1 /* $NetBSD: ess.c,v 1.50 2000/02/07 22:07:31 thorpej Exp $ */ 2 3 /* 4 * Copyright 1997 5 * Digital Equipment Corporation. All rights reserved. 6 * 7 * This software is furnished under license and may be used and 8 * copied only in accordance with the following terms and conditions. 9 * Subject to these conditions, you may download, copy, install, 10 * use, modify and distribute this software in source and/or binary 11 * form. No title or ownership is transferred hereby. 12 * 13 * 1) Any source code used, modified or distributed must reproduce 14 * and retain this copyright notice and list of conditions as 15 * they appear in the source file. 16 * 17 * 2) No right is granted to use any trade name, trademark, or logo of 18 * Digital Equipment Corporation. Neither the "Digital Equipment 19 * Corporation" name nor any trademark or logo of Digital Equipment 20 * Corporation may be used to endorse or promote products derived 21 * from this software without the prior written permission of 22 * Digital Equipment Corporation. 23 * 24 * 3) This software is provided "AS-IS" and any express or implied 25 * warranties, including but not limited to, any implied warranties 26 * of merchantability, fitness for a particular purpose, or 27 * non-infringement are disclaimed. In no event shall DIGITAL be 28 * liable for any damages whatsoever, and in particular, DIGITAL 29 * shall not be liable for special, indirect, consequential, or 30 * incidental damages or damages for lost profits, loss of 31 * revenue or loss of use, whether such damages arise in contract, 32 * negligence, tort, under statute, in equity, at law or otherwise, 33 * even if advised of the possibility of such damage. 34 */ 35 36 /* 37 **++ 38 ** 39 ** ess.c 40 ** 41 ** FACILITY: 42 ** 43 ** DIGITAL Network Appliance Reference Design (DNARD) 44 ** 45 ** MODULE DESCRIPTION: 46 ** 47 ** This module contains the device driver for the ESS 48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was 49 ** used as a reference point when implementing this driver. 50 ** 51 ** AUTHORS: 52 ** 53 ** Blair Fidler Software Engineering Australia 54 ** Gold Coast, Australia. 55 ** 56 ** CREATION DATE: 57 ** 58 ** March 10, 1997. 59 ** 60 ** MODIFICATION HISTORY: 61 ** 62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for 63 ** bus_dma, changes to audio interface, and many bug fixes. 64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum. 65 **-- 66 */ 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/errno.h> 71 #include <sys/ioctl.h> 72 #include <sys/syslog.h> 73 #include <sys/device.h> 74 #include <sys/proc.h> 75 #include <sys/kernel.h> 76 77 #include <machine/cpu.h> 78 #include <machine/intr.h> 79 #include <machine/bus.h> 80 81 #include <sys/audioio.h> 82 #include <dev/audio_if.h> 83 #include <dev/auconv.h> 84 #include <dev/mulaw.h> 85 86 #include <dev/isa/isavar.h> 87 #include <dev/isa/isadmavar.h> 88 89 #include <dev/isa/essvar.h> 90 #include <dev/isa/essreg.h> 91 92 #ifdef AUDIO_DEBUG 93 #define DPRINTF(x) if (essdebug) printf x 94 #define DPRINTFN(n,x) if (essdebug>(n)) printf x 95 int essdebug = 0; 96 #else 97 #define DPRINTF(x) 98 #define DPRINTFN(n,x) 99 #endif 100 101 #if 0 102 unsigned uuu; 103 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu) 104 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d)) 105 #else 106 #define EREAD1(t, h, a) bus_space_read_1(t, h, a) 107 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d) 108 #endif 109 110 111 int ess_setup_sc __P((struct ess_softc *, int)); 112 113 int ess_open __P((void *, int)); 114 void ess_1788_close __P((void *)); 115 void ess_1888_close __P((void *)); 116 int ess_getdev __P((void *, struct audio_device *)); 117 int ess_drain __P((void *)); 118 119 int ess_query_encoding __P((void *, struct audio_encoding *)); 120 121 int ess_set_params __P((void *, int, int, struct audio_params *, 122 struct audio_params *)); 123 124 int ess_round_blocksize __P((void *, int)); 125 126 int ess_audio1_trigger_output __P((void *, void *, void *, int, 127 void (*)(void *), void *, struct audio_params *)); 128 int ess_audio2_trigger_output __P((void *, void *, void *, int, 129 void (*)(void *), void *, struct audio_params *)); 130 int ess_audio1_trigger_input __P((void *, void *, void *, int, 131 void (*)(void *), void *, struct audio_params *)); 132 int ess_audio1_halt __P((void *)); 133 int ess_audio2_halt __P((void *)); 134 int ess_audio1_intr __P((void *)); 135 int ess_audio2_intr __P((void *)); 136 void ess_audio1_poll __P((void *)); 137 void ess_audio2_poll __P((void *)); 138 139 int ess_speaker_ctl __P((void *, int)); 140 141 int ess_getdev __P((void *, struct audio_device *)); 142 143 int ess_set_port __P((void *, mixer_ctrl_t *)); 144 int ess_get_port __P((void *, mixer_ctrl_t *)); 145 146 void *ess_malloc __P((void *, int, size_t, int, int)); 147 void ess_free __P((void *, void *, int)); 148 size_t ess_round_buffersize __P((void *, int, size_t)); 149 int ess_mappage __P((void *, void *, int, int)); 150 151 152 int ess_query_devinfo __P((void *, mixer_devinfo_t *)); 153 int ess_1788_get_props __P((void *)); 154 int ess_1888_get_props __P((void *)); 155 156 void ess_speaker_on __P((struct ess_softc *)); 157 void ess_speaker_off __P((struct ess_softc *)); 158 159 int ess_config_addr __P((struct ess_softc *)); 160 void ess_config_irq __P((struct ess_softc *)); 161 void ess_config_drq __P((struct ess_softc *)); 162 void ess_setup __P((struct ess_softc *)); 163 int ess_identify __P((struct ess_softc *)); 164 165 int ess_reset __P((struct ess_softc *)); 166 void ess_set_gain __P((struct ess_softc *, int, int)); 167 int ess_set_in_port __P((struct ess_softc *, int)); 168 int ess_set_in_ports __P((struct ess_softc *, int)); 169 u_int ess_srtotc __P((u_int)); 170 u_int ess_srtofc __P((u_int)); 171 u_char ess_get_dsp_status __P((struct ess_softc *)); 172 u_char ess_dsp_read_ready __P((struct ess_softc *)); 173 u_char ess_dsp_write_ready __P((struct ess_softc *)); 174 int ess_rdsp __P((struct ess_softc *)); 175 int ess_wdsp __P((struct ess_softc *, u_char)); 176 u_char ess_read_x_reg __P((struct ess_softc *, u_char)); 177 int ess_write_x_reg __P((struct ess_softc *, u_char, u_char)); 178 void ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char)); 179 void ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char)); 180 u_char ess_read_mix_reg __P((struct ess_softc *, u_char)); 181 void ess_write_mix_reg __P((struct ess_softc *, u_char, u_char)); 182 void ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char)); 183 void ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char)); 184 void ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t)); 185 186 static char *essmodel[] = { 187 "unsupported", 188 "1888", 189 "1887", 190 "888", 191 "1788", 192 "1869", 193 "1879", 194 "1868", 195 "1878", 196 }; 197 198 struct audio_device ess_device = { 199 "ESS Technology", 200 "x", 201 "ess" 202 }; 203 204 /* 205 * Define our interface to the higher level audio driver. 206 */ 207 208 struct audio_hw_if ess_1788_hw_if = { 209 ess_open, 210 ess_1788_close, 211 ess_drain, 212 ess_query_encoding, 213 ess_set_params, 214 ess_round_blocksize, 215 NULL, 216 NULL, 217 NULL, 218 NULL, 219 NULL, 220 ess_audio1_halt, 221 ess_audio1_halt, 222 ess_speaker_ctl, 223 ess_getdev, 224 NULL, 225 ess_set_port, 226 ess_get_port, 227 ess_query_devinfo, 228 ess_malloc, 229 ess_free, 230 ess_round_buffersize, 231 ess_mappage, 232 ess_1788_get_props, 233 ess_audio1_trigger_output, 234 ess_audio1_trigger_input, 235 }; 236 237 struct audio_hw_if ess_1888_hw_if = { 238 ess_open, 239 ess_1888_close, 240 ess_drain, 241 ess_query_encoding, 242 ess_set_params, 243 ess_round_blocksize, 244 NULL, 245 NULL, 246 NULL, 247 NULL, 248 NULL, 249 ess_audio2_halt, 250 ess_audio1_halt, 251 ess_speaker_ctl, 252 ess_getdev, 253 NULL, 254 ess_set_port, 255 ess_get_port, 256 ess_query_devinfo, 257 ess_malloc, 258 ess_free, 259 ess_round_buffersize, 260 ess_mappage, 261 ess_1888_get_props, 262 ess_audio2_trigger_output, 263 ess_audio1_trigger_input, 264 }; 265 266 #ifdef AUDIO_DEBUG 267 void ess_printsc __P((struct ess_softc *)); 268 void ess_dump_mixer __P((struct ess_softc *)); 269 270 void 271 ess_printsc(sc) 272 struct ess_softc *sc; 273 { 274 int i; 275 276 printf("open %d iobase 0x%x outport %u inport %u speaker %s\n", 277 (int)sc->sc_open, sc->sc_iobase, sc->out_port, 278 sc->in_port, sc->spkr_state ? "on" : "off"); 279 280 printf("audio1: dmachan %d irq %d nintr %lu intr %p arg %p\n", 281 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr, 282 sc->sc_audio1.intr, sc->sc_audio1.arg); 283 284 if (!ESS_USE_AUDIO1(sc->sc_model)) { 285 printf("audio2: dmachan %d irq %d nintr %lu intr %p arg %p\n", 286 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr, 287 sc->sc_audio2.intr, sc->sc_audio2.arg); 288 } 289 290 printf("gain:"); 291 for (i = 0; i < sc->ndevs; i++) 292 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]); 293 printf("\n"); 294 } 295 296 void 297 ess_dump_mixer(sc) 298 struct ess_softc *sc; 299 { 300 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 301 0x7C, ess_read_mix_reg(sc, 0x7C)); 302 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 303 0x1A, ess_read_mix_reg(sc, 0x1A)); 304 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 305 0x3E, ess_read_mix_reg(sc, 0x3E)); 306 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 307 0x36, ess_read_mix_reg(sc, 0x36)); 308 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 309 0x38, ess_read_mix_reg(sc, 0x38)); 310 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 311 0x3A, ess_read_mix_reg(sc, 0x3A)); 312 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n", 313 0x32, ess_read_mix_reg(sc, 0x32)); 314 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n", 315 0x3C, ess_read_mix_reg(sc, 0x3C)); 316 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n", 317 0x69, ess_read_mix_reg(sc, 0x69)); 318 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n", 319 0x68, ess_read_mix_reg(sc, 0x68)); 320 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n", 321 0x6E, ess_read_mix_reg(sc, 0x6E)); 322 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n", 323 0x6B, ess_read_mix_reg(sc, 0x6B)); 324 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n", 325 0x6A, ess_read_mix_reg(sc, 0x6A)); 326 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n", 327 0x6C, ess_read_mix_reg(sc, 0x6C)); 328 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n", 329 0xB4, ess_read_x_reg(sc, 0xB4)); 330 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n", 331 0x14, ess_read_mix_reg(sc, 0x14)); 332 333 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n", 334 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL)); 335 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n", 336 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL)); 337 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n", 338 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE), 339 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2)); 340 } 341 342 #endif 343 344 /* 345 * Configure the ESS chip for the desired audio base address. 346 */ 347 int 348 ess_config_addr(sc) 349 struct ess_softc *sc; 350 { 351 int iobase = sc->sc_iobase; 352 bus_space_tag_t iot = sc->sc_iot; 353 354 /* 355 * Configure using the System Control Register method. This 356 * method is used when the AMODE line is tied high, which is 357 * the case for the Shark, but not for the evaluation board. 358 */ 359 360 bus_space_handle_t scr_access_ioh; 361 bus_space_handle_t scr_ioh; 362 u_short scr_value; 363 364 /* 365 * Set the SCR bit to enable audio. 366 */ 367 scr_value = ESS_SCR_AUDIO_ENABLE; 368 369 /* 370 * Set the SCR bits necessary to select the specified audio 371 * base address. 372 */ 373 switch(iobase) { 374 case 0x220: 375 scr_value |= ESS_SCR_AUDIO_220; 376 break; 377 case 0x230: 378 scr_value |= ESS_SCR_AUDIO_230; 379 break; 380 case 0x240: 381 scr_value |= ESS_SCR_AUDIO_240; 382 break; 383 case 0x250: 384 scr_value |= ESS_SCR_AUDIO_250; 385 break; 386 default: 387 printf("ess: configured iobase 0x%x invalid\n", iobase); 388 return (1); 389 break; 390 } 391 392 /* 393 * Get a mapping for the System Control Register (SCR) access 394 * registers and the SCR data registers. 395 */ 396 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS, 397 0, &scr_access_ioh)) { 398 printf("ess: can't map SCR access registers\n"); 399 return (1); 400 } 401 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS, 402 0, &scr_ioh)) { 403 printf("ess: can't map SCR registers\n"); 404 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 405 return (1); 406 } 407 408 /* Unlock the SCR. */ 409 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0); 410 411 /* Write the base address information into SCR[0]. */ 412 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0); 413 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value); 414 415 /* Lock the SCR. */ 416 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0); 417 418 /* Unmap the SCR access ports and the SCR data ports. */ 419 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 420 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS); 421 422 return 0; 423 } 424 425 426 /* 427 * Configure the ESS chip for the desired IRQ and DMA channels. 428 * ESS ISA 429 * -------- 430 * IRQA irq9 431 * IRQB irq5 432 * IRQC irq7 433 * IRQD irq10 434 * IRQE irq15 435 * 436 * DRQA drq0 437 * DRQB drq1 438 * DRQC drq3 439 * DRQD drq5 440 */ 441 void 442 ess_config_irq(sc) 443 struct ess_softc *sc; 444 { 445 int v; 446 447 DPRINTFN(2,("ess_config_irq\n")); 448 449 if (sc->sc_model == ESS_1887 && 450 sc->sc_audio1.irq == sc->sc_audio2.irq && 451 sc->sc_audio1.irq != -1) { 452 /* Use new method, both interrupts are the same. */ 453 v = ESS_IS_SELECT_IRQ; /* enable intrs */ 454 switch (sc->sc_audio1.irq) { 455 case 5: 456 v |= ESS_IS_INTRB; 457 break; 458 case 7: 459 v |= ESS_IS_INTRC; 460 break; 461 case 9: 462 v |= ESS_IS_INTRA; 463 break; 464 case 10: 465 v |= ESS_IS_INTRD; 466 break; 467 case 15: 468 v |= ESS_IS_INTRE; 469 break; 470 #ifdef DIAGNOSTIC 471 default: 472 printf("ess_config_irq: configured irq %d not supported for Audio 1\n", 473 sc->sc_audio1.irq); 474 return; 475 #endif 476 } 477 /* Set the IRQ */ 478 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v); 479 return; 480 } 481 482 if (sc->sc_model == ESS_1887) { 483 /* Tell the 1887 to use the old interrupt method. */ 484 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888); 485 } 486 487 if (sc->sc_audio1.polled) { 488 /* Turn off Audio1 interrupts. */ 489 v = 0; 490 } else { 491 /* Configure Audio 1 for the appropriate IRQ line. */ 492 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */ 493 switch (sc->sc_audio1.irq) { 494 case 5: 495 v |= ESS_IRQ_CTRL_INTRB; 496 break; 497 case 7: 498 v |= ESS_IRQ_CTRL_INTRC; 499 break; 500 case 9: 501 v |= ESS_IRQ_CTRL_INTRA; 502 break; 503 case 10: 504 v |= ESS_IRQ_CTRL_INTRD; 505 break; 506 #ifdef DIAGNOSTIC 507 default: 508 printf("ess: configured irq %d not supported for Audio 1\n", 509 sc->sc_audio1.irq); 510 return; 511 #endif 512 } 513 } 514 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v); 515 516 if (ESS_USE_AUDIO1(sc->sc_model)) 517 return; 518 519 if (sc->sc_audio2.polled) { 520 /* Turn off Audio2 interrupts. */ 521 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 522 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 523 } else { 524 /* Audio2 is hardwired to INTRE in this mode. */ 525 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 526 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 527 } 528 } 529 530 531 void 532 ess_config_drq(sc) 533 struct ess_softc *sc; 534 { 535 int v; 536 537 DPRINTFN(2,("ess_config_drq\n")); 538 539 /* Configure Audio 1 (record) for DMA on the appropriate channel. */ 540 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT; 541 switch (sc->sc_audio1.drq) { 542 case 0: 543 v |= ESS_DRQ_CTRL_DRQA; 544 break; 545 case 1: 546 v |= ESS_DRQ_CTRL_DRQB; 547 break; 548 case 3: 549 v |= ESS_DRQ_CTRL_DRQC; 550 break; 551 #ifdef DIAGNOSTIC 552 default: 553 printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n", 554 sc->sc_audio1.drq); 555 return; 556 #endif 557 } 558 /* Set DRQ1 */ 559 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v); 560 561 if (ESS_USE_AUDIO1(sc->sc_model)) 562 return; 563 564 /* Configure DRQ2 */ 565 v = ESS_AUDIO2_CTRL3_DRQ_PD; 566 switch (sc->sc_audio2.drq) { 567 case 0: 568 v |= ESS_AUDIO2_CTRL3_DRQA; 569 break; 570 case 1: 571 v |= ESS_AUDIO2_CTRL3_DRQB; 572 break; 573 case 3: 574 v |= ESS_AUDIO2_CTRL3_DRQC; 575 break; 576 case 5: 577 v |= ESS_AUDIO2_CTRL3_DRQD; 578 break; 579 #ifdef DIAGNOSTIC 580 default: 581 printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n", 582 sc->sc_audio2.drq); 583 return; 584 #endif 585 } 586 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v); 587 /* Enable DMA 2 */ 588 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 589 ESS_AUDIO2_CTRL2_DMA_ENABLE); 590 } 591 592 /* 593 * Set up registers after a reset. 594 */ 595 void 596 ess_setup(sc) 597 struct ess_softc *sc; 598 { 599 600 ess_config_irq(sc); 601 ess_config_drq(sc); 602 603 DPRINTFN(2,("ess_setup: done\n")); 604 } 605 606 /* 607 * Determine the model of ESS chip we are talking to. Currently we 608 * only support ES1888, ES1887 and ES888. The method of determining 609 * the chip is based on the information on page 27 of the ES1887 data 610 * sheet. 611 * 612 * This routine sets the values of sc->sc_model and sc->sc_version. 613 */ 614 int 615 ess_identify(sc) 616 struct ess_softc *sc; 617 { 618 u_char reg1; 619 u_char reg2; 620 u_char reg3; 621 u_int8_t ident[4]; 622 623 sc->sc_model = ESS_UNSUPPORTED; 624 sc->sc_version = 0; 625 626 memset(ident, 0, sizeof(ident)); 627 628 /* 629 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where 630 * n >= 8 for an ES1887 or an ES888. Other values indicate 631 * earlier (unsupported) chips. 632 */ 633 ess_wdsp(sc, ESS_ACMD_LEGACY_ID); 634 635 if ((reg1 = ess_rdsp(sc)) != 0x68) { 636 printf("ess: First ID byte wrong (0x%02x)\n", reg1); 637 return 1; 638 } 639 640 reg2 = ess_rdsp(sc); 641 if (((reg2 & 0xf0) != 0x80) || 642 ((reg2 & 0x0f) < 8)) { 643 printf("ess: Second ID byte wrong (0x%02x)\n", reg2); 644 return 1; 645 } 646 647 /* 648 * Store the ID bytes as the version. 649 */ 650 sc->sc_version = (reg1 << 8) + reg2; 651 652 653 /* 654 * 2. Verify we can change bit 2 in mixer register 0x64. This 655 * should be possible on all supported chips. 656 */ 657 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 658 reg2 = reg1 ^ 0x04; /* toggle bit 2 */ 659 660 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 661 662 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) { 663 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n"); 664 return 1; 665 } 666 667 /* 668 * Restore the original value of mixer register 0x64. 669 */ 670 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 671 672 673 /* 674 * 3. Verify we can change the value of mixer register 675 * ESS_MREG_SAMPLE_RATE. 676 * This is possible on the 1888/1887/888, but not on the 1788. 677 * It is not necessary to restore the value of this mixer register. 678 */ 679 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE); 680 reg2 = reg1 ^ 0xff; /* toggle all bits */ 681 682 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2); 683 684 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) { 685 /* If we got this far before failing, it's a 1788. */ 686 sc->sc_model = ESS_1788; 687 688 /* 689 * Identify ESS model for ES18[67]8. 690 */ 691 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 692 if(ident[0] == 0x18) { 693 switch(ident[1]) { 694 case 0x68: 695 sc->sc_model = ESS_1868; 696 break; 697 case 0x78: 698 sc->sc_model = ESS_1878; 699 break; 700 } 701 } 702 } else { 703 /* 704 * 4. Determine if we can change bit 5 in mixer register 0x64. 705 * This determines whether we have an ES1887: 706 * 707 * - can change indicates ES1887 708 * - can't change indicates ES1888 or ES888 709 */ 710 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 711 reg2 = reg1 ^ 0x20; /* toggle bit 5 */ 712 713 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 714 715 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) { 716 sc->sc_model = ESS_1887; 717 718 /* 719 * Restore the original value of mixer register 0x64. 720 */ 721 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 722 723 /* 724 * Identify ESS model for ES18[67]9. 725 */ 726 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 727 if(ident[0] == 0x18) { 728 switch(ident[1]) { 729 case 0x69: 730 sc->sc_model = ESS_1869; 731 break; 732 case 0x79: 733 sc->sc_model = ESS_1879; 734 break; 735 } 736 } 737 } else { 738 /* 739 * 5. Determine if we can change the value of mixer 740 * register 0x69 independently of mixer register 741 * 0x68. This determines which chip we have: 742 * 743 * - can modify idependently indicates ES888 744 * - register 0x69 is an alias of 0x68 indicates ES1888 745 */ 746 reg1 = ess_read_mix_reg(sc, 0x68); 747 reg2 = ess_read_mix_reg(sc, 0x69); 748 reg3 = reg2 ^ 0xff; /* toggle all bits */ 749 750 /* 751 * Write different values to each register. 752 */ 753 ess_write_mix_reg(sc, 0x68, reg2); 754 ess_write_mix_reg(sc, 0x69, reg3); 755 756 if (ess_read_mix_reg(sc, 0x68) == reg2 && 757 ess_read_mix_reg(sc, 0x69) == reg3) 758 sc->sc_model = ESS_888; 759 else 760 sc->sc_model = ESS_1888; 761 762 /* 763 * Restore the original value of the registers. 764 */ 765 ess_write_mix_reg(sc, 0x68, reg1); 766 ess_write_mix_reg(sc, 0x69, reg2); 767 } 768 } 769 770 return 0; 771 } 772 773 774 int 775 ess_setup_sc(sc, doinit) 776 struct ess_softc *sc; 777 int doinit; 778 { 779 /* Reset the chip. */ 780 if (ess_reset(sc) != 0) { 781 DPRINTF(("ess_setup_sc: couldn't reset chip\n")); 782 return (1); 783 } 784 785 /* Identify the ESS chip, and check that it is supported. */ 786 if (ess_identify(sc)) { 787 DPRINTF(("ess_setup_sc: couldn't identify\n")); 788 return (1); 789 } 790 791 return (0); 792 } 793 794 /* 795 * Probe for the ESS hardware. 796 */ 797 int 798 essmatch(sc) 799 struct ess_softc *sc; 800 { 801 if (!ESS_BASE_VALID(sc->sc_iobase)) { 802 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase); 803 return (0); 804 } 805 806 /* Configure the ESS chip for the desired audio base address. */ 807 if (ess_config_addr(sc)) 808 return (0); 809 810 if (ess_setup_sc(sc, 1)) 811 return (0); 812 813 if (sc->sc_model == ESS_UNSUPPORTED) { 814 DPRINTF(("ess: Unsupported model\n")); 815 return (0); 816 } 817 818 /* Check that requested DMA channels are valid and different. */ 819 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) { 820 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq); 821 return (0); 822 } 823 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq)) 824 return (0); 825 if (!ESS_USE_AUDIO1(sc->sc_model)) { 826 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) { 827 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq); 828 return (0); 829 } 830 if (sc->sc_audio1.drq == sc->sc_audio2.drq) { 831 printf("ess: play and record drq both %d\n", 832 sc->sc_audio1.drq); 833 return (0); 834 } 835 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq)) 836 return (0); 837 } 838 839 /* 840 * The 1887 has an additional IRQ mode where both channels are mapped 841 * to the same IRQ. 842 */ 843 if (sc->sc_model == ESS_1887 && 844 sc->sc_audio1.irq == sc->sc_audio2.irq && 845 sc->sc_audio1.irq != -1 && 846 ESS_IRQ12_VALID(sc->sc_audio1.irq)) 847 goto irq_not1888; 848 849 /* Check that requested IRQ lines are valid and different. */ 850 if (sc->sc_audio1.irq != -1 && 851 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) { 852 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq); 853 return (0); 854 } 855 if (!ESS_USE_AUDIO1(sc->sc_model)) { 856 if (sc->sc_audio2.irq != -1 && 857 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) { 858 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq); 859 return (0); 860 } 861 if (sc->sc_audio1.irq == sc->sc_audio2.irq && 862 sc->sc_audio1.irq != -1) { 863 printf("ess: play and record irq both %d\n", 864 sc->sc_audio1.irq); 865 return (0); 866 } 867 } 868 869 irq_not1888: 870 /* XXX should we check IRQs as well? */ 871 872 return (1); 873 } 874 875 876 /* 877 * Attach hardware to driver, attach hardware driver to audio 878 * pseudo-device driver. 879 */ 880 void 881 essattach(sc) 882 struct ess_softc *sc; 883 { 884 struct audio_attach_args arg; 885 struct audio_params pparams, rparams; 886 int i; 887 u_int v; 888 889 if (ess_setup_sc(sc, 0)) { 890 printf(": setup failed\n"); 891 return; 892 } 893 894 printf(": ESS Technology ES%s [version 0x%04x]\n", 895 essmodel[sc->sc_model], sc->sc_version); 896 897 sc->sc_audio1.polled = sc->sc_audio1.irq == -1; 898 if (!sc->sc_audio1.polled) { 899 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic, 900 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO, 901 ess_audio1_intr, sc); 902 printf("%s: audio1 interrupting at irq %d\n", 903 sc->sc_dev.dv_xname, sc->sc_audio1.irq); 904 } else 905 printf("%s: audio1 polled\n", sc->sc_dev.dv_xname); 906 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq); 907 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq, 908 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 909 printf("%s: can't create map for drq %d\n", 910 sc->sc_dev.dv_xname, sc->sc_audio1.drq); 911 return; 912 } 913 914 if (!ESS_USE_AUDIO1(sc->sc_model)) { 915 sc->sc_audio2.polled = sc->sc_audio2.irq == -1; 916 if (!sc->sc_audio2.polled) { 917 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic, 918 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO, 919 ess_audio2_intr, sc); 920 printf("%s: audio2 interrupting at irq %d\n", 921 sc->sc_dev.dv_xname, sc->sc_audio2.irq); 922 } else 923 printf("%s: audio2 polled\n", sc->sc_dev.dv_xname); 924 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic, 925 sc->sc_audio2.drq); 926 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq, 927 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 928 printf("%s: can't create map for drq %d\n", 929 sc->sc_dev.dv_xname, sc->sc_audio2.drq); 930 return; 931 } 932 } 933 934 /* 935 * Set record and play parameters to default values defined in 936 * generic audio driver. 937 */ 938 pparams = audio_default; 939 rparams = audio_default; 940 ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams); 941 942 /* Do a hardware reset on the mixer. */ 943 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET); 944 945 /* 946 * Set volume of Audio 1 to zero and disable Audio 1 DAC input 947 * to playback mixer, since playback is always through Audio 2. 948 */ 949 if (!ESS_USE_AUDIO1(sc->sc_model)) 950 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0); 951 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 952 953 if (ESS_USE_AUDIO1(sc->sc_model)) { 954 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC); 955 sc->in_port = ESS_SOURCE_MIC; 956 sc->ndevs = ESS_1788_NDEVS; 957 } else { 958 /* 959 * Set hardware record source to use output of the record 960 * mixer. We do the selection of record source in software by 961 * setting the gain of the unused sources to zero. (See 962 * ess_set_in_ports.) 963 */ 964 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER); 965 sc->in_mask = 1 << ESS_MIC_REC_VOL; 966 sc->ndevs = ESS_1888_NDEVS; 967 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10); 968 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08); 969 } 970 971 /* 972 * Set gain on each mixer device to a sensible value. 973 * Devices not normally used are turned off, and other devices 974 * are set to 50% volume. 975 */ 976 for (i = 0; i < sc->ndevs; i++) { 977 switch (i) { 978 case ESS_MIC_PLAY_VOL: 979 case ESS_LINE_PLAY_VOL: 980 case ESS_CD_PLAY_VOL: 981 case ESS_AUXB_PLAY_VOL: 982 case ESS_DAC_REC_VOL: 983 case ESS_LINE_REC_VOL: 984 case ESS_SYNTH_REC_VOL: 985 case ESS_CD_REC_VOL: 986 case ESS_AUXB_REC_VOL: 987 v = 0; 988 break; 989 default: 990 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2); 991 break; 992 } 993 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v; 994 ess_set_gain(sc, i, 1); 995 } 996 997 ess_setup(sc); 998 999 /* Disable the speaker until the device is opened. */ 1000 ess_speaker_off(sc); 1001 sc->spkr_state = SPKR_OFF; 1002 1003 sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]); 1004 sprintf(ess_device.version, "0x%04x", sc->sc_version); 1005 1006 if (ESS_USE_AUDIO1(sc->sc_model)) 1007 audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev); 1008 else 1009 audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev); 1010 1011 arg.type = AUDIODEV_TYPE_OPL; 1012 arg.hwif = 0; 1013 arg.hdl = 0; 1014 (void)config_found(&sc->sc_dev, &arg, audioprint); 1015 1016 #ifdef AUDIO_DEBUG 1017 if (essdebug > 0) 1018 ess_printsc(sc); 1019 #endif 1020 } 1021 1022 /* 1023 * Various routines to interface to higher level audio driver 1024 */ 1025 1026 int 1027 ess_open(addr, flags) 1028 void *addr; 1029 int flags; 1030 { 1031 struct ess_softc *sc = addr; 1032 int i; 1033 1034 DPRINTF(("ess_open: sc=%p\n", sc)); 1035 1036 if (sc->sc_open != 0 || ess_reset(sc) != 0) 1037 return ENXIO; 1038 1039 ess_setup(sc); /* because we did a reset */ 1040 1041 /* Set all mixer controls again since some change at reset. */ 1042 for (i = 0; i < ESS_MAX_NDEVS; i++) 1043 ess_set_gain(sc, i, 1); 1044 1045 sc->sc_open = 1; 1046 1047 DPRINTF(("ess_open: opened\n")); 1048 1049 return (0); 1050 } 1051 1052 void 1053 ess_1788_close(addr) 1054 void *addr; 1055 { 1056 struct ess_softc *sc = addr; 1057 1058 DPRINTF(("ess_1788_close: sc=%p\n", sc)); 1059 1060 ess_speaker_off(sc); 1061 sc->spkr_state = SPKR_OFF; 1062 1063 ess_audio1_halt(sc); 1064 1065 sc->sc_open = 0; 1066 DPRINTF(("ess_1788_close: closed\n")); 1067 } 1068 1069 void 1070 ess_1888_close(addr) 1071 void *addr; 1072 { 1073 struct ess_softc *sc = addr; 1074 1075 DPRINTF(("ess_1888_close: sc=%p\n", sc)); 1076 1077 ess_speaker_off(sc); 1078 sc->spkr_state = SPKR_OFF; 1079 1080 ess_audio1_halt(sc); 1081 ess_audio2_halt(sc); 1082 1083 sc->sc_open = 0; 1084 DPRINTF(("ess_1888_close: closed\n")); 1085 } 1086 1087 /* 1088 * Wait for FIFO to drain, and analog section to settle. 1089 * XXX should check FIFO empty bit. 1090 */ 1091 int 1092 ess_drain(addr) 1093 void *addr; 1094 { 1095 tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */ 1096 return (0); 1097 } 1098 1099 /* XXX should use reference count */ 1100 int 1101 ess_speaker_ctl(addr, newstate) 1102 void *addr; 1103 int newstate; 1104 { 1105 struct ess_softc *sc = addr; 1106 1107 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) { 1108 ess_speaker_on(sc); 1109 sc->spkr_state = SPKR_ON; 1110 } 1111 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) { 1112 ess_speaker_off(sc); 1113 sc->spkr_state = SPKR_OFF; 1114 } 1115 return (0); 1116 } 1117 1118 int 1119 ess_getdev(addr, retp) 1120 void *addr; 1121 struct audio_device *retp; 1122 { 1123 *retp = ess_device; 1124 return (0); 1125 } 1126 1127 int 1128 ess_query_encoding(addr, fp) 1129 void *addr; 1130 struct audio_encoding *fp; 1131 { 1132 /*struct ess_softc *sc = addr;*/ 1133 1134 switch (fp->index) { 1135 case 0: 1136 strcpy(fp->name, AudioEulinear); 1137 fp->encoding = AUDIO_ENCODING_ULINEAR; 1138 fp->precision = 8; 1139 fp->flags = 0; 1140 return (0); 1141 case 1: 1142 strcpy(fp->name, AudioEmulaw); 1143 fp->encoding = AUDIO_ENCODING_ULAW; 1144 fp->precision = 8; 1145 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1146 return (0); 1147 case 2: 1148 strcpy(fp->name, AudioEalaw); 1149 fp->encoding = AUDIO_ENCODING_ALAW; 1150 fp->precision = 8; 1151 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1152 return (0); 1153 case 3: 1154 strcpy(fp->name, AudioEslinear); 1155 fp->encoding = AUDIO_ENCODING_SLINEAR; 1156 fp->precision = 8; 1157 fp->flags = 0; 1158 return (0); 1159 case 4: 1160 strcpy(fp->name, AudioEslinear_le); 1161 fp->encoding = AUDIO_ENCODING_SLINEAR_LE; 1162 fp->precision = 16; 1163 fp->flags = 0; 1164 return (0); 1165 case 5: 1166 strcpy(fp->name, AudioEulinear_le); 1167 fp->encoding = AUDIO_ENCODING_ULINEAR_LE; 1168 fp->precision = 16; 1169 fp->flags = 0; 1170 return (0); 1171 case 6: 1172 strcpy(fp->name, AudioEslinear_be); 1173 fp->encoding = AUDIO_ENCODING_SLINEAR_BE; 1174 fp->precision = 16; 1175 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1176 return (0); 1177 case 7: 1178 strcpy(fp->name, AudioEulinear_be); 1179 fp->encoding = AUDIO_ENCODING_ULINEAR_BE; 1180 fp->precision = 16; 1181 fp->flags = AUDIO_ENCODINGFLAG_EMULATED; 1182 return (0); 1183 default: 1184 return EINVAL; 1185 } 1186 return (0); 1187 } 1188 1189 int 1190 ess_set_params(addr, setmode, usemode, play, rec) 1191 void *addr; 1192 int setmode, usemode; 1193 struct audio_params *play, *rec; 1194 { 1195 struct ess_softc *sc = addr; 1196 struct audio_params *p; 1197 int mode; 1198 int rate; 1199 1200 DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode)); 1201 1202 /* 1203 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in 1204 * full-duplex operation the sample rates must be the same for both 1205 * channels. This appears to be false; the only bit in common is the 1206 * clock source selection. However, we'll be conservative here. 1207 * - mycroft 1208 */ 1209 if (play->sample_rate != rec->sample_rate && 1210 usemode == (AUMODE_PLAY | AUMODE_RECORD)) { 1211 if (setmode == AUMODE_PLAY) { 1212 rec->sample_rate = play->sample_rate; 1213 setmode |= AUMODE_RECORD; 1214 } else if (setmode == AUMODE_RECORD) { 1215 play->sample_rate = rec->sample_rate; 1216 setmode |= AUMODE_PLAY; 1217 } else 1218 return (EINVAL); 1219 } 1220 1221 for (mode = AUMODE_RECORD; mode != -1; 1222 mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) { 1223 if ((setmode & mode) == 0) 1224 continue; 1225 1226 p = mode == AUMODE_PLAY ? play : rec; 1227 1228 if (p->sample_rate < ESS_MINRATE || 1229 p->sample_rate > ESS_MAXRATE || 1230 (p->precision != 8 && p->precision != 16) || 1231 (p->channels != 1 && p->channels != 2)) 1232 return (EINVAL); 1233 1234 p->factor = 1; 1235 p->sw_code = 0; 1236 switch (p->encoding) { 1237 case AUDIO_ENCODING_SLINEAR_BE: 1238 case AUDIO_ENCODING_ULINEAR_BE: 1239 if (p->precision == 16) 1240 p->sw_code = swap_bytes; 1241 break; 1242 case AUDIO_ENCODING_SLINEAR_LE: 1243 case AUDIO_ENCODING_ULINEAR_LE: 1244 break; 1245 case AUDIO_ENCODING_ULAW: 1246 if (mode == AUMODE_PLAY) { 1247 p->factor = 2; 1248 p->sw_code = mulaw_to_ulinear16_le; 1249 } else 1250 p->sw_code = ulinear8_to_mulaw; 1251 break; 1252 case AUDIO_ENCODING_ALAW: 1253 if (mode == AUMODE_PLAY) { 1254 p->factor = 2; 1255 p->sw_code = alaw_to_ulinear16_le; 1256 } else 1257 p->sw_code = ulinear8_to_alaw; 1258 break; 1259 default: 1260 return (EINVAL); 1261 } 1262 } 1263 1264 if (usemode == AUMODE_RECORD) 1265 rate = rec->sample_rate; 1266 else 1267 rate = play->sample_rate; 1268 1269 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate)); 1270 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate)); 1271 1272 if (!ESS_USE_AUDIO1(sc->sc_model)) { 1273 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate)); 1274 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate)); 1275 } 1276 1277 return (0); 1278 } 1279 1280 int 1281 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param) 1282 void *addr; 1283 void *start, *end; 1284 int blksize; 1285 void (*intr) __P((void *)); 1286 void *arg; 1287 struct audio_params *param; 1288 { 1289 struct ess_softc *sc = addr; 1290 u_int8_t reg; 1291 1292 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1293 addr, start, end, blksize, intr, arg)); 1294 1295 if (sc->sc_audio1.active) 1296 panic("ess_audio1_trigger_output: already running"); 1297 1298 sc->sc_audio1.active = 1; 1299 sc->sc_audio1.intr = intr; 1300 sc->sc_audio1.arg = arg; 1301 if (sc->sc_audio1.polled) { 1302 sc->sc_audio1.dmapos = 0; 1303 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1304 sc->sc_audio1.dmacount = 0; 1305 sc->sc_audio1.blksize = blksize; 1306 timeout(ess_audio1_poll, sc, hz/30); 1307 } 1308 1309 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1310 if (param->channels == 2) { 1311 reg &= ~ESS_AUDIO_CTRL_MONO; 1312 reg |= ESS_AUDIO_CTRL_STEREO; 1313 } else { 1314 reg |= ESS_AUDIO_CTRL_MONO; 1315 reg &= ~ESS_AUDIO_CTRL_STEREO; 1316 } 1317 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1318 1319 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1320 if (param->precision * param->factor == 16) 1321 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1322 else 1323 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1324 if (param->channels == 2) 1325 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1326 else 1327 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1328 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1329 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1330 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1331 else 1332 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1333 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1334 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1335 1336 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start, 1337 (char *)end - (char *)start, NULL, 1338 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1339 1340 /* Program transfer count registers with 2's complement of count. */ 1341 blksize = -blksize; 1342 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1343 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1344 1345 /* Use 4 bytes per output DMA. */ 1346 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1347 1348 /* Start auto-init DMA */ 1349 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR); 1350 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1351 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE); 1352 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1353 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1354 1355 return (0); 1356 } 1357 1358 int 1359 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param) 1360 void *addr; 1361 void *start, *end; 1362 int blksize; 1363 void (*intr) __P((void *)); 1364 void *arg; 1365 struct audio_params *param; 1366 { 1367 struct ess_softc *sc = addr; 1368 u_int8_t reg; 1369 1370 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1371 addr, start, end, blksize, intr, arg)); 1372 1373 if (sc->sc_audio2.active) 1374 panic("ess_audio2_trigger_output: already running"); 1375 1376 sc->sc_audio2.active = 1; 1377 sc->sc_audio2.intr = intr; 1378 sc->sc_audio2.arg = arg; 1379 if (sc->sc_audio2.polled) { 1380 sc->sc_audio2.dmapos = 0; 1381 sc->sc_audio2.buffersize = (char *)end - (char *)start; 1382 sc->sc_audio2.dmacount = 0; 1383 sc->sc_audio2.blksize = blksize; 1384 timeout(ess_audio2_poll, sc, hz/30); 1385 } 1386 1387 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1388 if (param->precision * param->factor == 16) 1389 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE; 1390 else 1391 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE; 1392 if (param->channels == 2) 1393 reg |= ESS_AUDIO2_CTRL2_CHANNELS; 1394 else 1395 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS; 1396 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1397 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1398 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1399 else 1400 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1401 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1402 1403 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start, 1404 (char *)end - (char *)start, NULL, 1405 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1406 1407 if (IS16BITDRQ(sc->sc_audio2.drq)) 1408 blksize >>= 1; /* use word count for 16 bit DMA */ 1409 /* Program transfer count registers with 2's complement of count. */ 1410 blksize = -blksize; 1411 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize); 1412 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8); 1413 1414 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1); 1415 if (IS16BITDRQ(sc->sc_audio2.drq)) 1416 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE; 1417 else 1418 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE; 1419 reg |= ESS_AUDIO2_CTRL1_DEMAND_8; 1420 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE | 1421 ESS_AUDIO2_CTRL1_AUTO_INIT; 1422 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg); 1423 1424 return (0); 1425 } 1426 1427 int 1428 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param) 1429 void *addr; 1430 void *start, *end; 1431 int blksize; 1432 void (*intr) __P((void *)); 1433 void *arg; 1434 struct audio_params *param; 1435 { 1436 struct ess_softc *sc = addr; 1437 u_int8_t reg; 1438 1439 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n", 1440 addr, start, end, blksize, intr, arg)); 1441 1442 if (sc->sc_audio1.active) 1443 panic("ess_audio1_trigger_input: already running"); 1444 1445 sc->sc_audio1.active = 1; 1446 sc->sc_audio1.intr = intr; 1447 sc->sc_audio1.arg = arg; 1448 if (sc->sc_audio1.polled) { 1449 sc->sc_audio1.dmapos = 0; 1450 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1451 sc->sc_audio1.dmacount = 0; 1452 sc->sc_audio1.blksize = blksize; 1453 timeout(ess_audio1_poll, sc, hz/30); 1454 } 1455 1456 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1457 if (param->channels == 2) { 1458 reg &= ~ESS_AUDIO_CTRL_MONO; 1459 reg |= ESS_AUDIO_CTRL_STEREO; 1460 } else { 1461 reg |= ESS_AUDIO_CTRL_MONO; 1462 reg &= ~ESS_AUDIO_CTRL_STEREO; 1463 } 1464 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1465 1466 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1467 if (param->precision * param->factor == 16) 1468 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1469 else 1470 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1471 if (param->channels == 2) 1472 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1473 else 1474 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1475 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1476 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1477 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1478 else 1479 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1480 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1481 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1482 1483 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start, 1484 (char *)end - (char *)start, NULL, 1485 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1486 1487 /* Program transfer count registers with 2's complement of count. */ 1488 blksize = -blksize; 1489 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1490 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1491 1492 /* Use 4 bytes per input DMA. */ 1493 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1494 1495 /* Start auto-init DMA */ 1496 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 1497 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1498 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE; 1499 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1500 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1501 1502 return (0); 1503 } 1504 1505 int 1506 ess_audio1_halt(addr) 1507 void *addr; 1508 { 1509 struct ess_softc *sc = addr; 1510 1511 DPRINTF(("ess_audio1_halt: sc=%p\n", sc)); 1512 1513 if (sc->sc_audio1.active) { 1514 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2, 1515 ESS_AUDIO1_CTRL2_FIFO_ENABLE); 1516 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq); 1517 if (sc->sc_audio1.polled) 1518 untimeout(ess_audio1_poll, sc); 1519 sc->sc_audio1.active = 0; 1520 } 1521 1522 return (0); 1523 } 1524 1525 int 1526 ess_audio2_halt(addr) 1527 void *addr; 1528 { 1529 struct ess_softc *sc = addr; 1530 1531 DPRINTF(("ess_audio2_halt: sc=%p\n", sc)); 1532 1533 if (sc->sc_audio2.active) { 1534 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1, 1535 ESS_AUDIO2_CTRL1_DAC_ENABLE | 1536 ESS_AUDIO2_CTRL1_FIFO_ENABLE); 1537 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq); 1538 if (sc->sc_audio2.polled) 1539 untimeout(ess_audio2_poll, sc); 1540 sc->sc_audio2.active = 0; 1541 } 1542 1543 return (0); 1544 } 1545 1546 int 1547 ess_audio1_intr(arg) 1548 void *arg; 1549 { 1550 struct ess_softc *sc = arg; 1551 u_int8_t reg; 1552 1553 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr)); 1554 1555 /* Check and clear interrupt on Audio1. */ 1556 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); 1557 if ((reg & ESS_DSP_READ_OFLOW) == 0) 1558 return (0); 1559 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR); 1560 1561 sc->sc_audio1.nintr++; 1562 1563 if (sc->sc_audio1.active) { 1564 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1565 return (1); 1566 } else 1567 return (0); 1568 } 1569 1570 int 1571 ess_audio2_intr(arg) 1572 void *arg; 1573 { 1574 struct ess_softc *sc = arg; 1575 u_int8_t reg; 1576 1577 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr)); 1578 1579 /* Check and clear interrupt on Audio2. */ 1580 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1581 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) 1582 return (0); 1583 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH; 1584 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1585 1586 sc->sc_audio2.nintr++; 1587 1588 if (sc->sc_audio2.active) { 1589 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1590 return (1); 1591 } else 1592 return (0); 1593 } 1594 1595 void 1596 ess_audio1_poll(addr) 1597 void *addr; 1598 { 1599 struct ess_softc *sc = addr; 1600 int dmapos, dmacount; 1601 1602 if (!sc->sc_audio1.active) 1603 return; 1604 1605 sc->sc_audio1.nintr++; 1606 1607 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq); 1608 dmacount = sc->sc_audio1.dmapos - dmapos; 1609 if (dmacount < 0) 1610 dmacount += sc->sc_audio1.buffersize; 1611 sc->sc_audio1.dmapos = dmapos; 1612 #if 1 1613 dmacount += sc->sc_audio1.dmacount; 1614 while (dmacount > sc->sc_audio1.blksize) { 1615 dmacount -= sc->sc_audio1.blksize; 1616 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1617 } 1618 sc->sc_audio1.dmacount = dmacount; 1619 #else 1620 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount); 1621 #endif 1622 1623 timeout(ess_audio1_poll, sc, hz/30); 1624 } 1625 1626 void 1627 ess_audio2_poll(addr) 1628 void *addr; 1629 { 1630 struct ess_softc *sc = addr; 1631 int dmapos, dmacount; 1632 1633 if (!sc->sc_audio2.active) 1634 return; 1635 1636 sc->sc_audio2.nintr++; 1637 1638 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq); 1639 dmacount = sc->sc_audio2.dmapos - dmapos; 1640 if (dmacount < 0) 1641 dmacount += sc->sc_audio2.buffersize; 1642 sc->sc_audio2.dmapos = dmapos; 1643 #if 1 1644 dmacount += sc->sc_audio2.dmacount; 1645 while (dmacount > sc->sc_audio2.blksize) { 1646 dmacount -= sc->sc_audio2.blksize; 1647 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1648 } 1649 sc->sc_audio2.dmacount = dmacount; 1650 #else 1651 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount); 1652 #endif 1653 1654 timeout(ess_audio2_poll, sc, hz/30); 1655 } 1656 1657 int 1658 ess_round_blocksize(addr, blk) 1659 void *addr; 1660 int blk; 1661 { 1662 return (blk & -8); /* round for max DMA size */ 1663 } 1664 1665 int 1666 ess_set_port(addr, cp) 1667 void *addr; 1668 mixer_ctrl_t *cp; 1669 { 1670 struct ess_softc *sc = addr; 1671 int lgain, rgain; 1672 1673 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n", 1674 cp->dev, cp->un.value.num_channels)); 1675 1676 switch (cp->dev) { 1677 /* 1678 * The following mixer ports are all stereo. If we get a 1679 * single-channel gain value passed in, then we duplicate it 1680 * to both left and right channels. 1681 */ 1682 case ESS_MASTER_VOL: 1683 case ESS_DAC_PLAY_VOL: 1684 case ESS_MIC_PLAY_VOL: 1685 case ESS_LINE_PLAY_VOL: 1686 case ESS_SYNTH_PLAY_VOL: 1687 case ESS_CD_PLAY_VOL: 1688 case ESS_AUXB_PLAY_VOL: 1689 case ESS_RECORD_VOL: 1690 if (cp->type != AUDIO_MIXER_VALUE) 1691 return EINVAL; 1692 1693 switch (cp->un.value.num_channels) { 1694 case 1: 1695 lgain = rgain = ESS_4BIT_GAIN( 1696 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1697 break; 1698 case 2: 1699 lgain = ESS_4BIT_GAIN( 1700 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1701 rgain = ESS_4BIT_GAIN( 1702 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1703 break; 1704 default: 1705 return EINVAL; 1706 } 1707 1708 sc->gain[cp->dev][ESS_LEFT] = lgain; 1709 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1710 ess_set_gain(sc, cp->dev, 1); 1711 return (0); 1712 1713 /* 1714 * The PC speaker port is mono. If we get a stereo gain value 1715 * passed in, then we return EINVAL. 1716 */ 1717 case ESS_PCSPEAKER_VOL: 1718 if (cp->un.value.num_channels != 1) 1719 return EINVAL; 1720 1721 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] = 1722 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1723 ess_set_gain(sc, cp->dev, 1); 1724 return (0); 1725 1726 case ESS_RECORD_SOURCE: 1727 if (ESS_USE_AUDIO1(sc->sc_model)) { 1728 if (cp->type == AUDIO_MIXER_ENUM) 1729 return (ess_set_in_port(sc, cp->un.ord)); 1730 else 1731 return (EINVAL); 1732 } else { 1733 if (cp->type == AUDIO_MIXER_SET) 1734 return (ess_set_in_ports(sc, cp->un.mask)); 1735 else 1736 return (EINVAL); 1737 } 1738 return (0); 1739 1740 case ESS_RECORD_MONITOR: 1741 if (cp->type != AUDIO_MIXER_ENUM) 1742 return EINVAL; 1743 1744 if (cp->un.ord) 1745 /* Enable monitor */ 1746 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1747 ESS_AUDIO_CTRL_MONITOR); 1748 else 1749 /* Disable monitor */ 1750 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1751 ESS_AUDIO_CTRL_MONITOR); 1752 return (0); 1753 } 1754 1755 if (ESS_USE_AUDIO1(sc->sc_model)) 1756 return (EINVAL); 1757 1758 switch (cp->dev) { 1759 case ESS_DAC_REC_VOL: 1760 case ESS_MIC_REC_VOL: 1761 case ESS_LINE_REC_VOL: 1762 case ESS_SYNTH_REC_VOL: 1763 case ESS_CD_REC_VOL: 1764 case ESS_AUXB_REC_VOL: 1765 if (cp->type != AUDIO_MIXER_VALUE) 1766 return EINVAL; 1767 1768 switch (cp->un.value.num_channels) { 1769 case 1: 1770 lgain = rgain = ESS_4BIT_GAIN( 1771 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1772 break; 1773 case 2: 1774 lgain = ESS_4BIT_GAIN( 1775 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1776 rgain = ESS_4BIT_GAIN( 1777 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1778 break; 1779 default: 1780 return EINVAL; 1781 } 1782 1783 sc->gain[cp->dev][ESS_LEFT] = lgain; 1784 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1785 ess_set_gain(sc, cp->dev, 1); 1786 return (0); 1787 1788 case ESS_MIC_PREAMP: 1789 if (cp->type != AUDIO_MIXER_ENUM) 1790 return EINVAL; 1791 1792 if (cp->un.ord) 1793 /* Enable microphone preamp */ 1794 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1795 ESS_PREAMP_CTRL_ENABLE); 1796 else 1797 /* Disable microphone preamp */ 1798 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1799 ESS_PREAMP_CTRL_ENABLE); 1800 return (0); 1801 } 1802 1803 return (EINVAL); 1804 } 1805 1806 int 1807 ess_get_port(addr, cp) 1808 void *addr; 1809 mixer_ctrl_t *cp; 1810 { 1811 struct ess_softc *sc = addr; 1812 1813 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev)); 1814 1815 switch (cp->dev) { 1816 case ESS_MASTER_VOL: 1817 case ESS_DAC_PLAY_VOL: 1818 case ESS_MIC_PLAY_VOL: 1819 case ESS_LINE_PLAY_VOL: 1820 case ESS_SYNTH_PLAY_VOL: 1821 case ESS_CD_PLAY_VOL: 1822 case ESS_AUXB_PLAY_VOL: 1823 case ESS_RECORD_VOL: 1824 switch (cp->un.value.num_channels) { 1825 case 1: 1826 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1827 sc->gain[cp->dev][ESS_LEFT]; 1828 break; 1829 case 2: 1830 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1831 sc->gain[cp->dev][ESS_LEFT]; 1832 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1833 sc->gain[cp->dev][ESS_RIGHT]; 1834 break; 1835 default: 1836 return EINVAL; 1837 } 1838 return (0); 1839 1840 case ESS_PCSPEAKER_VOL: 1841 if (cp->un.value.num_channels != 1) 1842 return EINVAL; 1843 1844 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1845 sc->gain[cp->dev][ESS_LEFT]; 1846 return (0); 1847 1848 case ESS_RECORD_SOURCE: 1849 if (ESS_USE_AUDIO1(sc->sc_model)) 1850 cp->un.ord = sc->in_port; 1851 else 1852 cp->un.mask = sc->in_mask; 1853 return (0); 1854 1855 case ESS_RECORD_MONITOR: 1856 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) & 1857 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0; 1858 return (0); 1859 } 1860 1861 if (ESS_USE_AUDIO1(sc->sc_model)) 1862 return (EINVAL); 1863 1864 switch (cp->dev) { 1865 case ESS_DAC_REC_VOL: 1866 case ESS_MIC_REC_VOL: 1867 case ESS_LINE_REC_VOL: 1868 case ESS_SYNTH_REC_VOL: 1869 case ESS_CD_REC_VOL: 1870 case ESS_AUXB_REC_VOL: 1871 switch (cp->un.value.num_channels) { 1872 case 1: 1873 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1874 sc->gain[cp->dev][ESS_LEFT]; 1875 break; 1876 case 2: 1877 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1878 sc->gain[cp->dev][ESS_LEFT]; 1879 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1880 sc->gain[cp->dev][ESS_RIGHT]; 1881 break; 1882 default: 1883 return EINVAL; 1884 } 1885 return (0); 1886 1887 case ESS_MIC_PREAMP: 1888 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) & 1889 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0; 1890 return (0); 1891 } 1892 1893 return (EINVAL); 1894 } 1895 1896 int 1897 ess_query_devinfo(addr, dip) 1898 void *addr; 1899 mixer_devinfo_t *dip; 1900 { 1901 struct ess_softc *sc = addr; 1902 1903 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n", 1904 sc->sc_model, dip->index)); 1905 1906 /* 1907 * REVISIT: There are some slight differences between the 1908 * mixers on the different ESS chips, which can 1909 * be sorted out using the chip model rather than a 1910 * separate mixer model. 1911 * This is currently coded assuming an ES1887; we 1912 * need to work out which bits are not applicable to 1913 * the other models (1888 and 888). 1914 */ 1915 switch (dip->index) { 1916 case ESS_DAC_PLAY_VOL: 1917 dip->mixer_class = ESS_INPUT_CLASS; 1918 dip->next = dip->prev = AUDIO_MIXER_LAST; 1919 strcpy(dip->label.name, AudioNdac); 1920 dip->type = AUDIO_MIXER_VALUE; 1921 dip->un.v.num_channels = 2; 1922 strcpy(dip->un.v.units.name, AudioNvolume); 1923 return (0); 1924 1925 case ESS_MIC_PLAY_VOL: 1926 dip->mixer_class = ESS_INPUT_CLASS; 1927 dip->prev = AUDIO_MIXER_LAST; 1928 if (ESS_USE_AUDIO1(sc->sc_model)) 1929 dip->next = AUDIO_MIXER_LAST; 1930 else 1931 dip->next = ESS_MIC_PREAMP; 1932 strcpy(dip->label.name, AudioNmicrophone); 1933 dip->type = AUDIO_MIXER_VALUE; 1934 dip->un.v.num_channels = 2; 1935 strcpy(dip->un.v.units.name, AudioNvolume); 1936 return (0); 1937 1938 case ESS_LINE_PLAY_VOL: 1939 dip->mixer_class = ESS_INPUT_CLASS; 1940 dip->next = dip->prev = AUDIO_MIXER_LAST; 1941 strcpy(dip->label.name, AudioNline); 1942 dip->type = AUDIO_MIXER_VALUE; 1943 dip->un.v.num_channels = 2; 1944 strcpy(dip->un.v.units.name, AudioNvolume); 1945 return (0); 1946 1947 case ESS_SYNTH_PLAY_VOL: 1948 dip->mixer_class = ESS_INPUT_CLASS; 1949 dip->next = dip->prev = AUDIO_MIXER_LAST; 1950 strcpy(dip->label.name, AudioNfmsynth); 1951 dip->type = AUDIO_MIXER_VALUE; 1952 dip->un.v.num_channels = 2; 1953 strcpy(dip->un.v.units.name, AudioNvolume); 1954 return (0); 1955 1956 case ESS_CD_PLAY_VOL: 1957 dip->mixer_class = ESS_INPUT_CLASS; 1958 dip->next = dip->prev = AUDIO_MIXER_LAST; 1959 strcpy(dip->label.name, AudioNcd); 1960 dip->type = AUDIO_MIXER_VALUE; 1961 dip->un.v.num_channels = 2; 1962 strcpy(dip->un.v.units.name, AudioNvolume); 1963 return (0); 1964 1965 case ESS_AUXB_PLAY_VOL: 1966 dip->mixer_class = ESS_INPUT_CLASS; 1967 dip->next = dip->prev = AUDIO_MIXER_LAST; 1968 strcpy(dip->label.name, "auxb"); 1969 dip->type = AUDIO_MIXER_VALUE; 1970 dip->un.v.num_channels = 2; 1971 strcpy(dip->un.v.units.name, AudioNvolume); 1972 return (0); 1973 1974 case ESS_INPUT_CLASS: 1975 dip->mixer_class = ESS_INPUT_CLASS; 1976 dip->next = dip->prev = AUDIO_MIXER_LAST; 1977 strcpy(dip->label.name, AudioCinputs); 1978 dip->type = AUDIO_MIXER_CLASS; 1979 return (0); 1980 1981 case ESS_MASTER_VOL: 1982 dip->mixer_class = ESS_OUTPUT_CLASS; 1983 dip->next = dip->prev = AUDIO_MIXER_LAST; 1984 strcpy(dip->label.name, AudioNmaster); 1985 dip->type = AUDIO_MIXER_VALUE; 1986 dip->un.v.num_channels = 2; 1987 strcpy(dip->un.v.units.name, AudioNvolume); 1988 return (0); 1989 1990 case ESS_PCSPEAKER_VOL: 1991 dip->mixer_class = ESS_OUTPUT_CLASS; 1992 dip->next = dip->prev = AUDIO_MIXER_LAST; 1993 strcpy(dip->label.name, "pc_speaker"); 1994 dip->type = AUDIO_MIXER_VALUE; 1995 dip->un.v.num_channels = 1; 1996 strcpy(dip->un.v.units.name, AudioNvolume); 1997 return (0); 1998 1999 case ESS_OUTPUT_CLASS: 2000 dip->mixer_class = ESS_OUTPUT_CLASS; 2001 dip->next = dip->prev = AUDIO_MIXER_LAST; 2002 strcpy(dip->label.name, AudioCoutputs); 2003 dip->type = AUDIO_MIXER_CLASS; 2004 return (0); 2005 2006 case ESS_RECORD_VOL: 2007 dip->mixer_class = ESS_RECORD_CLASS; 2008 dip->next = dip->prev = AUDIO_MIXER_LAST; 2009 strcpy(dip->label.name, AudioNrecord); 2010 dip->type = AUDIO_MIXER_VALUE; 2011 dip->un.v.num_channels = 2; 2012 strcpy(dip->un.v.units.name, AudioNvolume); 2013 return (0); 2014 2015 case ESS_RECORD_SOURCE: 2016 dip->mixer_class = ESS_RECORD_CLASS; 2017 dip->next = dip->prev = AUDIO_MIXER_LAST; 2018 strcpy(dip->label.name, AudioNsource); 2019 if (ESS_USE_AUDIO1(sc->sc_model)) { 2020 /* 2021 * The 1788 doesn't use the input mixer control that 2022 * the 1888 uses, because it's a pain when you only 2023 * have one mixer. 2024 * Perhaps it could be emulated by keeping both sets of 2025 * gain values, and doing a `context switch' of the 2026 * mixer registers when shifting from playing to 2027 * recording. 2028 */ 2029 dip->type = AUDIO_MIXER_ENUM; 2030 dip->un.e.num_mem = 4; 2031 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 2032 dip->un.e.member[0].ord = ESS_SOURCE_MIC; 2033 strcpy(dip->un.e.member[1].label.name, AudioNline); 2034 dip->un.e.member[1].ord = ESS_SOURCE_LINE; 2035 strcpy(dip->un.e.member[2].label.name, AudioNcd); 2036 dip->un.e.member[2].ord = ESS_SOURCE_CD; 2037 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 2038 dip->un.e.member[3].ord = ESS_SOURCE_MIXER; 2039 } else { 2040 dip->type = AUDIO_MIXER_SET; 2041 dip->un.s.num_mem = 6; 2042 strcpy(dip->un.s.member[0].label.name, AudioNdac); 2043 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL; 2044 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone); 2045 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL; 2046 strcpy(dip->un.s.member[2].label.name, AudioNline); 2047 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL; 2048 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth); 2049 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL; 2050 strcpy(dip->un.s.member[4].label.name, AudioNcd); 2051 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL; 2052 strcpy(dip->un.s.member[5].label.name, "auxb"); 2053 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL; 2054 } 2055 return (0); 2056 2057 case ESS_RECORD_CLASS: 2058 dip->mixer_class = ESS_RECORD_CLASS; 2059 dip->next = dip->prev = AUDIO_MIXER_LAST; 2060 strcpy(dip->label.name, AudioCrecord); 2061 dip->type = AUDIO_MIXER_CLASS; 2062 return (0); 2063 2064 case ESS_RECORD_MONITOR: 2065 dip->prev = dip->next = AUDIO_MIXER_LAST; 2066 strcpy(dip->label.name, AudioNmute); 2067 dip->type = AUDIO_MIXER_ENUM; 2068 dip->mixer_class = ESS_MONITOR_CLASS; 2069 dip->un.e.num_mem = 2; 2070 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2071 dip->un.e.member[0].ord = 0; 2072 strcpy(dip->un.e.member[1].label.name, AudioNon); 2073 dip->un.e.member[1].ord = 1; 2074 return (0); 2075 2076 case ESS_MONITOR_CLASS: 2077 dip->mixer_class = ESS_MONITOR_CLASS; 2078 dip->next = dip->prev = AUDIO_MIXER_LAST; 2079 strcpy(dip->label.name, AudioCmonitor); 2080 dip->type = AUDIO_MIXER_CLASS; 2081 return (0); 2082 } 2083 2084 if (ESS_USE_AUDIO1(sc->sc_model)) 2085 return (ENXIO); 2086 2087 switch (dip->index) { 2088 case ESS_DAC_REC_VOL: 2089 dip->mixer_class = ESS_RECORD_CLASS; 2090 dip->next = dip->prev = AUDIO_MIXER_LAST; 2091 strcpy(dip->label.name, AudioNdac); 2092 dip->type = AUDIO_MIXER_VALUE; 2093 dip->un.v.num_channels = 2; 2094 strcpy(dip->un.v.units.name, AudioNvolume); 2095 return (0); 2096 2097 case ESS_MIC_REC_VOL: 2098 dip->mixer_class = ESS_RECORD_CLASS; 2099 dip->next = dip->prev = AUDIO_MIXER_LAST; 2100 strcpy(dip->label.name, AudioNmicrophone); 2101 dip->type = AUDIO_MIXER_VALUE; 2102 dip->un.v.num_channels = 2; 2103 strcpy(dip->un.v.units.name, AudioNvolume); 2104 return (0); 2105 2106 case ESS_LINE_REC_VOL: 2107 dip->mixer_class = ESS_RECORD_CLASS; 2108 dip->next = dip->prev = AUDIO_MIXER_LAST; 2109 strcpy(dip->label.name, AudioNline); 2110 dip->type = AUDIO_MIXER_VALUE; 2111 dip->un.v.num_channels = 2; 2112 strcpy(dip->un.v.units.name, AudioNvolume); 2113 return (0); 2114 2115 case ESS_SYNTH_REC_VOL: 2116 dip->mixer_class = ESS_RECORD_CLASS; 2117 dip->next = dip->prev = AUDIO_MIXER_LAST; 2118 strcpy(dip->label.name, AudioNfmsynth); 2119 dip->type = AUDIO_MIXER_VALUE; 2120 dip->un.v.num_channels = 2; 2121 strcpy(dip->un.v.units.name, AudioNvolume); 2122 return (0); 2123 2124 case ESS_CD_REC_VOL: 2125 dip->mixer_class = ESS_RECORD_CLASS; 2126 dip->next = dip->prev = AUDIO_MIXER_LAST; 2127 strcpy(dip->label.name, AudioNcd); 2128 dip->type = AUDIO_MIXER_VALUE; 2129 dip->un.v.num_channels = 2; 2130 strcpy(dip->un.v.units.name, AudioNvolume); 2131 return (0); 2132 2133 case ESS_AUXB_REC_VOL: 2134 dip->mixer_class = ESS_RECORD_CLASS; 2135 dip->next = dip->prev = AUDIO_MIXER_LAST; 2136 strcpy(dip->label.name, "auxb"); 2137 dip->type = AUDIO_MIXER_VALUE; 2138 dip->un.v.num_channels = 2; 2139 strcpy(dip->un.v.units.name, AudioNvolume); 2140 return (0); 2141 2142 case ESS_MIC_PREAMP: 2143 dip->mixer_class = ESS_INPUT_CLASS; 2144 dip->prev = ESS_MIC_PLAY_VOL; 2145 dip->next = AUDIO_MIXER_LAST; 2146 strcpy(dip->label.name, AudioNpreamp); 2147 dip->type = AUDIO_MIXER_ENUM; 2148 dip->un.e.num_mem = 2; 2149 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2150 dip->un.e.member[0].ord = 0; 2151 strcpy(dip->un.e.member[1].label.name, AudioNon); 2152 dip->un.e.member[1].ord = 1; 2153 return (0); 2154 } 2155 2156 return (ENXIO); 2157 } 2158 2159 void * 2160 ess_malloc(addr, direction, size, pool, flags) 2161 void *addr; 2162 int direction; 2163 size_t size; 2164 int pool, flags; 2165 { 2166 struct ess_softc *sc = addr; 2167 int drq; 2168 2169 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY) 2170 drq = sc->sc_audio2.drq; 2171 else 2172 drq = sc->sc_audio1.drq; 2173 return (isa_malloc(sc->sc_ic, drq, size, pool, flags)); 2174 } 2175 2176 void 2177 ess_free(addr, ptr, pool) 2178 void *addr; 2179 void *ptr; 2180 int pool; 2181 { 2182 isa_free(ptr, pool); 2183 } 2184 2185 size_t 2186 ess_round_buffersize(addr, direction, size) 2187 void *addr; 2188 int direction; 2189 size_t size; 2190 { 2191 struct ess_softc *sc = addr; 2192 bus_size_t maxsize; 2193 2194 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY) 2195 maxsize = sc->sc_audio2.maxsize; 2196 else 2197 maxsize = sc->sc_audio1.maxsize; 2198 2199 if (size > maxsize) 2200 size = maxsize; 2201 return (size); 2202 } 2203 2204 int 2205 ess_mappage(addr, mem, off, prot) 2206 void *addr; 2207 void *mem; 2208 int off; 2209 int prot; 2210 { 2211 return (isa_mappage(mem, off, prot)); 2212 } 2213 2214 int 2215 ess_1788_get_props(addr) 2216 void *addr; 2217 { 2218 2219 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT); 2220 } 2221 2222 int 2223 ess_1888_get_props(addr) 2224 void *addr; 2225 { 2226 2227 return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX); 2228 } 2229 2230 /* ============================================ 2231 * Generic functions for ess, not used by audio h/w i/f 2232 * ============================================= 2233 */ 2234 2235 /* 2236 * Reset the chip. 2237 * Return non-zero if the chip isn't detected. 2238 */ 2239 int 2240 ess_reset(sc) 2241 struct ess_softc *sc; 2242 { 2243 bus_space_tag_t iot = sc->sc_iot; 2244 bus_space_handle_t ioh = sc->sc_ioh; 2245 2246 sc->sc_audio1.active = 0; 2247 sc->sc_audio2.active = 0; 2248 2249 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT); 2250 delay(10000); /* XXX shouldn't delay so long */ 2251 EWRITE1(iot, ioh, ESS_DSP_RESET, 0); 2252 if (ess_rdsp(sc) != ESS_MAGIC) 2253 return (1); 2254 2255 /* Enable access to the ESS extension commands. */ 2256 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT); 2257 2258 return (0); 2259 } 2260 2261 void 2262 ess_set_gain(sc, port, on) 2263 struct ess_softc *sc; 2264 int port; 2265 int on; 2266 { 2267 int gain, left, right; 2268 int mix; 2269 int src; 2270 int stereo; 2271 2272 /* 2273 * Most gain controls are found in the mixer registers and 2274 * are stereo. Any that are not, must set mix and stereo as 2275 * required. 2276 */ 2277 mix = 1; 2278 stereo = 1; 2279 2280 switch (port) { 2281 case ESS_MASTER_VOL: 2282 src = ESS_MREG_VOLUME_MASTER; 2283 break; 2284 case ESS_DAC_PLAY_VOL: 2285 if (ESS_USE_AUDIO1(sc->sc_model)) 2286 src = ESS_MREG_VOLUME_VOICE; 2287 else 2288 src = 0x7C; 2289 break; 2290 case ESS_MIC_PLAY_VOL: 2291 src = ESS_MREG_VOLUME_MIC; 2292 break; 2293 case ESS_LINE_PLAY_VOL: 2294 src = ESS_MREG_VOLUME_LINE; 2295 break; 2296 case ESS_SYNTH_PLAY_VOL: 2297 src = ESS_MREG_VOLUME_SYNTH; 2298 break; 2299 case ESS_CD_PLAY_VOL: 2300 src = ESS_MREG_VOLUME_CD; 2301 break; 2302 case ESS_AUXB_PLAY_VOL: 2303 src = ESS_MREG_VOLUME_AUXB; 2304 break; 2305 case ESS_PCSPEAKER_VOL: 2306 src = ESS_MREG_VOLUME_PCSPKR; 2307 stereo = 0; 2308 break; 2309 case ESS_DAC_REC_VOL: 2310 src = 0x69; 2311 break; 2312 case ESS_MIC_REC_VOL: 2313 src = 0x68; 2314 break; 2315 case ESS_LINE_REC_VOL: 2316 src = 0x6E; 2317 break; 2318 case ESS_SYNTH_REC_VOL: 2319 src = 0x6B; 2320 break; 2321 case ESS_CD_REC_VOL: 2322 src = 0x6A; 2323 break; 2324 case ESS_AUXB_REC_VOL: 2325 src = 0x6C; 2326 break; 2327 case ESS_RECORD_VOL: 2328 src = ESS_XCMD_VOLIN_CTRL; 2329 mix = 0; 2330 break; 2331 default: 2332 return; 2333 } 2334 2335 /* 1788 doesn't have a separate recording mixer */ 2336 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62) 2337 return; 2338 2339 if (on) { 2340 left = sc->gain[port][ESS_LEFT]; 2341 right = sc->gain[port][ESS_RIGHT]; 2342 } else { 2343 left = right = 0; 2344 } 2345 2346 if (stereo) 2347 gain = ESS_STEREO_GAIN(left, right); 2348 else 2349 gain = ESS_MONO_GAIN(left); 2350 2351 if (mix) 2352 ess_write_mix_reg(sc, src, gain); 2353 else 2354 ess_write_x_reg(sc, src, gain); 2355 } 2356 2357 /* Set the input device on devices without an input mixer. */ 2358 int 2359 ess_set_in_port(sc, ord) 2360 struct ess_softc *sc; 2361 int ord; 2362 { 2363 mixer_devinfo_t di; 2364 int i; 2365 2366 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord)); 2367 2368 /* 2369 * Get the device info for the record source control, 2370 * including the list of available sources. 2371 */ 2372 di.index = ESS_RECORD_SOURCE; 2373 if (ess_query_devinfo(sc, &di)) 2374 return EINVAL; 2375 2376 /* See if the given ord value was anywhere in the list. */ 2377 for (i = 0; i < di.un.e.num_mem; i++) { 2378 if (ord == di.un.e.member[i].ord) 2379 break; 2380 } 2381 if (i == di.un.e.num_mem) 2382 return EINVAL; 2383 2384 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord); 2385 2386 sc->in_port = ord; 2387 return (0); 2388 } 2389 2390 /* Set the input device levels on input-mixer-enabled devices. */ 2391 int 2392 ess_set_in_ports(sc, mask) 2393 struct ess_softc *sc; 2394 int mask; 2395 { 2396 mixer_devinfo_t di; 2397 int i, port; 2398 2399 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask)); 2400 2401 /* 2402 * Get the device info for the record source control, 2403 * including the list of available sources. 2404 */ 2405 di.index = ESS_RECORD_SOURCE; 2406 if (ess_query_devinfo(sc, &di)) 2407 return EINVAL; 2408 2409 /* 2410 * Set or disable the record volume control for each of the 2411 * possible sources. 2412 */ 2413 for (i = 0; i < di.un.s.num_mem; i++) { 2414 /* 2415 * Calculate the source port number from its mask. 2416 */ 2417 port = ffs(di.un.s.member[i].mask); 2418 2419 /* 2420 * Set the source gain: 2421 * to the current value if source is enabled 2422 * to zero if source is disabled 2423 */ 2424 ess_set_gain(sc, port, mask & di.un.s.member[i].mask); 2425 } 2426 2427 sc->in_mask = mask; 2428 return (0); 2429 } 2430 2431 void 2432 ess_speaker_on(sc) 2433 struct ess_softc *sc; 2434 { 2435 /* Unmute the DAC. */ 2436 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1); 2437 } 2438 2439 void 2440 ess_speaker_off(sc) 2441 struct ess_softc *sc; 2442 { 2443 /* Mute the DAC. */ 2444 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0); 2445 } 2446 2447 /* 2448 * Calculate the time constant for the requested sampling rate. 2449 */ 2450 u_int 2451 ess_srtotc(rate) 2452 u_int rate; 2453 { 2454 u_int tc; 2455 2456 /* The following formulae are from the ESS data sheet. */ 2457 if (rate <= 22050) 2458 tc = 128 - 397700L / rate; 2459 else 2460 tc = 256 - 795500L / rate; 2461 2462 return (tc); 2463 } 2464 2465 2466 /* 2467 * Calculate the filter constant for the reuqested sampling rate. 2468 */ 2469 u_int 2470 ess_srtofc(rate) 2471 u_int rate; 2472 { 2473 /* 2474 * The following formula is derived from the information in 2475 * the ES1887 data sheet, based on a roll-off frequency of 2476 * 87%. 2477 */ 2478 return (256 - 200279L / rate); 2479 } 2480 2481 2482 /* 2483 * Return the status of the DSP. 2484 */ 2485 u_char 2486 ess_get_dsp_status(sc) 2487 struct ess_softc *sc; 2488 { 2489 return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS)); 2490 } 2491 2492 2493 /* 2494 * Return the read status of the DSP: 1 -> DSP ready for reading 2495 * 0 -> DSP not ready for reading 2496 */ 2497 u_char 2498 ess_dsp_read_ready(sc) 2499 struct ess_softc *sc; 2500 { 2501 return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0); 2502 } 2503 2504 2505 /* 2506 * Return the write status of the DSP: 1 -> DSP ready for writing 2507 * 0 -> DSP not ready for writing 2508 */ 2509 u_char 2510 ess_dsp_write_ready(sc) 2511 struct ess_softc *sc; 2512 { 2513 return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1); 2514 } 2515 2516 2517 /* 2518 * Read a byte from the DSP. 2519 */ 2520 int 2521 ess_rdsp(sc) 2522 struct ess_softc *sc; 2523 { 2524 bus_space_tag_t iot = sc->sc_iot; 2525 bus_space_handle_t ioh = sc->sc_ioh; 2526 int i; 2527 2528 for (i = ESS_READ_TIMEOUT; i > 0; --i) { 2529 if (ess_dsp_read_ready(sc)) { 2530 i = EREAD1(iot, ioh, ESS_DSP_READ); 2531 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i)); 2532 return i; 2533 } else 2534 delay(10); 2535 } 2536 2537 DPRINTF(("ess_rdsp: timed out\n")); 2538 return (-1); 2539 } 2540 2541 /* 2542 * Write a byte to the DSP. 2543 */ 2544 int 2545 ess_wdsp(sc, v) 2546 struct ess_softc *sc; 2547 u_char v; 2548 { 2549 bus_space_tag_t iot = sc->sc_iot; 2550 bus_space_handle_t ioh = sc->sc_ioh; 2551 int i; 2552 2553 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v)); 2554 2555 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) { 2556 if (ess_dsp_write_ready(sc)) { 2557 EWRITE1(iot, ioh, ESS_DSP_WRITE, v); 2558 return (0); 2559 } else 2560 delay(10); 2561 } 2562 2563 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v)); 2564 return (-1); 2565 } 2566 2567 /* 2568 * Write a value to one of the ESS extended registers. 2569 */ 2570 int 2571 ess_write_x_reg(sc, reg, val) 2572 struct ess_softc *sc; 2573 u_char reg; 2574 u_char val; 2575 { 2576 int error; 2577 2578 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val)); 2579 if ((error = ess_wdsp(sc, reg)) == 0) 2580 error = ess_wdsp(sc, val); 2581 2582 return error; 2583 } 2584 2585 /* 2586 * Read the value of one of the ESS extended registers. 2587 */ 2588 u_char 2589 ess_read_x_reg(sc, reg) 2590 struct ess_softc *sc; 2591 u_char reg; 2592 { 2593 int error; 2594 int val; 2595 2596 if ((error = ess_wdsp(sc, 0xC0)) == 0) 2597 error = ess_wdsp(sc, reg); 2598 if (error) 2599 DPRINTF(("Error reading extended register 0x%02x\n", reg)); 2600 /* REVISIT: what if an error is returned above? */ 2601 val = ess_rdsp(sc); 2602 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val)); 2603 return val; 2604 } 2605 2606 void 2607 ess_clear_xreg_bits(sc, reg, mask) 2608 struct ess_softc *sc; 2609 u_char reg; 2610 u_char mask; 2611 { 2612 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) 2613 DPRINTF(("Error clearing bits in extended register 0x%02x\n", 2614 reg)); 2615 } 2616 2617 void 2618 ess_set_xreg_bits(sc, reg, mask) 2619 struct ess_softc *sc; 2620 u_char reg; 2621 u_char mask; 2622 { 2623 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) 2624 DPRINTF(("Error setting bits in extended register 0x%02x\n", 2625 reg)); 2626 } 2627 2628 2629 /* 2630 * Write a value to one of the ESS mixer registers. 2631 */ 2632 void 2633 ess_write_mix_reg(sc, reg, val) 2634 struct ess_softc *sc; 2635 u_char reg; 2636 u_char val; 2637 { 2638 bus_space_tag_t iot = sc->sc_iot; 2639 bus_space_handle_t ioh = sc->sc_ioh; 2640 int s; 2641 2642 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val)); 2643 2644 s = splaudio(); 2645 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2646 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val); 2647 splx(s); 2648 } 2649 2650 /* 2651 * Read the value of one of the ESS mixer registers. 2652 */ 2653 u_char 2654 ess_read_mix_reg(sc, reg) 2655 struct ess_softc *sc; 2656 u_char reg; 2657 { 2658 bus_space_tag_t iot = sc->sc_iot; 2659 bus_space_handle_t ioh = sc->sc_ioh; 2660 int s; 2661 u_char val; 2662 2663 s = splaudio(); 2664 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2665 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA); 2666 splx(s); 2667 2668 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val)); 2669 return val; 2670 } 2671 2672 void 2673 ess_clear_mreg_bits(sc, reg, mask) 2674 struct ess_softc *sc; 2675 u_char reg; 2676 u_char mask; 2677 { 2678 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask); 2679 } 2680 2681 void 2682 ess_set_mreg_bits(sc, reg, mask) 2683 struct ess_softc *sc; 2684 u_char reg; 2685 u_char mask; 2686 { 2687 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask); 2688 } 2689 2690 void 2691 ess_read_multi_mix_reg(sc, reg, datap, count) 2692 struct ess_softc *sc; 2693 u_char reg; 2694 u_int8_t *datap; 2695 bus_size_t count; 2696 { 2697 bus_space_tag_t iot = sc->sc_iot; 2698 bus_space_handle_t ioh = sc->sc_ioh; 2699 int s; 2700 2701 s = splaudio(); 2702 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2703 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count); 2704 splx(s); 2705 } 2706