are legal, and we pad them
2150  * before sending out.  An exception is "partial" packets which are
2151  * shorter than mandatory Ethernet header.
2152  *
2153  * I wrote a code for an experimental "delayed padding" technique.
2154  * When employed, it postpones the padding process for short packets.
2155  * If xmit() occured at the moment, the padding process is omitted, and
2156  * garbages are sent as pad data.  If next packet is stored in the
2157  * transmission buffer before xmit(), write_mbuf() pads the previous
2158  * packet before transmitting new packet.  This *may* gain the
2159  * system performance (slightly).
2160  */
2161 void
2162 fe_write_mbufs(sc, m)
2163 	struct fe_softc *sc;
2164 	struct mbuf *m;
2165 {
2166 	int bmpr8 = sc->sc_iobase + FE_BMPR8;
2167 	u_char *data;
2168 	u_short savebyte;	/* WARNING: Architecture dependent! */
2169 	int totlen, len, wantbyte;
2170 
2171 	/* XXX thorpej 960116 - quiet bogus compiler warning. */
2172 	savebyte = 0;
2173 
2174 #if FE_DELAYED_PADDING
2175 	/* Do the "delayed padding." */
2176 	len = sc->txb_padding >> 1;
2177 	if (len > 0) {
2178 		while (--len >= 0)
2179 			outw(bmpr8, 0);
2180 		sc->txb_padding = 0;
2181 	}
2182 #endif
2183 
2184 	/* We need to use m->m_pkthdr.len, so require the header */
2185 	if ((m->m_flags & M_PKTHDR) == 0)
2186 	  	panic("fe_write_mbufs: no header mbuf");
2187 
2188 #if FE_DEBUG >= 2
2189 	/* First, count up the total number of bytes to copy. */
2190 	for (totlen = 0, mp = m; mp != 0; mp = mp->m_next)
2191 		totlen += mp->m_len;
2192 	/* Check if this matches the one in the packet header. */
2193 	if (totlen != m->m_pkthdr.len)
2194 		log(LOG_WARNING, "%s: packet length mismatch? (%d/%d)\n",
2195 		    sc->sc_dev.dv_xname, totlen, m->m_pkthdr.len);
2196 #else
2197 	/* Just use the length value in the packet header. */
2198 	totlen = m->m_pkthdr.len;
2199 #endif
2200 
2201 #if FE_DEBUG >= 1
2202 	/*
2203 	 * Should never send big packets.  If such a packet is passed,
2204 	 * it should be a bug of upper layer.  We just ignore it.
2205 	 * ... Partial (too short) packets, neither.
2206 	 */
2207 	if (totlen > ETHER_MAX_LEN || totlen < ETHER_HDR_SIZE) {
2208 		log(LOG_ERR, "%s: got a %s packet (%u bytes) to send\n",
2209 		    sc->sc_dev.dv_xname,
2210 		    totlen < ETHER_HDR_SIZE ? "partial" : "big", totlen);
2211 		sc->sc_ethercom.ec_if.if_oerrors++;
2212 		return;
2213 	}
2214 #endif
2215 
2216 	/*
2217 	 * Put the length word for this frame.
2218 	 * Does 86960 accept odd length?  -- Yes.
2219 	 * Do we need to pad the length to minimum size by ourselves?
2220 	 * -- Generally yes.  But for (or will be) the last
2221 	 * packet in the transmission buffer, we can skip the
2222 	 * padding process.  It may gain performance slightly.  FIXME.
2223 	 */
2224 	outw(bmpr8, max(totlen, ETHER_MIN_LEN));
2225 
2226 	/*
2227 	 * Update buffer status now.
2228 	 * Truncate the length up to an even number, since we use outw().
2229 	 */
2230 	totlen = (totlen + 1) & ~1;
2231 	sc->txb_free -= FE_DATA_LEN_LEN + max(totlen, ETHER_MIN_LEN);
2232 	sc->txb_count++;
2233 
2234 #if FE_DELAYED_PADDING
2235 	/* Postpone the packet padding if necessary. */
2236 	if (totlen < ETHER_MIN_LEN)
2237 		sc->txb_padding = ETHER_MIN_LEN - totlen;
2238 #endif
2239 
2240 	/*
2241 	 * Transfer the data from mbuf chain to the transmission buffer.
2242 	 * MB86960 seems to require that data be transferred as words, and
2243 	 * only words.  So that we require some extra code to patch
2244 	 * over odd-length mbufs.
2245 	 */
2246 	wantbyte = 0;
2247 	for (; m != 0; m = m->m_next) {
2248 		/* Ignore empty mbuf. */
2249 		len = m->m_len;
2250 		if (len == 0)
2251 			continue;
2252 
2253 		/* Find the actual data to send. */
2254 		data = mtod(m, caddr_t);
2255 
2256 		/* Finish the last byte. */
2257 		if (wantbyte) {
2258 			outw(bmpr8, savebyte | (*data << 8));
2259 			data++;
2260 			len--;
2261 			wantbyte = 0;
2262 		}
2263 
2264 		/* Output contiguous words. */
2265 		if (len > 1)
2266 			outsw(bmpr8, data, len >> 1);
2267 
2268 		/* Save remaining byte, if there is one. */
2269 		if (len & 1) {
2270 			data += len & ~1;
2271 			savebyte = *data;
2272 			wantbyte = 1;
2273 		}
2274 	}
2275 
2276 	/* Spit the last byte, if the length is odd. */
2277 	if (wantbyte)
2278 		outw(bmpr8, savebyte);
2279 
2280 #if ! FE_DELAYED_PADDING
2281 	/*
2282 	 * Pad the packet to the minimum length if necessary.
2283 	 */
2284 	len = (ETHER_MIN_LEN >> 1) - (totlen >> 1);
2285 	while (--len >= 0)
2286 		outw(bmpr8, 0);
2287 #endif
2288 }
2289 
2290 /*
2291  * Compute the multicast address filter from the
2292  * list of multicast addresses we need to listen to.
2293  */
2294 void
2295 fe_getmcaf(ec, af)
2296 	struct ethercom *ec;
2297 	u_char *af;
2298 {
2299 	struct ifnet *ifp = &ec->ec_if;
2300 	struct ether_multi *enm;
2301 	register u_char *cp, c;
2302 	register u_long crc;
2303 	register int i, len;
2304 	struct ether_multistep step;
2305 
2306 	/*
2307 	 * Set up multicast address filter by passing all multicast addresses
2308 	 * through a crc generator, and then using the high order 6 bits as an
2309 	 * index into the 64 bit logical address filter.  The high order bit
2310 	 * selects the word, while the rest of the bits select the bit within
2311 	 * the word.
2312 	 */
2313 
2314 	if ((ifp->if_flags & IFF_PROMISC) != 0)
2315 		goto allmulti;
2316 
2317 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0x00;
2318 	ETHER_FIRST_MULTI(step, ec, enm);
2319 	while (enm != NULL) {
2320 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
2321 		    sizeof(enm->enm_addrlo)) != 0) {
2322 			/*
2323 			 * We must listen to a range of multicast addresses.
2324 			 * For now, just accept all multicasts, rather than
2325 			 * trying to set only those filter bits needed to match
2326 			 * the range.  (At this time, the only use of address
2327 			 * ranges is for IP multicast routing, for which the
2328 			 * range is big enough to require all bits set.)
2329 			 */
2330 			goto allmulti;
2331 		}
2332 
2333 		cp = enm->enm_addrlo;
2334 		crc = 0xffffffff;
2335 		for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
2336 			c = *cp++;
2337 			for (i = 8; --i >= 0;) {
2338 				if ((crc & 0x01) ^ (c & 0x01)) {
2339 					crc >>= 1;
2340 					crc ^= 0xedb88320;
2341 				} else
2342 					crc >>= 1;
2343 				c >>= 1;
2344 			}
2345 		}
2346 		/* Just want the 6 most significant bits. */
2347 		crc >>= 26;
2348 
2349 		/* Turn on the corresponding bit in the filter. */
2350 		af[crc >> 3] |= 1 << (crc & 7);
2351 
2352 		ETHER_NEXT_MULTI(step, enm);
2353 	}
2354 	ifp->if_flags &= ~IFF_ALLMULTI;
2355 	return;
2356 
2357 allmulti:
2358 	ifp->if_flags |= IFF_ALLMULTI;
2359 	af[0] = af[1] = af[2] = af[3] = af[4] = af[5] = af[6] = af[7] = 0xff;
2360 }
2361 
2362 /*
2363  * Calculate a new "multicast packet filter" and put the 86960
2364  * receiver in appropriate mode.
2365  */
2366 void
2367 fe_setmode(sc)
2368 	struct fe_softc *sc;
2369 {
2370 	int flags = sc->sc_ethercom.ec_if.if_flags;
2371 
2372 	/*
2373 	 * If the interface is not running, we postpone the update
2374 	 * process for receive modes and multicast address filter
2375 	 * until the interface is restarted.  It reduces some
2376 	 * complicated job on maintaining chip states.  (Earlier versions
2377 	 * of this driver had a bug on that point...)
2378 	 *
2379 	 * To complete the trick, fe_init() calls fe_setmode() after
2380 	 * restarting the interface.
2381 	 */
2382 	if ((flags & IFF_RUNNING) == 0)
2383 		return;
2384 
2385 	/*
2386 	 * Promiscuous mode is handled separately.
2387 	 */
2388 	if ((flags & IFF_PROMISC) != 0) {
2389 		/*
2390 		 * Program 86960 to receive all packets on the segment
2391 		 * including those directed to other stations.
2392 		 * Multicast filter stored in MARs are ignored
2393 		 * under this setting, so we don't need to update it.
2394 		 *
2395 		 * Promiscuous mode is used solely by BPF, and BPF only
2396 		 * listens to valid (no error) packets.  So, we ignore
2397 		 * errornous ones even in this mode.
2398 		 */
2399 		outb(sc->sc_iobase + FE_DLCR5,
2400 		    sc->proto_dlcr5 | FE_D5_AFM0 | FE_D5_AFM1);
2401 		sc->filter_change = 0;
2402 
2403 #if FE_DEBUG >= 3
2404 		log(LOG_INFO, "%s: promiscuous mode\n", sc->sc_dev.dv_xname);
2405 #endif
2406 		return;
2407 	}
2408 
2409 	/*
2410 	 * Turn the chip to the normal (non-promiscuous) mode.
2411 	 */
2412 	outb(sc->sc_iobase + FE_DLCR5, sc->proto_dlcr5 | FE_D5_AFM1);
2413 
2414 	/*
2415 	 * Find the new multicast filter value.
2416 	 */
2417 	fe_getmcaf(&sc->sc_ethercom, sc->filter);
2418 	sc->filter_change = 1;
2419 
2420 #if FE_DEBUG >= 3
2421 	log(LOG_INFO,
2422 	    "%s: address filter: [%02x %02x %02x %02x %02x %02x %02x %02x]\n",
2423 	    sc->sc_dev.dv_xname,
2424 	    sc->filter[0], sc->filter[1], sc->filter[2], sc->filter[3],
2425 	    sc->filter[4], sc->filter[5], sc->filter[6], sc->filter[7]);
2426 #endif
2427 
2428 	/*
2429 	 * We have to update the multicast filter in the 86960, A.S.A.P.
2430 	 *
2431 	 * Note that the DLC (Data Linc Control unit, i.e. transmitter
2432 	 * and receiver) must be stopped when feeding the filter, and
2433 	 * DLC trushes all packets in both transmission and receive
2434 	 * buffers when stopped.
2435 	 *
2436 	 * ... Are the above sentenses correct?  I have to check the
2437 	 *     manual of the MB86960A.  FIXME.
2438 	 *
2439 	 * To reduce the packet lossage, we delay the filter update
2440 	 * process until buffers are empty.
2441 	 */
2442 	if (sc->txb_sched == 0 && sc->txb_count == 0 &&
2443 	    (inb(sc->sc_iobase + FE_DLCR1) & FE_D1_PKTRDY) == 0) {
2444 		/*
2445 		 * Buffers are (apparently) empty.  Load
2446 		 * the new filter value into MARs now.
2447 		 */
2448 		fe_loadmar(sc);
2449 	} else {
2450 		/*
2451 		 * Buffers are not empty.  Mark that we have to update
2452 		 * the MARs.  The new filter will be loaded by feintr()
2453 		 * later.
2454 		 */
2455 #if FE_DEBUG >= 4
2456 		log(LOG_INFO, "%s: filter change delayed\n", sc->sc_dev.dv_xname);
2457 #endif
2458 	}
2459 }
2460 
2461 /*
2462  * Load a new multicast address filter into MARs.
2463  *
2464  * The caller must have splnet'ed befor fe_loadmar.
2465  * This function starts the DLC upon return.  So it can be called only
2466  * when the chip is working, i.e., from the driver's point of view, when
2467  * a device is RUNNING.  (I mistook the point in previous versions.)
2468  */
2469 void
2470 fe_loadmar(sc)
2471 	struct fe_softc *sc;
2472 {
2473 
2474 	/* Stop the DLC (transmitter and receiver). */
2475 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_DISABLE);
2476 
2477 	/* Select register bank 1 for MARs. */
2478 	outb(sc->sc_iobase + FE_DLCR7,
2479 	    sc->proto_dlcr7 | FE_D7_RBS_MAR | FE_D7_POWER_UP);
2480 
2481 	/* Copy filter value into the registers. */
2482 	outblk(sc->sc_iobase + FE_MAR8, sc->filter, FE_FILTER_LEN);
2483 
2484 	/* Restore the bank selection for BMPRs (i.e., runtime registers). */
2485 	outb(sc->sc_iobase + FE_DLCR7,
2486 	    sc->proto_dlcr7 | FE_D7_RBS_BMPR | FE_D7_POWER_UP);
2487 
2488 	/* Restart the DLC. */
2489 	outb(sc->sc_iobase + FE_DLCR6, sc->proto_dlcr6 | FE_D6_DLC_ENABLE);
2490 
2491 	/* We have just updated the filter. */
2492 	sc->filter_change = 0;
2493 
2494 #if FE_DEBUG >= 3
2495 	log(LOG_INFO, "%s: address filter changed\n", sc->sc_dev.dv_xname);
2496 #endif
2497 }
2498 
2499 #if FE_DEBUG >= 1
2500 void
2501 fe_dump(level, sc)
2502 	int level;
2503 	struct fe_softc *sc;
2504 {
2505 	int iobase = sc->sc_iobase;
2506 	u_char save_dlcr7;
2507 
2508 	save_dlcr7 = inb(iobase + FE_DLCR7);
2509 
2510 	log(level, "\tDLCR = %02x %02x %02x %02x %02x %02x %02x %02x",
2511 	    inb(iobase + FE_DLCR0),  inb(iobase + FE_DLCR1),
2512 	    inb(iobase + FE_DLCR2),  inb(iobase + FE_DLCR3),
2513 	    inb(iobase + FE_DLCR4),  inb(iobase + FE_DLCR5),
2514 	    inb(iobase + FE_DLCR6),  inb(iobase + FE_DLCR7));
2515 
2516 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_DLCR);
2517 	log(level, "\t       %02x %02x %02x %02x %02x %02x %02x %02x,",
2518 	    inb(iobase + FE_DLCR8),  inb(iobase + FE_DLCR9),
2519 	    inb(iobase + FE_DLCR10), inb(iobase + FE_DLCR11),
2520 	    inb(iobase + FE_DLCR12), inb(iobase + FE_DLCR13),
2521 	    inb(iobase + FE_DLCR14), inb(iobase + FE_DLCR15));
2522 
2523 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_MAR);
2524 	log(level, "\tMAR  = %02x %02x %02x %02x %02x %02x %02x %02x,",
2525 	    inb(iobase + FE_MAR8),   inb(iobase + FE_MAR9),
2526 	    inb(iobase + FE_MAR10),  inb(iobase + FE_MAR11),
2527 	    inb(iobase + FE_MAR12),  inb(iobase + FE_MAR13),
2528 	    inb(iobase + FE_MAR14),  inb(iobase + FE_MAR15));
2529 
2530 	outb(iobase + FE_DLCR7, (save_dlcr7 & ~FE_D7_RBS) | FE_D7_RBS_BMPR);
2531 	log(level, "\tBMPR = xx xx %02x %02x %02x %02x %02x %02x %02x %02x xx %02x.",
2532 	    inb(iobase + FE_BMPR10), inb(iobase + FE_BMPR11),
2533 	    inb(iobase + FE_BMPR12), inb(iobase + FE_BMPR13),
2534 	    inb(iobase + FE_BMPR14), inb(iobase + FE_BMPR15),
2535 	    inb(iobase + FE_BMPR16), inb(iobase + FE_BMPR17),
2536 	    inb(iobase + FE_BMPR19));
2537 
2538 	outb(iobase + FE_DLCR7, save_dlcr7);
2539 }
2540 #endif
2541