xref: /netbsd-src/sys/dev/isa/ess.c (revision d48f14661dda8638fee055ba15d35bdfb29b9fa8)
1 /*	$NetBSD: ess.c,v 1.69 2005/12/11 12:22:02 christos Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37 **++
38 **
39 **  ess.c
40 **
41 **  FACILITY:
42 **
43 **	DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 **  MODULE DESCRIPTION:
46 **
47 **      This module contains the device driver for the ESS
48 **      Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 **	used as a reference point when implementing this driver.
50 **
51 **  AUTHORS:
52 **
53 **	Blair Fidler	Software Engineering Australia
54 **			Gold Coast, Australia.
55 **
56 **  CREATION DATE:
57 **
58 **	March 10, 1997.
59 **
60 **  MODIFICATION HISTORY:
61 **
62 **	Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 **	bus_dma, changes to audio interface, and many bug fixes.
64 **	ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.69 2005/12/11 12:22:02 christos Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79 
80 #include <machine/cpu.h>
81 #include <machine/intr.h>
82 #include <machine/bus.h>
83 
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88 
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91 
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94 
95 #include "joy_ess.h"
96 
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x)	if (essdebug) printf x
99 #define DPRINTFN(n,x)	if (essdebug>(n)) printf x
100 int	essdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105 
106 #if 0
107 unsigned uuu;
108 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD  %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
109 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
110 #else
111 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
112 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
113 #endif
114 
115 
116 int	ess_setup_sc(struct ess_softc *, int);
117 
118 int	ess_open(void *, int);
119 void	ess_close(void *);
120 int	ess_getdev(void *, struct audio_device *);
121 int	ess_drain(void *);
122 
123 int	ess_query_encoding(void *, struct audio_encoding *);
124 
125 int	ess_set_params(void *, int, int, audio_params_t *,
126 	    audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
127 
128 int	ess_round_blocksize(void *, int, int, const audio_params_t *);
129 
130 int	ess_audio1_trigger_output(void *, void *, void *, int,
131 	    void (*)(void *), void *, const audio_params_t *);
132 int	ess_audio2_trigger_output(void *, void *, void *, int,
133 	    void (*)(void *), void *, const audio_params_t *);
134 int	ess_audio1_trigger_input(void *, void *, void *, int,
135 	    void (*)(void *), void *, const audio_params_t *);
136 int	ess_audio1_halt(void *);
137 int	ess_audio2_halt(void *);
138 int	ess_audio1_intr(void *);
139 int	ess_audio2_intr(void *);
140 void	ess_audio1_poll(void *);
141 void	ess_audio2_poll(void *);
142 
143 int	ess_speaker_ctl(void *, int);
144 
145 int	ess_getdev(void *, struct audio_device *);
146 
147 int	ess_set_port(void *, mixer_ctrl_t *);
148 int	ess_get_port(void *, mixer_ctrl_t *);
149 
150 void   *ess_malloc(void *, int, size_t, struct malloc_type *, int);
151 void	ess_free(void *, void *, struct malloc_type *);
152 size_t	ess_round_buffersize(void *, int, size_t);
153 paddr_t	ess_mappage(void *, void *, off_t, int);
154 
155 
156 int	ess_query_devinfo(void *, mixer_devinfo_t *);
157 int	ess_1788_get_props(void *);
158 int	ess_1888_get_props(void *);
159 
160 void	ess_speaker_on(struct ess_softc *);
161 void	ess_speaker_off(struct ess_softc *);
162 
163 void	ess_config_irq(struct ess_softc *);
164 void	ess_config_drq(struct ess_softc *);
165 void	ess_setup(struct ess_softc *);
166 int	ess_identify(struct ess_softc *);
167 
168 int	ess_reset(struct ess_softc *);
169 void	ess_set_gain(struct ess_softc *, int, int);
170 int	ess_set_in_port(struct ess_softc *, int);
171 int	ess_set_in_ports(struct ess_softc *, int);
172 u_int	ess_srtotc(u_int);
173 u_int	ess_srtofc(u_int);
174 u_char	ess_get_dsp_status(struct ess_softc *);
175 u_char	ess_dsp_read_ready(struct ess_softc *);
176 u_char	ess_dsp_write_ready(struct ess_softc *);
177 int	ess_rdsp(struct ess_softc *);
178 int	ess_wdsp(struct ess_softc *, u_char);
179 u_char	ess_read_x_reg(struct ess_softc *, u_char);
180 int	ess_write_x_reg(struct ess_softc *, u_char, u_char);
181 void	ess_clear_xreg_bits(struct ess_softc *, u_char, u_char);
182 void	ess_set_xreg_bits(struct ess_softc *, u_char, u_char);
183 u_char	ess_read_mix_reg(struct ess_softc *, u_char);
184 void	ess_write_mix_reg(struct ess_softc *, u_char, u_char);
185 void	ess_clear_mreg_bits(struct ess_softc *, u_char, u_char);
186 void	ess_set_mreg_bits(struct ess_softc *, u_char, u_char);
187 void	ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, bus_size_t);
188 
189 static const char *essmodel[] = {
190 	"unsupported",
191 
192 	"688",
193 	"1688",
194 	"1788",
195 	"1868",
196 	"1869",
197 	"1878",
198 	"1879",
199 
200 	"888",
201 	"1887",
202 	"1888",
203 };
204 
205 struct audio_device ess_device = {
206 	"ESS Technology",
207 	"x",
208 	"ess"
209 };
210 
211 /*
212  * Define our interface to the higher level audio driver.
213  */
214 
215 const struct audio_hw_if ess_1788_hw_if = {
216 	ess_open,
217 	ess_close,
218 	ess_drain,
219 	ess_query_encoding,
220 	ess_set_params,
221 	ess_round_blocksize,
222 	NULL,
223 	NULL,
224 	NULL,
225 	NULL,
226 	NULL,
227 	ess_audio1_halt,
228 	ess_audio1_halt,
229 	ess_speaker_ctl,
230 	ess_getdev,
231 	NULL,
232 	ess_set_port,
233 	ess_get_port,
234 	ess_query_devinfo,
235 	ess_malloc,
236 	ess_free,
237 	ess_round_buffersize,
238 	ess_mappage,
239 	ess_1788_get_props,
240 	ess_audio1_trigger_output,
241 	ess_audio1_trigger_input,
242 	NULL,
243 };
244 
245 const struct audio_hw_if ess_1888_hw_if = {
246 	ess_open,
247 	ess_close,
248 	ess_drain,
249 	ess_query_encoding,
250 	ess_set_params,
251 	ess_round_blocksize,
252 	NULL,
253 	NULL,
254 	NULL,
255 	NULL,
256 	NULL,
257 	ess_audio2_halt,
258 	ess_audio1_halt,
259 	ess_speaker_ctl,
260 	ess_getdev,
261 	NULL,
262 	ess_set_port,
263 	ess_get_port,
264 	ess_query_devinfo,
265 	ess_malloc,
266 	ess_free,
267 	ess_round_buffersize,
268 	ess_mappage,
269 	ess_1888_get_props,
270 	ess_audio2_trigger_output,
271 	ess_audio1_trigger_input,
272 	NULL,
273 };
274 
275 #define ESS_NFORMATS	8
276 static const struct audio_format ess_formats[ESS_NFORMATS] = {
277 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
278 	 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
279 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
280 	 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
281 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
282 	 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
283 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
284 	 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
285 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
286 	 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
287 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
288 	 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
289 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
290 	 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
291 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
292 	 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
293 };
294 
295 #ifdef AUDIO_DEBUG
296 void ess_printsc(struct ess_softc *);
297 void ess_dump_mixer(struct ess_softc *);
298 
299 void
300 ess_printsc(struct ess_softc *sc)
301 {
302 	int i;
303 
304 	printf("iobase 0x%x outport %u inport %u speaker %s\n",
305 	       sc->sc_iobase, sc->out_port,
306 	       sc->in_port, sc->spkr_state ? "on" : "off");
307 
308 	printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
309 	       sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
310 	       sc->sc_audio1.intr, sc->sc_audio1.arg);
311 
312 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
313 		printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
314 		       sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
315 		       sc->sc_audio2.intr, sc->sc_audio2.arg);
316 	}
317 
318 	printf("gain:");
319 	for (i = 0; i < sc->ndevs; i++)
320 		printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
321 	printf("\n");
322 }
323 
324 void
325 ess_dump_mixer(struct ess_softc *sc)
326 {
327 
328 	printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
329 	       0x7C, ess_read_mix_reg(sc, 0x7C));
330 	printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
331 	       0x1A, ess_read_mix_reg(sc, 0x1A));
332 	printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
333 	       0x3E, ess_read_mix_reg(sc, 0x3E));
334 	printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
335 	       0x36, ess_read_mix_reg(sc, 0x36));
336 	printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
337 	       0x38, ess_read_mix_reg(sc, 0x38));
338 	printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
339 	       0x3A, ess_read_mix_reg(sc, 0x3A));
340 	printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
341 	       0x32, ess_read_mix_reg(sc, 0x32));
342 	printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
343 	       0x3C, ess_read_mix_reg(sc, 0x3C));
344 	printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
345 	       0x69, ess_read_mix_reg(sc, 0x69));
346 	printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
347 	       0x68, ess_read_mix_reg(sc, 0x68));
348 	printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
349 	       0x6E, ess_read_mix_reg(sc, 0x6E));
350 	printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
351 	       0x6B, ess_read_mix_reg(sc, 0x6B));
352 	printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
353 	       0x6A, ess_read_mix_reg(sc, 0x6A));
354 	printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
355 	       0x6C, ess_read_mix_reg(sc, 0x6C));
356 	printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
357 	       0xB4, ess_read_x_reg(sc, 0xB4));
358 	printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
359 	       0x14, ess_read_mix_reg(sc, 0x14));
360 
361 	printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
362 	       ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
363 	printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
364 	       ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
365 	printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
366 	       ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
367 	       ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
368 }
369 
370 #endif
371 
372 /*
373  * Configure the ESS chip for the desired audio base address.
374  */
375 int
376 ess_config_addr(struct ess_softc *sc)
377 {
378 	int iobase;
379 	bus_space_tag_t iot;
380 	/*
381 	 * Configure using the System Control Register method.  This
382 	 * method is used when the AMODE line is tied high, which is
383 	 * the case for the Shark, but not for the evaluation board.
384 	 */
385 	bus_space_handle_t scr_access_ioh;
386 	bus_space_handle_t scr_ioh;
387 	u_short scr_value;
388 
389 	iobase = sc->sc_iobase;
390 	iot = sc->sc_iot;
391 	/*
392 	 * Set the SCR bit to enable audio.
393 	 */
394 	scr_value = ESS_SCR_AUDIO_ENABLE;
395 
396 	/*
397 	 * Set the SCR bits necessary to select the specified audio
398 	 * base address.
399 	 */
400 	switch(iobase) {
401 	case 0x220:
402 		scr_value |= ESS_SCR_AUDIO_220;
403 		break;
404 	case 0x230:
405 		scr_value |= ESS_SCR_AUDIO_230;
406 		break;
407 	case 0x240:
408 		scr_value |= ESS_SCR_AUDIO_240;
409 		break;
410 	case 0x250:
411 		scr_value |= ESS_SCR_AUDIO_250;
412 		break;
413 	default:
414 		printf("ess: configured iobase 0x%x invalid\n", iobase);
415 		return 1;
416 		break;
417 	}
418 
419 	/*
420 	 * Get a mapping for the System Control Register (SCR) access
421 	 * registers and the SCR data registers.
422 	 */
423 	if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
424 			  0, &scr_access_ioh)) {
425 		printf("ess: can't map SCR access registers\n");
426 		return 1;
427 	}
428 	if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
429 			  0, &scr_ioh)) {
430 		printf("ess: can't map SCR registers\n");
431 		bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
432 		return 1;
433 	}
434 
435 	/* Unlock the SCR. */
436 	EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
437 
438 	/* Write the base address information into SCR[0]. */
439 	EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
440 	EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
441 
442 	/* Lock the SCR. */
443 	EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
444 
445 	/* Unmap the SCR access ports and the SCR data ports. */
446 	bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
447 	bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
448 
449 	return 0;
450 }
451 
452 
453 /*
454  * Configure the ESS chip for the desired IRQ and DMA channels.
455  * ESS  ISA
456  * --------
457  * IRQA irq9
458  * IRQB irq5
459  * IRQC irq7
460  * IRQD irq10
461  * IRQE irq15
462  *
463  * DRQA drq0
464  * DRQB drq1
465  * DRQC drq3
466  * DRQD drq5
467  */
468 void
469 ess_config_irq(struct ess_softc *sc)
470 {
471 	int v;
472 
473 	DPRINTFN(2,("ess_config_irq\n"));
474 
475 	if (sc->sc_model == ESS_1887 &&
476 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
477 	    sc->sc_audio1.irq != -1) {
478 		/* Use new method, both interrupts are the same. */
479 		v = ESS_IS_SELECT_IRQ;	/* enable intrs */
480 		switch (sc->sc_audio1.irq) {
481 		case 5:
482 			v |= ESS_IS_INTRB;
483 			break;
484 		case 7:
485 			v |= ESS_IS_INTRC;
486 			break;
487 		case 9:
488 			v |= ESS_IS_INTRA;
489 			break;
490 		case 10:
491 			v |= ESS_IS_INTRD;
492 			break;
493 		case 15:
494 			v |= ESS_IS_INTRE;
495 			break;
496 #ifdef DIAGNOSTIC
497 		default:
498 			printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
499 			       sc->sc_audio1.irq);
500 			return;
501 #endif
502 		}
503 		/* Set the IRQ */
504 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
505 		return;
506 	}
507 
508 	if (sc->sc_model == ESS_1887) {
509 		/* Tell the 1887 to use the old interrupt method. */
510 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
511 	}
512 
513 	if (sc->sc_audio1.polled) {
514 		/* Turn off Audio1 interrupts. */
515 		v = 0;
516 	} else {
517 		/* Configure Audio 1 for the appropriate IRQ line. */
518 		v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
519 		switch (sc->sc_audio1.irq) {
520 		case 5:
521 			v |= ESS_IRQ_CTRL_INTRB;
522 			break;
523 		case 7:
524 			v |= ESS_IRQ_CTRL_INTRC;
525 			break;
526 		case 9:
527 			v |= ESS_IRQ_CTRL_INTRA;
528 			break;
529 		case 10:
530 			v |= ESS_IRQ_CTRL_INTRD;
531 			break;
532 #ifdef DIAGNOSTIC
533 		default:
534 			printf("ess: configured irq %d not supported for Audio 1\n",
535 			       sc->sc_audio1.irq);
536 			return;
537 #endif
538 		}
539 	}
540 	ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
541 
542 	if (ESS_USE_AUDIO1(sc->sc_model))
543 		return;
544 
545 	if (sc->sc_audio2.polled) {
546 		/* Turn off Audio2 interrupts. */
547 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
548 				    ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
549 	} else {
550 		/* Audio2 is hardwired to INTRE in this mode. */
551 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
552 				  ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
553 	}
554 }
555 
556 
557 void
558 ess_config_drq(struct ess_softc *sc)
559 {
560 	int v;
561 
562 	DPRINTFN(2,("ess_config_drq\n"));
563 
564 	/* Configure Audio 1 (record) for DMA on the appropriate channel. */
565 	v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
566 	switch (sc->sc_audio1.drq) {
567 	case 0:
568 		v |= ESS_DRQ_CTRL_DRQA;
569 		break;
570 	case 1:
571 		v |= ESS_DRQ_CTRL_DRQB;
572 		break;
573 	case 3:
574 		v |= ESS_DRQ_CTRL_DRQC;
575 		break;
576 #ifdef DIAGNOSTIC
577 	default:
578 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
579 		       sc->sc_audio1.drq);
580 		return;
581 #endif
582 	}
583 	/* Set DRQ1 */
584 	ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
585 
586 	if (ESS_USE_AUDIO1(sc->sc_model))
587 		return;
588 
589 	/* Configure DRQ2 */
590 	v = ESS_AUDIO2_CTRL3_DRQ_PD;
591 	switch (sc->sc_audio2.drq) {
592 	case 0:
593 		v |= ESS_AUDIO2_CTRL3_DRQA;
594 		break;
595 	case 1:
596 		v |= ESS_AUDIO2_CTRL3_DRQB;
597 		break;
598 	case 3:
599 		v |= ESS_AUDIO2_CTRL3_DRQC;
600 		break;
601 	case 5:
602 		v |= ESS_AUDIO2_CTRL3_DRQD;
603 		break;
604 #ifdef DIAGNOSTIC
605 	default:
606 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
607 		       sc->sc_audio2.drq);
608 		return;
609 #endif
610 	}
611 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
612 	/* Enable DMA 2 */
613 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
614 			  ESS_AUDIO2_CTRL2_DMA_ENABLE);
615 }
616 
617 /*
618  * Set up registers after a reset.
619  */
620 void
621 ess_setup(struct ess_softc *sc)
622 {
623 
624 	ess_config_irq(sc);
625 	ess_config_drq(sc);
626 
627 	DPRINTFN(2,("ess_setup: done\n"));
628 }
629 
630 /*
631  * Determine the model of ESS chip we are talking to.  Currently we
632  * only support ES1888, ES1887 and ES888.  The method of determining
633  * the chip is based on the information on page 27 of the ES1887 data
634  * sheet.
635  *
636  * This routine sets the values of sc->sc_model and sc->sc_version.
637  */
638 int
639 ess_identify(struct ess_softc *sc)
640 {
641 	u_char reg1;
642 	u_char reg2;
643 	u_char reg3;
644 	u_int8_t ident[4];
645 
646 	sc->sc_model = ESS_UNSUPPORTED;
647 	sc->sc_version = 0;
648 
649 	memset(ident, 0, sizeof(ident));
650 
651 	/*
652 	 * 1. Check legacy ID bytes.  These should be 0x68 0x8n, where
653 	 *    n >= 8 for an ES1887 or an ES888.  Other values indicate
654 	 *    earlier (unsupported) chips.
655 	 */
656 	ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
657 
658 	if ((reg1 = ess_rdsp(sc)) != 0x68) {
659 		printf("ess: First ID byte wrong (0x%02x)\n", reg1);
660 		return 1;
661 	}
662 
663 	reg2 = ess_rdsp(sc);
664 	if (((reg2 & 0xf0) != 0x80) ||
665 	    ((reg2 & 0x0f) < 8)) {
666 		sc->sc_model = ESS_688;
667 		return 0;
668 	}
669 
670 	/*
671 	 * Store the ID bytes as the version.
672 	 */
673 	sc->sc_version = (reg1 << 8) + reg2;
674 
675 
676 	/*
677 	 * 2. Verify we can change bit 2 in mixer register 0x64.  This
678 	 *    should be possible on all supported chips.
679 	 */
680 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
681 	reg2 = reg1 ^ 0x04;  /* toggle bit 2 */
682 
683 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
684 
685 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
686 		switch (sc->sc_version) {
687 		case 0x688b:
688 			sc->sc_model = ESS_1688;
689 			break;
690 		default:
691 			printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
692 			return 1;
693 		}
694 		return 0;
695 	}
696 
697 	/*
698 	 * Restore the original value of mixer register 0x64.
699 	 */
700 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
701 
702 
703 	/*
704 	 * 3. Verify we can change the value of mixer register
705 	 *    ESS_MREG_SAMPLE_RATE.
706 	 *    This is possible on the 1888/1887/888, but not on the 1788.
707 	 *    It is not necessary to restore the value of this mixer register.
708 	 */
709 	reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
710 	reg2 = reg1 ^ 0xff;  /* toggle all bits */
711 
712 	ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
713 
714 	if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
715 		/* If we got this far before failing, it's a 1788. */
716 		sc->sc_model = ESS_1788;
717 
718 		/*
719 		 * Identify ESS model for ES18[67]8.
720 		 */
721 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
722 		if(ident[0] == 0x18) {
723 			switch(ident[1]) {
724 			case 0x68:
725 				sc->sc_model = ESS_1868;
726 				break;
727 			case 0x78:
728 				sc->sc_model = ESS_1878;
729 				break;
730 			}
731 		}
732 
733 		return 0;
734 	}
735 
736 	/*
737 	 * 4. Determine if we can change bit 5 in mixer register 0x64.
738 	 *    This determines whether we have an ES1887:
739 	 *
740 	 *    - can change indicates ES1887
741 	 *    - can't change indicates ES1888 or ES888
742 	 */
743 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
744 	reg2 = reg1 ^ 0x20;  /* toggle bit 5 */
745 
746 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
747 
748 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
749 		sc->sc_model = ESS_1887;
750 
751 		/*
752 		 * Restore the original value of mixer register 0x64.
753 		 */
754 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
755 
756 		/*
757 		 * Identify ESS model for ES18[67]9.
758 		 */
759 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
760 		if(ident[0] == 0x18) {
761 			switch(ident[1]) {
762 			case 0x69:
763 				sc->sc_model = ESS_1869;
764 				break;
765 			case 0x79:
766 				sc->sc_model = ESS_1879;
767 				break;
768 			}
769 		}
770 
771 		return 0;
772 	}
773 
774 	/*
775 	 * 5. Determine if we can change the value of mixer
776 	 *    register 0x69 independently of mixer register
777 	 *    0x68. This determines which chip we have:
778 	 *
779 	 *    - can modify idependently indicates ES888
780 	 *    - register 0x69 is an alias of 0x68 indicates ES1888
781 	 */
782 	reg1 = ess_read_mix_reg(sc, 0x68);
783 	reg2 = ess_read_mix_reg(sc, 0x69);
784 	reg3 = reg2 ^ 0xff;  /* toggle all bits */
785 
786 	/*
787 	 * Write different values to each register.
788 	 */
789 	ess_write_mix_reg(sc, 0x68, reg2);
790 	ess_write_mix_reg(sc, 0x69, reg3);
791 
792 	if (ess_read_mix_reg(sc, 0x68) == reg2 &&
793 	    ess_read_mix_reg(sc, 0x69) == reg3)
794 		sc->sc_model = ESS_888;
795 	else
796 		sc->sc_model = ESS_1888;
797 
798 	/*
799 	 * Restore the original value of the registers.
800 	 */
801 	ess_write_mix_reg(sc, 0x68, reg1);
802 	ess_write_mix_reg(sc, 0x69, reg2);
803 
804 	return 0;
805 }
806 
807 
808 int
809 ess_setup_sc(struct ess_softc *sc, int doinit)
810 {
811 
812 	callout_init(&sc->sc_poll1_ch);
813 	callout_init(&sc->sc_poll2_ch);
814 
815 	/* Reset the chip. */
816 	if (ess_reset(sc) != 0) {
817 		DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
818 		return 1;
819 	}
820 
821 	/* Identify the ESS chip, and check that it is supported. */
822 	if (ess_identify(sc)) {
823 		DPRINTF(("ess_setup_sc: couldn't identify\n"));
824 		return 1;
825 	}
826 
827 	return 0;
828 }
829 
830 /*
831  * Probe for the ESS hardware.
832  */
833 int
834 essmatch(struct ess_softc *sc)
835 {
836 	if (!ESS_BASE_VALID(sc->sc_iobase)) {
837 		printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
838 		return 0;
839 	}
840 
841 	if (ess_setup_sc(sc, 1))
842 		return 0;
843 
844 	if (sc->sc_model == ESS_UNSUPPORTED) {
845 		DPRINTF(("ess: Unsupported model\n"));
846 		return 0;
847 	}
848 
849 	/* Check that requested DMA channels are valid and different. */
850 	if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
851 		printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
852 		return 0;
853 	}
854 	if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
855 		return 0;
856 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
857 		if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
858 			printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
859 			return 0;
860 		}
861 		if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
862 			printf("ess: play and record drq both %d\n",
863 			       sc->sc_audio1.drq);
864 			return 0;
865 		}
866 		if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
867 			return 0;
868 	}
869 
870 	/*
871 	 * The 1887 has an additional IRQ mode where both channels are mapped
872 	 * to the same IRQ.
873 	 */
874 	if (sc->sc_model == ESS_1887 &&
875 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
876 	    sc->sc_audio1.irq != -1 &&
877 	    ESS_IRQ12_VALID(sc->sc_audio1.irq))
878 		goto irq_not1888;
879 
880 	/* Check that requested IRQ lines are valid and different. */
881 	if (sc->sc_audio1.irq != -1 &&
882 	    !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
883 		printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
884 		return 0;
885 	}
886 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
887 		if (sc->sc_audio2.irq != -1 &&
888 		    !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
889 			printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
890 			return 0;
891 		}
892 		if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
893 		    sc->sc_audio1.irq != -1) {
894 			printf("ess: play and record irq both %d\n",
895 			       sc->sc_audio1.irq);
896 			return 0;
897 		}
898 	}
899 
900 irq_not1888:
901 	/* XXX should we check IRQs as well? */
902 
903 	return 2; /* beat "sb" */
904 }
905 
906 
907 /*
908  * Attach hardware to driver, attach hardware driver to audio
909  * pseudo-device driver.
910  */
911 void
912 essattach(struct ess_softc *sc, int enablejoy)
913 {
914 	struct audio_attach_args arg;
915 	int i;
916 	u_int v;
917 
918 	if (ess_setup_sc(sc, 0)) {
919 		printf(": setup failed\n");
920 		return;
921 	}
922 
923 	printf(": ESS Technology ES%s [version 0x%04x]\n",
924 	    essmodel[sc->sc_model], sc->sc_version);
925 
926 	sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
927 	if (!sc->sc_audio1.polled) {
928 		sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
929 		    sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
930 		    ess_audio1_intr, sc);
931 		printf("%s: audio1 interrupting at irq %d\n",
932 		    sc->sc_dev.dv_xname, sc->sc_audio1.irq);
933 	} else
934 		printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
935 	sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
936 
937 	if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
938 		printf("%s: can't reserve drq %d\n",
939 		    sc->sc_dev.dv_xname, sc->sc_audio1.drq);
940 		return;
941 	}
942 
943 	if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
944 	    sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
945 		printf("%s: can't create map for drq %d\n",
946 		    sc->sc_dev.dv_xname, sc->sc_audio1.drq);
947 		return;
948 	}
949 
950 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
951 		sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
952 		if (!sc->sc_audio2.polled) {
953 			sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
954 			    sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
955 			    ess_audio2_intr, sc);
956 			printf("%s: audio2 interrupting at irq %d\n",
957 			    sc->sc_dev.dv_xname, sc->sc_audio2.irq);
958 		} else
959 			printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
960 		sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
961 		    sc->sc_audio2.drq);
962 
963 		if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
964 			printf("%s: can't reserve drq %d\n",
965 			    sc->sc_dev.dv_xname, sc->sc_audio2.drq);
966 			return;
967 		}
968 
969 		if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
970 		    sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
971 			printf("%s: can't create map for drq %d\n",
972 			    sc->sc_dev.dv_xname, sc->sc_audio2.drq);
973 			return;
974 		}
975 	}
976 
977 	/* Do a hardware reset on the mixer. */
978 	ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
979 
980 	/*
981 	 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
982 	 * to playback mixer, since playback is always through Audio 2.
983 	 */
984 	if (!ESS_USE_AUDIO1(sc->sc_model))
985 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
986 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
987 
988 	if (ESS_USE_AUDIO1(sc->sc_model)) {
989 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
990 		sc->in_port = ESS_SOURCE_MIC;
991 		sc->ndevs = ESS_1788_NDEVS;
992 	} else {
993 		/*
994 		 * Set hardware record source to use output of the record
995 		 * mixer. We do the selection of record source in software by
996 		 * setting the gain of the unused sources to zero. (See
997 		 * ess_set_in_ports.)
998 		 */
999 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
1000 		sc->in_mask = 1 << ESS_MIC_REC_VOL;
1001 		sc->ndevs = ESS_1888_NDEVS;
1002 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
1003 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
1004 	}
1005 
1006 	/*
1007 	 * Set gain on each mixer device to a sensible value.
1008 	 * Devices not normally used are turned off, and other devices
1009 	 * are set to 50% volume.
1010 	 */
1011 	for (i = 0; i < sc->ndevs; i++) {
1012 		switch (i) {
1013 		case ESS_MIC_PLAY_VOL:
1014 		case ESS_LINE_PLAY_VOL:
1015 		case ESS_CD_PLAY_VOL:
1016 		case ESS_AUXB_PLAY_VOL:
1017 		case ESS_DAC_REC_VOL:
1018 		case ESS_LINE_REC_VOL:
1019 		case ESS_SYNTH_REC_VOL:
1020 		case ESS_CD_REC_VOL:
1021 		case ESS_AUXB_REC_VOL:
1022 			v = 0;
1023 			break;
1024 		default:
1025 			v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1026 			break;
1027 		}
1028 		sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1029 		ess_set_gain(sc, i, 1);
1030 	}
1031 
1032 	ess_setup(sc);
1033 
1034 	/* Disable the speaker until the device is opened.  */
1035 	ess_speaker_off(sc);
1036 	sc->spkr_state = SPKR_OFF;
1037 
1038 	snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
1039 	    essmodel[sc->sc_model]);
1040 	snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
1041 	    sc->sc_version);
1042 
1043 	if (ESS_USE_AUDIO1(sc->sc_model))
1044 		audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1045 	else
1046 		audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1047 
1048 	arg.type = AUDIODEV_TYPE_OPL;
1049 	arg.hwif = 0;
1050 	arg.hdl = 0;
1051 	(void)config_found(&sc->sc_dev, &arg, audioprint);
1052 
1053 #if NJOY_ESS > 0
1054 	if (sc->sc_model == ESS_1888 && enablejoy) {
1055 		unsigned char m40;
1056 
1057 		m40 = ess_read_mix_reg(sc, 0x40);
1058 		m40 |= 2;
1059 		ess_write_mix_reg(sc, 0x40, m40);
1060 
1061 		arg.type = AUDIODEV_TYPE_AUX;
1062 		(void)config_found(&sc->sc_dev, &arg, audioprint);
1063 	}
1064 #endif
1065 
1066 #ifdef AUDIO_DEBUG
1067 	if (essdebug > 0)
1068 		ess_printsc(sc);
1069 #endif
1070 }
1071 
1072 /*
1073  * Various routines to interface to higher level audio driver
1074  */
1075 
1076 int
1077 ess_open(void *addr, int flags)
1078 {
1079 	return 0;
1080 }
1081 
1082 void
1083 ess_close(void *addr)
1084 {
1085 	struct ess_softc *sc;
1086 
1087 	sc = addr;
1088 	DPRINTF(("ess_close: sc=%p\n", sc));
1089 
1090 	ess_speaker_off(sc);
1091 	sc->spkr_state = SPKR_OFF;
1092 
1093 	DPRINTF(("ess_close: closed\n"));
1094 }
1095 
1096 /*
1097  * Wait for FIFO to drain, and analog section to settle.
1098  * XXX should check FIFO empty bit.
1099  */
1100 int
1101 ess_drain(void *addr)
1102 {
1103 
1104 	tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1105 	return 0;
1106 }
1107 
1108 /* XXX should use reference count */
1109 int
1110 ess_speaker_ctl(void *addr, int newstate)
1111 {
1112 	struct ess_softc *sc;
1113 
1114 	sc = addr;
1115 	if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1116 		ess_speaker_on(sc);
1117 		sc->spkr_state = SPKR_ON;
1118 	}
1119 	if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1120 		ess_speaker_off(sc);
1121 		sc->spkr_state = SPKR_OFF;
1122 	}
1123 	return 0;
1124 }
1125 
1126 int
1127 ess_getdev(void *addr, struct audio_device *retp)
1128 {
1129 
1130 	*retp = ess_device;
1131 	return 0;
1132 }
1133 
1134 int
1135 ess_query_encoding(void *addr, struct audio_encoding *fp)
1136 {
1137 	/*struct ess_softc *sc = addr;*/
1138 
1139 	switch (fp->index) {
1140 	case 0:
1141 		strcpy(fp->name, AudioEulinear);
1142 		fp->encoding = AUDIO_ENCODING_ULINEAR;
1143 		fp->precision = 8;
1144 		fp->flags = 0;
1145 		return 0;
1146 	case 1:
1147 		strcpy(fp->name, AudioEmulaw);
1148 		fp->encoding = AUDIO_ENCODING_ULAW;
1149 		fp->precision = 8;
1150 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1151 		return 0;
1152 	case 2:
1153 		strcpy(fp->name, AudioEalaw);
1154 		fp->encoding = AUDIO_ENCODING_ALAW;
1155 		fp->precision = 8;
1156 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1157 		return 0;
1158 	case 3:
1159 		strcpy(fp->name, AudioEslinear);
1160 		fp->encoding = AUDIO_ENCODING_SLINEAR;
1161 		fp->precision = 8;
1162 		fp->flags = 0;
1163 		return 0;
1164 	case 4:
1165 		strcpy(fp->name, AudioEslinear_le);
1166 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1167 		fp->precision = 16;
1168 		fp->flags = 0;
1169 		return 0;
1170 	case 5:
1171 		strcpy(fp->name, AudioEulinear_le);
1172 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1173 		fp->precision = 16;
1174 		fp->flags = 0;
1175 		return 0;
1176 	case 6:
1177 		strcpy(fp->name, AudioEslinear_be);
1178 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1179 		fp->precision = 16;
1180 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1181 		return 0;
1182 	case 7:
1183 		strcpy(fp->name, AudioEulinear_be);
1184 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1185 		fp->precision = 16;
1186 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1187 		return 0;
1188 	default:
1189 		return EINVAL;
1190 	}
1191 	return 0;
1192 }
1193 
1194 int
1195 ess_set_params(
1196 	void *addr,
1197 	int setmode, int usemode,
1198 	audio_params_t *play, audio_params_t *rec,
1199 	stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1200 {
1201 	struct ess_softc *sc;
1202 	int rate;
1203 
1204 	DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1205 	sc = addr;
1206 	/*
1207 	 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1208 	 * full-duplex operation the sample rates must be the same for both
1209 	 * channels.  This appears to be false; the only bit in common is the
1210 	 * clock source selection.  However, we'll be conservative here.
1211 	 * - mycroft
1212 	 */
1213 	if (play->sample_rate != rec->sample_rate &&
1214 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1215 		if (setmode == AUMODE_PLAY) {
1216 			rec->sample_rate = play->sample_rate;
1217 			setmode |= AUMODE_RECORD;
1218 		} else if (setmode == AUMODE_RECORD) {
1219 			play->sample_rate = rec->sample_rate;
1220 			setmode |= AUMODE_PLAY;
1221 		} else
1222 			return EINVAL;
1223 	}
1224 
1225 	if (setmode & AUMODE_RECORD) {
1226 		if (auconv_set_converter(ess_formats, ESS_NFORMATS,
1227 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
1228 			return EINVAL;
1229 	}
1230 	if (setmode & AUMODE_PLAY) {
1231 		if (auconv_set_converter(ess_formats, ESS_NFORMATS,
1232 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
1233 			return EINVAL;
1234 	}
1235 
1236 	if (usemode == AUMODE_RECORD)
1237 		rate = rec->sample_rate;
1238 	else
1239 		rate = play->sample_rate;
1240 
1241 	ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1242 	ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1243 
1244 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
1245 		ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1246 		ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 int
1253 ess_audio1_trigger_output(
1254 	void *addr,
1255 	void *start, void *end,
1256 	int blksize,
1257 	void (*intr)(void *),
1258 	void *arg,
1259 	const audio_params_t *param)
1260 {
1261 	struct ess_softc *sc;
1262 	u_int8_t reg;
1263 
1264 	sc = addr;
1265 	DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p "
1266 	    "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1267 
1268 	if (sc->sc_audio1.active)
1269 		panic("ess_audio1_trigger_output: already running");
1270 
1271 	sc->sc_audio1.active = 1;
1272 	sc->sc_audio1.intr = intr;
1273 	sc->sc_audio1.arg = arg;
1274 	if (sc->sc_audio1.polled) {
1275 		sc->sc_audio1.dmapos = 0;
1276 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1277 		sc->sc_audio1.dmacount = 0;
1278 		sc->sc_audio1.blksize = blksize;
1279 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1280 		    ess_audio1_poll, sc);
1281 	}
1282 
1283 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1284 	if (param->channels == 2) {
1285 		reg &= ~ESS_AUDIO_CTRL_MONO;
1286 		reg |= ESS_AUDIO_CTRL_STEREO;
1287 	} else {
1288 		reg |= ESS_AUDIO_CTRL_MONO;
1289 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1290 	}
1291 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1292 
1293 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1294 	if (param->precision == 16)
1295 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1296 	else
1297 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1298 	if (param->channels == 2)
1299 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1300 	else
1301 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1302 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1303 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1304 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1305 	else
1306 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1307 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1308 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1309 
1310 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1311 		     (char *)end - (char *)start, NULL,
1312 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1313 
1314 	/* Program transfer count registers with 2's complement of count. */
1315 	blksize = -blksize;
1316 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1317 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1318 
1319 	/* Use 4 bytes per output DMA. */
1320 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1321 
1322 	/* Start auto-init DMA */
1323 	ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1324 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1325 	reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1326 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1327 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1328 
1329 	return 0;
1330 }
1331 
1332 int
1333 ess_audio2_trigger_output(
1334 	void *addr,
1335 	void *start, void *end,
1336 	int blksize,
1337 	void (*intr)(void *),
1338 	void *arg,
1339 	const audio_params_t *param)
1340 {
1341 	struct ess_softc *sc;
1342 	u_int8_t reg;
1343 
1344 	sc = addr;
1345 	DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p "
1346 	    "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1347 
1348 	if (sc->sc_audio2.active)
1349 		panic("ess_audio2_trigger_output: already running");
1350 
1351 	sc->sc_audio2.active = 1;
1352 	sc->sc_audio2.intr = intr;
1353 	sc->sc_audio2.arg = arg;
1354 	if (sc->sc_audio2.polled) {
1355 		sc->sc_audio2.dmapos = 0;
1356 		sc->sc_audio2.buffersize = (char *)end - (char *)start;
1357 		sc->sc_audio2.dmacount = 0;
1358 		sc->sc_audio2.blksize = blksize;
1359 		callout_reset(&sc->sc_poll2_ch, hz / 30,
1360 		    ess_audio2_poll, sc);
1361 	}
1362 
1363 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1364 	if (param->precision == 16)
1365 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1366 	else
1367 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1368 	if (param->channels == 2)
1369 		reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1370 	else
1371 		reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1372 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1373 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1374 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1375 	else
1376 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1377 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1378 
1379 	isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1380 		     (char *)end - (char *)start, NULL,
1381 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1382 
1383 	if (IS16BITDRQ(sc->sc_audio2.drq))
1384 		blksize >>= 1;	/* use word count for 16 bit DMA */
1385 	/* Program transfer count registers with 2's complement of count. */
1386 	blksize = -blksize;
1387 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1388 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1389 
1390 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1391 	if (IS16BITDRQ(sc->sc_audio2.drq))
1392 		reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1393 	else
1394 		reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1395 	reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1396 	reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1397 	       ESS_AUDIO2_CTRL1_AUTO_INIT;
1398 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1399 
1400 	return (0);
1401 }
1402 
1403 int
1404 ess_audio1_trigger_input(
1405 	void *addr,
1406 	void *start, void *end,
1407 	int blksize,
1408 	void (*intr)(void *),
1409 	void *arg,
1410 	const audio_params_t *param)
1411 {
1412 	struct ess_softc *sc;
1413 	u_int8_t reg;
1414 
1415 	sc = addr;
1416 	DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p "
1417 	    "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1418 
1419 	if (sc->sc_audio1.active)
1420 		panic("ess_audio1_trigger_input: already running");
1421 
1422 	sc->sc_audio1.active = 1;
1423 	sc->sc_audio1.intr = intr;
1424 	sc->sc_audio1.arg = arg;
1425 	if (sc->sc_audio1.polled) {
1426 		sc->sc_audio1.dmapos = 0;
1427 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1428 		sc->sc_audio1.dmacount = 0;
1429 		sc->sc_audio1.blksize = blksize;
1430 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1431 		    ess_audio1_poll, sc);
1432 	}
1433 
1434 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1435 	if (param->channels == 2) {
1436 		reg &= ~ESS_AUDIO_CTRL_MONO;
1437 		reg |= ESS_AUDIO_CTRL_STEREO;
1438 	} else {
1439 		reg |= ESS_AUDIO_CTRL_MONO;
1440 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1441 	}
1442 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1443 
1444 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1445 	if (param->precision == 16)
1446 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1447 	else
1448 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1449 	if (param->channels == 2)
1450 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1451 	else
1452 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1453 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1454 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1455 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1456 	else
1457 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1458 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1459 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1460 
1461 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1462 		     (char *)end - (char *)start, NULL,
1463 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1464 
1465 	/* Program transfer count registers with 2's complement of count. */
1466 	blksize = -blksize;
1467 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1468 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1469 
1470 	/* Use 4 bytes per input DMA. */
1471 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1472 
1473 	/* Start auto-init DMA */
1474 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1475 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1476 	reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1477 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1478 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1479 
1480 	return 0;
1481 }
1482 
1483 int
1484 ess_audio1_halt(void *addr)
1485 {
1486 	struct ess_softc *sc;
1487 
1488 	sc = addr;
1489 	DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1490 
1491 	if (sc->sc_audio1.active) {
1492 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1493 		    ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1494 		isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1495 		if (sc->sc_audio1.polled)
1496 			callout_stop(&sc->sc_poll1_ch);
1497 		sc->sc_audio1.active = 0;
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 int
1504 ess_audio2_halt(void *addr)
1505 {
1506 	struct ess_softc *sc;
1507 
1508 	sc = addr;
1509 	DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1510 
1511 	if (sc->sc_audio2.active) {
1512 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1513 		    ESS_AUDIO2_CTRL1_DAC_ENABLE |
1514 		    ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1515 		isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1516 		if (sc->sc_audio2.polled)
1517 			callout_stop(&sc->sc_poll2_ch);
1518 		sc->sc_audio2.active = 0;
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 int
1525 ess_audio1_intr(void *arg)
1526 {
1527 	struct ess_softc *sc;
1528 	uint8_t reg;
1529 
1530 	sc = arg;
1531 	DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1532 
1533 	/* Check and clear interrupt on Audio1. */
1534 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1535 	if ((reg & ESS_DSP_READ_OFLOW) == 0)
1536 		return 0;
1537 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1538 
1539 	sc->sc_audio1.nintr++;
1540 
1541 	if (sc->sc_audio1.active) {
1542 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1543 		return 1;
1544 	} else
1545 		return 0;
1546 }
1547 
1548 int
1549 ess_audio2_intr(void *arg)
1550 {
1551 	struct ess_softc *sc;
1552 	uint8_t reg;
1553 
1554 	sc = arg;
1555 	DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1556 
1557 	/* Check and clear interrupt on Audio2. */
1558 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1559 	if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1560 		return 0;
1561 	reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1562 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1563 
1564 	sc->sc_audio2.nintr++;
1565 
1566 	if (sc->sc_audio2.active) {
1567 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1568 		return 1;
1569 	} else
1570 		return 0;
1571 }
1572 
1573 void
1574 ess_audio1_poll(void *addr)
1575 {
1576 	struct ess_softc *sc;
1577 	int dmapos, dmacount;
1578 
1579 	sc = addr;
1580 	if (!sc->sc_audio1.active)
1581 		return;
1582 
1583 	sc->sc_audio1.nintr++;
1584 
1585 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1586 	dmacount = sc->sc_audio1.dmapos - dmapos;
1587 	if (dmacount < 0)
1588 		dmacount += sc->sc_audio1.buffersize;
1589 	sc->sc_audio1.dmapos = dmapos;
1590 #if 1
1591 	dmacount += sc->sc_audio1.dmacount;
1592 	while (dmacount > sc->sc_audio1.blksize) {
1593 		dmacount -= sc->sc_audio1.blksize;
1594 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1595 	}
1596 	sc->sc_audio1.dmacount = dmacount;
1597 #else
1598 	(*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1599 #endif
1600 
1601 	callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1602 }
1603 
1604 void
1605 ess_audio2_poll(void *addr)
1606 {
1607 	struct ess_softc *sc;
1608 	int dmapos, dmacount;
1609 
1610 	sc = addr;
1611 	if (!sc->sc_audio2.active)
1612 		return;
1613 
1614 	sc->sc_audio2.nintr++;
1615 
1616 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1617 	dmacount = sc->sc_audio2.dmapos - dmapos;
1618 	if (dmacount < 0)
1619 		dmacount += sc->sc_audio2.buffersize;
1620 	sc->sc_audio2.dmapos = dmapos;
1621 #if 1
1622 	dmacount += sc->sc_audio2.dmacount;
1623 	while (dmacount > sc->sc_audio2.blksize) {
1624 		dmacount -= sc->sc_audio2.blksize;
1625 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1626 	}
1627 	sc->sc_audio2.dmacount = dmacount;
1628 #else
1629 	(*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1630 #endif
1631 
1632 	callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1633 }
1634 
1635 int
1636 ess_round_blocksize(void *addr, int blk, int mode, const audio_params_t *param)
1637 {
1638 
1639 	return blk & -8;	/* round for max DMA size */
1640 }
1641 
1642 int
1643 ess_set_port(void *addr, mixer_ctrl_t *cp)
1644 {
1645 	struct ess_softc *sc;
1646 	int lgain, rgain;
1647 
1648 	sc = addr;
1649 	DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1650 		    cp->dev, cp->un.value.num_channels));
1651 
1652 	switch (cp->dev) {
1653 	/*
1654 	 * The following mixer ports are all stereo. If we get a
1655 	 * single-channel gain value passed in, then we duplicate it
1656 	 * to both left and right channels.
1657 	 */
1658 	case ESS_MASTER_VOL:
1659 	case ESS_DAC_PLAY_VOL:
1660 	case ESS_MIC_PLAY_VOL:
1661 	case ESS_LINE_PLAY_VOL:
1662 	case ESS_SYNTH_PLAY_VOL:
1663 	case ESS_CD_PLAY_VOL:
1664 	case ESS_AUXB_PLAY_VOL:
1665 	case ESS_RECORD_VOL:
1666 		if (cp->type != AUDIO_MIXER_VALUE)
1667 			return EINVAL;
1668 
1669 		switch (cp->un.value.num_channels) {
1670 		case 1:
1671 			lgain = rgain = ESS_4BIT_GAIN(
1672 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1673 			break;
1674 		case 2:
1675 			lgain = ESS_4BIT_GAIN(
1676 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1677 			rgain = ESS_4BIT_GAIN(
1678 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1679 			break;
1680 		default:
1681 			return EINVAL;
1682 		}
1683 
1684 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1685 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1686 		ess_set_gain(sc, cp->dev, 1);
1687 		return 0;
1688 
1689 	/*
1690 	 * The PC speaker port is mono. If we get a stereo gain value
1691 	 * passed in, then we return EINVAL.
1692 	 */
1693 	case ESS_PCSPEAKER_VOL:
1694 		if (cp->un.value.num_channels != 1)
1695 			return EINVAL;
1696 
1697 		sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1698 		  ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1699 		ess_set_gain(sc, cp->dev, 1);
1700 		return 0;
1701 
1702 	case ESS_RECORD_SOURCE:
1703 		if (ESS_USE_AUDIO1(sc->sc_model)) {
1704 			if (cp->type == AUDIO_MIXER_ENUM)
1705 				return ess_set_in_port(sc, cp->un.ord);
1706 			else
1707 				return EINVAL;
1708 		} else {
1709 			if (cp->type == AUDIO_MIXER_SET)
1710 				return ess_set_in_ports(sc, cp->un.mask);
1711 			else
1712 				return EINVAL;
1713 		}
1714 		return 0;
1715 
1716 	case ESS_RECORD_MONITOR:
1717 		if (cp->type != AUDIO_MIXER_ENUM)
1718 			return EINVAL;
1719 
1720 		if (cp->un.ord)
1721 			/* Enable monitor */
1722 			ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1723 					  ESS_AUDIO_CTRL_MONITOR);
1724 		else
1725 			/* Disable monitor */
1726 			ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1727 					    ESS_AUDIO_CTRL_MONITOR);
1728 		return 0;
1729 	}
1730 
1731 	if (ESS_USE_AUDIO1(sc->sc_model))
1732 		return EINVAL;
1733 
1734 	switch (cp->dev) {
1735 	case ESS_DAC_REC_VOL:
1736 	case ESS_MIC_REC_VOL:
1737 	case ESS_LINE_REC_VOL:
1738 	case ESS_SYNTH_REC_VOL:
1739 	case ESS_CD_REC_VOL:
1740 	case ESS_AUXB_REC_VOL:
1741 		if (cp->type != AUDIO_MIXER_VALUE)
1742 			return EINVAL;
1743 
1744 		switch (cp->un.value.num_channels) {
1745 		case 1:
1746 			lgain = rgain = ESS_4BIT_GAIN(
1747 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1748 			break;
1749 		case 2:
1750 			lgain = ESS_4BIT_GAIN(
1751 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1752 			rgain = ESS_4BIT_GAIN(
1753 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1754 			break;
1755 		default:
1756 			return EINVAL;
1757 		}
1758 
1759 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1760 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1761 		ess_set_gain(sc, cp->dev, 1);
1762 		return 0;
1763 
1764 	case ESS_MIC_PREAMP:
1765 		if (cp->type != AUDIO_MIXER_ENUM)
1766 			return EINVAL;
1767 
1768 		if (cp->un.ord)
1769 			/* Enable microphone preamp */
1770 			ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1771 					  ESS_PREAMP_CTRL_ENABLE);
1772 		else
1773 			/* Disable microphone preamp */
1774 			ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1775 					  ESS_PREAMP_CTRL_ENABLE);
1776 		return 0;
1777 	}
1778 
1779 	return EINVAL;
1780 }
1781 
1782 int
1783 ess_get_port(void *addr, mixer_ctrl_t *cp)
1784 {
1785 	struct ess_softc *sc;
1786 
1787 	sc = addr;
1788 	DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1789 
1790 	switch (cp->dev) {
1791 	case ESS_MASTER_VOL:
1792 	case ESS_DAC_PLAY_VOL:
1793 	case ESS_MIC_PLAY_VOL:
1794 	case ESS_LINE_PLAY_VOL:
1795 	case ESS_SYNTH_PLAY_VOL:
1796 	case ESS_CD_PLAY_VOL:
1797 	case ESS_AUXB_PLAY_VOL:
1798 	case ESS_RECORD_VOL:
1799 		switch (cp->un.value.num_channels) {
1800 		case 1:
1801 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1802 				sc->gain[cp->dev][ESS_LEFT];
1803 			break;
1804 		case 2:
1805 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1806 				sc->gain[cp->dev][ESS_LEFT];
1807 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1808 				sc->gain[cp->dev][ESS_RIGHT];
1809 			break;
1810 		default:
1811 			return EINVAL;
1812 		}
1813 		return 0;
1814 
1815 	case ESS_PCSPEAKER_VOL:
1816 		if (cp->un.value.num_channels != 1)
1817 			return EINVAL;
1818 
1819 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1820 			sc->gain[cp->dev][ESS_LEFT];
1821 		return 0;
1822 
1823 	case ESS_RECORD_SOURCE:
1824 		if (ESS_USE_AUDIO1(sc->sc_model))
1825 			cp->un.ord = sc->in_port;
1826 		else
1827 			cp->un.mask = sc->in_mask;
1828 		return 0;
1829 
1830 	case ESS_RECORD_MONITOR:
1831 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1832 			      ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1833 		return 0;
1834 	}
1835 
1836 	if (ESS_USE_AUDIO1(sc->sc_model))
1837 		return EINVAL;
1838 
1839 	switch (cp->dev) {
1840 	case ESS_DAC_REC_VOL:
1841 	case ESS_MIC_REC_VOL:
1842 	case ESS_LINE_REC_VOL:
1843 	case ESS_SYNTH_REC_VOL:
1844 	case ESS_CD_REC_VOL:
1845 	case ESS_AUXB_REC_VOL:
1846 		switch (cp->un.value.num_channels) {
1847 		case 1:
1848 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1849 				sc->gain[cp->dev][ESS_LEFT];
1850 			break;
1851 		case 2:
1852 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1853 				sc->gain[cp->dev][ESS_LEFT];
1854 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1855 				sc->gain[cp->dev][ESS_RIGHT];
1856 			break;
1857 		default:
1858 			return EINVAL;
1859 		}
1860 		return 0;
1861 
1862 	case ESS_MIC_PREAMP:
1863 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1864 			      ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1865 		return 0;
1866 	}
1867 
1868 	return EINVAL;
1869 }
1870 
1871 int
1872 ess_query_devinfo(void *addr, mixer_devinfo_t *dip)
1873 {
1874 	struct ess_softc *sc;
1875 
1876 	sc = addr;
1877 	DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1878 		    sc->sc_model, dip->index));
1879 
1880 	/*
1881 	 * REVISIT: There are some slight differences between the
1882 	 *          mixers on the different ESS chips, which can
1883 	 *          be sorted out using the chip model rather than a
1884 	 *          separate mixer model.
1885 	 *          This is currently coded assuming an ES1887; we
1886 	 *          need to work out which bits are not applicable to
1887 	 *          the other models (1888 and 888).
1888 	 */
1889 	switch (dip->index) {
1890 	case ESS_DAC_PLAY_VOL:
1891 		dip->mixer_class = ESS_INPUT_CLASS;
1892 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1893 		strcpy(dip->label.name, AudioNdac);
1894 		dip->type = AUDIO_MIXER_VALUE;
1895 		dip->un.v.num_channels = 2;
1896 		strcpy(dip->un.v.units.name, AudioNvolume);
1897 		return 0;
1898 
1899 	case ESS_MIC_PLAY_VOL:
1900 		dip->mixer_class = ESS_INPUT_CLASS;
1901 		dip->prev = AUDIO_MIXER_LAST;
1902 		if (ESS_USE_AUDIO1(sc->sc_model))
1903 			dip->next = AUDIO_MIXER_LAST;
1904 		else
1905 			dip->next = ESS_MIC_PREAMP;
1906 		strcpy(dip->label.name, AudioNmicrophone);
1907 		dip->type = AUDIO_MIXER_VALUE;
1908 		dip->un.v.num_channels = 2;
1909 		strcpy(dip->un.v.units.name, AudioNvolume);
1910 		return 0;
1911 
1912 	case ESS_LINE_PLAY_VOL:
1913 		dip->mixer_class = ESS_INPUT_CLASS;
1914 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1915 		strcpy(dip->label.name, AudioNline);
1916 		dip->type = AUDIO_MIXER_VALUE;
1917 		dip->un.v.num_channels = 2;
1918 		strcpy(dip->un.v.units.name, AudioNvolume);
1919 		return 0;
1920 
1921 	case ESS_SYNTH_PLAY_VOL:
1922 		dip->mixer_class = ESS_INPUT_CLASS;
1923 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1924 		strcpy(dip->label.name, AudioNfmsynth);
1925 		dip->type = AUDIO_MIXER_VALUE;
1926 		dip->un.v.num_channels = 2;
1927 		strcpy(dip->un.v.units.name, AudioNvolume);
1928 		return 0;
1929 
1930 	case ESS_CD_PLAY_VOL:
1931 		dip->mixer_class = ESS_INPUT_CLASS;
1932 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1933 		strcpy(dip->label.name, AudioNcd);
1934 		dip->type = AUDIO_MIXER_VALUE;
1935 		dip->un.v.num_channels = 2;
1936 		strcpy(dip->un.v.units.name, AudioNvolume);
1937 		return 0;
1938 
1939 	case ESS_AUXB_PLAY_VOL:
1940 		dip->mixer_class = ESS_INPUT_CLASS;
1941 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1942 		strcpy(dip->label.name, "auxb");
1943 		dip->type = AUDIO_MIXER_VALUE;
1944 		dip->un.v.num_channels = 2;
1945 		strcpy(dip->un.v.units.name, AudioNvolume);
1946 		return 0;
1947 
1948 	case ESS_INPUT_CLASS:
1949 		dip->mixer_class = ESS_INPUT_CLASS;
1950 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1951 		strcpy(dip->label.name, AudioCinputs);
1952 		dip->type = AUDIO_MIXER_CLASS;
1953 		return 0;
1954 
1955 	case ESS_MASTER_VOL:
1956 		dip->mixer_class = ESS_OUTPUT_CLASS;
1957 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1958 		strcpy(dip->label.name, AudioNmaster);
1959 		dip->type = AUDIO_MIXER_VALUE;
1960 		dip->un.v.num_channels = 2;
1961 		strcpy(dip->un.v.units.name, AudioNvolume);
1962 		return 0;
1963 
1964 	case ESS_PCSPEAKER_VOL:
1965 		dip->mixer_class = ESS_OUTPUT_CLASS;
1966 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1967 		strcpy(dip->label.name, "pc_speaker");
1968 		dip->type = AUDIO_MIXER_VALUE;
1969 		dip->un.v.num_channels = 1;
1970 		strcpy(dip->un.v.units.name, AudioNvolume);
1971 		return 0;
1972 
1973 	case ESS_OUTPUT_CLASS:
1974 		dip->mixer_class = ESS_OUTPUT_CLASS;
1975 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1976 		strcpy(dip->label.name, AudioCoutputs);
1977 		dip->type = AUDIO_MIXER_CLASS;
1978 		return 0;
1979 
1980 	case ESS_RECORD_VOL:
1981 		dip->mixer_class = ESS_RECORD_CLASS;
1982 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1983 		strcpy(dip->label.name, AudioNrecord);
1984 		dip->type = AUDIO_MIXER_VALUE;
1985 		dip->un.v.num_channels = 2;
1986 		strcpy(dip->un.v.units.name, AudioNvolume);
1987 		return 0;
1988 
1989 	case ESS_RECORD_SOURCE:
1990 		dip->mixer_class = ESS_RECORD_CLASS;
1991 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1992 		strcpy(dip->label.name, AudioNsource);
1993 		if (ESS_USE_AUDIO1(sc->sc_model)) {
1994 			/*
1995 			 * The 1788 doesn't use the input mixer control that
1996 			 * the 1888 uses, because it's a pain when you only
1997 			 * have one mixer.
1998 			 * Perhaps it could be emulated by keeping both sets of
1999 			 * gain values, and doing a `context switch' of the
2000 			 * mixer registers when shifting from playing to
2001 			 * recording.
2002 			 */
2003 			dip->type = AUDIO_MIXER_ENUM;
2004 			dip->un.e.num_mem = 4;
2005 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2006 			dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2007 			strcpy(dip->un.e.member[1].label.name, AudioNline);
2008 			dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2009 			strcpy(dip->un.e.member[2].label.name, AudioNcd);
2010 			dip->un.e.member[2].ord = ESS_SOURCE_CD;
2011 			strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2012 			dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2013 		} else {
2014 			dip->type = AUDIO_MIXER_SET;
2015 			dip->un.s.num_mem = 6;
2016 			strcpy(dip->un.s.member[0].label.name, AudioNdac);
2017 			dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2018 			strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2019 			dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2020 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2021 			dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2022 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2023 			dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2024 			strcpy(dip->un.s.member[4].label.name, AudioNcd);
2025 			dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2026 			strcpy(dip->un.s.member[5].label.name, "auxb");
2027 			dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2028 		}
2029 		return 0;
2030 
2031 	case ESS_RECORD_CLASS:
2032 		dip->mixer_class = ESS_RECORD_CLASS;
2033 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2034 		strcpy(dip->label.name, AudioCrecord);
2035 		dip->type = AUDIO_MIXER_CLASS;
2036 		return 0;
2037 
2038 	case ESS_RECORD_MONITOR:
2039 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2040 		strcpy(dip->label.name, AudioNmute);
2041 		dip->type = AUDIO_MIXER_ENUM;
2042 		dip->mixer_class = ESS_MONITOR_CLASS;
2043 		dip->un.e.num_mem = 2;
2044 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2045 		dip->un.e.member[0].ord = 0;
2046 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2047 		dip->un.e.member[1].ord = 1;
2048 		return 0;
2049 
2050 	case ESS_MONITOR_CLASS:
2051 		dip->mixer_class = ESS_MONITOR_CLASS;
2052 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2053 		strcpy(dip->label.name, AudioCmonitor);
2054 		dip->type = AUDIO_MIXER_CLASS;
2055 		return 0;
2056 	}
2057 
2058 	if (ESS_USE_AUDIO1(sc->sc_model))
2059 		return ENXIO;
2060 
2061 	switch (dip->index) {
2062 	case ESS_DAC_REC_VOL:
2063 		dip->mixer_class = ESS_RECORD_CLASS;
2064 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2065 		strcpy(dip->label.name, AudioNdac);
2066 		dip->type = AUDIO_MIXER_VALUE;
2067 		dip->un.v.num_channels = 2;
2068 		strcpy(dip->un.v.units.name, AudioNvolume);
2069 		return 0;
2070 
2071 	case ESS_MIC_REC_VOL:
2072 		dip->mixer_class = ESS_RECORD_CLASS;
2073 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2074 		strcpy(dip->label.name, AudioNmicrophone);
2075 		dip->type = AUDIO_MIXER_VALUE;
2076 		dip->un.v.num_channels = 2;
2077 		strcpy(dip->un.v.units.name, AudioNvolume);
2078 		return 0;
2079 
2080 	case ESS_LINE_REC_VOL:
2081 		dip->mixer_class = ESS_RECORD_CLASS;
2082 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2083 		strcpy(dip->label.name, AudioNline);
2084 		dip->type = AUDIO_MIXER_VALUE;
2085 		dip->un.v.num_channels = 2;
2086 		strcpy(dip->un.v.units.name, AudioNvolume);
2087 		return 0;
2088 
2089 	case ESS_SYNTH_REC_VOL:
2090 		dip->mixer_class = ESS_RECORD_CLASS;
2091 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2092 		strcpy(dip->label.name, AudioNfmsynth);
2093 		dip->type = AUDIO_MIXER_VALUE;
2094 		dip->un.v.num_channels = 2;
2095 		strcpy(dip->un.v.units.name, AudioNvolume);
2096 		return 0;
2097 
2098 	case ESS_CD_REC_VOL:
2099 		dip->mixer_class = ESS_RECORD_CLASS;
2100 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2101 		strcpy(dip->label.name, AudioNcd);
2102 		dip->type = AUDIO_MIXER_VALUE;
2103 		dip->un.v.num_channels = 2;
2104 		strcpy(dip->un.v.units.name, AudioNvolume);
2105 		return 0;
2106 
2107 	case ESS_AUXB_REC_VOL:
2108 		dip->mixer_class = ESS_RECORD_CLASS;
2109 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2110 		strcpy(dip->label.name, "auxb");
2111 		dip->type = AUDIO_MIXER_VALUE;
2112 		dip->un.v.num_channels = 2;
2113 		strcpy(dip->un.v.units.name, AudioNvolume);
2114 		return 0;
2115 
2116 	case ESS_MIC_PREAMP:
2117 		dip->mixer_class = ESS_INPUT_CLASS;
2118 		dip->prev = ESS_MIC_PLAY_VOL;
2119 		dip->next = AUDIO_MIXER_LAST;
2120 		strcpy(dip->label.name, AudioNpreamp);
2121 		dip->type = AUDIO_MIXER_ENUM;
2122 		dip->un.e.num_mem = 2;
2123 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2124 		dip->un.e.member[0].ord = 0;
2125 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2126 		dip->un.e.member[1].ord = 1;
2127 		return 0;
2128 	}
2129 
2130 	return ENXIO;
2131 }
2132 
2133 void *
2134 ess_malloc(void *addr, int direction, size_t size,
2135 	   struct malloc_type *pool, int flags)
2136 {
2137 	struct ess_softc *sc;
2138 	int drq;
2139 
2140 	sc = addr;
2141 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2142 		drq = sc->sc_audio2.drq;
2143 	else
2144 		drq = sc->sc_audio1.drq;
2145 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2146 }
2147 
2148 void
2149 ess_free(void *addr, void *ptr, struct malloc_type *pool)
2150 {
2151 
2152 	isa_free(ptr, pool);
2153 }
2154 
2155 size_t
2156 ess_round_buffersize(void *addr, int direction, size_t size)
2157 {
2158 	struct ess_softc *sc;
2159 	bus_size_t maxsize;
2160 
2161 	sc = addr;
2162 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2163 		maxsize = sc->sc_audio2.maxsize;
2164 	else
2165 		maxsize = sc->sc_audio1.maxsize;
2166 
2167 	if (size > maxsize)
2168 		size = maxsize;
2169 	return size;
2170 }
2171 
2172 paddr_t
2173 ess_mappage(void *addr, void *mem, off_t off, int prot)
2174 {
2175 
2176 	return isa_mappage(mem, off, prot);
2177 }
2178 
2179 int
2180 ess_1788_get_props(void *addr)
2181 {
2182 
2183 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT;
2184 }
2185 
2186 int
2187 ess_1888_get_props(void *addr)
2188 {
2189 
2190 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
2191 }
2192 
2193 /* ============================================
2194  * Generic functions for ess, not used by audio h/w i/f
2195  * =============================================
2196  */
2197 
2198 /*
2199  * Reset the chip.
2200  * Return non-zero if the chip isn't detected.
2201  */
2202 int
2203 ess_reset(struct ess_softc *sc)
2204 {
2205 	bus_space_tag_t iot;
2206 	bus_space_handle_t ioh;
2207 
2208 	iot = sc->sc_iot;
2209 	ioh = sc->sc_ioh;
2210 	sc->sc_audio1.active = 0;
2211 	sc->sc_audio2.active = 0;
2212 
2213 	EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2214 	delay(10000);		/* XXX shouldn't delay so long */
2215 	EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2216 	if (ess_rdsp(sc) != ESS_MAGIC)
2217 		return 1;
2218 
2219 	/* Enable access to the ESS extension commands. */
2220 	ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2221 
2222 	return 0;
2223 }
2224 
2225 void
2226 ess_set_gain(struct ess_softc *sc, int port, int on)
2227 {
2228 	int gain, left, right;
2229 	int mix;
2230 	int src;
2231 	int stereo;
2232 
2233 	/*
2234 	 * Most gain controls are found in the mixer registers and
2235 	 * are stereo. Any that are not, must set mix and stereo as
2236 	 * required.
2237 	 */
2238 	mix = 1;
2239 	stereo = 1;
2240 
2241 	switch (port) {
2242 	case ESS_MASTER_VOL:
2243 		src = ESS_MREG_VOLUME_MASTER;
2244 		break;
2245 	case ESS_DAC_PLAY_VOL:
2246 		if (ESS_USE_AUDIO1(sc->sc_model))
2247 			src = ESS_MREG_VOLUME_VOICE;
2248 		else
2249 			src = 0x7C;
2250 		break;
2251 	case ESS_MIC_PLAY_VOL:
2252 		src = ESS_MREG_VOLUME_MIC;
2253 		break;
2254 	case ESS_LINE_PLAY_VOL:
2255 		src = ESS_MREG_VOLUME_LINE;
2256 		break;
2257 	case ESS_SYNTH_PLAY_VOL:
2258 		src = ESS_MREG_VOLUME_SYNTH;
2259 		break;
2260 	case ESS_CD_PLAY_VOL:
2261 		src = ESS_MREG_VOLUME_CD;
2262 		break;
2263 	case ESS_AUXB_PLAY_VOL:
2264 		src = ESS_MREG_VOLUME_AUXB;
2265 		break;
2266 	case ESS_PCSPEAKER_VOL:
2267 		src = ESS_MREG_VOLUME_PCSPKR;
2268 		stereo = 0;
2269 		break;
2270 	case ESS_DAC_REC_VOL:
2271 		src = 0x69;
2272 		break;
2273 	case ESS_MIC_REC_VOL:
2274 		src = 0x68;
2275 		break;
2276 	case ESS_LINE_REC_VOL:
2277 		src = 0x6E;
2278 		break;
2279 	case ESS_SYNTH_REC_VOL:
2280 		src = 0x6B;
2281 		break;
2282 	case ESS_CD_REC_VOL:
2283 		src = 0x6A;
2284 		break;
2285 	case ESS_AUXB_REC_VOL:
2286 		src = 0x6C;
2287 		break;
2288 	case ESS_RECORD_VOL:
2289 		src = ESS_XCMD_VOLIN_CTRL;
2290 		mix = 0;
2291 		break;
2292 	default:
2293 		return;
2294 	}
2295 
2296 	/* 1788 doesn't have a separate recording mixer */
2297 	if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2298 		return;
2299 
2300 	if (on) {
2301 		left = sc->gain[port][ESS_LEFT];
2302 		right = sc->gain[port][ESS_RIGHT];
2303 	} else {
2304 		left = right = 0;
2305 	}
2306 
2307 	if (stereo)
2308 		gain = ESS_STEREO_GAIN(left, right);
2309 	else
2310 		gain = ESS_MONO_GAIN(left);
2311 
2312 	if (mix)
2313 		ess_write_mix_reg(sc, src, gain);
2314 	else
2315 		ess_write_x_reg(sc, src, gain);
2316 }
2317 
2318 /* Set the input device on devices without an input mixer. */
2319 int
2320 ess_set_in_port(struct ess_softc *sc, int ord)
2321 {
2322 	mixer_devinfo_t di;
2323 	int i;
2324 
2325 	DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2326 
2327 	/*
2328 	 * Get the device info for the record source control,
2329 	 * including the list of available sources.
2330 	 */
2331 	di.index = ESS_RECORD_SOURCE;
2332 	if (ess_query_devinfo(sc, &di))
2333 		return EINVAL;
2334 
2335 	/* See if the given ord value was anywhere in the list. */
2336 	for (i = 0; i < di.un.e.num_mem; i++) {
2337 		if (ord == di.un.e.member[i].ord)
2338 			break;
2339 	}
2340 	if (i == di.un.e.num_mem)
2341 		return EINVAL;
2342 
2343 	ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2344 
2345 	sc->in_port = ord;
2346 	return 0;
2347 }
2348 
2349 /* Set the input device levels on input-mixer-enabled devices. */
2350 int
2351 ess_set_in_ports(struct ess_softc *sc, int mask)
2352 {
2353 	mixer_devinfo_t di;
2354 	int i, port;
2355 
2356 	DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2357 
2358 	/*
2359 	 * Get the device info for the record source control,
2360 	 * including the list of available sources.
2361 	 */
2362 	di.index = ESS_RECORD_SOURCE;
2363 	if (ess_query_devinfo(sc, &di))
2364 		return EINVAL;
2365 
2366 	/*
2367 	 * Set or disable the record volume control for each of the
2368 	 * possible sources.
2369 	 */
2370 	for (i = 0; i < di.un.s.num_mem; i++) {
2371 		/*
2372 		 * Calculate the source port number from its mask.
2373 		 */
2374 		port = ffs(di.un.s.member[i].mask);
2375 
2376 		/*
2377 		 * Set the source gain:
2378 		 *	to the current value if source is enabled
2379 		 *	to zero if source is disabled
2380 		 */
2381 		ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2382 	}
2383 
2384 	sc->in_mask = mask;
2385 	return 0;
2386 }
2387 
2388 void
2389 ess_speaker_on(struct ess_softc *sc)
2390 {
2391 
2392 	/* Unmute the DAC. */
2393 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2394 }
2395 
2396 void
2397 ess_speaker_off(struct ess_softc *sc)
2398 {
2399 
2400 	/* Mute the DAC. */
2401 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2402 }
2403 
2404 /*
2405  * Calculate the time constant for the requested sampling rate.
2406  */
2407 u_int
2408 ess_srtotc(u_int rate)
2409 {
2410 	u_int tc;
2411 
2412 	/* The following formulae are from the ESS data sheet. */
2413 	if (rate <= 22050)
2414 		tc = 128 - 397700L / rate;
2415 	else
2416 		tc = 256 - 795500L / rate;
2417 
2418 	return tc;
2419 }
2420 
2421 
2422 /*
2423  * Calculate the filter constant for the reuqested sampling rate.
2424  */
2425 u_int
2426 ess_srtofc(u_int rate)
2427 {
2428 	/*
2429 	 * The following formula is derived from the information in
2430 	 * the ES1887 data sheet, based on a roll-off frequency of
2431 	 * 87%.
2432 	 */
2433 	return 256 - 200279L / rate;
2434 }
2435 
2436 
2437 /*
2438  * Return the status of the DSP.
2439  */
2440 u_char
2441 ess_get_dsp_status(struct ess_softc *sc)
2442 {
2443 	return EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
2444 }
2445 
2446 
2447 /*
2448  * Return the read status of the DSP:	1 -> DSP ready for reading
2449  *					0 -> DSP not ready for reading
2450  */
2451 u_char
2452 ess_dsp_read_ready(struct ess_softc *sc)
2453 {
2454 
2455 	return (ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0;
2456 }
2457 
2458 
2459 /*
2460  * Return the write status of the DSP:	1 -> DSP ready for writing
2461  *					0 -> DSP not ready for writing
2462  */
2463 u_char
2464 ess_dsp_write_ready(struct ess_softc *sc)
2465 {
2466 	return (ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1;
2467 }
2468 
2469 
2470 /*
2471  * Read a byte from the DSP.
2472  */
2473 int
2474 ess_rdsp(struct ess_softc *sc)
2475 {
2476 	bus_space_tag_t iot;
2477 	bus_space_handle_t ioh;
2478 	int i;
2479 
2480 	iot = sc->sc_iot;
2481 	ioh = sc->sc_ioh;
2482 	for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2483 		if (ess_dsp_read_ready(sc)) {
2484 			i = EREAD1(iot, ioh, ESS_DSP_READ);
2485 			DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2486 			return i;
2487 		} else
2488 			delay(10);
2489 	}
2490 
2491 	DPRINTF(("ess_rdsp: timed out\n"));
2492 	return -1;
2493 }
2494 
2495 /*
2496  * Write a byte to the DSP.
2497  */
2498 int
2499 ess_wdsp(struct ess_softc *sc, u_char v)
2500 {
2501 	bus_space_tag_t iot;
2502 	bus_space_handle_t ioh;
2503 	int i;
2504 
2505 	DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2506 
2507 	iot = sc->sc_iot;
2508 	ioh = sc->sc_ioh;
2509 	for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2510 		if (ess_dsp_write_ready(sc)) {
2511 			EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2512 			return 0;
2513 		} else
2514 			delay(10);
2515 	}
2516 
2517 	DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2518 	return -1;
2519 }
2520 
2521 /*
2522  * Write a value to one of the ESS extended registers.
2523  */
2524 int
2525 ess_write_x_reg(struct ess_softc *sc, u_char reg, u_char val)
2526 {
2527 	int error;
2528 
2529 	DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2530 	if ((error = ess_wdsp(sc, reg)) == 0)
2531 		error = ess_wdsp(sc, val);
2532 
2533 	return error;
2534 }
2535 
2536 /*
2537  * Read the value of one of the ESS extended registers.
2538  */
2539 u_char
2540 ess_read_x_reg(struct ess_softc *sc, u_char reg)
2541 {
2542 	int error;
2543 	int val;
2544 
2545 	if ((error = ess_wdsp(sc, 0xC0)) == 0)
2546 		error = ess_wdsp(sc, reg);
2547 	if (error)
2548 		DPRINTF(("Error reading extended register 0x%02x\n", reg));
2549 /* REVISIT: what if an error is returned above? */
2550 	val = ess_rdsp(sc);
2551 	DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2552 	return val;
2553 }
2554 
2555 void
2556 ess_clear_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2557 {
2558 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2559 		DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2560 			 reg));
2561 }
2562 
2563 void
2564 ess_set_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2565 {
2566 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2567 		DPRINTF(("Error setting bits in extended register 0x%02x\n",
2568 			 reg));
2569 }
2570 
2571 
2572 /*
2573  * Write a value to one of the ESS mixer registers.
2574  */
2575 void
2576 ess_write_mix_reg(struct ess_softc *sc, u_char reg, u_char val)
2577 {
2578 	bus_space_tag_t iot;
2579 	bus_space_handle_t ioh;
2580 	int s;
2581 
2582 	DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2583 
2584 	iot = sc->sc_iot;
2585 	ioh = sc->sc_ioh;
2586 	s = splaudio();
2587 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2588 	EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2589 	splx(s);
2590 }
2591 
2592 /*
2593  * Read the value of one of the ESS mixer registers.
2594  */
2595 u_char
2596 ess_read_mix_reg(struct ess_softc *sc, u_char reg)
2597 {
2598 	bus_space_tag_t iot;
2599 	bus_space_handle_t ioh;
2600 	int s;
2601 	u_char val;
2602 
2603 	iot = sc->sc_iot;
2604 	ioh = sc->sc_ioh;
2605 	s = splaudio();
2606 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2607 	val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2608 	splx(s);
2609 
2610 	DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2611 	return val;
2612 }
2613 
2614 void
2615 ess_clear_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2616 {
2617 
2618 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2619 }
2620 
2621 void
2622 ess_set_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2623 {
2624 
2625 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2626 }
2627 
2628 void
2629 ess_read_multi_mix_reg(struct ess_softc *sc, u_char reg,
2630 		       uint8_t *datap, bus_size_t count)
2631 {
2632 	bus_space_tag_t iot;
2633 	bus_space_handle_t ioh;
2634 	int s;
2635 
2636 	iot = sc->sc_iot;
2637 	ioh = sc->sc_ioh;
2638 	s = splaudio();
2639 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2640 	bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2641 	splx(s);
2642 }
2643