xref: /netbsd-src/sys/dev/isa/ess.c (revision dc306354b0b29af51801a7632f1e95265a68cd81)
1 /*	$NetBSD: ess.c,v 1.28 1999/01/08 19:22:35 augustss Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37 **++
38 **
39 **  ess.c
40 **
41 **  FACILITY:
42 **
43 **	DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 **  MODULE DESCRIPTION:
46 **
47 **      This module contains the device driver for the ESS
48 **      Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 **	used as a reference point when implementing this driver.
50 **
51 **  AUTHORS:
52 **
53 **	Blair Fidler	Software Engineering Australia
54 **			Gold Coast, Australia.
55 **
56 **  CREATION DATE:
57 **
58 **	March 10, 1997.
59 **
60 **  MODIFICATION HISTORY:
61 **
62 **	Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 **	bus_dma, changes to audio interface, and many bug fixes.
64 **--
65 */
66 
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/errno.h>
70 #include <sys/ioctl.h>
71 #include <sys/syslog.h>
72 #include <sys/device.h>
73 #include <sys/proc.h>
74 
75 #include <machine/cpu.h>
76 #include <machine/intr.h>
77 #include <machine/bus.h>
78 
79 #include <sys/audioio.h>
80 #include <dev/audio_if.h>
81 #include <dev/auconv.h>
82 #include <dev/mulaw.h>
83 
84 #include <dev/isa/isavar.h>
85 #include <dev/isa/isadmavar.h>
86 
87 #include <dev/isa/essvar.h>
88 #include <dev/isa/essreg.h>
89 
90 #ifdef AUDIO_DEBUG
91 #define DPRINTF(x)	if (essdebug) printf x
92 #define DPRINTFN(n,x)	if (essdebug>(n)) printf x
93 int	essdebug = 0;
94 #else
95 #define DPRINTF(x)
96 #define DPRINTFN(n,x)
97 #endif
98 
99 #if 0
100 unsigned uuu;
101 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD  %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
102 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
103 #else
104 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
105 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
106 #endif
107 
108 
109 int	ess_setup_sc __P((struct ess_softc *, int));
110 
111 int	ess_open __P((void *, int));
112 void	ess_close __P((void *));
113 int	ess_getdev __P((void *, struct audio_device *));
114 int	ess_drain __P((void *));
115 
116 int	ess_query_encoding __P((void *, struct audio_encoding *));
117 
118 int	ess_set_params __P((void *, int, int, struct audio_params *,
119 	    struct audio_params *));
120 
121 int	ess_round_blocksize __P((void *, int));
122 
123 int	ess_trigger_output __P((void *, void *, void *, int, void (*)(void *),
124 	    void *, struct audio_params *));
125 int	ess_trigger_input __P((void *, void *, void *, int, void (*)(void *),
126 	    void *, struct audio_params *));
127 int	ess_halt_output __P((void *));
128 int	ess_halt_input __P((void *));
129 
130 int	ess_intr_output __P((void *));
131 int	ess_intr_input __P((void *));
132 
133 int	ess_speaker_ctl __P((void *, int));
134 
135 int	ess_getdev __P((void *, struct audio_device *));
136 
137 int	ess_set_port __P((void *, mixer_ctrl_t *));
138 int	ess_get_port __P((void *, mixer_ctrl_t *));
139 
140 void   *ess_malloc __P((void *, unsigned long, int, int));
141 void	ess_free __P((void *, void *, int));
142 unsigned long ess_round __P((void *, unsigned long));
143 int	ess_mappage __P((void *, void *, int, int));
144 
145 
146 int	ess_query_devinfo __P((void *, mixer_devinfo_t *));
147 int	ess_get_props __P((void *));
148 
149 void	ess_speaker_on __P((struct ess_softc *));
150 void	ess_speaker_off __P((struct ess_softc *));
151 
152 int	ess_config_addr __P((struct ess_softc *));
153 void	ess_config_irq __P((struct ess_softc *));
154 void	ess_config_drq __P((struct ess_softc *));
155 void	ess_setup __P((struct ess_softc *));
156 int	ess_identify __P((struct ess_softc *));
157 
158 int	ess_reset __P((struct ess_softc *));
159 void	ess_set_gain __P((struct ess_softc *, int, int));
160 int	ess_set_in_ports __P((struct ess_softc *, int));
161 u_int	ess_srtotc __P((u_int));
162 u_int	ess_srtofc __P((u_int));
163 u_char	ess_get_dsp_status __P((struct ess_softc *));
164 u_char	ess_dsp_read_ready __P((struct ess_softc *));
165 u_char	ess_dsp_write_ready __P((struct ess_softc *sc));
166 int	ess_rdsp __P((struct ess_softc *));
167 int	ess_wdsp __P((struct ess_softc *, u_char));
168 u_char	ess_read_x_reg __P((struct ess_softc *, u_char));
169 int	ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
170 void	ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
171 void	ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
172 u_char	ess_read_mix_reg __P((struct ess_softc *, u_char));
173 void	ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
174 void	ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
175 void	ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
176 
177 static char *essmodel[] = {
178 	"unsupported",
179 	"1888",
180 	"1887",
181 	"888"
182 };
183 
184 struct audio_device ess_device = {
185 	"ESS Technology",
186 	"x",
187 	"ess"
188 };
189 
190 /*
191  * Define our interface to the higher level audio driver.
192  */
193 
194 struct audio_hw_if ess_hw_if = {
195 	ess_open,
196 	ess_close,
197 	ess_drain,
198 	ess_query_encoding,
199 	ess_set_params,
200 	ess_round_blocksize,
201 	NULL,
202 	NULL,
203 	NULL,
204 	NULL,
205 	NULL,
206 	ess_halt_output,
207 	ess_halt_input,
208 	ess_speaker_ctl,
209 	ess_getdev,
210 	NULL,
211 	ess_set_port,
212 	ess_get_port,
213 	ess_query_devinfo,
214 	ess_malloc,
215 	ess_free,
216 	ess_round,
217         ess_mappage,
218 	ess_get_props,
219 	ess_trigger_output,
220 	ess_trigger_input,
221 };
222 
223 #ifdef AUDIO_DEBUG
224 void ess_printsc __P((struct ess_softc *));
225 void ess_dump_mixer __P((struct ess_softc *));
226 
227 void
228 ess_printsc(sc)
229 	struct ess_softc *sc;
230 {
231 	int i;
232 
233 	printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
234 	       (int)sc->sc_open, sc->sc_iobase, sc->out_port,
235 	       sc->in_port, sc->spkr_state ? "on" : "off");
236 
237 	printf("play: dmachan %d irq %d nintr %lu intr %p arg %p\n",
238 	       sc->sc_out.drq, sc->sc_out.irq, sc->sc_out.nintr,
239 	       sc->sc_out.intr, sc->sc_out.arg);
240 
241 	printf("record: dmachan %d irq %d nintr %lu intr %p arg %p\n",
242 	       sc->sc_in.drq, sc->sc_in.irq, sc->sc_in.nintr,
243 	       sc->sc_in.intr, sc->sc_in.arg);
244 
245 	printf("gain:");
246 	for (i = 0; i < ESS_NDEVS; i++)
247 		printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
248 	printf("\n");
249 }
250 
251 void
252 ess_dump_mixer(sc)
253 	struct ess_softc *sc;
254 {
255 	printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
256 	       0x7C, ess_read_mix_reg(sc, 0x7C));
257 	printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
258 	       0x1A, ess_read_mix_reg(sc, 0x1A));
259 	printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
260 	       0x3E, ess_read_mix_reg(sc, 0x3E));
261 	printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
262 	       0x36, ess_read_mix_reg(sc, 0x36));
263 	printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
264 	       0x38, ess_read_mix_reg(sc, 0x38));
265 	printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
266 	       0x3A, ess_read_mix_reg(sc, 0x3A));
267 	printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
268 	       0x32, ess_read_mix_reg(sc, 0x32));
269 	printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
270 	       0x3C, ess_read_mix_reg(sc, 0x3C));
271 	printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
272 	       0x69, ess_read_mix_reg(sc, 0x69));
273 	printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
274 	       0x68, ess_read_mix_reg(sc, 0x68));
275 	printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
276 	       0x6E, ess_read_mix_reg(sc, 0x6E));
277 	printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
278 	       0x6B, ess_read_mix_reg(sc, 0x6B));
279 	printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
280 	       0x6A, ess_read_mix_reg(sc, 0x6A));
281 	printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
282 	       0x6C, ess_read_mix_reg(sc, 0x6C));
283 	printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
284 	       0xB4, ess_read_x_reg(sc, 0xB4));
285 	printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
286 	       0x14, ess_read_mix_reg(sc, 0x14));
287 
288 	printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
289 	       ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
290 	printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
291 	       ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
292 	printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
293 	       0x1c, ess_read_mix_reg(sc, 0x1c),
294 	       0x7a, ess_read_mix_reg(sc, 0x7a));
295 }
296 
297 #endif
298 
299 /*
300  * Configure the ESS chip for the desired audio base address.
301  */
302 int
303 ess_config_addr(sc)
304 	struct ess_softc *sc;
305 {
306 	int iobase = sc->sc_iobase;
307 	bus_space_tag_t iot = sc->sc_iot;
308 
309 	/*
310 	 * Configure using the System Control Register method.  This
311 	 * method is used when the AMODE line is tied high, which is
312 	 * the case for the Shark, but not for the evaluation board.
313 	 */
314 
315 	bus_space_handle_t scr_access_ioh;
316 	bus_space_handle_t scr_ioh;
317 	u_short scr_value;
318 
319 	/*
320 	 * Set the SCR bit to enable audio.
321 	 */
322 	scr_value = ESS_SCR_AUDIO_ENABLE;
323 
324 	/*
325 	 * Set the SCR bits necessary to select the specified audio
326 	 * base address.
327 	 */
328 	switch(iobase) {
329 	case 0x220:
330 		scr_value |= ESS_SCR_AUDIO_220;
331 		break;
332 	case 0x230:
333 		scr_value |= ESS_SCR_AUDIO_230;
334 		break;
335 	case 0x240:
336 		scr_value |= ESS_SCR_AUDIO_240;
337 		break;
338 	case 0x250:
339 		scr_value |= ESS_SCR_AUDIO_250;
340 		break;
341 	default:
342 		printf("ess: configured iobase 0x%x invalid\n", iobase);
343 		return (1);
344 		break;
345 	}
346 
347 	/*
348 	 * Get a mapping for the System Control Register (SCR) access
349 	 * registers and the SCR data registers.
350 	 */
351 	if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
352 			  0, &scr_access_ioh)) {
353 		printf("ess: can't map SCR access registers\n");
354 		return (1);
355 	}
356 	if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
357 			  0, &scr_ioh)) {
358 		printf("ess: can't map SCR registers\n");
359 		bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
360 		return (1);
361 	}
362 
363 	/* Unlock the SCR. */
364 	EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
365 
366 	/* Write the base address information into SCR[0]. */
367 	EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
368 	EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
369 
370 	/* Lock the SCR. */
371 	EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
372 
373 	/* Unmap the SCR access ports and the SCR data ports. */
374 	bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
375 	bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
376 
377 	return 0;
378 }
379 
380 
381 /*
382  * Configure the ESS chip for the desired IRQ and DMA channels.
383  * ESS  ISA
384  * --------
385  * IRQA irq9
386  * IRQB irq5
387  * IRQC irq7
388  * IRQD irq10
389  * IRQE irq15
390  *
391  * DRQA drq0
392  * DRQB drq1
393  * DRQC drq3
394  * DRQD drq5
395  */
396 void
397 ess_config_irq(sc)
398 	struct ess_softc *sc;
399 {
400 	int v;
401 
402 	DPRINTFN(2,("ess_config_irq\n"));
403 
404 	if (sc->sc_in.irq != sc->sc_out.irq) {
405 		/* Configure Audio 1 (record) for the appropriate IRQ line. */
406 		v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
407 		switch(sc->sc_in.irq) {
408 		case 5:
409 			v |= ESS_IRQ_CTRL_INTRB;
410 			break;
411 		case 7:
412 			v |= ESS_IRQ_CTRL_INTRC;
413 			break;
414 		case 9:
415 			v |= ESS_IRQ_CTRL_INTRA;
416 			break;
417 		case 10:
418 			v |= ESS_IRQ_CTRL_INTRD;
419 			break;
420 #ifdef DIAGNOSTIC
421 		default:
422 			printf("ess: configured irq %d not supported for Audio 1\n",
423 			       sc->sc_in.irq);
424 			return;
425 #endif
426 		}
427 		ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
428 		/* irq2 is hardwired to 15 in this mode */
429 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
430 				  ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
431 		/* Use old method. */
432 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
433 	} else {
434 		/* Use new method, both interrupts are the same. */
435 		v = ESS_IS_SELECT_IRQ;	/* enable intrs */
436 		switch(sc->sc_out.irq) {
437 		case 5:
438 			v |= ESS_IS_INTRB;
439 			break;
440 		case 7:
441 			v |= ESS_IS_INTRC;
442 			break;
443 		case 9:
444 			v |= ESS_IS_INTRA;
445 			break;
446 		case 10:
447 			v |= ESS_IS_INTRD;
448 			break;
449 		case 15:
450 			v |= ESS_IS_INTRE;
451 			break;
452 #ifdef DIAGNOSTIC
453 		default:
454 			printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
455 			       sc->sc_in.irq);
456 			return;
457 #endif
458 		}
459 		/* Set the IRQ */
460 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
461 	}
462 }
463 
464 
465 void
466 ess_config_drq(sc)
467 	struct ess_softc *sc;
468 {
469 	int v;
470 
471 	DPRINTFN(2,("ess_config_drq\n"));
472 
473 	/* Configure Audio 1 (record) for DMA on the appropriate channel. */
474 	v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
475 	switch(sc->sc_in.drq) {
476 	case 0:
477 		v |= ESS_DRQ_CTRL_DRQA;
478 		break;
479 	case 1:
480 		v |= ESS_DRQ_CTRL_DRQB;
481 		break;
482 	case 3:
483 		v |= ESS_DRQ_CTRL_DRQC;
484 		break;
485 #ifdef DIAGNOSTIC
486 	default:
487 		printf("ess_config_drq: configured dma chan %d not supported for Audio 1\n",
488 		       sc->sc_in.drq);
489 		return;
490 #endif
491 	}
492 	/* Set DRQ1 */
493 	ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
494 
495 	/* Configure DRQ2 */
496 	v = ESS_AUDIO2_CTRL3_DRQ_PD;
497 	switch(sc->sc_out.drq) {
498 	case 0:
499 		v |= ESS_AUDIO2_CTRL3_DRQA;
500 		break;
501 	case 1:
502 		v |= ESS_AUDIO2_CTRL3_DRQB;
503 		break;
504 	case 3:
505 		v |= ESS_AUDIO2_CTRL3_DRQC;
506 		break;
507 	case 5:
508 		v |= ESS_AUDIO2_CTRL3_DRQC;
509 		break;
510 #ifdef DIAGNOSTIC
511 	default:
512 		printf("ess_config_drq: configured dma chan %d not supported for Audio 2\n",
513 		       sc->sc_out.drq);
514 		return;
515 #endif
516 	}
517 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
518 	/* Enable DMA 2 */
519 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
520 			  ESS_AUDIO2_CTRL2_DMA_ENABLE);
521 }
522 
523 /*
524  * Set up registers after a reset.
525  */
526 void
527 ess_setup(sc)
528 	struct ess_softc *sc;
529 {
530 
531 	ess_config_irq(sc);
532 	ess_config_drq(sc);
533 
534 	DPRINTFN(2,("ess_setup: done\n"));
535 }
536 
537 /*
538  * Determine the model of ESS chip we are talking to.  Currently we
539  * only support ES1888, ES1887 and ES888.  The method of determining
540  * the chip is based on the information on page 27 of the ES1887 data
541  * sheet.
542  *
543  * This routine sets the values of sc->sc_model and sc->sc_version.
544  */
545 int
546 ess_identify(sc)
547 	struct ess_softc *sc;
548 {
549 	u_char reg1;
550 	u_char reg2;
551 	u_char reg3;
552 
553 	sc->sc_model = ESS_UNSUPPORTED;
554 	sc->sc_version = 0;
555 
556 
557 	/*
558 	 * 1. Check legacy ID bytes.  These should be 0x68 0x8n, where
559 	 *    n >= 8 for an ES1887 or an ES888.  Other values indicate
560 	 *    earlier (unsupported) chips.
561 	 */
562 	ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
563 
564 	if ((reg1 = ess_rdsp(sc)) != 0x68) {
565 		printf("ess: First ID byte wrong (0x%02x)\n", reg1);
566 		return 1;
567 	}
568 
569 	reg2 = ess_rdsp(sc);
570 	if (((reg2 & 0xf0) != 0x80) ||
571 	    ((reg2 & 0x0f) < 8)) {
572 		printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
573 		return 1;
574 	}
575 
576 	/*
577 	 * Store the ID bytes as the version.
578 	 */
579 	sc->sc_version = (reg1 << 8) + reg2;
580 
581 
582 	/*
583 	 * 2. Verify we can change bit 2 in mixer register 0x64.  This
584 	 *    should be possible on all supported chips.
585 	 */
586 	reg1 = ess_read_mix_reg(sc, 0x64);
587 	reg2 = reg1 ^ 0x04;  /* toggle bit 2 */
588 
589 	ess_write_mix_reg(sc, 0x64, reg2);
590 
591 	if (ess_read_mix_reg(sc, 0x64) != reg2) {
592 		printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
593 		return 1;
594 	}
595 
596 	/*
597 	 * Restore the original value of mixer register 0x64.
598 	 */
599 	ess_write_mix_reg(sc, 0x64, reg1);
600 
601 
602 	/*
603 	 * 3. Verify we can change the value of mixer register
604 	 *    ESS_MREG_SAMPLE_RATE.
605 	 *    This should be possible on all supported chips.
606 	 *    It is not necessary to restore the value of this mixer register.
607 	 */
608 	reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
609 	reg2 = reg1 ^ 0xff;  /* toggle all bits */
610 
611 	ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
612 
613 	if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
614 		printf("ess: Hardware error (unable to change mixer register 0x70)\n");
615 		return 1;
616 	}
617 
618 	/*
619 	 * 4. Determine if we can change bit 5 in mixer register 0x64.
620 	 *    This determines whether we have an ES1887:
621 	 *
622 	 *    - can change indicates ES1887
623 	 *    - can't change indicates ES1888 or ES888
624 	 */
625 	reg1 = ess_read_mix_reg(sc, 0x64);
626 	reg2 = reg1 ^ 0x20;  /* toggle bit 5 */
627 
628 	ess_write_mix_reg(sc, 0x64, reg2);
629 
630 	if (ess_read_mix_reg(sc, 0x64) == reg2) {
631 		sc->sc_model = ESS_1887;
632 
633 		/*
634 		 * Restore the original value of mixer register 0x64.
635 		 */
636 		ess_write_mix_reg(sc, 0x64, reg1);
637 	} else {
638 		/*
639 		 * 5. Determine if we can change the value of mixer
640 		 *    register 0x69 independently of mixer register
641 		 *    0x68. This determines which chip we have:
642 		 *
643 		 *    - can modify idependently indicates ES888
644 		 *    - register 0x69 is an alias of 0x68 indicates ES1888
645 		 */
646 		reg1 = ess_read_mix_reg(sc, 0x68);
647 		reg2 = ess_read_mix_reg(sc, 0x69);
648 		reg3 = reg2 ^ 0xff;  /* toggle all bits */
649 
650 		/*
651 		 * Write different values to each register.
652 		 */
653 		ess_write_mix_reg(sc, 0x68, reg2);
654 		ess_write_mix_reg(sc, 0x69, reg3);
655 
656 		if (ess_read_mix_reg(sc, 0x68) == reg2)
657 			sc->sc_model = ESS_888;
658 		else
659 			sc->sc_model = ESS_1888;
660 
661 		/*
662 		 * Restore the original value of the registers.
663 		 */
664 		ess_write_mix_reg(sc, 0x68, reg1);
665 		ess_write_mix_reg(sc, 0x69, reg2);
666 	}
667 
668 	return 0;
669 }
670 
671 
672 int
673 ess_setup_sc(sc, doinit)
674 	struct ess_softc *sc;
675 	int doinit;
676 {
677 	/* Reset the chip. */
678 	if (ess_reset(sc) != 0) {
679 		DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
680 		return (1);
681 	}
682 
683 	/* Identify the ESS chip, and check that it is supported. */
684 	if (ess_identify(sc)) {
685 		DPRINTF(("ess_setup_sc: couldn't identify\n"));
686 		return (1);
687 	}
688 
689 	return (0);
690 }
691 
692 /*
693  * Probe for the ESS hardware.
694  */
695 int
696 essmatch(sc)
697 	struct ess_softc *sc;
698 {
699 	if (!ESS_BASE_VALID(sc->sc_iobase)) {
700 		printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
701 		return (0);
702 	}
703 
704 	/* Configure the ESS chip for the desired audio base address. */
705 	if (ess_config_addr(sc))
706 		return (0);
707 
708 	if (ess_setup_sc(sc, 1))
709 		return (0);
710 
711 	if (sc->sc_model == ESS_UNSUPPORTED) {
712 		DPRINTF(("ess: Unsupported model\n"));
713 		return (0);
714 	}
715 
716 	/* Check that requested DMA channels are valid and different. */
717 	if (!ESS_DRQ1_VALID(sc->sc_in.drq)) {
718 		printf("ess: record dma chan %d invalid\n", sc->sc_in.drq);
719 		return (0);
720 	}
721 	if (!ESS_DRQ2_VALID(sc->sc_out.drq, sc->sc_model)) {
722 		printf("ess: play dma chan %d invalid\n", sc->sc_out.drq);
723 		return (0);
724 	}
725 	if (sc->sc_in.drq == sc->sc_out.drq) {
726 		printf("ess: play and record dma chan both %d\n",
727 		       sc->sc_in.drq);
728 		return (0);
729 	}
730 
731 	if (sc->sc_model == ESS_1887) {
732 		/*
733 		 * Either use the 1887 interrupt mode with all interrupts
734 		 * mapped to the same irq, or use the 1888 method with
735 		 * irq fixed at 15.
736 		 */
737 		if (sc->sc_in.irq == sc->sc_out.irq) {
738 			if (!ESS_IRQ12_VALID(sc->sc_in.irq)) {
739 			  printf("ess: irq %d invalid\n", sc->sc_in.irq);
740 			  return (0);
741 			}
742 			goto irq_not1888;
743 		}
744 	} else {
745 		/* Must use separate interrupts */
746 		if (sc->sc_in.irq == sc->sc_out.irq) {
747 			printf("ess: play and record irq both %d\n",
748 			       sc->sc_in.irq);
749 			return (0);
750 		}
751 	}
752 
753 	/* Check that requested IRQ lines are valid and different. */
754 	if (!ESS_IRQ1_VALID(sc->sc_in.irq)) {
755 		printf("ess: record irq %d invalid\n", sc->sc_in.irq);
756 		return (0);
757 	}
758 	if (!ESS_IRQ2_VALID(sc->sc_out.irq)) {
759 		printf("ess: play irq %d invalid\n", sc->sc_out.irq);
760 		return (0);
761 	}
762  irq_not1888:
763 
764 	/* Check that the DRQs are free. */
765 	if (!isa_drq_isfree(sc->sc_ic, sc->sc_in.drq) ||
766 	    !isa_drq_isfree(sc->sc_ic, sc->sc_out.drq))
767 		return (0);
768 	/* XXX should we check IRQs as well? */
769 
770 	return (1);
771 }
772 
773 
774 /*
775  * Attach hardware to driver, attach hardware driver to audio
776  * pseudo-device driver.
777  */
778 void
779 essattach(sc)
780 	struct ess_softc *sc;
781 {
782 	struct audio_attach_args arg;
783 	struct audio_params pparams, rparams;
784         int i;
785         u_int v;
786 
787 	if (ess_setup_sc(sc, 0)) {
788 		printf("%s: setup failed\n", sc->sc_dev.dv_xname);
789 		return;
790 	}
791 
792 	sc->sc_out.ih = isa_intr_establish(sc->sc_ic, sc->sc_out.irq,
793 					   sc->sc_out.ist, IPL_AUDIO,
794 					   ess_intr_output, sc);
795 	sc->sc_in.ih = isa_intr_establish(sc->sc_ic, sc->sc_in.irq,
796 					  sc->sc_in.ist, IPL_AUDIO,
797 					  ess_intr_input, sc);
798 
799 	/* Create our DMA maps. */
800 	if (isa_dmamap_create(sc->sc_ic, sc->sc_in.drq,
801 			      MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
802 		printf("%s: can't create map for drq %d\n",
803 		       sc->sc_dev.dv_xname, sc->sc_in.drq);
804 		return;
805 	}
806 	if (isa_dmamap_create(sc->sc_ic, sc->sc_out.drq,
807 			      MAX_ISADMA, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
808 		printf("%s: can't create map for drq %d\n",
809 		       sc->sc_dev.dv_xname, sc->sc_out.drq);
810 		return;
811 	}
812 
813 	printf(" ESS Technology ES%s [version 0x%04x]\n",
814 	       essmodel[sc->sc_model], sc->sc_version);
815 
816 	/*
817 	 * Set record and play parameters to default values defined in
818 	 * generic audio driver.
819 	 */
820 	pparams = audio_default;
821 	rparams = audio_default;
822         ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
823 
824 	/* Do a hardware reset on the mixer. */
825 	ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
826 
827 	/*
828 	 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
829 	 * to playback mixer, since playback is always through Audio 2.
830 	 */
831 	ess_write_mix_reg(sc, 0x14, 0);
832 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
833 
834 	/*
835 	 * Set hardware record source to use output of the record
836 	 * mixer. We do the selection of record source in software by
837 	 * setting the gain of the unused sources to zero. (See
838 	 * ess_set_in_ports.)
839 	 */
840 	ess_set_mreg_bits(sc, 0x1c, 0x07);
841 	ess_clear_mreg_bits(sc, 0x7a, 0x10);
842 	ess_set_mreg_bits(sc, 0x7a, 0x08);
843 
844 	/*
845 	 * Set gain on each mixer device to a sensible value.
846 	 * Devices not normally used are turned off, and other devices
847 	 * are set to 50% volume.
848 	 */
849 	for (i = 0; i < ESS_NDEVS; i++) {
850 		switch(i) {
851 		case ESS_MIC_PLAY_VOL:
852 		case ESS_LINE_PLAY_VOL:
853 		case ESS_CD_PLAY_VOL:
854 		case ESS_AUXB_PLAY_VOL:
855 		case ESS_DAC_REC_VOL:
856 		case ESS_LINE_REC_VOL:
857 		case ESS_SYNTH_REC_VOL:
858 		case ESS_CD_REC_VOL:
859 		case ESS_AUXB_REC_VOL:
860 			v = 0;
861 			break;
862 		default:
863 			v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
864 			break;
865 		}
866 		sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
867 		ess_set_gain(sc, i, 1);
868 	}
869 
870 	ess_setup(sc);
871 
872 	/* Disable the speaker until the device is opened.  */
873 	ess_speaker_off(sc);
874 	sc->spkr_state = SPKR_OFF;
875 
876 	sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
877 	sprintf(ess_device.version, "0x%04x", sc->sc_version);
878 
879 	audio_attach_mi(&ess_hw_if, sc, &sc->sc_dev);
880 
881 	arg.type = AUDIODEV_TYPE_OPL;
882 	arg.hwif = 0;
883 	arg.hdl = 0;
884 	(void)config_found(&sc->sc_dev, &arg, audioprint);
885 
886 #ifdef AUDIO_DEBUG
887 	if (essdebug > 0)
888 		ess_printsc(sc);
889 #endif
890 }
891 
892 /*
893  * Various routines to interface to higher level audio driver
894  */
895 
896 int
897 ess_open(addr, flags)
898 	void *addr;
899 	int flags;
900 {
901 	struct ess_softc *sc = addr;
902 
903         DPRINTF(("ess_open: sc=%p\n", sc));
904 
905 	if (sc->sc_open != 0 || ess_reset(sc) != 0)
906 		return ENXIO;
907 
908 	ess_setup(sc);		/* because we did a reset */
909 
910 	sc->sc_open = 1;
911 
912 	DPRINTF(("ess_open: opened\n"));
913 
914 	return (0);
915 }
916 
917 void
918 ess_close(addr)
919 	void *addr;
920 {
921 	struct ess_softc *sc = addr;
922 
923         DPRINTF(("ess_close: sc=%p\n", sc));
924 
925 	sc->sc_open = 0;
926 	ess_speaker_off(sc);
927 	sc->spkr_state = SPKR_OFF;
928 	ess_halt_output(sc);
929 	ess_halt_input(sc);
930 	sc->sc_in.intr = 0;
931 	sc->sc_out.intr = 0;
932 
933 	DPRINTF(("ess_close: closed\n"));
934 }
935 
936 /*
937  * Wait for FIFO to drain, and analog section to settle.
938  * XXX should check FIFO full bit.
939  */
940 int
941 ess_drain(addr)
942 	void *addr;
943 {
944 	extern int hz;		/* XXX */
945 
946 	tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
947 	return (0);
948 }
949 
950 /* XXX should use reference count */
951 int
952 ess_speaker_ctl(addr, newstate)
953 	void *addr;
954 	int newstate;
955 {
956 	struct ess_softc *sc = addr;
957 
958 	if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
959 		ess_speaker_on(sc);
960 		sc->spkr_state = SPKR_ON;
961 	}
962 	if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
963 		ess_speaker_off(sc);
964 		sc->spkr_state = SPKR_OFF;
965 	}
966 	return (0);
967 }
968 
969 int
970 ess_getdev(addr, retp)
971 	void *addr;
972 	struct audio_device *retp;
973 {
974 	*retp = ess_device;
975 	return (0);
976 }
977 
978 int
979 ess_query_encoding(addr, fp)
980 	void *addr;
981 	struct audio_encoding *fp;
982 {
983 	/*struct ess_softc *sc = addr;*/
984 
985 	switch (fp->index) {
986 	case 0:
987 		strcpy(fp->name, AudioEulinear);
988 		fp->encoding = AUDIO_ENCODING_ULINEAR;
989 		fp->precision = 8;
990 		fp->flags = 0;
991 		return (0);
992 	case 1:
993 		strcpy(fp->name, AudioEmulaw);
994 		fp->encoding = AUDIO_ENCODING_ULAW;
995 		fp->precision = 8;
996 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
997 		return (0);
998 	case 2:
999 		strcpy(fp->name, AudioEalaw);
1000 		fp->encoding = AUDIO_ENCODING_ALAW;
1001 		fp->precision = 8;
1002 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1003 		return (0);
1004 	case 3:
1005 		strcpy(fp->name, AudioEslinear);
1006 		fp->encoding = AUDIO_ENCODING_SLINEAR;
1007 		fp->precision = 8;
1008 		fp->flags = 0;
1009 		return (0);
1010         case 4:
1011 		strcpy(fp->name, AudioEslinear_le);
1012 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1013 		fp->precision = 16;
1014 		fp->flags = 0;
1015 		return (0);
1016 	case 5:
1017 		strcpy(fp->name, AudioEulinear_le);
1018 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1019 		fp->precision = 16;
1020 		fp->flags = 0;
1021 		return (0);
1022 	case 6:
1023 		strcpy(fp->name, AudioEslinear_be);
1024 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1025 		fp->precision = 16;
1026 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1027 		return (0);
1028 	case 7:
1029 		strcpy(fp->name, AudioEulinear_be);
1030 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1031 		fp->precision = 16;
1032 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1033 		return (0);
1034 	default:
1035 		return EINVAL;
1036 	}
1037 	return (0);
1038 }
1039 
1040 int
1041 ess_set_params(addr, setmode, usemode, play, rec)
1042 	void *addr;
1043 	int setmode, usemode;
1044 	struct audio_params *play, *rec;
1045 {
1046 	struct ess_softc *sc = addr;
1047 	struct audio_params *p;
1048 	int mode;
1049 	int rate;
1050 
1051 	DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1052 
1053 	/*
1054 	 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1055 	 * full-duplex operation the sample rates must be the same for both
1056 	 * channels.  This appears to be false; the only bit in common is the
1057 	 * clock source selection.  However, we'll be conservative here.
1058 	 * - mycroft
1059 	 */
1060 	if (play->sample_rate != rec->sample_rate &&
1061 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1062 		if (setmode == AUMODE_PLAY) {
1063 			rec->sample_rate = play->sample_rate;
1064 			setmode |= AUMODE_RECORD;
1065 		} else if (setmode == AUMODE_RECORD) {
1066 			play->sample_rate = rec->sample_rate;
1067 			setmode |= AUMODE_PLAY;
1068 		} else
1069 			return (EINVAL);
1070 	}
1071 
1072 	for (mode = AUMODE_RECORD; mode != -1;
1073 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1074 		if ((setmode & mode) == 0)
1075 			continue;
1076 
1077 		p = mode == AUMODE_PLAY ? play : rec;
1078 
1079 		if (p->sample_rate < ESS_MINRATE ||
1080 		    p->sample_rate > ESS_MAXRATE ||
1081 		    (p->precision != 8 && p->precision != 16) ||
1082 		    (p->channels != 1 && p->channels != 2))
1083 			return (EINVAL);
1084 
1085 		p->factor = 1;
1086 		p->sw_code = 0;
1087 		switch (p->encoding) {
1088 		case AUDIO_ENCODING_SLINEAR_BE:
1089 		case AUDIO_ENCODING_ULINEAR_BE:
1090 			if (p->precision == 16)
1091 				p->sw_code = swap_bytes;
1092 			break;
1093 		case AUDIO_ENCODING_SLINEAR_LE:
1094 		case AUDIO_ENCODING_ULINEAR_LE:
1095 			break;
1096 		case AUDIO_ENCODING_ULAW:
1097 			if (mode == AUMODE_PLAY) {
1098 				p->factor = 2;
1099 				p->sw_code = mulaw_to_ulinear16;
1100 			} else
1101 				p->sw_code = ulinear8_to_mulaw;
1102 			break;
1103 		case AUDIO_ENCODING_ALAW:
1104 			if (mode == AUMODE_PLAY) {
1105 				p->factor = 2;
1106 				p->sw_code = alaw_to_ulinear16;
1107 			} else
1108 				p->sw_code = ulinear8_to_alaw;
1109 			break;
1110 		default:
1111 			return (EINVAL);
1112 		}
1113 	}
1114 
1115 	if (usemode == AUMODE_RECORD)
1116 		rate = rec->sample_rate;
1117 	else
1118 		rate = play->sample_rate;
1119 
1120 	ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1121 	ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1122 
1123 	ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1124 	ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1125 
1126 	return (0);
1127 }
1128 
1129 int
1130 ess_trigger_output(addr, start, end, blksize, intr, arg, param)
1131 	void *addr;
1132 	void *start, *end;
1133 	int blksize;
1134 	void (*intr) __P((void *));
1135 	void *arg;
1136 	struct audio_params *param;
1137 {
1138 	struct ess_softc *sc = addr;
1139 
1140 	DPRINTFN(1, ("ess_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1141 	    addr, start, end, blksize, intr, arg));
1142 
1143 #ifdef DIAGNOSTIC
1144 	if (param->channels == 2 && (blksize & 1)) {
1145 		DPRINTF(("stereo playback odd bytes (%d)\n", blksize));
1146 		return EIO;
1147 	}
1148 	if (sc->sc_out.active)
1149 		panic("ess_trigger_output: already running");
1150 #endif
1151 	sc->sc_out.active = 1;
1152 
1153 	sc->sc_out.intr = intr;
1154 	sc->sc_out.arg = arg;
1155 
1156 	if (param->precision * param->factor == 16)
1157 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1158 		    ESS_AUDIO2_CTRL2_FIFO_SIZE);
1159 	else
1160 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1161 		    ESS_AUDIO2_CTRL2_FIFO_SIZE);
1162 
1163 	if (param->channels == 2)
1164 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1165 		    ESS_AUDIO2_CTRL2_CHANNELS);
1166 	else
1167 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1168 		    ESS_AUDIO2_CTRL2_CHANNELS);
1169 
1170 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1171 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1172 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1173 		    ESS_AUDIO2_CTRL2_FIFO_SIGNED);
1174 	else
1175 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1176 		    ESS_AUDIO2_CTRL2_FIFO_SIGNED);
1177 
1178 	isa_dmastart(sc->sc_ic, sc->sc_out.drq, start,
1179 		     (char *)end - (char *)start, NULL,
1180 	    DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1181 
1182 	if (IS16BITDRQ(sc->sc_out.drq))
1183 		blksize >>= 1;	/* use word count for 16 bit DMA */
1184 	/* Program transfer count registers with 2's complement of count. */
1185 	blksize = -blksize;
1186 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1187 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1188 
1189 	if (IS16BITDRQ(sc->sc_out.drq))
1190 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1191 		    ESS_AUDIO2_CTRL1_XFER_SIZE);
1192 	else
1193 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1194 		    ESS_AUDIO2_CTRL1_XFER_SIZE);
1195 
1196 	/* Use 8 bytes per output DMA. */
1197 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1198 	    ESS_AUDIO2_CTRL1_DEMAND_8);
1199 
1200 	/* Start auto-init DMA */
1201 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1202 			  ESS_AUDIO2_CTRL1_DAC_ENABLE |
1203 			  ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1204 			  ESS_AUDIO2_CTRL1_AUTO_INIT);
1205 
1206 	return (0);
1207 
1208 }
1209 
1210 int
1211 ess_trigger_input(addr, start, end, blksize, intr, arg, param)
1212 	void *addr;
1213 	void *start, *end;
1214 	int blksize;
1215 	void (*intr) __P((void *));
1216 	void *arg;
1217 	struct audio_params *param;
1218 {
1219 	struct ess_softc *sc = addr;
1220 
1221 	DPRINTFN(1, ("ess_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1222 	    addr, start, end, blksize, intr, arg));
1223 
1224 #ifdef DIAGNOSTIC
1225 	if (param->channels == 2 && (blksize & 1)) {
1226 		DPRINTF(("stereo record odd bytes (%d)\n", blksize));
1227 		return EIO;
1228 	}
1229 	if (sc->sc_in.active)
1230 		panic("ess_trigger_input: already running");
1231 #endif
1232 	sc->sc_in.active = 1;
1233 
1234 	sc->sc_in.intr = intr;
1235 	sc->sc_in.arg = arg;
1236 
1237 	if (param->precision * param->factor == 16)
1238 		ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1239 		    ESS_AUDIO1_CTRL1_FIFO_SIZE);
1240 	else
1241 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1242 		    ESS_AUDIO1_CTRL1_FIFO_SIZE);
1243 
1244 	if (param->channels == 2) {
1245 		ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1246 		    (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1247 		     ESS_AUDIO_CTRL_STEREO) &~ ESS_AUDIO_CTRL_MONO);
1248 		ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1249 		    ESS_AUDIO1_CTRL1_FIFO_STEREO);
1250 	} else {
1251 		ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL,
1252 		    (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) |
1253 		     ESS_AUDIO_CTRL_MONO) &~ ESS_AUDIO_CTRL_STEREO);
1254 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1255 		    ESS_AUDIO1_CTRL1_FIFO_STEREO);
1256 	}
1257 
1258 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1259 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1260 		ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1261 		    ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1262 	else
1263 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1264 		    ESS_AUDIO1_CTRL1_FIFO_SIGNED);
1265 
1266 	/* REVISIT: Hack to enable Audio1 FIFO connection to CODEC. */
1267 	ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL1,
1268 	    ESS_AUDIO1_CTRL1_FIFO_CONNECT);
1269 
1270 	isa_dmastart(sc->sc_ic, sc->sc_in.drq, start,
1271 		     (char *)end - (char *)start, NULL,
1272 	    DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
1273 
1274 	if (IS16BITDRQ(sc->sc_in.drq))
1275 		blksize >>= 1;	/* use word count for 16 bit DMA */
1276 	/* Program transfer count registers with 2's complement of count. */
1277 	blksize = -blksize;
1278 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1279 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1280 
1281 	/* Use 4 bytes per input DMA. */
1282 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL,
1283 	    ESS_DEMAND_CTRL_DEMAND_4);
1284 
1285 	/* Start auto-init DMA */
1286 	ess_set_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1287 			  ESS_AUDIO1_CTRL2_DMA_READ |
1288 			  ESS_AUDIO1_CTRL2_ADC_ENABLE |
1289 			  ESS_AUDIO1_CTRL2_FIFO_ENABLE |
1290 			  ESS_AUDIO1_CTRL2_AUTO_INIT);
1291 
1292 	return (0);
1293 
1294 }
1295 
1296 int
1297 ess_halt_output(addr)
1298 	void *addr;
1299 {
1300 	struct ess_softc *sc = addr;
1301 
1302 	DPRINTF(("ess_halt_output: sc=%p\n", sc));
1303 
1304 	ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1305 	    ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1306 
1307 	return (0);
1308 }
1309 
1310 int
1311 ess_halt_input(addr)
1312 	void *addr;
1313 {
1314 	struct ess_softc *sc = addr;
1315 
1316 	DPRINTF(("ess_halt_input: sc=%p\n", sc));
1317 
1318 	ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1319 	    ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1320 
1321 	return (0);
1322 }
1323 
1324 int
1325 ess_intr_output(arg)
1326 	void *arg;
1327 {
1328 	struct ess_softc *sc = arg;
1329 
1330 	DPRINTFN(1,("ess_intr_output: intr=%p\n", sc->sc_out.intr));
1331 
1332 	/* clear interrupt on Audio channel 2 */
1333 	ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
1334 			    ESS_AUDIO2_CTRL2_IRQ_LATCH);
1335 
1336 	sc->sc_out.nintr++;
1337 
1338 	if (sc->sc_out.intr != 0)
1339 		(*sc->sc_out.intr)(sc->sc_out.arg);
1340 	else
1341 		return (0);
1342 
1343 	return (1);
1344 }
1345 
1346 int
1347 ess_intr_input(arg)
1348 	void *arg;
1349 {
1350 	struct ess_softc *sc = arg;
1351 	u_char x;
1352 
1353 	DPRINTFN(1,("ess_intr_input: intr=%p\n", sc->sc_in.intr));
1354 
1355 	/* clear interrupt on Audio channel 1*/
1356 	x = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1357 
1358 	sc->sc_in.nintr++;
1359 
1360 	if (sc->sc_in.intr != 0)
1361 		(*sc->sc_in.intr)(sc->sc_in.arg);
1362 	else
1363 		return (0);
1364 
1365 	return (1);
1366 }
1367 
1368 int
1369 ess_round_blocksize(addr, blk)
1370 	void *addr;
1371 	int blk;
1372 {
1373 	return (blk & -8);	/* round for max DMA size */
1374 }
1375 
1376 int
1377 ess_set_port(addr, cp)
1378 	void *addr;
1379 	mixer_ctrl_t *cp;
1380 {
1381 	struct ess_softc *sc = addr;
1382 	int lgain, rgain;
1383 
1384 	DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1385 		    cp->dev, cp->un.value.num_channels));
1386 
1387 	switch (cp->dev) {
1388 	/*
1389 	 * The following mixer ports are all stereo. If we get a
1390 	 * single-channel gain value passed in, then we duplicate it
1391 	 * to both left and right channels.
1392 	 */
1393 	case ESS_MASTER_VOL:
1394 	case ESS_DAC_PLAY_VOL:
1395 	case ESS_MIC_PLAY_VOL:
1396 	case ESS_LINE_PLAY_VOL:
1397 	case ESS_SYNTH_PLAY_VOL:
1398 	case ESS_CD_PLAY_VOL:
1399 	case ESS_AUXB_PLAY_VOL:
1400 	case ESS_DAC_REC_VOL:
1401 	case ESS_MIC_REC_VOL:
1402 	case ESS_LINE_REC_VOL:
1403 	case ESS_SYNTH_REC_VOL:
1404 	case ESS_CD_REC_VOL:
1405 	case ESS_AUXB_REC_VOL:
1406 	case ESS_RECORD_VOL:
1407 		if (cp->type != AUDIO_MIXER_VALUE)
1408 			return EINVAL;
1409 
1410 		switch (cp->un.value.num_channels) {
1411 		case 1:
1412 			lgain = rgain = ESS_4BIT_GAIN(
1413 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1414 			break;
1415 		case 2:
1416 			lgain = ESS_4BIT_GAIN(
1417 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1418 			rgain = ESS_4BIT_GAIN(
1419 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1420 			break;
1421 		default:
1422 			return EINVAL;
1423 		}
1424 
1425 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1426 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1427 
1428 		ess_set_gain(sc, cp->dev, 1);
1429 		break;
1430 
1431 
1432 	/*
1433 	 * The PC speaker port is mono. If we get a stereo gain value
1434 	 * passed in, then we return EINVAL.
1435 	 */
1436 	case ESS_PCSPEAKER_VOL:
1437 		if (cp->un.value.num_channels != 1)
1438 			return EINVAL;
1439 
1440 		sc->gain[cp->dev][ESS_LEFT]  = sc->gain[cp->dev][ESS_RIGHT] =
1441 		  ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1442 		ess_set_gain(sc, cp->dev, 1);
1443 		break;
1444 
1445 
1446 	case ESS_MIC_PREAMP:
1447 		if (cp->type != AUDIO_MIXER_ENUM)
1448 			return EINVAL;
1449 
1450 		if (cp->un.ord)
1451 			/* Enable microphone preamp */
1452 			ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1453 					  ESS_PREAMP_CTRL_ENABLE);
1454 		else
1455 			/* Disable microphone preamp */
1456 			ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1457 					  ESS_PREAMP_CTRL_ENABLE);
1458 		break;
1459 
1460 	case ESS_RECORD_SOURCE:
1461 		if (cp->type == AUDIO_MIXER_SET)
1462 			return ess_set_in_ports(sc, cp->un.mask);
1463 		else
1464 			return EINVAL;
1465 		break;
1466 
1467 	case ESS_RECORD_MONITOR:
1468 		if (cp->type != AUDIO_MIXER_ENUM)
1469 			return EINVAL;
1470 
1471 		if (cp->un.ord)
1472 			/* Enable monitor */
1473 			ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1474 					  ESS_AUDIO_CTRL_MONITOR);
1475 		else
1476 			/* Disable monitor */
1477 			ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1478 					    ESS_AUDIO_CTRL_MONITOR);
1479 		break;
1480 
1481 	default:
1482 		return EINVAL;
1483 	}
1484 
1485 	return (0);
1486 }
1487 
1488 int
1489 ess_get_port(addr, cp)
1490 	void *addr;
1491 	mixer_ctrl_t *cp;
1492 {
1493 	struct ess_softc *sc = addr;
1494 
1495 	DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1496 
1497 	switch (cp->dev) {
1498 	case ESS_DAC_PLAY_VOL:
1499 	case ESS_MIC_PLAY_VOL:
1500 	case ESS_LINE_PLAY_VOL:
1501 	case ESS_SYNTH_PLAY_VOL:
1502 	case ESS_CD_PLAY_VOL:
1503 	case ESS_AUXB_PLAY_VOL:
1504 	case ESS_MASTER_VOL:
1505 	case ESS_PCSPEAKER_VOL:
1506 	case ESS_DAC_REC_VOL:
1507 	case ESS_MIC_REC_VOL:
1508 	case ESS_LINE_REC_VOL:
1509 	case ESS_SYNTH_REC_VOL:
1510 	case ESS_CD_REC_VOL:
1511 	case ESS_AUXB_REC_VOL:
1512 	case ESS_RECORD_VOL:
1513 		if (cp->dev == ESS_PCSPEAKER_VOL &&
1514 		    cp->un.value.num_channels != 1)
1515 			return EINVAL;
1516 
1517 		switch (cp->un.value.num_channels) {
1518 		case 1:
1519 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1520 				sc->gain[cp->dev][ESS_LEFT];
1521 			break;
1522 		case 2:
1523 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1524 				sc->gain[cp->dev][ESS_LEFT];
1525 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1526 				sc->gain[cp->dev][ESS_RIGHT];
1527 			break;
1528 		default:
1529 			return EINVAL;
1530 		}
1531 		break;
1532 
1533 	case ESS_MIC_PREAMP:
1534 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1535 			      ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1536 		break;
1537 
1538 	case ESS_RECORD_SOURCE:
1539 		cp->un.mask = sc->in_mask;
1540 		break;
1541 
1542 	case ESS_RECORD_MONITOR:
1543 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1544 			      ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1545 		break;
1546 
1547 	default:
1548 		return EINVAL;
1549 	}
1550 
1551 	return (0);
1552 }
1553 
1554 int
1555 ess_query_devinfo(addr, dip)
1556 	void *addr;
1557 	mixer_devinfo_t *dip;
1558 {
1559 #ifdef AUDIO_DEBUG
1560 	struct ess_softc *sc = addr;
1561 #endif
1562 
1563 	DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1564 		    sc->sc_model, dip->index));
1565 
1566 	/*
1567 	 * REVISIT: There are some slight differences between the
1568 	 *          mixers on the different ESS chips, which can
1569 	 *          be sorted out using the chip model rather than a
1570 	 *          separate mixer model.
1571 	 *          This is currently coded assuming an ES1887; we
1572 	 *          need to work out which bits are not applicable to
1573 	 *          the other models (1888 and 888).
1574 	 */
1575 	switch (dip->index) {
1576 	case ESS_DAC_PLAY_VOL:
1577 		dip->mixer_class = ESS_INPUT_CLASS;
1578 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1579 		strcpy(dip->label.name, AudioNdac);
1580 		dip->type = AUDIO_MIXER_VALUE;
1581 		dip->un.v.num_channels = 2;
1582 		strcpy(dip->un.v.units.name, AudioNvolume);
1583 		return (0);
1584 
1585 	case ESS_MIC_PLAY_VOL:
1586 		dip->mixer_class = ESS_INPUT_CLASS;
1587 		dip->prev = AUDIO_MIXER_LAST;
1588 		dip->next = ESS_MIC_PREAMP;
1589 		strcpy(dip->label.name, AudioNmicrophone);
1590 		dip->type = AUDIO_MIXER_VALUE;
1591 		dip->un.v.num_channels = 2;
1592 		strcpy(dip->un.v.units.name, AudioNvolume);
1593 		return (0);
1594 
1595 	case ESS_LINE_PLAY_VOL:
1596 		dip->mixer_class = ESS_INPUT_CLASS;
1597 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1598 		strcpy(dip->label.name, AudioNline);
1599 		dip->type = AUDIO_MIXER_VALUE;
1600 		dip->un.v.num_channels = 2;
1601 		strcpy(dip->un.v.units.name, AudioNvolume);
1602 		return (0);
1603 
1604 	case ESS_SYNTH_PLAY_VOL:
1605 		dip->mixer_class = ESS_INPUT_CLASS;
1606 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1607 		strcpy(dip->label.name, AudioNfmsynth);
1608 		dip->type = AUDIO_MIXER_VALUE;
1609 		dip->un.v.num_channels = 2;
1610 		strcpy(dip->un.v.units.name, AudioNvolume);
1611 		return (0);
1612 
1613 	case ESS_CD_PLAY_VOL:
1614 		dip->mixer_class = ESS_INPUT_CLASS;
1615 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1616 		strcpy(dip->label.name, AudioNcd);
1617 		dip->type = AUDIO_MIXER_VALUE;
1618 		dip->un.v.num_channels = 2;
1619 		strcpy(dip->un.v.units.name, AudioNvolume);
1620 		return (0);
1621 
1622 	case ESS_AUXB_PLAY_VOL:
1623 		dip->mixer_class = ESS_INPUT_CLASS;
1624 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1625 		strcpy(dip->label.name, "auxb");
1626 		dip->type = AUDIO_MIXER_VALUE;
1627 		dip->un.v.num_channels = 2;
1628 		strcpy(dip->un.v.units.name, AudioNvolume);
1629 		return (0);
1630 
1631 	case ESS_INPUT_CLASS:
1632 		dip->mixer_class = ESS_INPUT_CLASS;
1633 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1634 		strcpy(dip->label.name, AudioCinputs);
1635 		dip->type = AUDIO_MIXER_CLASS;
1636 		return (0);
1637 
1638 	case ESS_MASTER_VOL:
1639 		dip->mixer_class = ESS_OUTPUT_CLASS;
1640 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1641 		strcpy(dip->label.name, AudioNmaster);
1642 		dip->type = AUDIO_MIXER_VALUE;
1643 		dip->un.v.num_channels = 2;
1644 		strcpy(dip->un.v.units.name, AudioNvolume);
1645 		return (0);
1646 
1647 	case ESS_PCSPEAKER_VOL:
1648 		dip->mixer_class = ESS_OUTPUT_CLASS;
1649 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1650 		strcpy(dip->label.name, "pc_speaker");
1651 		dip->type = AUDIO_MIXER_VALUE;
1652 		dip->un.v.num_channels = 1;
1653 		strcpy(dip->un.v.units.name, AudioNvolume);
1654 		return (0);
1655 
1656 	case ESS_OUTPUT_CLASS:
1657 		dip->mixer_class = ESS_OUTPUT_CLASS;
1658 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1659 		strcpy(dip->label.name, AudioCoutputs);
1660 		dip->type = AUDIO_MIXER_CLASS;
1661 		return (0);
1662 
1663 
1664 	case ESS_DAC_REC_VOL:
1665 		dip->mixer_class = ESS_RECORD_CLASS;
1666 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1667 		strcpy(dip->label.name, AudioNdac);
1668 		dip->type = AUDIO_MIXER_VALUE;
1669 		dip->un.v.num_channels = 2;
1670 		strcpy(dip->un.v.units.name, AudioNvolume);
1671 		return (0);
1672 
1673 	case ESS_MIC_REC_VOL:
1674 		dip->mixer_class = ESS_RECORD_CLASS;
1675 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1676 		strcpy(dip->label.name, AudioNmicrophone);
1677 		dip->type = AUDIO_MIXER_VALUE;
1678 		dip->un.v.num_channels = 2;
1679 		strcpy(dip->un.v.units.name, AudioNvolume);
1680 		return (0);
1681 
1682 	case ESS_LINE_REC_VOL:
1683 		dip->mixer_class = ESS_RECORD_CLASS;
1684 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1685 		strcpy(dip->label.name, AudioNline);
1686 		dip->type = AUDIO_MIXER_VALUE;
1687 		dip->un.v.num_channels = 2;
1688 		strcpy(dip->un.v.units.name, AudioNvolume);
1689 		return (0);
1690 
1691 	case ESS_SYNTH_REC_VOL:
1692 		dip->mixer_class = ESS_RECORD_CLASS;
1693 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1694 		strcpy(dip->label.name, AudioNfmsynth);
1695 		dip->type = AUDIO_MIXER_VALUE;
1696 		dip->un.v.num_channels = 2;
1697 		strcpy(dip->un.v.units.name, AudioNvolume);
1698 		return (0);
1699 
1700 	case ESS_CD_REC_VOL:
1701 		dip->mixer_class = ESS_RECORD_CLASS;
1702 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1703 		strcpy(dip->label.name, AudioNcd);
1704 		dip->type = AUDIO_MIXER_VALUE;
1705 		dip->un.v.num_channels = 2;
1706 		strcpy(dip->un.v.units.name, AudioNvolume);
1707 		return (0);
1708 
1709 	case ESS_AUXB_REC_VOL:
1710 		dip->mixer_class = ESS_RECORD_CLASS;
1711 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1712 		strcpy(dip->label.name, "auxb");
1713 		dip->type = AUDIO_MIXER_VALUE;
1714 		dip->un.v.num_channels = 2;
1715 		strcpy(dip->un.v.units.name, AudioNvolume);
1716 		return (0);
1717 
1718 	case ESS_MIC_PREAMP:
1719 		dip->mixer_class = ESS_INPUT_CLASS;
1720 		dip->prev = ESS_MIC_PLAY_VOL;
1721 		dip->next = AUDIO_MIXER_LAST;
1722 		strcpy(dip->label.name, AudioNpreamp);
1723 		dip->type = AUDIO_MIXER_ENUM;
1724 		dip->un.e.num_mem = 2;
1725 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1726 		dip->un.e.member[0].ord = 0;
1727 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1728 		dip->un.e.member[1].ord = 1;
1729 		return (0);
1730 
1731 	case ESS_RECORD_VOL:
1732 		dip->mixer_class = ESS_RECORD_CLASS;
1733 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1734 		strcpy(dip->label.name, AudioNrecord);
1735 		dip->type = AUDIO_MIXER_VALUE;
1736 		dip->un.v.num_channels = 2;
1737 		strcpy(dip->un.v.units.name, AudioNvolume);
1738 		return (0);
1739 
1740 	case ESS_RECORD_SOURCE:
1741 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1742 		strcpy(dip->label.name, AudioNsource);
1743 		dip->type = AUDIO_MIXER_SET;
1744 		dip->mixer_class = ESS_RECORD_CLASS;
1745 		dip->un.s.num_mem = 6;
1746 		strcpy(dip->un.s.member[0].label.name, AudioNdac);
1747 		dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
1748 		strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
1749 		dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
1750 		strcpy(dip->un.s.member[2].label.name, AudioNline);
1751 		dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
1752 		strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
1753 		dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
1754 		strcpy(dip->un.s.member[4].label.name, AudioNcd);
1755 		dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
1756 		strcpy(dip->un.s.member[5].label.name, "auxb");
1757 		dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
1758 		return (0);
1759 
1760 	case ESS_RECORD_CLASS:
1761 		dip->mixer_class = ESS_RECORD_CLASS;
1762 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1763 		strcpy(dip->label.name, AudioCrecord);
1764 		dip->type = AUDIO_MIXER_CLASS;
1765 		return (0);
1766 
1767 	case ESS_RECORD_MONITOR:
1768 		dip->prev = dip->next = AUDIO_MIXER_LAST;
1769 		strcpy(dip->label.name, AudioNmonitor);
1770 		dip->type = AUDIO_MIXER_ENUM;
1771 		dip->mixer_class = ESS_MONITOR_CLASS;
1772 		dip->un.e.num_mem = 2;
1773 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
1774 		dip->un.e.member[0].ord = 0;
1775 		strcpy(dip->un.e.member[1].label.name, AudioNon);
1776 		dip->un.e.member[1].ord = 1;
1777 		return (0);
1778 
1779 	case ESS_MONITOR_CLASS:
1780 		dip->mixer_class = ESS_MONITOR_CLASS;
1781 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1782 		strcpy(dip->label.name, AudioCmonitor);
1783 		dip->type = AUDIO_MIXER_CLASS;
1784 		return (0);
1785 	}
1786 
1787 	return (ENXIO);
1788 }
1789 
1790 void *
1791 ess_malloc(addr, size, pool, flags)
1792 	void *addr;
1793 	unsigned long size;
1794 	int pool;
1795 	int flags;
1796 {
1797 	struct ess_softc *sc = addr;
1798 
1799 	return isa_malloc(sc->sc_ic, 4, size, pool, flags);
1800 }
1801 
1802 void
1803 ess_free(addr, ptr, pool)
1804 	void *addr;
1805 	void *ptr;
1806 	int pool;
1807 {
1808 	isa_free(ptr, pool);
1809 }
1810 
1811 unsigned long
1812 ess_round(addr, size)
1813 	void *addr;
1814 	unsigned long size;
1815 {
1816 	if (size > MAX_ISADMA)
1817 		size = MAX_ISADMA;
1818 	return size;
1819 }
1820 
1821 int
1822 ess_mappage(addr, mem, off, prot)
1823 	void *addr;
1824         void *mem;
1825         int off;
1826 	int prot;
1827 {
1828 	return (isa_mappage(mem, off, prot));
1829 }
1830 
1831 int
1832 ess_get_props(addr)
1833 	void *addr;
1834 {
1835 	struct ess_softc *sc = addr;
1836 
1837 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT |
1838 	       (sc->sc_in.drq != sc->sc_out.drq ? AUDIO_PROP_FULLDUPLEX : 0));
1839 }
1840 
1841 /* ============================================
1842  * Generic functions for ess, not used by audio h/w i/f
1843  * =============================================
1844  */
1845 
1846 /*
1847  * Reset the chip.
1848  * Return non-zero if the chip isn't detected.
1849  */
1850 int
1851 ess_reset(sc)
1852 	struct ess_softc *sc;
1853 {
1854 	bus_space_tag_t iot = sc->sc_iot;
1855 	bus_space_handle_t ioh = sc->sc_ioh;
1856 
1857 	sc->sc_in.intr = 0;
1858 	if (sc->sc_in.active) {
1859 		isa_dmaabort(sc->sc_ic, sc->sc_in.drq);
1860 		sc->sc_in.active = 0;
1861 	}
1862 
1863 	sc->sc_out.intr = 0;
1864 	if (sc->sc_out.active) {
1865 		isa_dmaabort(sc->sc_ic, sc->sc_out.drq);
1866 		sc->sc_out.active = 0;
1867 	}
1868 
1869 	EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
1870 	delay(10000);
1871 	EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
1872 	if (ess_rdsp(sc) != ESS_MAGIC)
1873 		return (1);
1874 
1875 	/* Enable access to the ESS extension commands. */
1876 	ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
1877 
1878 	return (0);
1879 }
1880 
1881 void
1882 ess_set_gain(sc, port, on)
1883 	struct ess_softc *sc;
1884 	int port;
1885 	int on;
1886 {
1887 	int gain, left, right;
1888 	int mix;
1889 	int src;
1890 	int stereo;
1891 
1892 	/*
1893 	 * Most gain controls are found in the mixer registers and
1894 	 * are stereo. Any that are not, must set mix and stereo as
1895 	 * required.
1896 	 */
1897 	mix = 1;
1898 	stereo = 1;
1899 
1900 	switch (port) {
1901 	case ESS_MASTER_VOL:
1902 		src = 0x32;
1903 		break;
1904 	case ESS_DAC_PLAY_VOL:
1905 		src = 0x7C;
1906 		break;
1907 	case ESS_MIC_PLAY_VOL:
1908 		src = 0x1A;
1909 		break;
1910 	case ESS_LINE_PLAY_VOL:
1911 		src = 0x3E;
1912 		break;
1913 	case ESS_SYNTH_PLAY_VOL:
1914 		src = 0x36;
1915 		break;
1916 	case ESS_CD_PLAY_VOL:
1917 		src = 0x38;
1918 		break;
1919 	case ESS_AUXB_PLAY_VOL:
1920 		src = 0x3A;
1921 		break;
1922 	case ESS_PCSPEAKER_VOL:
1923 		src = 0x3C;
1924 		stereo = 0;
1925 		break;
1926 	case ESS_DAC_REC_VOL:
1927 		src = 0x69;
1928 		break;
1929 	case ESS_MIC_REC_VOL:
1930 		src = 0x68;
1931 		break;
1932 	case ESS_LINE_REC_VOL:
1933 		src = 0x6E;
1934 		break;
1935 	case ESS_SYNTH_REC_VOL:
1936 		src = 0x6B;
1937 		break;
1938 	case ESS_CD_REC_VOL:
1939 		src = 0x6A;
1940 		break;
1941 	case ESS_AUXB_REC_VOL:
1942 		src = 0x6C;
1943 		break;
1944 	case ESS_RECORD_VOL:
1945 		src = 0xB4;
1946 		mix = 0;
1947 		break;
1948 	default:
1949 		return;
1950 	}
1951 
1952 	if (on) {
1953 		left = sc->gain[port][ESS_LEFT];
1954 		right = sc->gain[port][ESS_RIGHT];
1955 	} else {
1956 		left = right = 0;
1957 	}
1958 
1959 	if (stereo)
1960 		gain = ESS_STEREO_GAIN(left, right);
1961 	else
1962 		gain = ESS_MONO_GAIN(left);
1963 
1964 	if (mix)
1965 		ess_write_mix_reg(sc, src, gain);
1966 	else
1967 		ess_write_x_reg(sc, src, gain);
1968 }
1969 
1970 int
1971 ess_set_in_ports(sc, mask)
1972 	struct ess_softc *sc;
1973 	int mask;
1974 {
1975 	mixer_devinfo_t di;
1976 	int i;
1977 	int port;
1978 	int tmp;
1979 
1980 	DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
1981 
1982 	/*
1983 	 * Get the device info for the record source control,
1984 	 * including the list of available sources.
1985 	 */
1986 	di.index = ESS_RECORD_SOURCE;
1987 	if (ess_query_devinfo(sc, &di))
1988 		return EINVAL;
1989 
1990 	/*
1991 	 * Set or disable the record volume control for each of the
1992 	 * possible sources.
1993 	 */
1994 	for (i = 0; i < di.un.s.num_mem; i++)
1995 	{
1996 		/*
1997 		 * Calculate the source port number from its mask.
1998 		 */
1999 		tmp = di.un.s.member[i].mask >> 1;
2000 		for (port = 0; tmp; port++) {
2001 			tmp >>= 1;
2002 		}
2003 
2004 		/*
2005 		 * Set the source gain:
2006 		 *	to the current value if source is enabled
2007 		 *	to zero if source is disabled
2008 		 */
2009 		ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2010 	}
2011 
2012 	sc->in_mask = mask;
2013 
2014 	/*
2015 	 * We have to fake a single port since the upper layer expects
2016 	 * one only. We choose the lowest numbered port that is enabled.
2017 	 */
2018 	for(i = 0; i < ESS_NPORT; i++) {
2019 		if (mask & (1 << i)) {
2020 			sc->in_port = i;
2021 			break;
2022 		}
2023 	}
2024 
2025 	return (0);
2026 }
2027 
2028 void
2029 ess_speaker_on(sc)
2030 	struct ess_softc *sc;
2031 {
2032 	/* Disable mute on left- and right-master volume. */
2033 	ess_clear_mreg_bits(sc, 0x60, 0x40);
2034 	ess_clear_mreg_bits(sc, 0x62, 0x40);
2035 }
2036 
2037 void
2038 ess_speaker_off(sc)
2039 	struct ess_softc *sc;
2040 {
2041 	/* Enable mute on left- and right-master volume. */
2042 	ess_set_mreg_bits(sc, 0x60, 0x40);
2043 	ess_set_mreg_bits(sc, 0x62, 0x40);
2044 }
2045 
2046 /*
2047  * Calculate the time constant for the requested sampling rate.
2048  */
2049 u_int
2050 ess_srtotc(rate)
2051 	u_int rate;
2052 {
2053 	u_int tc;
2054 
2055 	/* The following formulae are from the ESS data sheet. */
2056 	if (rate <= 22050)
2057 		tc = 128 - 397700L / rate;
2058 	else
2059 		tc = 256 - 795500L / rate;
2060 
2061 	return (tc);
2062 }
2063 
2064 
2065 /*
2066  * Calculate the filter constant for the reuqested sampling rate.
2067  */
2068 u_int
2069 ess_srtofc(rate)
2070 	u_int rate;
2071 {
2072 	/*
2073 	 * The following formula is derived from the information in
2074 	 * the ES1887 data sheet, based on a roll-off frequency of
2075 	 * 87%.
2076 	 */
2077 	return (256 - 200279L / rate);
2078 }
2079 
2080 
2081 /*
2082  * Return the status of the DSP.
2083  */
2084 u_char
2085 ess_get_dsp_status(sc)
2086 	struct ess_softc *sc;
2087 {
2088 	bus_space_tag_t iot = sc->sc_iot;
2089 	bus_space_handle_t ioh = sc->sc_ioh;
2090 
2091 	return (EREAD1(iot, ioh, ESS_DSP_RW_STATUS));
2092 }
2093 
2094 
2095 /*
2096  * Return the read status of the DSP:	1 -> DSP ready for reading
2097  *					0 -> DSP not ready for reading
2098  */
2099 u_char
2100 ess_dsp_read_ready(sc)
2101 	struct ess_softc *sc;
2102 {
2103 	return (((ess_get_dsp_status(sc) & ESS_DSP_READ_MASK) ==
2104 		 ESS_DSP_READ_READY) ? 1 : 0);
2105 }
2106 
2107 
2108 /*
2109  * Return the write status of the DSP:	1 -> DSP ready for writing
2110  *					0 -> DSP not ready for writing
2111  */
2112 u_char
2113 ess_dsp_write_ready(sc)
2114 	struct ess_softc *sc;
2115 {
2116 	return (((ess_get_dsp_status(sc) & ESS_DSP_WRITE_MASK) ==
2117 		 ESS_DSP_WRITE_READY) ? 1 : 0);
2118 }
2119 
2120 
2121 /*
2122  * Read a byte from the DSP.
2123  */
2124 int
2125 ess_rdsp(sc)
2126 	struct ess_softc *sc;
2127 {
2128 	bus_space_tag_t iot = sc->sc_iot;
2129 	bus_space_handle_t ioh = sc->sc_ioh;
2130 	int i;
2131 
2132 	for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2133 		if (ess_dsp_read_ready(sc)) {
2134 			i = EREAD1(iot, ioh, ESS_DSP_READ);
2135 			DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2136 			return i;
2137 		} else
2138 			delay(10);
2139 	}
2140 
2141 	DPRINTF(("ess_rdsp: timed out\n"));
2142 	return (-1);
2143 }
2144 
2145 /*
2146  * Write a byte to the DSP.
2147  */
2148 int
2149 ess_wdsp(sc, v)
2150 	struct ess_softc *sc;
2151 	u_char v;
2152 {
2153 	bus_space_tag_t iot = sc->sc_iot;
2154 	bus_space_handle_t ioh = sc->sc_ioh;
2155 	int i;
2156 
2157 	DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2158 
2159 	for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2160 		if (ess_dsp_write_ready(sc)) {
2161 			EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2162 			return (0);
2163 		} else
2164 			delay(10);
2165 	}
2166 
2167 	DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2168 	return (-1);
2169 }
2170 
2171 /*
2172  * Write a value to one of the ESS extended registers.
2173  */
2174 int
2175 ess_write_x_reg(sc, reg, val)
2176 	struct ess_softc *sc;
2177 	u_char reg;
2178 	u_char val;
2179 {
2180 	int error;
2181 
2182 	DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2183 	if ((error = ess_wdsp(sc, reg)) == 0)
2184 		error = ess_wdsp(sc, val);
2185 
2186 	return error;
2187 }
2188 
2189 /*
2190  * Read the value of one of the ESS extended registers.
2191  */
2192 u_char
2193 ess_read_x_reg(sc, reg)
2194 	struct ess_softc *sc;
2195 	u_char reg;
2196 {
2197 	int error;
2198 	int val;
2199 
2200 	if ((error = ess_wdsp(sc, 0xC0)) == 0)
2201 		error = ess_wdsp(sc, reg);
2202 	if (error)
2203 		DPRINTF(("Error reading extended register 0x%02x\n", reg));
2204 /* REVISIT: what if an error is returned above? */
2205 	val = ess_rdsp(sc);
2206 	DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2207 	return val;
2208 }
2209 
2210 void
2211 ess_clear_xreg_bits(sc, reg, mask)
2212 	struct ess_softc *sc;
2213 	u_char reg;
2214 	u_char mask;
2215 {
2216 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2217 		DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2218 			 reg));
2219 }
2220 
2221 void
2222 ess_set_xreg_bits(sc, reg, mask)
2223 	struct ess_softc *sc;
2224 	u_char reg;
2225 	u_char mask;
2226 {
2227 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2228 		DPRINTF(("Error setting bits in extended register 0x%02x\n",
2229 			 reg));
2230 }
2231 
2232 
2233 /*
2234  * Write a value to one of the ESS mixer registers.
2235  */
2236 void
2237 ess_write_mix_reg(sc, reg, val)
2238 	struct ess_softc *sc;
2239 	u_char reg;
2240 	u_char val;
2241 {
2242 	bus_space_tag_t iot = sc->sc_iot;
2243 	bus_space_handle_t ioh = sc->sc_ioh;
2244 	int s;
2245 
2246 	DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2247 
2248 	s = splaudio();
2249 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2250 	EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2251 	splx(s);
2252 }
2253 
2254 /*
2255  * Read the value of one of the ESS mixer registers.
2256  */
2257 u_char
2258 ess_read_mix_reg(sc, reg)
2259 	struct ess_softc *sc;
2260 	u_char reg;
2261 {
2262 	bus_space_tag_t iot = sc->sc_iot;
2263 	bus_space_handle_t ioh = sc->sc_ioh;
2264 	int s;
2265 	u_char val;
2266 
2267 	s = splaudio();
2268 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2269 	val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2270 	splx(s);
2271 
2272 	DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2273 	return val;
2274 }
2275 
2276 void
2277 ess_clear_mreg_bits(sc, reg, mask)
2278 	struct ess_softc *sc;
2279 	u_char reg;
2280 	u_char mask;
2281 {
2282 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2283 }
2284 
2285 void
2286 ess_set_mreg_bits(sc, reg, mask)
2287 	struct ess_softc *sc;
2288 	u_char reg;
2289 	u_char mask;
2290 {
2291 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2292 }
2293