xref: /netbsd-src/sys/dev/isa/ess.c (revision 969da55f1ccd8f94fb0d823d2bcc57601e67e15f)
1 /*	$NetBSD: ess.c,v 1.60 2004/07/09 02:14:40 mycroft Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37 **++
38 **
39 **  ess.c
40 **
41 **  FACILITY:
42 **
43 **	DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 **  MODULE DESCRIPTION:
46 **
47 **      This module contains the device driver for the ESS
48 **      Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 **	used as a reference point when implementing this driver.
50 **
51 **  AUTHORS:
52 **
53 **	Blair Fidler	Software Engineering Australia
54 **			Gold Coast, Australia.
55 **
56 **  CREATION DATE:
57 **
58 **	March 10, 1997.
59 **
60 **  MODIFICATION HISTORY:
61 **
62 **	Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 **	bus_dma, changes to audio interface, and many bug fixes.
64 **	ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.60 2004/07/09 02:14:40 mycroft Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79 
80 #include <machine/cpu.h>
81 #include <machine/intr.h>
82 #include <machine/bus.h>
83 
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88 
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91 
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94 
95 #ifdef AUDIO_DEBUG
96 #define DPRINTF(x)	if (essdebug) printf x
97 #define DPRINTFN(n,x)	if (essdebug>(n)) printf x
98 int	essdebug = 0;
99 #else
100 #define DPRINTF(x)
101 #define DPRINTFN(n,x)
102 #endif
103 
104 #if 0
105 unsigned uuu;
106 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD  %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
107 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
108 #else
109 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
110 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
111 #endif
112 
113 
114 int	ess_setup_sc __P((struct ess_softc *, int));
115 
116 int	ess_open __P((void *, int));
117 void	ess_close __P((void *));
118 int	ess_getdev __P((void *, struct audio_device *));
119 int	ess_drain __P((void *));
120 
121 int	ess_query_encoding __P((void *, struct audio_encoding *));
122 
123 int	ess_set_params __P((void *, int, int, struct audio_params *,
124 	    struct audio_params *));
125 
126 int	ess_round_blocksize __P((void *, int));
127 
128 int	ess_audio1_trigger_output __P((void *, void *, void *, int,
129 	    void (*)(void *), void *, struct audio_params *));
130 int	ess_audio2_trigger_output __P((void *, void *, void *, int,
131 	    void (*)(void *), void *, struct audio_params *));
132 int	ess_audio1_trigger_input __P((void *, void *, void *, int,
133 	    void (*)(void *), void *, struct audio_params *));
134 int	ess_audio1_halt __P((void *));
135 int	ess_audio2_halt __P((void *));
136 int	ess_audio1_intr __P((void *));
137 int	ess_audio2_intr __P((void *));
138 void	ess_audio1_poll __P((void *));
139 void	ess_audio2_poll __P((void *));
140 
141 int	ess_speaker_ctl __P((void *, int));
142 
143 int	ess_getdev __P((void *, struct audio_device *));
144 
145 int	ess_set_port __P((void *, mixer_ctrl_t *));
146 int	ess_get_port __P((void *, mixer_ctrl_t *));
147 
148 void   *ess_malloc __P((void *, int, size_t, struct malloc_type *, int));
149 void	ess_free __P((void *, void *, struct malloc_type *));
150 size_t	ess_round_buffersize __P((void *, int, size_t));
151 paddr_t	ess_mappage __P((void *, void *, off_t, int));
152 
153 
154 int	ess_query_devinfo __P((void *, mixer_devinfo_t *));
155 int	ess_1788_get_props __P((void *));
156 int	ess_1888_get_props __P((void *));
157 
158 void	ess_speaker_on __P((struct ess_softc *));
159 void	ess_speaker_off __P((struct ess_softc *));
160 
161 void	ess_config_irq __P((struct ess_softc *));
162 void	ess_config_drq __P((struct ess_softc *));
163 void	ess_setup __P((struct ess_softc *));
164 int	ess_identify __P((struct ess_softc *));
165 
166 int	ess_reset __P((struct ess_softc *));
167 void	ess_set_gain __P((struct ess_softc *, int, int));
168 int	ess_set_in_port __P((struct ess_softc *, int));
169 int	ess_set_in_ports __P((struct ess_softc *, int));
170 u_int	ess_srtotc __P((u_int));
171 u_int	ess_srtofc __P((u_int));
172 u_char	ess_get_dsp_status __P((struct ess_softc *));
173 u_char	ess_dsp_read_ready __P((struct ess_softc *));
174 u_char	ess_dsp_write_ready __P((struct ess_softc *));
175 int	ess_rdsp __P((struct ess_softc *));
176 int	ess_wdsp __P((struct ess_softc *, u_char));
177 u_char	ess_read_x_reg __P((struct ess_softc *, u_char));
178 int	ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
179 void	ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
180 void	ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
181 u_char	ess_read_mix_reg __P((struct ess_softc *, u_char));
182 void	ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
183 void	ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
184 void	ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
185 void	ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t));
186 
187 static char *essmodel[] = {
188 	"unsupported",
189 	"1888",
190 	"1887",
191 	"888",
192 	"1788",
193 	"1869",
194 	"1879",
195 	"1868",
196 	"1878",
197 };
198 
199 struct audio_device ess_device = {
200 	"ESS Technology",
201 	"x",
202 	"ess"
203 };
204 
205 /*
206  * Define our interface to the higher level audio driver.
207  */
208 
209 struct audio_hw_if ess_1788_hw_if = {
210 	ess_open,
211 	ess_close,
212 	ess_drain,
213 	ess_query_encoding,
214 	ess_set_params,
215 	ess_round_blocksize,
216 	NULL,
217 	NULL,
218 	NULL,
219 	NULL,
220 	NULL,
221 	ess_audio1_halt,
222 	ess_audio1_halt,
223 	ess_speaker_ctl,
224 	ess_getdev,
225 	NULL,
226 	ess_set_port,
227 	ess_get_port,
228 	ess_query_devinfo,
229 	ess_malloc,
230 	ess_free,
231 	ess_round_buffersize,
232 	ess_mappage,
233 	ess_1788_get_props,
234 	ess_audio1_trigger_output,
235 	ess_audio1_trigger_input,
236 	NULL,
237 };
238 
239 struct audio_hw_if ess_1888_hw_if = {
240 	ess_open,
241 	ess_close,
242 	ess_drain,
243 	ess_query_encoding,
244 	ess_set_params,
245 	ess_round_blocksize,
246 	NULL,
247 	NULL,
248 	NULL,
249 	NULL,
250 	NULL,
251 	ess_audio2_halt,
252 	ess_audio1_halt,
253 	ess_speaker_ctl,
254 	ess_getdev,
255 	NULL,
256 	ess_set_port,
257 	ess_get_port,
258 	ess_query_devinfo,
259 	ess_malloc,
260 	ess_free,
261 	ess_round_buffersize,
262 	ess_mappage,
263 	ess_1888_get_props,
264 	ess_audio2_trigger_output,
265 	ess_audio1_trigger_input,
266 	NULL,
267 };
268 
269 #ifdef AUDIO_DEBUG
270 void ess_printsc __P((struct ess_softc *));
271 void ess_dump_mixer __P((struct ess_softc *));
272 
273 void
274 ess_printsc(sc)
275 	struct ess_softc *sc;
276 {
277 	int i;
278 
279 	printf("iobase 0x%x outport %u inport %u speaker %s\n",
280 	       sc->sc_iobase, sc->out_port,
281 	       sc->in_port, sc->spkr_state ? "on" : "off");
282 
283 	printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
284 	       sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
285 	       sc->sc_audio1.intr, sc->sc_audio1.arg);
286 
287 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
288 		printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
289 		       sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
290 		       sc->sc_audio2.intr, sc->sc_audio2.arg);
291 	}
292 
293 	printf("gain:");
294 	for (i = 0; i < sc->ndevs; i++)
295 		printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
296 	printf("\n");
297 }
298 
299 void
300 ess_dump_mixer(sc)
301 	struct ess_softc *sc;
302 {
303 	printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
304 	       0x7C, ess_read_mix_reg(sc, 0x7C));
305 	printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
306 	       0x1A, ess_read_mix_reg(sc, 0x1A));
307 	printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
308 	       0x3E, ess_read_mix_reg(sc, 0x3E));
309 	printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
310 	       0x36, ess_read_mix_reg(sc, 0x36));
311 	printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
312 	       0x38, ess_read_mix_reg(sc, 0x38));
313 	printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
314 	       0x3A, ess_read_mix_reg(sc, 0x3A));
315 	printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
316 	       0x32, ess_read_mix_reg(sc, 0x32));
317 	printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
318 	       0x3C, ess_read_mix_reg(sc, 0x3C));
319 	printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
320 	       0x69, ess_read_mix_reg(sc, 0x69));
321 	printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
322 	       0x68, ess_read_mix_reg(sc, 0x68));
323 	printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
324 	       0x6E, ess_read_mix_reg(sc, 0x6E));
325 	printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
326 	       0x6B, ess_read_mix_reg(sc, 0x6B));
327 	printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
328 	       0x6A, ess_read_mix_reg(sc, 0x6A));
329 	printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
330 	       0x6C, ess_read_mix_reg(sc, 0x6C));
331 	printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
332 	       0xB4, ess_read_x_reg(sc, 0xB4));
333 	printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
334 	       0x14, ess_read_mix_reg(sc, 0x14));
335 
336 	printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
337 	       ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
338 	printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
339 	       ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
340 	printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
341 	       ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
342 	       ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
343 }
344 
345 #endif
346 
347 /*
348  * Configure the ESS chip for the desired audio base address.
349  */
350 int
351 ess_config_addr(sc)
352 	struct ess_softc *sc;
353 {
354 	int iobase = sc->sc_iobase;
355 	bus_space_tag_t iot = sc->sc_iot;
356 
357 	/*
358 	 * Configure using the System Control Register method.  This
359 	 * method is used when the AMODE line is tied high, which is
360 	 * the case for the Shark, but not for the evaluation board.
361 	 */
362 
363 	bus_space_handle_t scr_access_ioh;
364 	bus_space_handle_t scr_ioh;
365 	u_short scr_value;
366 
367 	/*
368 	 * Set the SCR bit to enable audio.
369 	 */
370 	scr_value = ESS_SCR_AUDIO_ENABLE;
371 
372 	/*
373 	 * Set the SCR bits necessary to select the specified audio
374 	 * base address.
375 	 */
376 	switch(iobase) {
377 	case 0x220:
378 		scr_value |= ESS_SCR_AUDIO_220;
379 		break;
380 	case 0x230:
381 		scr_value |= ESS_SCR_AUDIO_230;
382 		break;
383 	case 0x240:
384 		scr_value |= ESS_SCR_AUDIO_240;
385 		break;
386 	case 0x250:
387 		scr_value |= ESS_SCR_AUDIO_250;
388 		break;
389 	default:
390 		printf("ess: configured iobase 0x%x invalid\n", iobase);
391 		return (1);
392 		break;
393 	}
394 
395 	/*
396 	 * Get a mapping for the System Control Register (SCR) access
397 	 * registers and the SCR data registers.
398 	 */
399 	if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
400 			  0, &scr_access_ioh)) {
401 		printf("ess: can't map SCR access registers\n");
402 		return (1);
403 	}
404 	if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
405 			  0, &scr_ioh)) {
406 		printf("ess: can't map SCR registers\n");
407 		bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
408 		return (1);
409 	}
410 
411 	/* Unlock the SCR. */
412 	EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
413 
414 	/* Write the base address information into SCR[0]. */
415 	EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
416 	EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
417 
418 	/* Lock the SCR. */
419 	EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
420 
421 	/* Unmap the SCR access ports and the SCR data ports. */
422 	bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
423 	bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
424 
425 	return 0;
426 }
427 
428 
429 /*
430  * Configure the ESS chip for the desired IRQ and DMA channels.
431  * ESS  ISA
432  * --------
433  * IRQA irq9
434  * IRQB irq5
435  * IRQC irq7
436  * IRQD irq10
437  * IRQE irq15
438  *
439  * DRQA drq0
440  * DRQB drq1
441  * DRQC drq3
442  * DRQD drq5
443  */
444 void
445 ess_config_irq(sc)
446 	struct ess_softc *sc;
447 {
448 	int v;
449 
450 	DPRINTFN(2,("ess_config_irq\n"));
451 
452 	if (sc->sc_model == ESS_1887 &&
453 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
454 	    sc->sc_audio1.irq != -1) {
455 		/* Use new method, both interrupts are the same. */
456 		v = ESS_IS_SELECT_IRQ;	/* enable intrs */
457 		switch (sc->sc_audio1.irq) {
458 		case 5:
459 			v |= ESS_IS_INTRB;
460 			break;
461 		case 7:
462 			v |= ESS_IS_INTRC;
463 			break;
464 		case 9:
465 			v |= ESS_IS_INTRA;
466 			break;
467 		case 10:
468 			v |= ESS_IS_INTRD;
469 			break;
470 		case 15:
471 			v |= ESS_IS_INTRE;
472 			break;
473 #ifdef DIAGNOSTIC
474 		default:
475 			printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
476 			       sc->sc_audio1.irq);
477 			return;
478 #endif
479 		}
480 		/* Set the IRQ */
481 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
482 		return;
483 	}
484 
485 	if (sc->sc_model == ESS_1887) {
486 		/* Tell the 1887 to use the old interrupt method. */
487 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
488 	}
489 
490 	if (sc->sc_audio1.polled) {
491 		/* Turn off Audio1 interrupts. */
492 		v = 0;
493 	} else {
494 		/* Configure Audio 1 for the appropriate IRQ line. */
495 		v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
496 		switch (sc->sc_audio1.irq) {
497 		case 5:
498 			v |= ESS_IRQ_CTRL_INTRB;
499 			break;
500 		case 7:
501 			v |= ESS_IRQ_CTRL_INTRC;
502 			break;
503 		case 9:
504 			v |= ESS_IRQ_CTRL_INTRA;
505 			break;
506 		case 10:
507 			v |= ESS_IRQ_CTRL_INTRD;
508 			break;
509 #ifdef DIAGNOSTIC
510 		default:
511 			printf("ess: configured irq %d not supported for Audio 1\n",
512 			       sc->sc_audio1.irq);
513 			return;
514 #endif
515 		}
516 	}
517 	ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
518 
519 	if (ESS_USE_AUDIO1(sc->sc_model))
520 		return;
521 
522 	if (sc->sc_audio2.polled) {
523 		/* Turn off Audio2 interrupts. */
524 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
525 				    ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
526 	} else {
527 		/* Audio2 is hardwired to INTRE in this mode. */
528 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
529 				  ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
530 	}
531 }
532 
533 
534 void
535 ess_config_drq(sc)
536 	struct ess_softc *sc;
537 {
538 	int v;
539 
540 	DPRINTFN(2,("ess_config_drq\n"));
541 
542 	/* Configure Audio 1 (record) for DMA on the appropriate channel. */
543 	v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
544 	switch (sc->sc_audio1.drq) {
545 	case 0:
546 		v |= ESS_DRQ_CTRL_DRQA;
547 		break;
548 	case 1:
549 		v |= ESS_DRQ_CTRL_DRQB;
550 		break;
551 	case 3:
552 		v |= ESS_DRQ_CTRL_DRQC;
553 		break;
554 #ifdef DIAGNOSTIC
555 	default:
556 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
557 		       sc->sc_audio1.drq);
558 		return;
559 #endif
560 	}
561 	/* Set DRQ1 */
562 	ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
563 
564 	if (ESS_USE_AUDIO1(sc->sc_model))
565 		return;
566 
567 	/* Configure DRQ2 */
568 	v = ESS_AUDIO2_CTRL3_DRQ_PD;
569 	switch (sc->sc_audio2.drq) {
570 	case 0:
571 		v |= ESS_AUDIO2_CTRL3_DRQA;
572 		break;
573 	case 1:
574 		v |= ESS_AUDIO2_CTRL3_DRQB;
575 		break;
576 	case 3:
577 		v |= ESS_AUDIO2_CTRL3_DRQC;
578 		break;
579 	case 5:
580 		v |= ESS_AUDIO2_CTRL3_DRQD;
581 		break;
582 #ifdef DIAGNOSTIC
583 	default:
584 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
585 		       sc->sc_audio2.drq);
586 		return;
587 #endif
588 	}
589 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
590 	/* Enable DMA 2 */
591 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
592 			  ESS_AUDIO2_CTRL2_DMA_ENABLE);
593 }
594 
595 /*
596  * Set up registers after a reset.
597  */
598 void
599 ess_setup(sc)
600 	struct ess_softc *sc;
601 {
602 
603 	ess_config_irq(sc);
604 	ess_config_drq(sc);
605 
606 	DPRINTFN(2,("ess_setup: done\n"));
607 }
608 
609 /*
610  * Determine the model of ESS chip we are talking to.  Currently we
611  * only support ES1888, ES1887 and ES888.  The method of determining
612  * the chip is based on the information on page 27 of the ES1887 data
613  * sheet.
614  *
615  * This routine sets the values of sc->sc_model and sc->sc_version.
616  */
617 int
618 ess_identify(sc)
619 	struct ess_softc *sc;
620 {
621 	u_char reg1;
622 	u_char reg2;
623 	u_char reg3;
624 	u_int8_t ident[4];
625 
626 	sc->sc_model = ESS_UNSUPPORTED;
627 	sc->sc_version = 0;
628 
629 	memset(ident, 0, sizeof(ident));
630 
631 	/*
632 	 * 1. Check legacy ID bytes.  These should be 0x68 0x8n, where
633 	 *    n >= 8 for an ES1887 or an ES888.  Other values indicate
634 	 *    earlier (unsupported) chips.
635 	 */
636 	ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
637 
638 	if ((reg1 = ess_rdsp(sc)) != 0x68) {
639 		printf("ess: First ID byte wrong (0x%02x)\n", reg1);
640 		return 1;
641 	}
642 
643 	reg2 = ess_rdsp(sc);
644 	if (((reg2 & 0xf0) != 0x80) ||
645 	    ((reg2 & 0x0f) < 8)) {
646 		printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
647 		return 1;
648 	}
649 
650 	/*
651 	 * Store the ID bytes as the version.
652 	 */
653 	sc->sc_version = (reg1 << 8) + reg2;
654 
655 
656 	/*
657 	 * 2. Verify we can change bit 2 in mixer register 0x64.  This
658 	 *    should be possible on all supported chips.
659 	 */
660 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
661 	reg2 = reg1 ^ 0x04;  /* toggle bit 2 */
662 
663 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
664 
665 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
666 		printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
667 		return 1;
668 	}
669 
670 	/*
671 	 * Restore the original value of mixer register 0x64.
672 	 */
673 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
674 
675 
676 	/*
677 	 * 3. Verify we can change the value of mixer register
678 	 *    ESS_MREG_SAMPLE_RATE.
679 	 *    This is possible on the 1888/1887/888, but not on the 1788.
680 	 *    It is not necessary to restore the value of this mixer register.
681 	 */
682 	reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
683 	reg2 = reg1 ^ 0xff;  /* toggle all bits */
684 
685 	ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
686 
687 	if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
688 		/* If we got this far before failing, it's a 1788. */
689 		sc->sc_model = ESS_1788;
690 
691 		/*
692 		 * Identify ESS model for ES18[67]8.
693 		 */
694 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
695 		if(ident[0] == 0x18) {
696 			switch(ident[1]) {
697 			case 0x68:
698 				sc->sc_model = ESS_1868;
699 				break;
700 			case 0x78:
701 				sc->sc_model = ESS_1878;
702 				break;
703 			}
704 		}
705 	} else {
706 		/*
707 		 * 4. Determine if we can change bit 5 in mixer register 0x64.
708 		 *    This determines whether we have an ES1887:
709 		 *
710 		 *    - can change indicates ES1887
711 		 *    - can't change indicates ES1888 or ES888
712 		 */
713 		reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
714 		reg2 = reg1 ^ 0x20;  /* toggle bit 5 */
715 
716 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
717 
718 		if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
719 			sc->sc_model = ESS_1887;
720 
721 			/*
722 			 * Restore the original value of mixer register 0x64.
723 			 */
724 			ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
725 
726 			/*
727 			 * Identify ESS model for ES18[67]9.
728 			 */
729 			ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
730 			if(ident[0] == 0x18) {
731 				switch(ident[1]) {
732 				case 0x69:
733 					sc->sc_model = ESS_1869;
734 					break;
735 				case 0x79:
736 					sc->sc_model = ESS_1879;
737 					break;
738 				}
739 			}
740 		} else {
741 			/*
742 			 * 5. Determine if we can change the value of mixer
743 			 *    register 0x69 independently of mixer register
744 			 *    0x68. This determines which chip we have:
745 			 *
746 			 *    - can modify idependently indicates ES888
747 			 *    - register 0x69 is an alias of 0x68 indicates ES1888
748 			 */
749 			reg1 = ess_read_mix_reg(sc, 0x68);
750 			reg2 = ess_read_mix_reg(sc, 0x69);
751 			reg3 = reg2 ^ 0xff;  /* toggle all bits */
752 
753 			/*
754 			 * Write different values to each register.
755 			 */
756 			ess_write_mix_reg(sc, 0x68, reg2);
757 			ess_write_mix_reg(sc, 0x69, reg3);
758 
759 			if (ess_read_mix_reg(sc, 0x68) == reg2 &&
760 			    ess_read_mix_reg(sc, 0x69) == reg3)
761 				sc->sc_model = ESS_888;
762 			else
763 				sc->sc_model = ESS_1888;
764 
765 			/*
766 			 * Restore the original value of the registers.
767 			 */
768 			ess_write_mix_reg(sc, 0x68, reg1);
769 			ess_write_mix_reg(sc, 0x69, reg2);
770 		}
771 	}
772 
773 	return 0;
774 }
775 
776 
777 int
778 ess_setup_sc(sc, doinit)
779 	struct ess_softc *sc;
780 	int doinit;
781 {
782 
783 	callout_init(&sc->sc_poll1_ch);
784 	callout_init(&sc->sc_poll2_ch);
785 
786 	/* Reset the chip. */
787 	if (ess_reset(sc) != 0) {
788 		DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
789 		return (1);
790 	}
791 
792 	/* Identify the ESS chip, and check that it is supported. */
793 	if (ess_identify(sc)) {
794 		DPRINTF(("ess_setup_sc: couldn't identify\n"));
795 		return (1);
796 	}
797 
798 	return (0);
799 }
800 
801 /*
802  * Probe for the ESS hardware.
803  */
804 int
805 essmatch(sc)
806 	struct ess_softc *sc;
807 {
808 	if (!ESS_BASE_VALID(sc->sc_iobase)) {
809 		printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
810 		return (0);
811 	}
812 
813 	if (ess_setup_sc(sc, 1))
814 		return (0);
815 
816 	if (sc->sc_model == ESS_UNSUPPORTED) {
817 		DPRINTF(("ess: Unsupported model\n"));
818 		return (0);
819 	}
820 
821 	/* Check that requested DMA channels are valid and different. */
822 	if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
823 		printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
824 		return (0);
825 	}
826 	if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
827 		return (0);
828 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
829 		if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
830 			printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
831 			return (0);
832 		}
833 		if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
834 			printf("ess: play and record drq both %d\n",
835 			       sc->sc_audio1.drq);
836 			return (0);
837 		}
838 		if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
839 			return (0);
840 	}
841 
842 	/*
843 	 * The 1887 has an additional IRQ mode where both channels are mapped
844 	 * to the same IRQ.
845 	 */
846 	if (sc->sc_model == ESS_1887 &&
847 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
848 	    sc->sc_audio1.irq != -1 &&
849 	    ESS_IRQ12_VALID(sc->sc_audio1.irq))
850 		goto irq_not1888;
851 
852 	/* Check that requested IRQ lines are valid and different. */
853 	if (sc->sc_audio1.irq != -1 &&
854 	    !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
855 		printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
856 		return (0);
857 	}
858 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
859 		if (sc->sc_audio2.irq != -1 &&
860 		    !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
861 			printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
862 			return (0);
863 		}
864 		if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
865 		    sc->sc_audio1.irq != -1) {
866 			printf("ess: play and record irq both %d\n",
867 			       sc->sc_audio1.irq);
868 			return (0);
869 		}
870 	}
871 
872 irq_not1888:
873 	/* XXX should we check IRQs as well? */
874 
875 	return (1);
876 }
877 
878 
879 /*
880  * Attach hardware to driver, attach hardware driver to audio
881  * pseudo-device driver.
882  */
883 void
884 essattach(sc)
885 	struct ess_softc *sc;
886 {
887 	struct audio_attach_args arg;
888 	struct audio_params pparams, rparams;
889 	int i;
890 	u_int v;
891 
892 	if (ess_setup_sc(sc, 0)) {
893 		printf(": setup failed\n");
894 		return;
895 	}
896 
897 	printf(": ESS Technology ES%s [version 0x%04x]\n",
898 	       essmodel[sc->sc_model], sc->sc_version);
899 
900 	sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
901 	if (!sc->sc_audio1.polled) {
902 		sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
903 		    sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
904 		    ess_audio1_intr, sc);
905 		printf("%s: audio1 interrupting at irq %d\n",
906 		    sc->sc_dev.dv_xname, sc->sc_audio1.irq);
907 	} else
908 		printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
909 	sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
910 
911 	if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
912 		printf("%s: can't reserve drq %d\n",
913 		    sc->sc_dev.dv_xname, sc->sc_audio1.drq);
914 		return;
915 	}
916 
917 	if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
918 	    sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
919 		printf("%s: can't create map for drq %d\n",
920 		       sc->sc_dev.dv_xname, sc->sc_audio1.drq);
921 		return;
922 	}
923 
924 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
925 		sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
926 		if (!sc->sc_audio2.polled) {
927 			sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
928 			    sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
929 			    ess_audio2_intr, sc);
930 			printf("%s: audio2 interrupting at irq %d\n",
931 			    sc->sc_dev.dv_xname, sc->sc_audio2.irq);
932 		} else
933 			printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
934 		sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
935 		    sc->sc_audio2.drq);
936 
937 		if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
938 			printf("%s: can't reserve drq %d\n",
939 			    sc->sc_dev.dv_xname, sc->sc_audio2.drq);
940 			return;
941 		}
942 
943 		if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
944 		    sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
945 			printf("%s: can't create map for drq %d\n",
946 			       sc->sc_dev.dv_xname, sc->sc_audio2.drq);
947 			return;
948 		}
949 	}
950 
951 	/*
952 	 * Set record and play parameters to default values defined in
953 	 * generic audio driver.
954 	 */
955 	pparams = audio_default;
956 	rparams = audio_default;
957 	ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
958 
959 	/* Do a hardware reset on the mixer. */
960 	ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
961 
962 	/*
963 	 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
964 	 * to playback mixer, since playback is always through Audio 2.
965 	 */
966 	if (!ESS_USE_AUDIO1(sc->sc_model))
967 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
968 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
969 
970 	if (ESS_USE_AUDIO1(sc->sc_model)) {
971 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
972 		sc->in_port = ESS_SOURCE_MIC;
973 		sc->ndevs = ESS_1788_NDEVS;
974 	} else {
975 		/*
976 		 * Set hardware record source to use output of the record
977 		 * mixer. We do the selection of record source in software by
978 		 * setting the gain of the unused sources to zero. (See
979 		 * ess_set_in_ports.)
980 		 */
981 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
982 		sc->in_mask = 1 << ESS_MIC_REC_VOL;
983 		sc->ndevs = ESS_1888_NDEVS;
984 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
985 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
986 	}
987 
988 	/*
989 	 * Set gain on each mixer device to a sensible value.
990 	 * Devices not normally used are turned off, and other devices
991 	 * are set to 50% volume.
992 	 */
993 	for (i = 0; i < sc->ndevs; i++) {
994 		switch (i) {
995 		case ESS_MIC_PLAY_VOL:
996 		case ESS_LINE_PLAY_VOL:
997 		case ESS_CD_PLAY_VOL:
998 		case ESS_AUXB_PLAY_VOL:
999 		case ESS_DAC_REC_VOL:
1000 		case ESS_LINE_REC_VOL:
1001 		case ESS_SYNTH_REC_VOL:
1002 		case ESS_CD_REC_VOL:
1003 		case ESS_AUXB_REC_VOL:
1004 			v = 0;
1005 			break;
1006 		default:
1007 			v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1008 			break;
1009 		}
1010 		sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1011 		ess_set_gain(sc, i, 1);
1012 	}
1013 
1014 	ess_setup(sc);
1015 
1016 	/* Disable the speaker until the device is opened.  */
1017 	ess_speaker_off(sc);
1018 	sc->spkr_state = SPKR_OFF;
1019 
1020 	snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
1021 	    essmodel[sc->sc_model]);
1022 	snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
1023 	    sc->sc_version);
1024 
1025 	if (ESS_USE_AUDIO1(sc->sc_model))
1026 		audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1027 	else
1028 		audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1029 
1030 	arg.type = AUDIODEV_TYPE_OPL;
1031 	arg.hwif = 0;
1032 	arg.hdl = 0;
1033 	(void)config_found(&sc->sc_dev, &arg, audioprint);
1034 
1035 #ifdef AUDIO_DEBUG
1036 	if (essdebug > 0)
1037 		ess_printsc(sc);
1038 #endif
1039 }
1040 
1041 /*
1042  * Various routines to interface to higher level audio driver
1043  */
1044 
1045 int
1046 ess_open(addr, flags)
1047 	void *addr;
1048 	int flags;
1049 {
1050 	return (0);
1051 }
1052 
1053 void
1054 ess_close(addr)
1055 	void *addr;
1056 {
1057 	struct ess_softc *sc = addr;
1058 
1059 	DPRINTF(("ess_close: sc=%p\n", sc));
1060 
1061 	ess_speaker_off(sc);
1062 	sc->spkr_state = SPKR_OFF;
1063 
1064 	DPRINTF(("ess_close: closed\n"));
1065 }
1066 
1067 /*
1068  * Wait for FIFO to drain, and analog section to settle.
1069  * XXX should check FIFO empty bit.
1070  */
1071 int
1072 ess_drain(addr)
1073 	void *addr;
1074 {
1075 	tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1076 	return (0);
1077 }
1078 
1079 /* XXX should use reference count */
1080 int
1081 ess_speaker_ctl(addr, newstate)
1082 	void *addr;
1083 	int newstate;
1084 {
1085 	struct ess_softc *sc = addr;
1086 
1087 	if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1088 		ess_speaker_on(sc);
1089 		sc->spkr_state = SPKR_ON;
1090 	}
1091 	if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1092 		ess_speaker_off(sc);
1093 		sc->spkr_state = SPKR_OFF;
1094 	}
1095 	return (0);
1096 }
1097 
1098 int
1099 ess_getdev(addr, retp)
1100 	void *addr;
1101 	struct audio_device *retp;
1102 {
1103 	*retp = ess_device;
1104 	return (0);
1105 }
1106 
1107 int
1108 ess_query_encoding(addr, fp)
1109 	void *addr;
1110 	struct audio_encoding *fp;
1111 {
1112 	/*struct ess_softc *sc = addr;*/
1113 
1114 	switch (fp->index) {
1115 	case 0:
1116 		strcpy(fp->name, AudioEulinear);
1117 		fp->encoding = AUDIO_ENCODING_ULINEAR;
1118 		fp->precision = 8;
1119 		fp->flags = 0;
1120 		return (0);
1121 	case 1:
1122 		strcpy(fp->name, AudioEmulaw);
1123 		fp->encoding = AUDIO_ENCODING_ULAW;
1124 		fp->precision = 8;
1125 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1126 		return (0);
1127 	case 2:
1128 		strcpy(fp->name, AudioEalaw);
1129 		fp->encoding = AUDIO_ENCODING_ALAW;
1130 		fp->precision = 8;
1131 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1132 		return (0);
1133 	case 3:
1134 		strcpy(fp->name, AudioEslinear);
1135 		fp->encoding = AUDIO_ENCODING_SLINEAR;
1136 		fp->precision = 8;
1137 		fp->flags = 0;
1138 		return (0);
1139 	case 4:
1140 		strcpy(fp->name, AudioEslinear_le);
1141 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1142 		fp->precision = 16;
1143 		fp->flags = 0;
1144 		return (0);
1145 	case 5:
1146 		strcpy(fp->name, AudioEulinear_le);
1147 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1148 		fp->precision = 16;
1149 		fp->flags = 0;
1150 		return (0);
1151 	case 6:
1152 		strcpy(fp->name, AudioEslinear_be);
1153 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1154 		fp->precision = 16;
1155 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1156 		return (0);
1157 	case 7:
1158 		strcpy(fp->name, AudioEulinear_be);
1159 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1160 		fp->precision = 16;
1161 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1162 		return (0);
1163 	default:
1164 		return EINVAL;
1165 	}
1166 	return (0);
1167 }
1168 
1169 int
1170 ess_set_params(addr, setmode, usemode, play, rec)
1171 	void *addr;
1172 	int setmode, usemode;
1173 	struct audio_params *play, *rec;
1174 {
1175 	struct ess_softc *sc = addr;
1176 	struct audio_params *p;
1177 	int mode;
1178 	int rate;
1179 
1180 	DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1181 
1182 	/*
1183 	 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1184 	 * full-duplex operation the sample rates must be the same for both
1185 	 * channels.  This appears to be false; the only bit in common is the
1186 	 * clock source selection.  However, we'll be conservative here.
1187 	 * - mycroft
1188 	 */
1189 	if (play->sample_rate != rec->sample_rate &&
1190 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1191 		if (setmode == AUMODE_PLAY) {
1192 			rec->sample_rate = play->sample_rate;
1193 			setmode |= AUMODE_RECORD;
1194 		} else if (setmode == AUMODE_RECORD) {
1195 			play->sample_rate = rec->sample_rate;
1196 			setmode |= AUMODE_PLAY;
1197 		} else
1198 			return (EINVAL);
1199 	}
1200 
1201 	for (mode = AUMODE_RECORD; mode != -1;
1202 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1203 		if ((setmode & mode) == 0)
1204 			continue;
1205 
1206 		p = mode == AUMODE_PLAY ? play : rec;
1207 
1208 		if (p->sample_rate < ESS_MINRATE ||
1209 		    p->sample_rate > ESS_MAXRATE ||
1210 		    (p->precision != 8 && p->precision != 16) ||
1211 		    (p->channels != 1 && p->channels != 2))
1212 			return (EINVAL);
1213 
1214 		p->factor = 1;
1215 		p->sw_code = 0;
1216 		switch (p->encoding) {
1217 		case AUDIO_ENCODING_SLINEAR_BE:
1218 		case AUDIO_ENCODING_ULINEAR_BE:
1219 			if (p->precision == 16)
1220 				p->sw_code = swap_bytes;
1221 			break;
1222 		case AUDIO_ENCODING_SLINEAR_LE:
1223 		case AUDIO_ENCODING_ULINEAR_LE:
1224 			break;
1225 		case AUDIO_ENCODING_ULAW:
1226 			if (mode == AUMODE_PLAY) {
1227 				p->factor = 2;
1228 				p->sw_code = mulaw_to_ulinear16_le;
1229 			} else
1230 				p->sw_code = ulinear8_to_mulaw;
1231 			break;
1232 		case AUDIO_ENCODING_ALAW:
1233 			if (mode == AUMODE_PLAY) {
1234 				p->factor = 2;
1235 				p->sw_code = alaw_to_ulinear16_le;
1236 			} else
1237 				p->sw_code = ulinear8_to_alaw;
1238 			break;
1239 		default:
1240 			return (EINVAL);
1241 		}
1242 	}
1243 
1244 	if (usemode == AUMODE_RECORD)
1245 		rate = rec->sample_rate;
1246 	else
1247 		rate = play->sample_rate;
1248 
1249 	ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1250 	ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1251 
1252 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
1253 		ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1254 		ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1255 	}
1256 
1257 	return (0);
1258 }
1259 
1260 int
1261 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1262 	void *addr;
1263 	void *start, *end;
1264 	int blksize;
1265 	void (*intr) __P((void *));
1266 	void *arg;
1267 	struct audio_params *param;
1268 {
1269 	struct ess_softc *sc = addr;
1270 	u_int8_t reg;
1271 
1272 	DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1273 	    addr, start, end, blksize, intr, arg));
1274 
1275 	if (sc->sc_audio1.active)
1276 		panic("ess_audio1_trigger_output: already running");
1277 
1278 	sc->sc_audio1.active = 1;
1279 	sc->sc_audio1.intr = intr;
1280 	sc->sc_audio1.arg = arg;
1281 	if (sc->sc_audio1.polled) {
1282 		sc->sc_audio1.dmapos = 0;
1283 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1284 		sc->sc_audio1.dmacount = 0;
1285 		sc->sc_audio1.blksize = blksize;
1286 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1287 		    ess_audio1_poll, sc);
1288 	}
1289 
1290 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1291 	if (param->channels == 2) {
1292 		reg &= ~ESS_AUDIO_CTRL_MONO;
1293 		reg |= ESS_AUDIO_CTRL_STEREO;
1294 	} else {
1295 		reg |= ESS_AUDIO_CTRL_MONO;
1296 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1297 	}
1298 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1299 
1300 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1301 	if (param->precision * param->factor == 16)
1302 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1303 	else
1304 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1305 	if (param->channels == 2)
1306 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1307 	else
1308 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1309 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1310 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1311 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1312 	else
1313 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1314 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1315 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1316 
1317 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1318 		     (char *)end - (char *)start, NULL,
1319 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1320 
1321 	/* Program transfer count registers with 2's complement of count. */
1322 	blksize = -blksize;
1323 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1324 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1325 
1326 	/* Use 4 bytes per output DMA. */
1327 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1328 
1329 	/* Start auto-init DMA */
1330   	ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1331 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1332 	reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1333 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1334 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1335 
1336 	return (0);
1337 }
1338 
1339 int
1340 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1341 	void *addr;
1342 	void *start, *end;
1343 	int blksize;
1344 	void (*intr) __P((void *));
1345 	void *arg;
1346 	struct audio_params *param;
1347 {
1348 	struct ess_softc *sc = addr;
1349 	u_int8_t reg;
1350 
1351 	DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1352 	    addr, start, end, blksize, intr, arg));
1353 
1354 	if (sc->sc_audio2.active)
1355 		panic("ess_audio2_trigger_output: already running");
1356 
1357 	sc->sc_audio2.active = 1;
1358 	sc->sc_audio2.intr = intr;
1359 	sc->sc_audio2.arg = arg;
1360 	if (sc->sc_audio2.polled) {
1361 		sc->sc_audio2.dmapos = 0;
1362 		sc->sc_audio2.buffersize = (char *)end - (char *)start;
1363 		sc->sc_audio2.dmacount = 0;
1364 		sc->sc_audio2.blksize = blksize;
1365 		callout_reset(&sc->sc_poll2_ch, hz / 30,
1366 		    ess_audio2_poll, sc);
1367 	}
1368 
1369 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1370 	if (param->precision * param->factor == 16)
1371 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1372 	else
1373 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1374 	if (param->channels == 2)
1375 		reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1376 	else
1377 		reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1378 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1379 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1380 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1381 	else
1382 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1383 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1384 
1385 	isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1386 		     (char *)end - (char *)start, NULL,
1387 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1388 
1389 	if (IS16BITDRQ(sc->sc_audio2.drq))
1390 		blksize >>= 1;	/* use word count for 16 bit DMA */
1391 	/* Program transfer count registers with 2's complement of count. */
1392 	blksize = -blksize;
1393 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1394 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1395 
1396 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1397 	if (IS16BITDRQ(sc->sc_audio2.drq))
1398 		reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1399 	else
1400 		reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1401 	reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1402 	reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1403 	       ESS_AUDIO2_CTRL1_AUTO_INIT;
1404 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1405 
1406 	return (0);
1407 }
1408 
1409 int
1410 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1411 	void *addr;
1412 	void *start, *end;
1413 	int blksize;
1414 	void (*intr) __P((void *));
1415 	void *arg;
1416 	struct audio_params *param;
1417 {
1418 	struct ess_softc *sc = addr;
1419 	u_int8_t reg;
1420 
1421 	DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1422 	    addr, start, end, blksize, intr, arg));
1423 
1424 	if (sc->sc_audio1.active)
1425 		panic("ess_audio1_trigger_input: already running");
1426 
1427 	sc->sc_audio1.active = 1;
1428 	sc->sc_audio1.intr = intr;
1429 	sc->sc_audio1.arg = arg;
1430 	if (sc->sc_audio1.polled) {
1431 		sc->sc_audio1.dmapos = 0;
1432 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1433 		sc->sc_audio1.dmacount = 0;
1434 		sc->sc_audio1.blksize = blksize;
1435 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1436 		    ess_audio1_poll, sc);
1437 	}
1438 
1439 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1440 	if (param->channels == 2) {
1441 		reg &= ~ESS_AUDIO_CTRL_MONO;
1442 		reg |= ESS_AUDIO_CTRL_STEREO;
1443 	} else {
1444 		reg |= ESS_AUDIO_CTRL_MONO;
1445 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1446 	}
1447 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1448 
1449 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1450 	if (param->precision * param->factor == 16)
1451 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1452 	else
1453 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1454 	if (param->channels == 2)
1455 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1456 	else
1457 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1458 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1459 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1460 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1461 	else
1462 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1463 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1464 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1465 
1466 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1467 		     (char *)end - (char *)start, NULL,
1468 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1469 
1470 	/* Program transfer count registers with 2's complement of count. */
1471 	blksize = -blksize;
1472 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1473 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1474 
1475 	/* Use 4 bytes per input DMA. */
1476 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1477 
1478 	/* Start auto-init DMA */
1479   	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1480 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1481 	reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1482 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1483 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1484 
1485 	return (0);
1486 }
1487 
1488 int
1489 ess_audio1_halt(addr)
1490 	void *addr;
1491 {
1492 	struct ess_softc *sc = addr;
1493 
1494 	DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1495 
1496 	if (sc->sc_audio1.active) {
1497 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1498 		    ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1499 		isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1500 		if (sc->sc_audio1.polled)
1501 			callout_stop(&sc->sc_poll1_ch);
1502 		sc->sc_audio1.active = 0;
1503 	}
1504 
1505 	return (0);
1506 }
1507 
1508 int
1509 ess_audio2_halt(addr)
1510 	void *addr;
1511 {
1512 	struct ess_softc *sc = addr;
1513 
1514 	DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1515 
1516 	if (sc->sc_audio2.active) {
1517 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1518 		    ESS_AUDIO2_CTRL1_DAC_ENABLE |
1519 		    ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1520 		isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1521 		if (sc->sc_audio2.polled)
1522 			callout_stop(&sc->sc_poll2_ch);
1523 		sc->sc_audio2.active = 0;
1524 	}
1525 
1526 	return (0);
1527 }
1528 
1529 int
1530 ess_audio1_intr(arg)
1531 	void *arg;
1532 {
1533 	struct ess_softc *sc = arg;
1534 	u_int8_t reg;
1535 
1536 	DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1537 
1538 	/* Check and clear interrupt on Audio1. */
1539 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1540 	if ((reg & ESS_DSP_READ_OFLOW) == 0)
1541 		return (0);
1542 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1543 
1544 	sc->sc_audio1.nintr++;
1545 
1546 	if (sc->sc_audio1.active) {
1547 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1548 		return (1);
1549 	} else
1550 		return (0);
1551 }
1552 
1553 int
1554 ess_audio2_intr(arg)
1555 	void *arg;
1556 {
1557 	struct ess_softc *sc = arg;
1558 	u_int8_t reg;
1559 
1560 	DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1561 
1562 	/* Check and clear interrupt on Audio2. */
1563 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1564 	if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1565 		return (0);
1566 	reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1567 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1568 
1569 	sc->sc_audio2.nintr++;
1570 
1571 	if (sc->sc_audio2.active) {
1572 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1573 		return (1);
1574 	} else
1575 		return (0);
1576 }
1577 
1578 void
1579 ess_audio1_poll(addr)
1580 	void *addr;
1581 {
1582 	struct ess_softc *sc = addr;
1583 	int dmapos, dmacount;
1584 
1585 	if (!sc->sc_audio1.active)
1586 		return;
1587 
1588 	sc->sc_audio1.nintr++;
1589 
1590 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1591 	dmacount = sc->sc_audio1.dmapos - dmapos;
1592 	if (dmacount < 0)
1593 		dmacount += sc->sc_audio1.buffersize;
1594 	sc->sc_audio1.dmapos = dmapos;
1595 #if 1
1596 	dmacount += sc->sc_audio1.dmacount;
1597 	while (dmacount > sc->sc_audio1.blksize) {
1598 		dmacount -= sc->sc_audio1.blksize;
1599 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1600 	}
1601 	sc->sc_audio1.dmacount = dmacount;
1602 #else
1603 	(*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1604 #endif
1605 
1606 	callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1607 }
1608 
1609 void
1610 ess_audio2_poll(addr)
1611 	void *addr;
1612 {
1613 	struct ess_softc *sc = addr;
1614 	int dmapos, dmacount;
1615 
1616 	if (!sc->sc_audio2.active)
1617 		return;
1618 
1619 	sc->sc_audio2.nintr++;
1620 
1621 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1622 	dmacount = sc->sc_audio2.dmapos - dmapos;
1623 	if (dmacount < 0)
1624 		dmacount += sc->sc_audio2.buffersize;
1625 	sc->sc_audio2.dmapos = dmapos;
1626 #if 1
1627 	dmacount += sc->sc_audio2.dmacount;
1628 	while (dmacount > sc->sc_audio2.blksize) {
1629 		dmacount -= sc->sc_audio2.blksize;
1630 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1631 	}
1632 	sc->sc_audio2.dmacount = dmacount;
1633 #else
1634 	(*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1635 #endif
1636 
1637 	callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1638 }
1639 
1640 int
1641 ess_round_blocksize(addr, blk)
1642 	void *addr;
1643 	int blk;
1644 {
1645 	return (blk & -8);	/* round for max DMA size */
1646 }
1647 
1648 int
1649 ess_set_port(addr, cp)
1650 	void *addr;
1651 	mixer_ctrl_t *cp;
1652 {
1653 	struct ess_softc *sc = addr;
1654 	int lgain, rgain;
1655 
1656 	DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1657 		    cp->dev, cp->un.value.num_channels));
1658 
1659 	switch (cp->dev) {
1660 	/*
1661 	 * The following mixer ports are all stereo. If we get a
1662 	 * single-channel gain value passed in, then we duplicate it
1663 	 * to both left and right channels.
1664 	 */
1665 	case ESS_MASTER_VOL:
1666 	case ESS_DAC_PLAY_VOL:
1667 	case ESS_MIC_PLAY_VOL:
1668 	case ESS_LINE_PLAY_VOL:
1669 	case ESS_SYNTH_PLAY_VOL:
1670 	case ESS_CD_PLAY_VOL:
1671 	case ESS_AUXB_PLAY_VOL:
1672 	case ESS_RECORD_VOL:
1673 		if (cp->type != AUDIO_MIXER_VALUE)
1674 			return EINVAL;
1675 
1676 		switch (cp->un.value.num_channels) {
1677 		case 1:
1678 			lgain = rgain = ESS_4BIT_GAIN(
1679 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1680 			break;
1681 		case 2:
1682 			lgain = ESS_4BIT_GAIN(
1683 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1684 			rgain = ESS_4BIT_GAIN(
1685 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1686 			break;
1687 		default:
1688 			return EINVAL;
1689 		}
1690 
1691 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1692 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1693 		ess_set_gain(sc, cp->dev, 1);
1694 		return (0);
1695 
1696 	/*
1697 	 * The PC speaker port is mono. If we get a stereo gain value
1698 	 * passed in, then we return EINVAL.
1699 	 */
1700 	case ESS_PCSPEAKER_VOL:
1701 		if (cp->un.value.num_channels != 1)
1702 			return EINVAL;
1703 
1704 		sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1705 		  ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1706 		ess_set_gain(sc, cp->dev, 1);
1707 		return (0);
1708 
1709 	case ESS_RECORD_SOURCE:
1710 		if (ESS_USE_AUDIO1(sc->sc_model)) {
1711 			if (cp->type == AUDIO_MIXER_ENUM)
1712 				return (ess_set_in_port(sc, cp->un.ord));
1713 			else
1714 				return (EINVAL);
1715 		} else {
1716 			if (cp->type == AUDIO_MIXER_SET)
1717 				return (ess_set_in_ports(sc, cp->un.mask));
1718 			else
1719 				return (EINVAL);
1720 		}
1721 		return (0);
1722 
1723 	case ESS_RECORD_MONITOR:
1724 		if (cp->type != AUDIO_MIXER_ENUM)
1725 			return EINVAL;
1726 
1727 		if (cp->un.ord)
1728 			/* Enable monitor */
1729 			ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1730 					  ESS_AUDIO_CTRL_MONITOR);
1731 		else
1732 			/* Disable monitor */
1733 			ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1734 					    ESS_AUDIO_CTRL_MONITOR);
1735 		return (0);
1736 	}
1737 
1738 	if (ESS_USE_AUDIO1(sc->sc_model))
1739 		return (EINVAL);
1740 
1741 	switch (cp->dev) {
1742 	case ESS_DAC_REC_VOL:
1743 	case ESS_MIC_REC_VOL:
1744 	case ESS_LINE_REC_VOL:
1745 	case ESS_SYNTH_REC_VOL:
1746 	case ESS_CD_REC_VOL:
1747 	case ESS_AUXB_REC_VOL:
1748 		if (cp->type != AUDIO_MIXER_VALUE)
1749 			return EINVAL;
1750 
1751 		switch (cp->un.value.num_channels) {
1752 		case 1:
1753 			lgain = rgain = ESS_4BIT_GAIN(
1754 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1755 			break;
1756 		case 2:
1757 			lgain = ESS_4BIT_GAIN(
1758 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1759 			rgain = ESS_4BIT_GAIN(
1760 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1761 			break;
1762 		default:
1763 			return EINVAL;
1764 		}
1765 
1766 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1767 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1768 		ess_set_gain(sc, cp->dev, 1);
1769 		return (0);
1770 
1771 	case ESS_MIC_PREAMP:
1772 		if (cp->type != AUDIO_MIXER_ENUM)
1773 			return EINVAL;
1774 
1775 		if (cp->un.ord)
1776 			/* Enable microphone preamp */
1777 			ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1778 					  ESS_PREAMP_CTRL_ENABLE);
1779 		else
1780 			/* Disable microphone preamp */
1781 			ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1782 					  ESS_PREAMP_CTRL_ENABLE);
1783 		return (0);
1784 	}
1785 
1786 	return (EINVAL);
1787 }
1788 
1789 int
1790 ess_get_port(addr, cp)
1791 	void *addr;
1792 	mixer_ctrl_t *cp;
1793 {
1794 	struct ess_softc *sc = addr;
1795 
1796 	DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1797 
1798 	switch (cp->dev) {
1799 	case ESS_MASTER_VOL:
1800 	case ESS_DAC_PLAY_VOL:
1801 	case ESS_MIC_PLAY_VOL:
1802 	case ESS_LINE_PLAY_VOL:
1803 	case ESS_SYNTH_PLAY_VOL:
1804 	case ESS_CD_PLAY_VOL:
1805 	case ESS_AUXB_PLAY_VOL:
1806 	case ESS_RECORD_VOL:
1807 		switch (cp->un.value.num_channels) {
1808 		case 1:
1809 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1810 				sc->gain[cp->dev][ESS_LEFT];
1811 			break;
1812 		case 2:
1813 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1814 				sc->gain[cp->dev][ESS_LEFT];
1815 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1816 				sc->gain[cp->dev][ESS_RIGHT];
1817 			break;
1818 		default:
1819 			return EINVAL;
1820 		}
1821 		return (0);
1822 
1823 	case ESS_PCSPEAKER_VOL:
1824 		if (cp->un.value.num_channels != 1)
1825 			return EINVAL;
1826 
1827 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1828 			sc->gain[cp->dev][ESS_LEFT];
1829 		return (0);
1830 
1831 	case ESS_RECORD_SOURCE:
1832 		if (ESS_USE_AUDIO1(sc->sc_model))
1833 			cp->un.ord = sc->in_port;
1834 		else
1835 			cp->un.mask = sc->in_mask;
1836 		return (0);
1837 
1838 	case ESS_RECORD_MONITOR:
1839 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1840 			      ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1841 		return (0);
1842 	}
1843 
1844 	if (ESS_USE_AUDIO1(sc->sc_model))
1845 		return (EINVAL);
1846 
1847 	switch (cp->dev) {
1848 	case ESS_DAC_REC_VOL:
1849 	case ESS_MIC_REC_VOL:
1850 	case ESS_LINE_REC_VOL:
1851 	case ESS_SYNTH_REC_VOL:
1852 	case ESS_CD_REC_VOL:
1853 	case ESS_AUXB_REC_VOL:
1854 		switch (cp->un.value.num_channels) {
1855 		case 1:
1856 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1857 				sc->gain[cp->dev][ESS_LEFT];
1858 			break;
1859 		case 2:
1860 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1861 				sc->gain[cp->dev][ESS_LEFT];
1862 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1863 				sc->gain[cp->dev][ESS_RIGHT];
1864 			break;
1865 		default:
1866 			return EINVAL;
1867 		}
1868 		return (0);
1869 
1870 	case ESS_MIC_PREAMP:
1871 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1872 			      ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1873 		return (0);
1874 	}
1875 
1876 	return (EINVAL);
1877 }
1878 
1879 int
1880 ess_query_devinfo(addr, dip)
1881 	void *addr;
1882 	mixer_devinfo_t *dip;
1883 {
1884 	struct ess_softc *sc = addr;
1885 
1886 	DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1887 		    sc->sc_model, dip->index));
1888 
1889 	/*
1890 	 * REVISIT: There are some slight differences between the
1891 	 *          mixers on the different ESS chips, which can
1892 	 *          be sorted out using the chip model rather than a
1893 	 *          separate mixer model.
1894 	 *          This is currently coded assuming an ES1887; we
1895 	 *          need to work out which bits are not applicable to
1896 	 *          the other models (1888 and 888).
1897 	 */
1898 	switch (dip->index) {
1899 	case ESS_DAC_PLAY_VOL:
1900 		dip->mixer_class = ESS_INPUT_CLASS;
1901 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1902 		strcpy(dip->label.name, AudioNdac);
1903 		dip->type = AUDIO_MIXER_VALUE;
1904 		dip->un.v.num_channels = 2;
1905 		strcpy(dip->un.v.units.name, AudioNvolume);
1906 		return (0);
1907 
1908 	case ESS_MIC_PLAY_VOL:
1909 		dip->mixer_class = ESS_INPUT_CLASS;
1910 		dip->prev = AUDIO_MIXER_LAST;
1911 		if (ESS_USE_AUDIO1(sc->sc_model))
1912 			dip->next = AUDIO_MIXER_LAST;
1913 		else
1914 			dip->next = ESS_MIC_PREAMP;
1915 		strcpy(dip->label.name, AudioNmicrophone);
1916 		dip->type = AUDIO_MIXER_VALUE;
1917 		dip->un.v.num_channels = 2;
1918 		strcpy(dip->un.v.units.name, AudioNvolume);
1919 		return (0);
1920 
1921 	case ESS_LINE_PLAY_VOL:
1922 		dip->mixer_class = ESS_INPUT_CLASS;
1923 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1924 		strcpy(dip->label.name, AudioNline);
1925 		dip->type = AUDIO_MIXER_VALUE;
1926 		dip->un.v.num_channels = 2;
1927 		strcpy(dip->un.v.units.name, AudioNvolume);
1928 		return (0);
1929 
1930 	case ESS_SYNTH_PLAY_VOL:
1931 		dip->mixer_class = ESS_INPUT_CLASS;
1932 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1933 		strcpy(dip->label.name, AudioNfmsynth);
1934 		dip->type = AUDIO_MIXER_VALUE;
1935 		dip->un.v.num_channels = 2;
1936 		strcpy(dip->un.v.units.name, AudioNvolume);
1937 		return (0);
1938 
1939 	case ESS_CD_PLAY_VOL:
1940 		dip->mixer_class = ESS_INPUT_CLASS;
1941 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1942 		strcpy(dip->label.name, AudioNcd);
1943 		dip->type = AUDIO_MIXER_VALUE;
1944 		dip->un.v.num_channels = 2;
1945 		strcpy(dip->un.v.units.name, AudioNvolume);
1946 		return (0);
1947 
1948 	case ESS_AUXB_PLAY_VOL:
1949 		dip->mixer_class = ESS_INPUT_CLASS;
1950 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1951 		strcpy(dip->label.name, "auxb");
1952 		dip->type = AUDIO_MIXER_VALUE;
1953 		dip->un.v.num_channels = 2;
1954 		strcpy(dip->un.v.units.name, AudioNvolume);
1955 		return (0);
1956 
1957 	case ESS_INPUT_CLASS:
1958 		dip->mixer_class = ESS_INPUT_CLASS;
1959 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1960 		strcpy(dip->label.name, AudioCinputs);
1961 		dip->type = AUDIO_MIXER_CLASS;
1962 		return (0);
1963 
1964 	case ESS_MASTER_VOL:
1965 		dip->mixer_class = ESS_OUTPUT_CLASS;
1966 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1967 		strcpy(dip->label.name, AudioNmaster);
1968 		dip->type = AUDIO_MIXER_VALUE;
1969 		dip->un.v.num_channels = 2;
1970 		strcpy(dip->un.v.units.name, AudioNvolume);
1971 		return (0);
1972 
1973 	case ESS_PCSPEAKER_VOL:
1974 		dip->mixer_class = ESS_OUTPUT_CLASS;
1975 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1976 		strcpy(dip->label.name, "pc_speaker");
1977 		dip->type = AUDIO_MIXER_VALUE;
1978 		dip->un.v.num_channels = 1;
1979 		strcpy(dip->un.v.units.name, AudioNvolume);
1980 		return (0);
1981 
1982 	case ESS_OUTPUT_CLASS:
1983 		dip->mixer_class = ESS_OUTPUT_CLASS;
1984 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1985 		strcpy(dip->label.name, AudioCoutputs);
1986 		dip->type = AUDIO_MIXER_CLASS;
1987 		return (0);
1988 
1989 	case ESS_RECORD_VOL:
1990 		dip->mixer_class = ESS_RECORD_CLASS;
1991 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1992 		strcpy(dip->label.name, AudioNrecord);
1993 		dip->type = AUDIO_MIXER_VALUE;
1994 		dip->un.v.num_channels = 2;
1995 		strcpy(dip->un.v.units.name, AudioNvolume);
1996 		return (0);
1997 
1998 	case ESS_RECORD_SOURCE:
1999 		dip->mixer_class = ESS_RECORD_CLASS;
2000 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2001 		strcpy(dip->label.name, AudioNsource);
2002 		if (ESS_USE_AUDIO1(sc->sc_model)) {
2003 			/*
2004 			 * The 1788 doesn't use the input mixer control that
2005 			 * the 1888 uses, because it's a pain when you only
2006 			 * have one mixer.
2007 			 * Perhaps it could be emulated by keeping both sets of
2008 			 * gain values, and doing a `context switch' of the
2009 			 * mixer registers when shifting from playing to
2010 			 * recording.
2011 			 */
2012 			dip->type = AUDIO_MIXER_ENUM;
2013 			dip->un.e.num_mem = 4;
2014 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2015 			dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2016 			strcpy(dip->un.e.member[1].label.name, AudioNline);
2017 			dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2018 			strcpy(dip->un.e.member[2].label.name, AudioNcd);
2019 			dip->un.e.member[2].ord = ESS_SOURCE_CD;
2020 			strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2021 			dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2022 		} else {
2023 			dip->type = AUDIO_MIXER_SET;
2024 			dip->un.s.num_mem = 6;
2025 			strcpy(dip->un.s.member[0].label.name, AudioNdac);
2026 			dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2027 			strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2028 			dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2029 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2030 			dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2031 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2032 			dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2033 			strcpy(dip->un.s.member[4].label.name, AudioNcd);
2034 			dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2035 			strcpy(dip->un.s.member[5].label.name, "auxb");
2036 			dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2037 		}
2038 		return (0);
2039 
2040 	case ESS_RECORD_CLASS:
2041 		dip->mixer_class = ESS_RECORD_CLASS;
2042 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2043 		strcpy(dip->label.name, AudioCrecord);
2044 		dip->type = AUDIO_MIXER_CLASS;
2045 		return (0);
2046 
2047 	case ESS_RECORD_MONITOR:
2048 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2049 		strcpy(dip->label.name, AudioNmute);
2050 		dip->type = AUDIO_MIXER_ENUM;
2051 		dip->mixer_class = ESS_MONITOR_CLASS;
2052 		dip->un.e.num_mem = 2;
2053 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2054 		dip->un.e.member[0].ord = 0;
2055 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2056 		dip->un.e.member[1].ord = 1;
2057 		return (0);
2058 
2059 	case ESS_MONITOR_CLASS:
2060 		dip->mixer_class = ESS_MONITOR_CLASS;
2061 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2062 		strcpy(dip->label.name, AudioCmonitor);
2063 		dip->type = AUDIO_MIXER_CLASS;
2064 		return (0);
2065 	}
2066 
2067 	if (ESS_USE_AUDIO1(sc->sc_model))
2068 		return (ENXIO);
2069 
2070 	switch (dip->index) {
2071 	case ESS_DAC_REC_VOL:
2072 		dip->mixer_class = ESS_RECORD_CLASS;
2073 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2074 		strcpy(dip->label.name, AudioNdac);
2075 		dip->type = AUDIO_MIXER_VALUE;
2076 		dip->un.v.num_channels = 2;
2077 		strcpy(dip->un.v.units.name, AudioNvolume);
2078 		return (0);
2079 
2080 	case ESS_MIC_REC_VOL:
2081 		dip->mixer_class = ESS_RECORD_CLASS;
2082 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2083 		strcpy(dip->label.name, AudioNmicrophone);
2084 		dip->type = AUDIO_MIXER_VALUE;
2085 		dip->un.v.num_channels = 2;
2086 		strcpy(dip->un.v.units.name, AudioNvolume);
2087 		return (0);
2088 
2089 	case ESS_LINE_REC_VOL:
2090 		dip->mixer_class = ESS_RECORD_CLASS;
2091 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2092 		strcpy(dip->label.name, AudioNline);
2093 		dip->type = AUDIO_MIXER_VALUE;
2094 		dip->un.v.num_channels = 2;
2095 		strcpy(dip->un.v.units.name, AudioNvolume);
2096 		return (0);
2097 
2098 	case ESS_SYNTH_REC_VOL:
2099 		dip->mixer_class = ESS_RECORD_CLASS;
2100 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2101 		strcpy(dip->label.name, AudioNfmsynth);
2102 		dip->type = AUDIO_MIXER_VALUE;
2103 		dip->un.v.num_channels = 2;
2104 		strcpy(dip->un.v.units.name, AudioNvolume);
2105 		return (0);
2106 
2107 	case ESS_CD_REC_VOL:
2108 		dip->mixer_class = ESS_RECORD_CLASS;
2109 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2110 		strcpy(dip->label.name, AudioNcd);
2111 		dip->type = AUDIO_MIXER_VALUE;
2112 		dip->un.v.num_channels = 2;
2113 		strcpy(dip->un.v.units.name, AudioNvolume);
2114 		return (0);
2115 
2116 	case ESS_AUXB_REC_VOL:
2117 		dip->mixer_class = ESS_RECORD_CLASS;
2118 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2119 		strcpy(dip->label.name, "auxb");
2120 		dip->type = AUDIO_MIXER_VALUE;
2121 		dip->un.v.num_channels = 2;
2122 		strcpy(dip->un.v.units.name, AudioNvolume);
2123 		return (0);
2124 
2125 	case ESS_MIC_PREAMP:
2126 		dip->mixer_class = ESS_INPUT_CLASS;
2127 		dip->prev = ESS_MIC_PLAY_VOL;
2128 		dip->next = AUDIO_MIXER_LAST;
2129 		strcpy(dip->label.name, AudioNpreamp);
2130 		dip->type = AUDIO_MIXER_ENUM;
2131 		dip->un.e.num_mem = 2;
2132 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2133 		dip->un.e.member[0].ord = 0;
2134 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2135 		dip->un.e.member[1].ord = 1;
2136 		return (0);
2137 	}
2138 
2139 	return (ENXIO);
2140 }
2141 
2142 void *
2143 ess_malloc(addr, direction, size, pool, flags)
2144 	void *addr;
2145 	int direction;
2146 	size_t size;
2147 	struct malloc_type *pool;
2148 	int flags;
2149 {
2150 	struct ess_softc *sc = addr;
2151 	int drq;
2152 
2153 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2154 		drq = sc->sc_audio2.drq;
2155 	else
2156 		drq = sc->sc_audio1.drq;
2157 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2158 }
2159 
2160 void
2161 ess_free(addr, ptr, pool)
2162 	void *addr;
2163 	void *ptr;
2164 	struct malloc_type *pool;
2165 {
2166 	isa_free(ptr, pool);
2167 }
2168 
2169 size_t
2170 ess_round_buffersize(addr, direction, size)
2171 	void *addr;
2172 	int direction;
2173 	size_t size;
2174 {
2175 	struct ess_softc *sc = addr;
2176 	bus_size_t maxsize;
2177 
2178 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2179 		maxsize = sc->sc_audio2.maxsize;
2180 	else
2181 		maxsize = sc->sc_audio1.maxsize;
2182 
2183 	if (size > maxsize)
2184 		size = maxsize;
2185 	return (size);
2186 }
2187 
2188 paddr_t
2189 ess_mappage(addr, mem, off, prot)
2190 	void *addr;
2191 	void *mem;
2192 	off_t off;
2193 	int prot;
2194 {
2195 	return (isa_mappage(mem, off, prot));
2196 }
2197 
2198 int
2199 ess_1788_get_props(addr)
2200 	void *addr;
2201 {
2202 
2203 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2204 }
2205 
2206 int
2207 ess_1888_get_props(addr)
2208 	void *addr;
2209 {
2210 
2211 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2212 }
2213 
2214 /* ============================================
2215  * Generic functions for ess, not used by audio h/w i/f
2216  * =============================================
2217  */
2218 
2219 /*
2220  * Reset the chip.
2221  * Return non-zero if the chip isn't detected.
2222  */
2223 int
2224 ess_reset(sc)
2225 	struct ess_softc *sc;
2226 {
2227 	bus_space_tag_t iot = sc->sc_iot;
2228 	bus_space_handle_t ioh = sc->sc_ioh;
2229 
2230 	sc->sc_audio1.active = 0;
2231 	sc->sc_audio2.active = 0;
2232 
2233 	EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2234 	delay(10000);		/* XXX shouldn't delay so long */
2235 	EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2236 	if (ess_rdsp(sc) != ESS_MAGIC)
2237 		return (1);
2238 
2239 	/* Enable access to the ESS extension commands. */
2240 	ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2241 
2242 	return (0);
2243 }
2244 
2245 void
2246 ess_set_gain(sc, port, on)
2247 	struct ess_softc *sc;
2248 	int port;
2249 	int on;
2250 {
2251 	int gain, left, right;
2252 	int mix;
2253 	int src;
2254 	int stereo;
2255 
2256 	/*
2257 	 * Most gain controls are found in the mixer registers and
2258 	 * are stereo. Any that are not, must set mix and stereo as
2259 	 * required.
2260 	 */
2261 	mix = 1;
2262 	stereo = 1;
2263 
2264 	switch (port) {
2265 	case ESS_MASTER_VOL:
2266 		src = ESS_MREG_VOLUME_MASTER;
2267 		break;
2268 	case ESS_DAC_PLAY_VOL:
2269 		if (ESS_USE_AUDIO1(sc->sc_model))
2270 			src = ESS_MREG_VOLUME_VOICE;
2271 		else
2272 			src = 0x7C;
2273 		break;
2274 	case ESS_MIC_PLAY_VOL:
2275 		src = ESS_MREG_VOLUME_MIC;
2276 		break;
2277 	case ESS_LINE_PLAY_VOL:
2278 		src = ESS_MREG_VOLUME_LINE;
2279 		break;
2280 	case ESS_SYNTH_PLAY_VOL:
2281 		src = ESS_MREG_VOLUME_SYNTH;
2282 		break;
2283 	case ESS_CD_PLAY_VOL:
2284 		src = ESS_MREG_VOLUME_CD;
2285 		break;
2286 	case ESS_AUXB_PLAY_VOL:
2287 		src = ESS_MREG_VOLUME_AUXB;
2288 		break;
2289 	case ESS_PCSPEAKER_VOL:
2290 		src = ESS_MREG_VOLUME_PCSPKR;
2291 		stereo = 0;
2292 		break;
2293 	case ESS_DAC_REC_VOL:
2294 		src = 0x69;
2295 		break;
2296 	case ESS_MIC_REC_VOL:
2297 		src = 0x68;
2298 		break;
2299 	case ESS_LINE_REC_VOL:
2300 		src = 0x6E;
2301 		break;
2302 	case ESS_SYNTH_REC_VOL:
2303 		src = 0x6B;
2304 		break;
2305 	case ESS_CD_REC_VOL:
2306 		src = 0x6A;
2307 		break;
2308 	case ESS_AUXB_REC_VOL:
2309 		src = 0x6C;
2310 		break;
2311 	case ESS_RECORD_VOL:
2312 		src = ESS_XCMD_VOLIN_CTRL;
2313 		mix = 0;
2314 		break;
2315 	default:
2316 		return;
2317 	}
2318 
2319 	/* 1788 doesn't have a separate recording mixer */
2320 	if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2321 		return;
2322 
2323 	if (on) {
2324 		left = sc->gain[port][ESS_LEFT];
2325 		right = sc->gain[port][ESS_RIGHT];
2326 	} else {
2327 		left = right = 0;
2328 	}
2329 
2330 	if (stereo)
2331 		gain = ESS_STEREO_GAIN(left, right);
2332 	else
2333 		gain = ESS_MONO_GAIN(left);
2334 
2335 	if (mix)
2336 		ess_write_mix_reg(sc, src, gain);
2337 	else
2338 		ess_write_x_reg(sc, src, gain);
2339 }
2340 
2341 /* Set the input device on devices without an input mixer. */
2342 int
2343 ess_set_in_port(sc, ord)
2344 	struct ess_softc *sc;
2345 	int ord;
2346 {
2347 	mixer_devinfo_t di;
2348 	int i;
2349 
2350 	DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2351 
2352 	/*
2353 	 * Get the device info for the record source control,
2354 	 * including the list of available sources.
2355 	 */
2356 	di.index = ESS_RECORD_SOURCE;
2357 	if (ess_query_devinfo(sc, &di))
2358 		return EINVAL;
2359 
2360 	/* See if the given ord value was anywhere in the list. */
2361 	for (i = 0; i < di.un.e.num_mem; i++) {
2362 		if (ord == di.un.e.member[i].ord)
2363 			break;
2364 	}
2365 	if (i == di.un.e.num_mem)
2366 		return EINVAL;
2367 
2368 	ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2369 
2370 	sc->in_port = ord;
2371 	return (0);
2372 }
2373 
2374 /* Set the input device levels on input-mixer-enabled devices. */
2375 int
2376 ess_set_in_ports(sc, mask)
2377 	struct ess_softc *sc;
2378 	int mask;
2379 {
2380 	mixer_devinfo_t di;
2381 	int i, port;
2382 
2383 	DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2384 
2385 	/*
2386 	 * Get the device info for the record source control,
2387 	 * including the list of available sources.
2388 	 */
2389 	di.index = ESS_RECORD_SOURCE;
2390 	if (ess_query_devinfo(sc, &di))
2391 		return EINVAL;
2392 
2393 	/*
2394 	 * Set or disable the record volume control for each of the
2395 	 * possible sources.
2396 	 */
2397 	for (i = 0; i < di.un.s.num_mem; i++) {
2398 		/*
2399 		 * Calculate the source port number from its mask.
2400 		 */
2401 		port = ffs(di.un.s.member[i].mask);
2402 
2403 		/*
2404 		 * Set the source gain:
2405 		 *	to the current value if source is enabled
2406 		 *	to zero if source is disabled
2407 		 */
2408 		ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2409 	}
2410 
2411 	sc->in_mask = mask;
2412 	return (0);
2413 }
2414 
2415 void
2416 ess_speaker_on(sc)
2417 	struct ess_softc *sc;
2418 {
2419 	/* Unmute the DAC. */
2420 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2421 }
2422 
2423 void
2424 ess_speaker_off(sc)
2425 	struct ess_softc *sc;
2426 {
2427 	/* Mute the DAC. */
2428 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2429 }
2430 
2431 /*
2432  * Calculate the time constant for the requested sampling rate.
2433  */
2434 u_int
2435 ess_srtotc(rate)
2436 	u_int rate;
2437 {
2438 	u_int tc;
2439 
2440 	/* The following formulae are from the ESS data sheet. */
2441 	if (rate <= 22050)
2442 		tc = 128 - 397700L / rate;
2443 	else
2444 		tc = 256 - 795500L / rate;
2445 
2446 	return (tc);
2447 }
2448 
2449 
2450 /*
2451  * Calculate the filter constant for the reuqested sampling rate.
2452  */
2453 u_int
2454 ess_srtofc(rate)
2455 	u_int rate;
2456 {
2457 	/*
2458 	 * The following formula is derived from the information in
2459 	 * the ES1887 data sheet, based on a roll-off frequency of
2460 	 * 87%.
2461 	 */
2462 	return (256 - 200279L / rate);
2463 }
2464 
2465 
2466 /*
2467  * Return the status of the DSP.
2468  */
2469 u_char
2470 ess_get_dsp_status(sc)
2471 	struct ess_softc *sc;
2472 {
2473 	return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2474 }
2475 
2476 
2477 /*
2478  * Return the read status of the DSP:	1 -> DSP ready for reading
2479  *					0 -> DSP not ready for reading
2480  */
2481 u_char
2482 ess_dsp_read_ready(sc)
2483 	struct ess_softc *sc;
2484 {
2485 	return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2486 }
2487 
2488 
2489 /*
2490  * Return the write status of the DSP:	1 -> DSP ready for writing
2491  *					0 -> DSP not ready for writing
2492  */
2493 u_char
2494 ess_dsp_write_ready(sc)
2495 	struct ess_softc *sc;
2496 {
2497 	return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2498 }
2499 
2500 
2501 /*
2502  * Read a byte from the DSP.
2503  */
2504 int
2505 ess_rdsp(sc)
2506 	struct ess_softc *sc;
2507 {
2508 	bus_space_tag_t iot = sc->sc_iot;
2509 	bus_space_handle_t ioh = sc->sc_ioh;
2510 	int i;
2511 
2512 	for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2513 		if (ess_dsp_read_ready(sc)) {
2514 			i = EREAD1(iot, ioh, ESS_DSP_READ);
2515 			DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2516 			return i;
2517 		} else
2518 			delay(10);
2519 	}
2520 
2521 	DPRINTF(("ess_rdsp: timed out\n"));
2522 	return (-1);
2523 }
2524 
2525 /*
2526  * Write a byte to the DSP.
2527  */
2528 int
2529 ess_wdsp(sc, v)
2530 	struct ess_softc *sc;
2531 	u_char v;
2532 {
2533 	bus_space_tag_t iot = sc->sc_iot;
2534 	bus_space_handle_t ioh = sc->sc_ioh;
2535 	int i;
2536 
2537 	DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2538 
2539 	for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2540 		if (ess_dsp_write_ready(sc)) {
2541 			EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2542 			return (0);
2543 		} else
2544 			delay(10);
2545 	}
2546 
2547 	DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2548 	return (-1);
2549 }
2550 
2551 /*
2552  * Write a value to one of the ESS extended registers.
2553  */
2554 int
2555 ess_write_x_reg(sc, reg, val)
2556 	struct ess_softc *sc;
2557 	u_char reg;
2558 	u_char val;
2559 {
2560 	int error;
2561 
2562 	DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2563 	if ((error = ess_wdsp(sc, reg)) == 0)
2564 		error = ess_wdsp(sc, val);
2565 
2566 	return error;
2567 }
2568 
2569 /*
2570  * Read the value of one of the ESS extended registers.
2571  */
2572 u_char
2573 ess_read_x_reg(sc, reg)
2574 	struct ess_softc *sc;
2575 	u_char reg;
2576 {
2577 	int error;
2578 	int val;
2579 
2580 	if ((error = ess_wdsp(sc, 0xC0)) == 0)
2581 		error = ess_wdsp(sc, reg);
2582 	if (error)
2583 		DPRINTF(("Error reading extended register 0x%02x\n", reg));
2584 /* REVISIT: what if an error is returned above? */
2585 	val = ess_rdsp(sc);
2586 	DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2587 	return val;
2588 }
2589 
2590 void
2591 ess_clear_xreg_bits(sc, reg, mask)
2592 	struct ess_softc *sc;
2593 	u_char reg;
2594 	u_char mask;
2595 {
2596 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2597 		DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2598 			 reg));
2599 }
2600 
2601 void
2602 ess_set_xreg_bits(sc, reg, mask)
2603 	struct ess_softc *sc;
2604 	u_char reg;
2605 	u_char mask;
2606 {
2607 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2608 		DPRINTF(("Error setting bits in extended register 0x%02x\n",
2609 			 reg));
2610 }
2611 
2612 
2613 /*
2614  * Write a value to one of the ESS mixer registers.
2615  */
2616 void
2617 ess_write_mix_reg(sc, reg, val)
2618 	struct ess_softc *sc;
2619 	u_char reg;
2620 	u_char val;
2621 {
2622 	bus_space_tag_t iot = sc->sc_iot;
2623 	bus_space_handle_t ioh = sc->sc_ioh;
2624 	int s;
2625 
2626 	DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2627 
2628 	s = splaudio();
2629 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2630 	EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2631 	splx(s);
2632 }
2633 
2634 /*
2635  * Read the value of one of the ESS mixer registers.
2636  */
2637 u_char
2638 ess_read_mix_reg(sc, reg)
2639 	struct ess_softc *sc;
2640 	u_char reg;
2641 {
2642 	bus_space_tag_t iot = sc->sc_iot;
2643 	bus_space_handle_t ioh = sc->sc_ioh;
2644 	int s;
2645 	u_char val;
2646 
2647 	s = splaudio();
2648 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2649 	val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2650 	splx(s);
2651 
2652 	DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2653 	return val;
2654 }
2655 
2656 void
2657 ess_clear_mreg_bits(sc, reg, mask)
2658 	struct ess_softc *sc;
2659 	u_char reg;
2660 	u_char mask;
2661 {
2662 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2663 }
2664 
2665 void
2666 ess_set_mreg_bits(sc, reg, mask)
2667 	struct ess_softc *sc;
2668 	u_char reg;
2669 	u_char mask;
2670 {
2671 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2672 }
2673 
2674 void
2675 ess_read_multi_mix_reg(sc, reg, datap, count)
2676 	struct ess_softc *sc;
2677 	u_char reg;
2678 	u_int8_t *datap;
2679 	bus_size_t count;
2680 {
2681 	bus_space_tag_t iot = sc->sc_iot;
2682 	bus_space_handle_t ioh = sc->sc_ioh;
2683 	int s;
2684 
2685 	s = splaudio();
2686 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2687 	bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2688 	splx(s);
2689 }
2690