xref: /netbsd-src/sys/dev/isa/ess.c (revision 6dffe8d42bd46273f674d7ab834e7be9b1af990e)
1 /*	$NetBSD: ess.c,v 1.76 2008/04/08 20:08:49 cegger Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37 **++
38 **
39 **  ess.c
40 **
41 **  FACILITY:
42 **
43 **	DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 **  MODULE DESCRIPTION:
46 **
47 **      This module contains the device driver for the ESS
48 **      Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 **	used as a reference point when implementing this driver.
50 **
51 **  AUTHORS:
52 **
53 **	Blair Fidler	Software Engineering Australia
54 **			Gold Coast, Australia.
55 **
56 **  CREATION DATE:
57 **
58 **	March 10, 1997.
59 **
60 **  MODIFICATION HISTORY:
61 **
62 **	Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 **	bus_dma, changes to audio interface, and many bug fixes.
64 **	ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.76 2008/04/08 20:08:49 cegger Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79 
80 #include <sys/cpu.h>
81 #include <sys/intr.h>
82 #include <sys/bus.h>
83 
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88 
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91 
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94 
95 #include "joy_ess.h"
96 
97 #ifdef AUDIO_DEBUG
98 #define DPRINTF(x)	if (essdebug) printf x
99 #define DPRINTFN(n,x)	if (essdebug>(n)) printf x
100 int	essdebug = 0;
101 #else
102 #define DPRINTF(x)
103 #define DPRINTFN(n,x)
104 #endif
105 
106 #if 0
107 unsigned uuu;
108 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD  %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
109 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
110 #else
111 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
112 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
113 #endif
114 
115 
116 int	ess_setup_sc(struct ess_softc *, int);
117 
118 int	ess_open(void *, int);
119 void	ess_close(void *);
120 int	ess_getdev(void *, struct audio_device *);
121 int	ess_drain(void *);
122 
123 int	ess_query_encoding(void *, struct audio_encoding *);
124 
125 int	ess_set_params(void *, int, int, audio_params_t *,
126 	    audio_params_t *, stream_filter_list_t *, stream_filter_list_t *);
127 
128 int	ess_round_blocksize(void *, int, int, const audio_params_t *);
129 
130 int	ess_audio1_trigger_output(void *, void *, void *, int,
131 	    void (*)(void *), void *, const audio_params_t *);
132 int	ess_audio2_trigger_output(void *, void *, void *, int,
133 	    void (*)(void *), void *, const audio_params_t *);
134 int	ess_audio1_trigger_input(void *, void *, void *, int,
135 	    void (*)(void *), void *, const audio_params_t *);
136 int	ess_audio1_halt(void *);
137 int	ess_audio2_halt(void *);
138 int	ess_audio1_intr(void *);
139 int	ess_audio2_intr(void *);
140 void	ess_audio1_poll(void *);
141 void	ess_audio2_poll(void *);
142 
143 int	ess_speaker_ctl(void *, int);
144 
145 int	ess_getdev(void *, struct audio_device *);
146 
147 int	ess_set_port(void *, mixer_ctrl_t *);
148 int	ess_get_port(void *, mixer_ctrl_t *);
149 
150 void   *ess_malloc(void *, int, size_t, struct malloc_type *, int);
151 void	ess_free(void *, void *, struct malloc_type *);
152 size_t	ess_round_buffersize(void *, int, size_t);
153 paddr_t	ess_mappage(void *, void *, off_t, int);
154 
155 
156 int	ess_query_devinfo(void *, mixer_devinfo_t *);
157 int	ess_1788_get_props(void *);
158 int	ess_1888_get_props(void *);
159 
160 void	ess_speaker_on(struct ess_softc *);
161 void	ess_speaker_off(struct ess_softc *);
162 
163 void	ess_config_irq(struct ess_softc *);
164 void	ess_config_drq(struct ess_softc *);
165 void	ess_setup(struct ess_softc *);
166 int	ess_identify(struct ess_softc *);
167 
168 int	ess_reset(struct ess_softc *);
169 void	ess_set_gain(struct ess_softc *, int, int);
170 int	ess_set_in_port(struct ess_softc *, int);
171 int	ess_set_in_ports(struct ess_softc *, int);
172 u_int	ess_srtotc(u_int);
173 u_int	ess_srtofc(u_int);
174 u_char	ess_get_dsp_status(struct ess_softc *);
175 u_char	ess_dsp_read_ready(struct ess_softc *);
176 u_char	ess_dsp_write_ready(struct ess_softc *);
177 int	ess_rdsp(struct ess_softc *);
178 int	ess_wdsp(struct ess_softc *, u_char);
179 u_char	ess_read_x_reg(struct ess_softc *, u_char);
180 int	ess_write_x_reg(struct ess_softc *, u_char, u_char);
181 void	ess_clear_xreg_bits(struct ess_softc *, u_char, u_char);
182 void	ess_set_xreg_bits(struct ess_softc *, u_char, u_char);
183 u_char	ess_read_mix_reg(struct ess_softc *, u_char);
184 void	ess_write_mix_reg(struct ess_softc *, u_char, u_char);
185 void	ess_clear_mreg_bits(struct ess_softc *, u_char, u_char);
186 void	ess_set_mreg_bits(struct ess_softc *, u_char, u_char);
187 void	ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, bus_size_t);
188 
189 static const char *essmodel[] = {
190 	"unsupported",
191 
192 	"688",
193 	"1688",
194 	"1788",
195 	"1868",
196 	"1869",
197 	"1878",
198 	"1879",
199 
200 	"888",
201 	"1887",
202 	"1888",
203 };
204 
205 struct audio_device ess_device = {
206 	"ESS Technology",
207 	"x",
208 	"ess"
209 };
210 
211 /*
212  * Define our interface to the higher level audio driver.
213  */
214 
215 const struct audio_hw_if ess_1788_hw_if = {
216 	ess_open,
217 	ess_close,
218 	ess_drain,
219 	ess_query_encoding,
220 	ess_set_params,
221 	ess_round_blocksize,
222 	NULL,
223 	NULL,
224 	NULL,
225 	NULL,
226 	NULL,
227 	ess_audio1_halt,
228 	ess_audio1_halt,
229 	ess_speaker_ctl,
230 	ess_getdev,
231 	NULL,
232 	ess_set_port,
233 	ess_get_port,
234 	ess_query_devinfo,
235 	ess_malloc,
236 	ess_free,
237 	ess_round_buffersize,
238 	ess_mappage,
239 	ess_1788_get_props,
240 	ess_audio1_trigger_output,
241 	ess_audio1_trigger_input,
242 	NULL,
243 	NULL,
244 };
245 
246 const struct audio_hw_if ess_1888_hw_if = {
247 	ess_open,
248 	ess_close,
249 	ess_drain,
250 	ess_query_encoding,
251 	ess_set_params,
252 	ess_round_blocksize,
253 	NULL,
254 	NULL,
255 	NULL,
256 	NULL,
257 	NULL,
258 	ess_audio2_halt,
259 	ess_audio1_halt,
260 	ess_speaker_ctl,
261 	ess_getdev,
262 	NULL,
263 	ess_set_port,
264 	ess_get_port,
265 	ess_query_devinfo,
266 	ess_malloc,
267 	ess_free,
268 	ess_round_buffersize,
269 	ess_mappage,
270 	ess_1888_get_props,
271 	ess_audio2_trigger_output,
272 	ess_audio1_trigger_input,
273 	NULL,
274 	NULL,
275 };
276 
277 #define ESS_NFORMATS	8
278 static const struct audio_format ess_formats[ESS_NFORMATS] = {
279 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
280 	 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
281 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 16, 16,
282 	 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
283 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
284 	 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
285 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 16, 16,
286 	 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
287 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
288 	 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
289 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_ULINEAR_LE, 8, 8,
290 	 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
291 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
292 	 2, AUFMT_STEREO, 0, {ESS_MINRATE, ESS_MAXRATE}},
293 	{NULL, AUMODE_PLAY | AUMODE_RECORD, AUDIO_ENCODING_SLINEAR_LE, 8, 8,
294 	 1, AUFMT_MONAURAL, 0, {ESS_MINRATE, ESS_MAXRATE}},
295 };
296 
297 #ifdef AUDIO_DEBUG
298 void ess_printsc(struct ess_softc *);
299 void ess_dump_mixer(struct ess_softc *);
300 
301 void
302 ess_printsc(struct ess_softc *sc)
303 {
304 	int i;
305 
306 	printf("iobase 0x%x outport %u inport %u speaker %s\n",
307 	       sc->sc_iobase, sc->out_port,
308 	       sc->in_port, sc->spkr_state ? "on" : "off");
309 
310 	printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
311 	       sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
312 	       sc->sc_audio1.intr, sc->sc_audio1.arg);
313 
314 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
315 		printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
316 		       sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
317 		       sc->sc_audio2.intr, sc->sc_audio2.arg);
318 	}
319 
320 	printf("gain:");
321 	for (i = 0; i < sc->ndevs; i++)
322 		printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
323 	printf("\n");
324 }
325 
326 void
327 ess_dump_mixer(struct ess_softc *sc)
328 {
329 
330 	printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
331 	       0x7C, ess_read_mix_reg(sc, 0x7C));
332 	printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
333 	       0x1A, ess_read_mix_reg(sc, 0x1A));
334 	printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
335 	       0x3E, ess_read_mix_reg(sc, 0x3E));
336 	printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
337 	       0x36, ess_read_mix_reg(sc, 0x36));
338 	printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
339 	       0x38, ess_read_mix_reg(sc, 0x38));
340 	printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
341 	       0x3A, ess_read_mix_reg(sc, 0x3A));
342 	printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
343 	       0x32, ess_read_mix_reg(sc, 0x32));
344 	printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
345 	       0x3C, ess_read_mix_reg(sc, 0x3C));
346 	printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
347 	       0x69, ess_read_mix_reg(sc, 0x69));
348 	printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
349 	       0x68, ess_read_mix_reg(sc, 0x68));
350 	printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
351 	       0x6E, ess_read_mix_reg(sc, 0x6E));
352 	printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
353 	       0x6B, ess_read_mix_reg(sc, 0x6B));
354 	printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
355 	       0x6A, ess_read_mix_reg(sc, 0x6A));
356 	printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
357 	       0x6C, ess_read_mix_reg(sc, 0x6C));
358 	printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
359 	       0xB4, ess_read_x_reg(sc, 0xB4));
360 	printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
361 	       0x14, ess_read_mix_reg(sc, 0x14));
362 
363 	printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
364 	       ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
365 	printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
366 	       ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
367 	printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
368 	       ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
369 	       ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
370 }
371 
372 #endif
373 
374 /*
375  * Configure the ESS chip for the desired audio base address.
376  */
377 int
378 ess_config_addr(struct ess_softc *sc)
379 {
380 	int iobase;
381 	bus_space_tag_t iot;
382 	/*
383 	 * Configure using the System Control Register method.  This
384 	 * method is used when the AMODE line is tied high, which is
385 	 * the case for the Shark, but not for the evaluation board.
386 	 */
387 	bus_space_handle_t scr_access_ioh;
388 	bus_space_handle_t scr_ioh;
389 	u_short scr_value;
390 
391 	iobase = sc->sc_iobase;
392 	iot = sc->sc_iot;
393 	/*
394 	 * Set the SCR bit to enable audio.
395 	 */
396 	scr_value = ESS_SCR_AUDIO_ENABLE;
397 
398 	/*
399 	 * Set the SCR bits necessary to select the specified audio
400 	 * base address.
401 	 */
402 	switch(iobase) {
403 	case 0x220:
404 		scr_value |= ESS_SCR_AUDIO_220;
405 		break;
406 	case 0x230:
407 		scr_value |= ESS_SCR_AUDIO_230;
408 		break;
409 	case 0x240:
410 		scr_value |= ESS_SCR_AUDIO_240;
411 		break;
412 	case 0x250:
413 		scr_value |= ESS_SCR_AUDIO_250;
414 		break;
415 	default:
416 		printf("ess: configured iobase 0x%x invalid\n", iobase);
417 		return 1;
418 		break;
419 	}
420 
421 	/*
422 	 * Get a mapping for the System Control Register (SCR) access
423 	 * registers and the SCR data registers.
424 	 */
425 	if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
426 			  0, &scr_access_ioh)) {
427 		printf("ess: can't map SCR access registers\n");
428 		return 1;
429 	}
430 	if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
431 			  0, &scr_ioh)) {
432 		printf("ess: can't map SCR registers\n");
433 		bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
434 		return 1;
435 	}
436 
437 	/* Unlock the SCR. */
438 	EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
439 
440 	/* Write the base address information into SCR[0]. */
441 	EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
442 	EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
443 
444 	/* Lock the SCR. */
445 	EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
446 
447 	/* Unmap the SCR access ports and the SCR data ports. */
448 	bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
449 	bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
450 
451 	return 0;
452 }
453 
454 
455 /*
456  * Configure the ESS chip for the desired IRQ and DMA channels.
457  * ESS  ISA
458  * --------
459  * IRQA irq9
460  * IRQB irq5
461  * IRQC irq7
462  * IRQD irq10
463  * IRQE irq15
464  *
465  * DRQA drq0
466  * DRQB drq1
467  * DRQC drq3
468  * DRQD drq5
469  */
470 void
471 ess_config_irq(struct ess_softc *sc)
472 {
473 	int v;
474 
475 	DPRINTFN(2,("ess_config_irq\n"));
476 
477 	if (sc->sc_model == ESS_1887 &&
478 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
479 	    sc->sc_audio1.irq != -1) {
480 		/* Use new method, both interrupts are the same. */
481 		v = ESS_IS_SELECT_IRQ;	/* enable intrs */
482 		switch (sc->sc_audio1.irq) {
483 		case 5:
484 			v |= ESS_IS_INTRB;
485 			break;
486 		case 7:
487 			v |= ESS_IS_INTRC;
488 			break;
489 		case 9:
490 			v |= ESS_IS_INTRA;
491 			break;
492 		case 10:
493 			v |= ESS_IS_INTRD;
494 			break;
495 		case 15:
496 			v |= ESS_IS_INTRE;
497 			break;
498 #ifdef DIAGNOSTIC
499 		default:
500 			printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
501 			       sc->sc_audio1.irq);
502 			return;
503 #endif
504 		}
505 		/* Set the IRQ */
506 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
507 		return;
508 	}
509 
510 	if (sc->sc_model == ESS_1887) {
511 		/* Tell the 1887 to use the old interrupt method. */
512 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
513 	}
514 
515 	if (sc->sc_audio1.polled) {
516 		/* Turn off Audio1 interrupts. */
517 		v = 0;
518 	} else {
519 		/* Configure Audio 1 for the appropriate IRQ line. */
520 		v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
521 		switch (sc->sc_audio1.irq) {
522 		case 5:
523 			v |= ESS_IRQ_CTRL_INTRB;
524 			break;
525 		case 7:
526 			v |= ESS_IRQ_CTRL_INTRC;
527 			break;
528 		case 9:
529 			v |= ESS_IRQ_CTRL_INTRA;
530 			break;
531 		case 10:
532 			v |= ESS_IRQ_CTRL_INTRD;
533 			break;
534 #ifdef DIAGNOSTIC
535 		default:
536 			printf("ess: configured irq %d not supported for Audio 1\n",
537 			       sc->sc_audio1.irq);
538 			return;
539 #endif
540 		}
541 	}
542 	ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
543 
544 	if (ESS_USE_AUDIO1(sc->sc_model))
545 		return;
546 
547 	if (sc->sc_audio2.polled) {
548 		/* Turn off Audio2 interrupts. */
549 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
550 				    ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
551 	} else {
552 		/* Audio2 is hardwired to INTRE in this mode. */
553 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
554 				  ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
555 	}
556 }
557 
558 
559 void
560 ess_config_drq(struct ess_softc *sc)
561 {
562 	int v;
563 
564 	DPRINTFN(2,("ess_config_drq\n"));
565 
566 	/* Configure Audio 1 (record) for DMA on the appropriate channel. */
567 	v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
568 	switch (sc->sc_audio1.drq) {
569 	case 0:
570 		v |= ESS_DRQ_CTRL_DRQA;
571 		break;
572 	case 1:
573 		v |= ESS_DRQ_CTRL_DRQB;
574 		break;
575 	case 3:
576 		v |= ESS_DRQ_CTRL_DRQC;
577 		break;
578 #ifdef DIAGNOSTIC
579 	default:
580 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
581 		       sc->sc_audio1.drq);
582 		return;
583 #endif
584 	}
585 	/* Set DRQ1 */
586 	ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
587 
588 	if (ESS_USE_AUDIO1(sc->sc_model))
589 		return;
590 
591 	/* Configure DRQ2 */
592 	v = ESS_AUDIO2_CTRL3_DRQ_PD;
593 	switch (sc->sc_audio2.drq) {
594 	case 0:
595 		v |= ESS_AUDIO2_CTRL3_DRQA;
596 		break;
597 	case 1:
598 		v |= ESS_AUDIO2_CTRL3_DRQB;
599 		break;
600 	case 3:
601 		v |= ESS_AUDIO2_CTRL3_DRQC;
602 		break;
603 	case 5:
604 		v |= ESS_AUDIO2_CTRL3_DRQD;
605 		break;
606 #ifdef DIAGNOSTIC
607 	default:
608 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
609 		       sc->sc_audio2.drq);
610 		return;
611 #endif
612 	}
613 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
614 	/* Enable DMA 2 */
615 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
616 			  ESS_AUDIO2_CTRL2_DMA_ENABLE);
617 }
618 
619 /*
620  * Set up registers after a reset.
621  */
622 void
623 ess_setup(struct ess_softc *sc)
624 {
625 
626 	ess_config_irq(sc);
627 	ess_config_drq(sc);
628 
629 	DPRINTFN(2,("ess_setup: done\n"));
630 }
631 
632 /*
633  * Determine the model of ESS chip we are talking to.  Currently we
634  * only support ES1888, ES1887 and ES888.  The method of determining
635  * the chip is based on the information on page 27 of the ES1887 data
636  * sheet.
637  *
638  * This routine sets the values of sc->sc_model and sc->sc_version.
639  */
640 int
641 ess_identify(struct ess_softc *sc)
642 {
643 	u_char reg1;
644 	u_char reg2;
645 	u_char reg3;
646 	u_int8_t ident[4];
647 
648 	sc->sc_model = ESS_UNSUPPORTED;
649 	sc->sc_version = 0;
650 
651 	memset(ident, 0, sizeof(ident));
652 
653 	/*
654 	 * 1. Check legacy ID bytes.  These should be 0x68 0x8n, where
655 	 *    n >= 8 for an ES1887 or an ES888.  Other values indicate
656 	 *    earlier (unsupported) chips.
657 	 */
658 	ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
659 
660 	if ((reg1 = ess_rdsp(sc)) != 0x68) {
661 		printf("ess: First ID byte wrong (0x%02x)\n", reg1);
662 		return 1;
663 	}
664 
665 	reg2 = ess_rdsp(sc);
666 	if (((reg2 & 0xf0) != 0x80) ||
667 	    ((reg2 & 0x0f) < 8)) {
668 		sc->sc_model = ESS_688;
669 		return 0;
670 	}
671 
672 	/*
673 	 * Store the ID bytes as the version.
674 	 */
675 	sc->sc_version = (reg1 << 8) + reg2;
676 
677 
678 	/*
679 	 * 2. Verify we can change bit 2 in mixer register 0x64.  This
680 	 *    should be possible on all supported chips.
681 	 */
682 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
683 	reg2 = reg1 ^ 0x04;  /* toggle bit 2 */
684 
685 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
686 
687 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
688 		switch (sc->sc_version) {
689 		case 0x688b:
690 			sc->sc_model = ESS_1688;
691 			break;
692 		default:
693 			printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
694 			return 1;
695 		}
696 		return 0;
697 	}
698 
699 	/*
700 	 * Restore the original value of mixer register 0x64.
701 	 */
702 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
703 
704 
705 	/*
706 	 * 3. Verify we can change the value of mixer register
707 	 *    ESS_MREG_SAMPLE_RATE.
708 	 *    This is possible on the 1888/1887/888, but not on the 1788.
709 	 *    It is not necessary to restore the value of this mixer register.
710 	 */
711 	reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
712 	reg2 = reg1 ^ 0xff;  /* toggle all bits */
713 
714 	ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
715 
716 	if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
717 		/* If we got this far before failing, it's a 1788. */
718 		sc->sc_model = ESS_1788;
719 
720 		/*
721 		 * Identify ESS model for ES18[67]8.
722 		 */
723 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
724 		if(ident[0] == 0x18) {
725 			switch(ident[1]) {
726 			case 0x68:
727 				sc->sc_model = ESS_1868;
728 				break;
729 			case 0x78:
730 				sc->sc_model = ESS_1878;
731 				break;
732 			}
733 		}
734 
735 		return 0;
736 	}
737 
738 	/*
739 	 * 4. Determine if we can change bit 5 in mixer register 0x64.
740 	 *    This determines whether we have an ES1887:
741 	 *
742 	 *    - can change indicates ES1887
743 	 *    - can't change indicates ES1888 or ES888
744 	 */
745 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
746 	reg2 = reg1 ^ 0x20;  /* toggle bit 5 */
747 
748 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
749 
750 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
751 		sc->sc_model = ESS_1887;
752 
753 		/*
754 		 * Restore the original value of mixer register 0x64.
755 		 */
756 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
757 
758 		/*
759 		 * Identify ESS model for ES18[67]9.
760 		 */
761 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
762 		if(ident[0] == 0x18) {
763 			switch(ident[1]) {
764 			case 0x69:
765 				sc->sc_model = ESS_1869;
766 				break;
767 			case 0x79:
768 				sc->sc_model = ESS_1879;
769 				break;
770 			}
771 		}
772 
773 		return 0;
774 	}
775 
776 	/*
777 	 * 5. Determine if we can change the value of mixer
778 	 *    register 0x69 independently of mixer register
779 	 *    0x68. This determines which chip we have:
780 	 *
781 	 *    - can modify idependently indicates ES888
782 	 *    - register 0x69 is an alias of 0x68 indicates ES1888
783 	 */
784 	reg1 = ess_read_mix_reg(sc, 0x68);
785 	reg2 = ess_read_mix_reg(sc, 0x69);
786 	reg3 = reg2 ^ 0xff;  /* toggle all bits */
787 
788 	/*
789 	 * Write different values to each register.
790 	 */
791 	ess_write_mix_reg(sc, 0x68, reg2);
792 	ess_write_mix_reg(sc, 0x69, reg3);
793 
794 	if (ess_read_mix_reg(sc, 0x68) == reg2 &&
795 	    ess_read_mix_reg(sc, 0x69) == reg3)
796 		sc->sc_model = ESS_888;
797 	else
798 		sc->sc_model = ESS_1888;
799 
800 	/*
801 	 * Restore the original value of the registers.
802 	 */
803 	ess_write_mix_reg(sc, 0x68, reg1);
804 	ess_write_mix_reg(sc, 0x69, reg2);
805 
806 	return 0;
807 }
808 
809 
810 int
811 ess_setup_sc(struct ess_softc *sc, int doinit)
812 {
813 
814 	callout_init(&sc->sc_poll1_ch, 0);
815 	callout_init(&sc->sc_poll2_ch, 0);
816 
817 	/* Reset the chip. */
818 	if (ess_reset(sc) != 0) {
819 		DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
820 		return 1;
821 	}
822 
823 	/* Identify the ESS chip, and check that it is supported. */
824 	if (ess_identify(sc)) {
825 		DPRINTF(("ess_setup_sc: couldn't identify\n"));
826 		return 1;
827 	}
828 
829 	return 0;
830 }
831 
832 /*
833  * Probe for the ESS hardware.
834  */
835 int
836 essmatch(struct ess_softc *sc)
837 {
838 	if (!ESS_BASE_VALID(sc->sc_iobase)) {
839 		printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
840 		return 0;
841 	}
842 
843 	if (ess_setup_sc(sc, 1))
844 		return 0;
845 
846 	if (sc->sc_model == ESS_UNSUPPORTED) {
847 		DPRINTF(("ess: Unsupported model\n"));
848 		return 0;
849 	}
850 
851 	/* Check that requested DMA channels are valid and different. */
852 	if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
853 		printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
854 		return 0;
855 	}
856 	if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
857 		return 0;
858 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
859 		if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
860 			printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
861 			return 0;
862 		}
863 		if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
864 			printf("ess: play and record drq both %d\n",
865 			       sc->sc_audio1.drq);
866 			return 0;
867 		}
868 		if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
869 			return 0;
870 	}
871 
872 	/*
873 	 * The 1887 has an additional IRQ mode where both channels are mapped
874 	 * to the same IRQ.
875 	 */
876 	if (sc->sc_model == ESS_1887 &&
877 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
878 	    sc->sc_audio1.irq != -1 &&
879 	    ESS_IRQ12_VALID(sc->sc_audio1.irq))
880 		goto irq_not1888;
881 
882 	/* Check that requested IRQ lines are valid and different. */
883 	if (sc->sc_audio1.irq != -1 &&
884 	    !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
885 		printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
886 		return 0;
887 	}
888 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
889 		if (sc->sc_audio2.irq != -1 &&
890 		    !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
891 			printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
892 			return 0;
893 		}
894 		if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
895 		    sc->sc_audio1.irq != -1) {
896 			printf("ess: play and record irq both %d\n",
897 			       sc->sc_audio1.irq);
898 			return 0;
899 		}
900 	}
901 
902 irq_not1888:
903 	/* XXX should we check IRQs as well? */
904 
905 	return 2; /* beat "sb" */
906 }
907 
908 
909 /*
910  * Attach hardware to driver, attach hardware driver to audio
911  * pseudo-device driver.
912  */
913 void
914 essattach(struct ess_softc *sc, int enablejoy)
915 {
916 	struct audio_attach_args arg;
917 	int i;
918 	u_int v;
919 
920 	if (ess_setup_sc(sc, 0)) {
921 		printf(": setup failed\n");
922 		return;
923 	}
924 
925 	printf(": ESS Technology ES%s [version 0x%04x]\n",
926 	    essmodel[sc->sc_model], sc->sc_version);
927 
928 	sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
929 	if (!sc->sc_audio1.polled) {
930 		sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
931 		    sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
932 		    ess_audio1_intr, sc);
933 		printf("%s: audio1 interrupting at irq %d\n",
934 		    device_xname(&sc->sc_dev), sc->sc_audio1.irq);
935 	} else
936 		printf("%s: audio1 polled\n", device_xname(&sc->sc_dev));
937 	sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
938 
939 	if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
940 		aprint_error_dev(&sc->sc_dev, "can't reserve drq %d\n",
941 		    sc->sc_audio1.drq);
942 		return;
943 	}
944 
945 	if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
946 	    sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
947 		aprint_error_dev(&sc->sc_dev, "can't create map for drq %d\n",
948 		    sc->sc_audio1.drq);
949 		return;
950 	}
951 
952 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
953 		sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
954 		if (!sc->sc_audio2.polled) {
955 			sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
956 			    sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
957 			    ess_audio2_intr, sc);
958 			printf("%s: audio2 interrupting at irq %d\n",
959 			    device_xname(&sc->sc_dev), sc->sc_audio2.irq);
960 		} else
961 			printf("%s: audio2 polled\n", device_xname(&sc->sc_dev));
962 		sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
963 		    sc->sc_audio2.drq);
964 
965 		if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
966 			aprint_error_dev(&sc->sc_dev, "can't reserve drq %d\n",
967 			    sc->sc_audio2.drq);
968 			return;
969 		}
970 
971 		if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
972 		    sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
973 			aprint_error_dev(&sc->sc_dev, "can't create map for drq %d\n",
974 			    sc->sc_audio2.drq);
975 			return;
976 		}
977 	}
978 
979 	/* Do a hardware reset on the mixer. */
980 	ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
981 
982 	/*
983 	 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
984 	 * to playback mixer, since playback is always through Audio 2.
985 	 */
986 	if (!ESS_USE_AUDIO1(sc->sc_model))
987 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
988 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
989 
990 	if (ESS_USE_AUDIO1(sc->sc_model)) {
991 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
992 		sc->in_port = ESS_SOURCE_MIC;
993 		sc->ndevs = ESS_1788_NDEVS;
994 	} else {
995 		/*
996 		 * Set hardware record source to use output of the record
997 		 * mixer. We do the selection of record source in software by
998 		 * setting the gain of the unused sources to zero. (See
999 		 * ess_set_in_ports.)
1000 		 */
1001 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
1002 		sc->in_mask = 1 << ESS_MIC_REC_VOL;
1003 		sc->ndevs = ESS_1888_NDEVS;
1004 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
1005 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
1006 	}
1007 
1008 	/*
1009 	 * Set gain on each mixer device to a sensible value.
1010 	 * Devices not normally used are turned off, and other devices
1011 	 * are set to 50% volume.
1012 	 */
1013 	for (i = 0; i < sc->ndevs; i++) {
1014 		switch (i) {
1015 		case ESS_MIC_PLAY_VOL:
1016 		case ESS_LINE_PLAY_VOL:
1017 		case ESS_CD_PLAY_VOL:
1018 		case ESS_AUXB_PLAY_VOL:
1019 		case ESS_DAC_REC_VOL:
1020 		case ESS_LINE_REC_VOL:
1021 		case ESS_SYNTH_REC_VOL:
1022 		case ESS_CD_REC_VOL:
1023 		case ESS_AUXB_REC_VOL:
1024 			v = 0;
1025 			break;
1026 		default:
1027 			v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1028 			break;
1029 		}
1030 		sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1031 		ess_set_gain(sc, i, 1);
1032 	}
1033 
1034 	ess_setup(sc);
1035 
1036 	/* Disable the speaker until the device is opened.  */
1037 	ess_speaker_off(sc);
1038 	sc->spkr_state = SPKR_OFF;
1039 
1040 	snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
1041 	    essmodel[sc->sc_model]);
1042 	snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
1043 	    sc->sc_version);
1044 
1045 	if (ESS_USE_AUDIO1(sc->sc_model))
1046 		audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1047 	else
1048 		audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1049 
1050 	arg.type = AUDIODEV_TYPE_OPL;
1051 	arg.hwif = 0;
1052 	arg.hdl = 0;
1053 	(void)config_found(&sc->sc_dev, &arg, audioprint);
1054 
1055 #if NJOY_ESS > 0
1056 	if (sc->sc_model == ESS_1888 && enablejoy) {
1057 		unsigned char m40;
1058 
1059 		m40 = ess_read_mix_reg(sc, 0x40);
1060 		m40 |= 2;
1061 		ess_write_mix_reg(sc, 0x40, m40);
1062 
1063 		arg.type = AUDIODEV_TYPE_AUX;
1064 		(void)config_found(&sc->sc_dev, &arg, audioprint);
1065 	}
1066 #endif
1067 
1068 #ifdef AUDIO_DEBUG
1069 	if (essdebug > 0)
1070 		ess_printsc(sc);
1071 #endif
1072 }
1073 
1074 /*
1075  * Various routines to interface to higher level audio driver
1076  */
1077 
1078 int
1079 ess_open(void *addr, int flags)
1080 {
1081 	return 0;
1082 }
1083 
1084 void
1085 ess_close(void *addr)
1086 {
1087 	struct ess_softc *sc;
1088 
1089 	sc = addr;
1090 	DPRINTF(("ess_close: sc=%p\n", sc));
1091 
1092 	ess_speaker_off(sc);
1093 	sc->spkr_state = SPKR_OFF;
1094 
1095 	DPRINTF(("ess_close: closed\n"));
1096 }
1097 
1098 /*
1099  * Wait for FIFO to drain, and analog section to settle.
1100  * XXX should check FIFO empty bit.
1101  */
1102 int
1103 ess_drain(void *addr)
1104 {
1105 
1106 	tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1107 	return 0;
1108 }
1109 
1110 /* XXX should use reference count */
1111 int
1112 ess_speaker_ctl(void *addr, int newstate)
1113 {
1114 	struct ess_softc *sc;
1115 
1116 	sc = addr;
1117 	if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1118 		ess_speaker_on(sc);
1119 		sc->spkr_state = SPKR_ON;
1120 	}
1121 	if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1122 		ess_speaker_off(sc);
1123 		sc->spkr_state = SPKR_OFF;
1124 	}
1125 	return 0;
1126 }
1127 
1128 int
1129 ess_getdev(void *addr, struct audio_device *retp)
1130 {
1131 
1132 	*retp = ess_device;
1133 	return 0;
1134 }
1135 
1136 int
1137 ess_query_encoding(void *addr, struct audio_encoding *fp)
1138 {
1139 	/*struct ess_softc *sc = addr;*/
1140 
1141 	switch (fp->index) {
1142 	case 0:
1143 		strcpy(fp->name, AudioEulinear);
1144 		fp->encoding = AUDIO_ENCODING_ULINEAR;
1145 		fp->precision = 8;
1146 		fp->flags = 0;
1147 		return 0;
1148 	case 1:
1149 		strcpy(fp->name, AudioEmulaw);
1150 		fp->encoding = AUDIO_ENCODING_ULAW;
1151 		fp->precision = 8;
1152 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1153 		return 0;
1154 	case 2:
1155 		strcpy(fp->name, AudioEalaw);
1156 		fp->encoding = AUDIO_ENCODING_ALAW;
1157 		fp->precision = 8;
1158 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1159 		return 0;
1160 	case 3:
1161 		strcpy(fp->name, AudioEslinear);
1162 		fp->encoding = AUDIO_ENCODING_SLINEAR;
1163 		fp->precision = 8;
1164 		fp->flags = 0;
1165 		return 0;
1166 	case 4:
1167 		strcpy(fp->name, AudioEslinear_le);
1168 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1169 		fp->precision = 16;
1170 		fp->flags = 0;
1171 		return 0;
1172 	case 5:
1173 		strcpy(fp->name, AudioEulinear_le);
1174 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1175 		fp->precision = 16;
1176 		fp->flags = 0;
1177 		return 0;
1178 	case 6:
1179 		strcpy(fp->name, AudioEslinear_be);
1180 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1181 		fp->precision = 16;
1182 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1183 		return 0;
1184 	case 7:
1185 		strcpy(fp->name, AudioEulinear_be);
1186 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1187 		fp->precision = 16;
1188 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1189 		return 0;
1190 	default:
1191 		return EINVAL;
1192 	}
1193 	return 0;
1194 }
1195 
1196 int
1197 ess_set_params(
1198 	void *addr,
1199 	int setmode, int usemode,
1200 	audio_params_t *play, audio_params_t *rec,
1201 	stream_filter_list_t *pfil, stream_filter_list_t *rfil)
1202 {
1203 	struct ess_softc *sc;
1204 	int rate;
1205 
1206 	DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1207 	sc = addr;
1208 	/*
1209 	 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1210 	 * full-duplex operation the sample rates must be the same for both
1211 	 * channels.  This appears to be false; the only bit in common is the
1212 	 * clock source selection.  However, we'll be conservative here.
1213 	 * - mycroft
1214 	 */
1215 	if (play->sample_rate != rec->sample_rate &&
1216 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1217 		if (setmode == AUMODE_PLAY) {
1218 			rec->sample_rate = play->sample_rate;
1219 			setmode |= AUMODE_RECORD;
1220 		} else if (setmode == AUMODE_RECORD) {
1221 			play->sample_rate = rec->sample_rate;
1222 			setmode |= AUMODE_PLAY;
1223 		} else
1224 			return EINVAL;
1225 	}
1226 
1227 	if (setmode & AUMODE_RECORD) {
1228 		if (auconv_set_converter(ess_formats, ESS_NFORMATS,
1229 					 AUMODE_RECORD, rec, FALSE, rfil) < 0)
1230 			return EINVAL;
1231 	}
1232 	if (setmode & AUMODE_PLAY) {
1233 		if (auconv_set_converter(ess_formats, ESS_NFORMATS,
1234 					 AUMODE_PLAY, play, FALSE, pfil) < 0)
1235 			return EINVAL;
1236 	}
1237 
1238 	if (usemode == AUMODE_RECORD)
1239 		rate = rec->sample_rate;
1240 	else
1241 		rate = play->sample_rate;
1242 
1243 	ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1244 	ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1245 
1246 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
1247 		ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1248 		ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 int
1255 ess_audio1_trigger_output(
1256 	void *addr,
1257 	void *start, void *end,
1258 	int blksize,
1259 	void (*intr)(void *),
1260 	void *arg,
1261 	const audio_params_t *param)
1262 {
1263 	struct ess_softc *sc;
1264 	u_int8_t reg;
1265 
1266 	sc = addr;
1267 	DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p "
1268 	    "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1269 
1270 	if (sc->sc_audio1.active)
1271 		panic("ess_audio1_trigger_output: already running");
1272 
1273 	sc->sc_audio1.active = 1;
1274 	sc->sc_audio1.intr = intr;
1275 	sc->sc_audio1.arg = arg;
1276 	if (sc->sc_audio1.polled) {
1277 		sc->sc_audio1.dmapos = 0;
1278 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1279 		sc->sc_audio1.dmacount = 0;
1280 		sc->sc_audio1.blksize = blksize;
1281 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1282 		    ess_audio1_poll, sc);
1283 	}
1284 
1285 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1286 	if (param->channels == 2) {
1287 		reg &= ~ESS_AUDIO_CTRL_MONO;
1288 		reg |= ESS_AUDIO_CTRL_STEREO;
1289 	} else {
1290 		reg |= ESS_AUDIO_CTRL_MONO;
1291 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1292 	}
1293 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1294 
1295 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1296 	if (param->precision == 16)
1297 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1298 	else
1299 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1300 	if (param->channels == 2)
1301 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1302 	else
1303 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1304 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1305 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1306 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1307 	else
1308 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1309 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1310 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1311 
1312 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1313 		     (char *)end - (char *)start, NULL,
1314 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1315 
1316 	/* Program transfer count registers with 2's complement of count. */
1317 	blksize = -blksize;
1318 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1319 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1320 
1321 	/* Use 4 bytes per output DMA. */
1322 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1323 
1324 	/* Start auto-init DMA */
1325 	ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1326 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1327 	reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1328 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1329 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1330 
1331 	return 0;
1332 }
1333 
1334 int
1335 ess_audio2_trigger_output(
1336 	void *addr,
1337 	void *start, void *end,
1338 	int blksize,
1339 	void (*intr)(void *),
1340 	void *arg,
1341 	const audio_params_t *param)
1342 {
1343 	struct ess_softc *sc;
1344 	u_int8_t reg;
1345 
1346 	sc = addr;
1347 	DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p "
1348 	    "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1349 
1350 	if (sc->sc_audio2.active)
1351 		panic("ess_audio2_trigger_output: already running");
1352 
1353 	sc->sc_audio2.active = 1;
1354 	sc->sc_audio2.intr = intr;
1355 	sc->sc_audio2.arg = arg;
1356 	if (sc->sc_audio2.polled) {
1357 		sc->sc_audio2.dmapos = 0;
1358 		sc->sc_audio2.buffersize = (char *)end - (char *)start;
1359 		sc->sc_audio2.dmacount = 0;
1360 		sc->sc_audio2.blksize = blksize;
1361 		callout_reset(&sc->sc_poll2_ch, hz / 30,
1362 		    ess_audio2_poll, sc);
1363 	}
1364 
1365 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1366 	if (param->precision == 16)
1367 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1368 	else
1369 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1370 	if (param->channels == 2)
1371 		reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1372 	else
1373 		reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1374 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1375 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1376 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1377 	else
1378 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1379 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1380 
1381 	isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1382 		     (char *)end - (char *)start, NULL,
1383 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1384 
1385 	if (IS16BITDRQ(sc->sc_audio2.drq))
1386 		blksize >>= 1;	/* use word count for 16 bit DMA */
1387 	/* Program transfer count registers with 2's complement of count. */
1388 	blksize = -blksize;
1389 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1390 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1391 
1392 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1393 	if (IS16BITDRQ(sc->sc_audio2.drq))
1394 		reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1395 	else
1396 		reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1397 	reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1398 	reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1399 	       ESS_AUDIO2_CTRL1_AUTO_INIT;
1400 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1401 
1402 	return (0);
1403 }
1404 
1405 int
1406 ess_audio1_trigger_input(
1407 	void *addr,
1408 	void *start, void *end,
1409 	int blksize,
1410 	void (*intr)(void *),
1411 	void *arg,
1412 	const audio_params_t *param)
1413 {
1414 	struct ess_softc *sc;
1415 	u_int8_t reg;
1416 
1417 	sc = addr;
1418 	DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p "
1419 	    "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));
1420 
1421 	if (sc->sc_audio1.active)
1422 		panic("ess_audio1_trigger_input: already running");
1423 
1424 	sc->sc_audio1.active = 1;
1425 	sc->sc_audio1.intr = intr;
1426 	sc->sc_audio1.arg = arg;
1427 	if (sc->sc_audio1.polled) {
1428 		sc->sc_audio1.dmapos = 0;
1429 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1430 		sc->sc_audio1.dmacount = 0;
1431 		sc->sc_audio1.blksize = blksize;
1432 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1433 		    ess_audio1_poll, sc);
1434 	}
1435 
1436 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1437 	if (param->channels == 2) {
1438 		reg &= ~ESS_AUDIO_CTRL_MONO;
1439 		reg |= ESS_AUDIO_CTRL_STEREO;
1440 	} else {
1441 		reg |= ESS_AUDIO_CTRL_MONO;
1442 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1443 	}
1444 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1445 
1446 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1447 	if (param->precision == 16)
1448 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1449 	else
1450 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1451 	if (param->channels == 2)
1452 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1453 	else
1454 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1455 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1456 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1457 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1458 	else
1459 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1460 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1461 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1462 
1463 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1464 		     (char *)end - (char *)start, NULL,
1465 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1466 
1467 	/* Program transfer count registers with 2's complement of count. */
1468 	blksize = -blksize;
1469 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1470 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1471 
1472 	/* Use 4 bytes per input DMA. */
1473 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1474 
1475 	/* Start auto-init DMA */
1476 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1477 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1478 	reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1479 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1480 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1481 
1482 	return 0;
1483 }
1484 
1485 int
1486 ess_audio1_halt(void *addr)
1487 {
1488 	struct ess_softc *sc;
1489 
1490 	sc = addr;
1491 	DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1492 
1493 	if (sc->sc_audio1.active) {
1494 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1495 		    ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1496 		isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1497 		if (sc->sc_audio1.polled)
1498 			callout_stop(&sc->sc_poll1_ch);
1499 		sc->sc_audio1.active = 0;
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 int
1506 ess_audio2_halt(void *addr)
1507 {
1508 	struct ess_softc *sc;
1509 
1510 	sc = addr;
1511 	DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1512 
1513 	if (sc->sc_audio2.active) {
1514 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1515 		    ESS_AUDIO2_CTRL1_DAC_ENABLE |
1516 		    ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1517 		isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1518 		if (sc->sc_audio2.polled)
1519 			callout_stop(&sc->sc_poll2_ch);
1520 		sc->sc_audio2.active = 0;
1521 	}
1522 
1523 	return 0;
1524 }
1525 
1526 int
1527 ess_audio1_intr(void *arg)
1528 {
1529 	struct ess_softc *sc;
1530 	uint8_t reg;
1531 
1532 	sc = arg;
1533 	DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1534 
1535 	/* Check and clear interrupt on Audio1. */
1536 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1537 	if ((reg & ESS_DSP_READ_OFLOW) == 0)
1538 		return 0;
1539 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1540 
1541 	sc->sc_audio1.nintr++;
1542 
1543 	if (sc->sc_audio1.active) {
1544 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1545 		return 1;
1546 	} else
1547 		return 0;
1548 }
1549 
1550 int
1551 ess_audio2_intr(void *arg)
1552 {
1553 	struct ess_softc *sc;
1554 	uint8_t reg;
1555 
1556 	sc = arg;
1557 	DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1558 
1559 	/* Check and clear interrupt on Audio2. */
1560 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1561 	if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1562 		return 0;
1563 	reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1564 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1565 
1566 	sc->sc_audio2.nintr++;
1567 
1568 	if (sc->sc_audio2.active) {
1569 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1570 		return 1;
1571 	} else
1572 		return 0;
1573 }
1574 
1575 void
1576 ess_audio1_poll(void *addr)
1577 {
1578 	struct ess_softc *sc;
1579 	int dmapos, dmacount;
1580 
1581 	sc = addr;
1582 	if (!sc->sc_audio1.active)
1583 		return;
1584 
1585 	sc->sc_audio1.nintr++;
1586 
1587 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1588 	dmacount = sc->sc_audio1.dmapos - dmapos;
1589 	if (dmacount < 0)
1590 		dmacount += sc->sc_audio1.buffersize;
1591 	sc->sc_audio1.dmapos = dmapos;
1592 #if 1
1593 	dmacount += sc->sc_audio1.dmacount;
1594 	while (dmacount > sc->sc_audio1.blksize) {
1595 		dmacount -= sc->sc_audio1.blksize;
1596 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1597 	}
1598 	sc->sc_audio1.dmacount = dmacount;
1599 #else
1600 	(*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1601 #endif
1602 
1603 	callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1604 }
1605 
1606 void
1607 ess_audio2_poll(void *addr)
1608 {
1609 	struct ess_softc *sc;
1610 	int dmapos, dmacount;
1611 
1612 	sc = addr;
1613 	if (!sc->sc_audio2.active)
1614 		return;
1615 
1616 	sc->sc_audio2.nintr++;
1617 
1618 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1619 	dmacount = sc->sc_audio2.dmapos - dmapos;
1620 	if (dmacount < 0)
1621 		dmacount += sc->sc_audio2.buffersize;
1622 	sc->sc_audio2.dmapos = dmapos;
1623 #if 1
1624 	dmacount += sc->sc_audio2.dmacount;
1625 	while (dmacount > sc->sc_audio2.blksize) {
1626 		dmacount -= sc->sc_audio2.blksize;
1627 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1628 	}
1629 	sc->sc_audio2.dmacount = dmacount;
1630 #else
1631 	(*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1632 #endif
1633 
1634 	callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1635 }
1636 
1637 int
1638 ess_round_blocksize(void *addr, int blk, int mode,
1639     const audio_params_t *param)
1640 {
1641 
1642 	return blk & -8;	/* round for max DMA size */
1643 }
1644 
1645 int
1646 ess_set_port(void *addr, mixer_ctrl_t *cp)
1647 {
1648 	struct ess_softc *sc;
1649 	int lgain, rgain;
1650 
1651 	sc = addr;
1652 	DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1653 		    cp->dev, cp->un.value.num_channels));
1654 
1655 	switch (cp->dev) {
1656 	/*
1657 	 * The following mixer ports are all stereo. If we get a
1658 	 * single-channel gain value passed in, then we duplicate it
1659 	 * to both left and right channels.
1660 	 */
1661 	case ESS_MASTER_VOL:
1662 	case ESS_DAC_PLAY_VOL:
1663 	case ESS_MIC_PLAY_VOL:
1664 	case ESS_LINE_PLAY_VOL:
1665 	case ESS_SYNTH_PLAY_VOL:
1666 	case ESS_CD_PLAY_VOL:
1667 	case ESS_AUXB_PLAY_VOL:
1668 	case ESS_RECORD_VOL:
1669 		if (cp->type != AUDIO_MIXER_VALUE)
1670 			return EINVAL;
1671 
1672 		switch (cp->un.value.num_channels) {
1673 		case 1:
1674 			lgain = rgain = ESS_4BIT_GAIN(
1675 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1676 			break;
1677 		case 2:
1678 			lgain = ESS_4BIT_GAIN(
1679 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1680 			rgain = ESS_4BIT_GAIN(
1681 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1682 			break;
1683 		default:
1684 			return EINVAL;
1685 		}
1686 
1687 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1688 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1689 		ess_set_gain(sc, cp->dev, 1);
1690 		return 0;
1691 
1692 	/*
1693 	 * The PC speaker port is mono. If we get a stereo gain value
1694 	 * passed in, then we return EINVAL.
1695 	 */
1696 	case ESS_PCSPEAKER_VOL:
1697 		if (cp->un.value.num_channels != 1)
1698 			return EINVAL;
1699 
1700 		sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1701 		  ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1702 		ess_set_gain(sc, cp->dev, 1);
1703 		return 0;
1704 
1705 	case ESS_RECORD_SOURCE:
1706 		if (ESS_USE_AUDIO1(sc->sc_model)) {
1707 			if (cp->type == AUDIO_MIXER_ENUM)
1708 				return ess_set_in_port(sc, cp->un.ord);
1709 			else
1710 				return EINVAL;
1711 		} else {
1712 			if (cp->type == AUDIO_MIXER_SET)
1713 				return ess_set_in_ports(sc, cp->un.mask);
1714 			else
1715 				return EINVAL;
1716 		}
1717 		return 0;
1718 
1719 	case ESS_RECORD_MONITOR:
1720 		if (cp->type != AUDIO_MIXER_ENUM)
1721 			return EINVAL;
1722 
1723 		if (cp->un.ord)
1724 			/* Enable monitor */
1725 			ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1726 					  ESS_AUDIO_CTRL_MONITOR);
1727 		else
1728 			/* Disable monitor */
1729 			ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1730 					    ESS_AUDIO_CTRL_MONITOR);
1731 		return 0;
1732 	}
1733 
1734 	if (ESS_USE_AUDIO1(sc->sc_model))
1735 		return EINVAL;
1736 
1737 	switch (cp->dev) {
1738 	case ESS_DAC_REC_VOL:
1739 	case ESS_MIC_REC_VOL:
1740 	case ESS_LINE_REC_VOL:
1741 	case ESS_SYNTH_REC_VOL:
1742 	case ESS_CD_REC_VOL:
1743 	case ESS_AUXB_REC_VOL:
1744 		if (cp->type != AUDIO_MIXER_VALUE)
1745 			return EINVAL;
1746 
1747 		switch (cp->un.value.num_channels) {
1748 		case 1:
1749 			lgain = rgain = ESS_4BIT_GAIN(
1750 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1751 			break;
1752 		case 2:
1753 			lgain = ESS_4BIT_GAIN(
1754 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1755 			rgain = ESS_4BIT_GAIN(
1756 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1757 			break;
1758 		default:
1759 			return EINVAL;
1760 		}
1761 
1762 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1763 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1764 		ess_set_gain(sc, cp->dev, 1);
1765 		return 0;
1766 
1767 	case ESS_MIC_PREAMP:
1768 		if (cp->type != AUDIO_MIXER_ENUM)
1769 			return EINVAL;
1770 
1771 		if (cp->un.ord)
1772 			/* Enable microphone preamp */
1773 			ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1774 					  ESS_PREAMP_CTRL_ENABLE);
1775 		else
1776 			/* Disable microphone preamp */
1777 			ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1778 					  ESS_PREAMP_CTRL_ENABLE);
1779 		return 0;
1780 	}
1781 
1782 	return EINVAL;
1783 }
1784 
1785 int
1786 ess_get_port(void *addr, mixer_ctrl_t *cp)
1787 {
1788 	struct ess_softc *sc;
1789 
1790 	sc = addr;
1791 	DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1792 
1793 	switch (cp->dev) {
1794 	case ESS_MASTER_VOL:
1795 	case ESS_DAC_PLAY_VOL:
1796 	case ESS_MIC_PLAY_VOL:
1797 	case ESS_LINE_PLAY_VOL:
1798 	case ESS_SYNTH_PLAY_VOL:
1799 	case ESS_CD_PLAY_VOL:
1800 	case ESS_AUXB_PLAY_VOL:
1801 	case ESS_RECORD_VOL:
1802 		switch (cp->un.value.num_channels) {
1803 		case 1:
1804 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1805 				sc->gain[cp->dev][ESS_LEFT];
1806 			break;
1807 		case 2:
1808 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1809 				sc->gain[cp->dev][ESS_LEFT];
1810 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1811 				sc->gain[cp->dev][ESS_RIGHT];
1812 			break;
1813 		default:
1814 			return EINVAL;
1815 		}
1816 		return 0;
1817 
1818 	case ESS_PCSPEAKER_VOL:
1819 		if (cp->un.value.num_channels != 1)
1820 			return EINVAL;
1821 
1822 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1823 			sc->gain[cp->dev][ESS_LEFT];
1824 		return 0;
1825 
1826 	case ESS_RECORD_SOURCE:
1827 		if (ESS_USE_AUDIO1(sc->sc_model))
1828 			cp->un.ord = sc->in_port;
1829 		else
1830 			cp->un.mask = sc->in_mask;
1831 		return 0;
1832 
1833 	case ESS_RECORD_MONITOR:
1834 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1835 			      ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1836 		return 0;
1837 	}
1838 
1839 	if (ESS_USE_AUDIO1(sc->sc_model))
1840 		return EINVAL;
1841 
1842 	switch (cp->dev) {
1843 	case ESS_DAC_REC_VOL:
1844 	case ESS_MIC_REC_VOL:
1845 	case ESS_LINE_REC_VOL:
1846 	case ESS_SYNTH_REC_VOL:
1847 	case ESS_CD_REC_VOL:
1848 	case ESS_AUXB_REC_VOL:
1849 		switch (cp->un.value.num_channels) {
1850 		case 1:
1851 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1852 				sc->gain[cp->dev][ESS_LEFT];
1853 			break;
1854 		case 2:
1855 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1856 				sc->gain[cp->dev][ESS_LEFT];
1857 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1858 				sc->gain[cp->dev][ESS_RIGHT];
1859 			break;
1860 		default:
1861 			return EINVAL;
1862 		}
1863 		return 0;
1864 
1865 	case ESS_MIC_PREAMP:
1866 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1867 			      ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1868 		return 0;
1869 	}
1870 
1871 	return EINVAL;
1872 }
1873 
1874 int
1875 ess_query_devinfo(void *addr, mixer_devinfo_t *dip)
1876 {
1877 	struct ess_softc *sc;
1878 
1879 	sc = addr;
1880 	DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1881 		    sc->sc_model, dip->index));
1882 
1883 	/*
1884 	 * REVISIT: There are some slight differences between the
1885 	 *          mixers on the different ESS chips, which can
1886 	 *          be sorted out using the chip model rather than a
1887 	 *          separate mixer model.
1888 	 *          This is currently coded assuming an ES1887; we
1889 	 *          need to work out which bits are not applicable to
1890 	 *          the other models (1888 and 888).
1891 	 */
1892 	switch (dip->index) {
1893 	case ESS_DAC_PLAY_VOL:
1894 		dip->mixer_class = ESS_INPUT_CLASS;
1895 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1896 		strcpy(dip->label.name, AudioNdac);
1897 		dip->type = AUDIO_MIXER_VALUE;
1898 		dip->un.v.num_channels = 2;
1899 		strcpy(dip->un.v.units.name, AudioNvolume);
1900 		return 0;
1901 
1902 	case ESS_MIC_PLAY_VOL:
1903 		dip->mixer_class = ESS_INPUT_CLASS;
1904 		dip->prev = AUDIO_MIXER_LAST;
1905 		if (ESS_USE_AUDIO1(sc->sc_model))
1906 			dip->next = AUDIO_MIXER_LAST;
1907 		else
1908 			dip->next = ESS_MIC_PREAMP;
1909 		strcpy(dip->label.name, AudioNmicrophone);
1910 		dip->type = AUDIO_MIXER_VALUE;
1911 		dip->un.v.num_channels = 2;
1912 		strcpy(dip->un.v.units.name, AudioNvolume);
1913 		return 0;
1914 
1915 	case ESS_LINE_PLAY_VOL:
1916 		dip->mixer_class = ESS_INPUT_CLASS;
1917 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1918 		strcpy(dip->label.name, AudioNline);
1919 		dip->type = AUDIO_MIXER_VALUE;
1920 		dip->un.v.num_channels = 2;
1921 		strcpy(dip->un.v.units.name, AudioNvolume);
1922 		return 0;
1923 
1924 	case ESS_SYNTH_PLAY_VOL:
1925 		dip->mixer_class = ESS_INPUT_CLASS;
1926 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1927 		strcpy(dip->label.name, AudioNfmsynth);
1928 		dip->type = AUDIO_MIXER_VALUE;
1929 		dip->un.v.num_channels = 2;
1930 		strcpy(dip->un.v.units.name, AudioNvolume);
1931 		return 0;
1932 
1933 	case ESS_CD_PLAY_VOL:
1934 		dip->mixer_class = ESS_INPUT_CLASS;
1935 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1936 		strcpy(dip->label.name, AudioNcd);
1937 		dip->type = AUDIO_MIXER_VALUE;
1938 		dip->un.v.num_channels = 2;
1939 		strcpy(dip->un.v.units.name, AudioNvolume);
1940 		return 0;
1941 
1942 	case ESS_AUXB_PLAY_VOL:
1943 		dip->mixer_class = ESS_INPUT_CLASS;
1944 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1945 		strcpy(dip->label.name, "auxb");
1946 		dip->type = AUDIO_MIXER_VALUE;
1947 		dip->un.v.num_channels = 2;
1948 		strcpy(dip->un.v.units.name, AudioNvolume);
1949 		return 0;
1950 
1951 	case ESS_INPUT_CLASS:
1952 		dip->mixer_class = ESS_INPUT_CLASS;
1953 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1954 		strcpy(dip->label.name, AudioCinputs);
1955 		dip->type = AUDIO_MIXER_CLASS;
1956 		return 0;
1957 
1958 	case ESS_MASTER_VOL:
1959 		dip->mixer_class = ESS_OUTPUT_CLASS;
1960 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1961 		strcpy(dip->label.name, AudioNmaster);
1962 		dip->type = AUDIO_MIXER_VALUE;
1963 		dip->un.v.num_channels = 2;
1964 		strcpy(dip->un.v.units.name, AudioNvolume);
1965 		return 0;
1966 
1967 	case ESS_PCSPEAKER_VOL:
1968 		dip->mixer_class = ESS_OUTPUT_CLASS;
1969 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1970 		strcpy(dip->label.name, "pc_speaker");
1971 		dip->type = AUDIO_MIXER_VALUE;
1972 		dip->un.v.num_channels = 1;
1973 		strcpy(dip->un.v.units.name, AudioNvolume);
1974 		return 0;
1975 
1976 	case ESS_OUTPUT_CLASS:
1977 		dip->mixer_class = ESS_OUTPUT_CLASS;
1978 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1979 		strcpy(dip->label.name, AudioCoutputs);
1980 		dip->type = AUDIO_MIXER_CLASS;
1981 		return 0;
1982 
1983 	case ESS_RECORD_VOL:
1984 		dip->mixer_class = ESS_RECORD_CLASS;
1985 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1986 		strcpy(dip->label.name, AudioNrecord);
1987 		dip->type = AUDIO_MIXER_VALUE;
1988 		dip->un.v.num_channels = 2;
1989 		strcpy(dip->un.v.units.name, AudioNvolume);
1990 		return 0;
1991 
1992 	case ESS_RECORD_SOURCE:
1993 		dip->mixer_class = ESS_RECORD_CLASS;
1994 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1995 		strcpy(dip->label.name, AudioNsource);
1996 		if (ESS_USE_AUDIO1(sc->sc_model)) {
1997 			/*
1998 			 * The 1788 doesn't use the input mixer control that
1999 			 * the 1888 uses, because it's a pain when you only
2000 			 * have one mixer.
2001 			 * Perhaps it could be emulated by keeping both sets of
2002 			 * gain values, and doing a `context switch' of the
2003 			 * mixer registers when shifting from playing to
2004 			 * recording.
2005 			 */
2006 			dip->type = AUDIO_MIXER_ENUM;
2007 			dip->un.e.num_mem = 4;
2008 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2009 			dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2010 			strcpy(dip->un.e.member[1].label.name, AudioNline);
2011 			dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2012 			strcpy(dip->un.e.member[2].label.name, AudioNcd);
2013 			dip->un.e.member[2].ord = ESS_SOURCE_CD;
2014 			strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2015 			dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2016 		} else {
2017 			dip->type = AUDIO_MIXER_SET;
2018 			dip->un.s.num_mem = 6;
2019 			strcpy(dip->un.s.member[0].label.name, AudioNdac);
2020 			dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2021 			strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2022 			dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2023 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2024 			dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2025 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2026 			dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2027 			strcpy(dip->un.s.member[4].label.name, AudioNcd);
2028 			dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2029 			strcpy(dip->un.s.member[5].label.name, "auxb");
2030 			dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2031 		}
2032 		return 0;
2033 
2034 	case ESS_RECORD_CLASS:
2035 		dip->mixer_class = ESS_RECORD_CLASS;
2036 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2037 		strcpy(dip->label.name, AudioCrecord);
2038 		dip->type = AUDIO_MIXER_CLASS;
2039 		return 0;
2040 
2041 	case ESS_RECORD_MONITOR:
2042 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2043 		strcpy(dip->label.name, AudioNmute);
2044 		dip->type = AUDIO_MIXER_ENUM;
2045 		dip->mixer_class = ESS_MONITOR_CLASS;
2046 		dip->un.e.num_mem = 2;
2047 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2048 		dip->un.e.member[0].ord = 0;
2049 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2050 		dip->un.e.member[1].ord = 1;
2051 		return 0;
2052 
2053 	case ESS_MONITOR_CLASS:
2054 		dip->mixer_class = ESS_MONITOR_CLASS;
2055 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2056 		strcpy(dip->label.name, AudioCmonitor);
2057 		dip->type = AUDIO_MIXER_CLASS;
2058 		return 0;
2059 	}
2060 
2061 	if (ESS_USE_AUDIO1(sc->sc_model))
2062 		return ENXIO;
2063 
2064 	switch (dip->index) {
2065 	case ESS_DAC_REC_VOL:
2066 		dip->mixer_class = ESS_RECORD_CLASS;
2067 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2068 		strcpy(dip->label.name, AudioNdac);
2069 		dip->type = AUDIO_MIXER_VALUE;
2070 		dip->un.v.num_channels = 2;
2071 		strcpy(dip->un.v.units.name, AudioNvolume);
2072 		return 0;
2073 
2074 	case ESS_MIC_REC_VOL:
2075 		dip->mixer_class = ESS_RECORD_CLASS;
2076 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2077 		strcpy(dip->label.name, AudioNmicrophone);
2078 		dip->type = AUDIO_MIXER_VALUE;
2079 		dip->un.v.num_channels = 2;
2080 		strcpy(dip->un.v.units.name, AudioNvolume);
2081 		return 0;
2082 
2083 	case ESS_LINE_REC_VOL:
2084 		dip->mixer_class = ESS_RECORD_CLASS;
2085 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2086 		strcpy(dip->label.name, AudioNline);
2087 		dip->type = AUDIO_MIXER_VALUE;
2088 		dip->un.v.num_channels = 2;
2089 		strcpy(dip->un.v.units.name, AudioNvolume);
2090 		return 0;
2091 
2092 	case ESS_SYNTH_REC_VOL:
2093 		dip->mixer_class = ESS_RECORD_CLASS;
2094 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2095 		strcpy(dip->label.name, AudioNfmsynth);
2096 		dip->type = AUDIO_MIXER_VALUE;
2097 		dip->un.v.num_channels = 2;
2098 		strcpy(dip->un.v.units.name, AudioNvolume);
2099 		return 0;
2100 
2101 	case ESS_CD_REC_VOL:
2102 		dip->mixer_class = ESS_RECORD_CLASS;
2103 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2104 		strcpy(dip->label.name, AudioNcd);
2105 		dip->type = AUDIO_MIXER_VALUE;
2106 		dip->un.v.num_channels = 2;
2107 		strcpy(dip->un.v.units.name, AudioNvolume);
2108 		return 0;
2109 
2110 	case ESS_AUXB_REC_VOL:
2111 		dip->mixer_class = ESS_RECORD_CLASS;
2112 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2113 		strcpy(dip->label.name, "auxb");
2114 		dip->type = AUDIO_MIXER_VALUE;
2115 		dip->un.v.num_channels = 2;
2116 		strcpy(dip->un.v.units.name, AudioNvolume);
2117 		return 0;
2118 
2119 	case ESS_MIC_PREAMP:
2120 		dip->mixer_class = ESS_INPUT_CLASS;
2121 		dip->prev = ESS_MIC_PLAY_VOL;
2122 		dip->next = AUDIO_MIXER_LAST;
2123 		strcpy(dip->label.name, AudioNpreamp);
2124 		dip->type = AUDIO_MIXER_ENUM;
2125 		dip->un.e.num_mem = 2;
2126 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2127 		dip->un.e.member[0].ord = 0;
2128 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2129 		dip->un.e.member[1].ord = 1;
2130 		return 0;
2131 	}
2132 
2133 	return ENXIO;
2134 }
2135 
2136 void *
2137 ess_malloc(void *addr, int direction, size_t size,
2138 	   struct malloc_type *pool, int flags)
2139 {
2140 	struct ess_softc *sc;
2141 	int drq;
2142 
2143 	sc = addr;
2144 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2145 		drq = sc->sc_audio2.drq;
2146 	else
2147 		drq = sc->sc_audio1.drq;
2148 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2149 }
2150 
2151 void
2152 ess_free(void *addr, void *ptr, struct malloc_type *pool)
2153 {
2154 
2155 	isa_free(ptr, pool);
2156 }
2157 
2158 size_t
2159 ess_round_buffersize(void *addr, int direction, size_t size)
2160 {
2161 	struct ess_softc *sc;
2162 	bus_size_t maxsize;
2163 
2164 	sc = addr;
2165 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2166 		maxsize = sc->sc_audio2.maxsize;
2167 	else
2168 		maxsize = sc->sc_audio1.maxsize;
2169 
2170 	if (size > maxsize)
2171 		size = maxsize;
2172 	return size;
2173 }
2174 
2175 paddr_t
2176 ess_mappage(void *addr, void *mem, off_t off, int prot)
2177 {
2178 
2179 	return isa_mappage(mem, off, prot);
2180 }
2181 
2182 int
2183 ess_1788_get_props(void *addr)
2184 {
2185 
2186 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT;
2187 }
2188 
2189 int
2190 ess_1888_get_props(void *addr)
2191 {
2192 
2193 	return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
2194 }
2195 
2196 /* ============================================
2197  * Generic functions for ess, not used by audio h/w i/f
2198  * =============================================
2199  */
2200 
2201 /*
2202  * Reset the chip.
2203  * Return non-zero if the chip isn't detected.
2204  */
2205 int
2206 ess_reset(struct ess_softc *sc)
2207 {
2208 	bus_space_tag_t iot;
2209 	bus_space_handle_t ioh;
2210 
2211 	iot = sc->sc_iot;
2212 	ioh = sc->sc_ioh;
2213 	sc->sc_audio1.active = 0;
2214 	sc->sc_audio2.active = 0;
2215 
2216 	EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2217 	delay(10000);		/* XXX shouldn't delay so long */
2218 	EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2219 	if (ess_rdsp(sc) != ESS_MAGIC)
2220 		return 1;
2221 
2222 	/* Enable access to the ESS extension commands. */
2223 	ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2224 
2225 	return 0;
2226 }
2227 
2228 void
2229 ess_set_gain(struct ess_softc *sc, int port, int on)
2230 {
2231 	int gain, left, right;
2232 	int mix;
2233 	int src;
2234 	int stereo;
2235 
2236 	/*
2237 	 * Most gain controls are found in the mixer registers and
2238 	 * are stereo. Any that are not, must set mix and stereo as
2239 	 * required.
2240 	 */
2241 	mix = 1;
2242 	stereo = 1;
2243 
2244 	switch (port) {
2245 	case ESS_MASTER_VOL:
2246 		src = ESS_MREG_VOLUME_MASTER;
2247 		break;
2248 	case ESS_DAC_PLAY_VOL:
2249 		if (ESS_USE_AUDIO1(sc->sc_model))
2250 			src = ESS_MREG_VOLUME_VOICE;
2251 		else
2252 			src = 0x7C;
2253 		break;
2254 	case ESS_MIC_PLAY_VOL:
2255 		src = ESS_MREG_VOLUME_MIC;
2256 		break;
2257 	case ESS_LINE_PLAY_VOL:
2258 		src = ESS_MREG_VOLUME_LINE;
2259 		break;
2260 	case ESS_SYNTH_PLAY_VOL:
2261 		src = ESS_MREG_VOLUME_SYNTH;
2262 		break;
2263 	case ESS_CD_PLAY_VOL:
2264 		src = ESS_MREG_VOLUME_CD;
2265 		break;
2266 	case ESS_AUXB_PLAY_VOL:
2267 		src = ESS_MREG_VOLUME_AUXB;
2268 		break;
2269 	case ESS_PCSPEAKER_VOL:
2270 		src = ESS_MREG_VOLUME_PCSPKR;
2271 		stereo = 0;
2272 		break;
2273 	case ESS_DAC_REC_VOL:
2274 		src = 0x69;
2275 		break;
2276 	case ESS_MIC_REC_VOL:
2277 		src = 0x68;
2278 		break;
2279 	case ESS_LINE_REC_VOL:
2280 		src = 0x6E;
2281 		break;
2282 	case ESS_SYNTH_REC_VOL:
2283 		src = 0x6B;
2284 		break;
2285 	case ESS_CD_REC_VOL:
2286 		src = 0x6A;
2287 		break;
2288 	case ESS_AUXB_REC_VOL:
2289 		src = 0x6C;
2290 		break;
2291 	case ESS_RECORD_VOL:
2292 		src = ESS_XCMD_VOLIN_CTRL;
2293 		mix = 0;
2294 		break;
2295 	default:
2296 		return;
2297 	}
2298 
2299 	/* 1788 doesn't have a separate recording mixer */
2300 	if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2301 		return;
2302 
2303 	if (on) {
2304 		left = sc->gain[port][ESS_LEFT];
2305 		right = sc->gain[port][ESS_RIGHT];
2306 	} else {
2307 		left = right = 0;
2308 	}
2309 
2310 	if (stereo)
2311 		gain = ESS_STEREO_GAIN(left, right);
2312 	else
2313 		gain = ESS_MONO_GAIN(left);
2314 
2315 	if (mix)
2316 		ess_write_mix_reg(sc, src, gain);
2317 	else
2318 		ess_write_x_reg(sc, src, gain);
2319 }
2320 
2321 /* Set the input device on devices without an input mixer. */
2322 int
2323 ess_set_in_port(struct ess_softc *sc, int ord)
2324 {
2325 	mixer_devinfo_t di;
2326 	int i;
2327 
2328 	DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2329 
2330 	/*
2331 	 * Get the device info for the record source control,
2332 	 * including the list of available sources.
2333 	 */
2334 	di.index = ESS_RECORD_SOURCE;
2335 	if (ess_query_devinfo(sc, &di))
2336 		return EINVAL;
2337 
2338 	/* See if the given ord value was anywhere in the list. */
2339 	for (i = 0; i < di.un.e.num_mem; i++) {
2340 		if (ord == di.un.e.member[i].ord)
2341 			break;
2342 	}
2343 	if (i == di.un.e.num_mem)
2344 		return EINVAL;
2345 
2346 	ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2347 
2348 	sc->in_port = ord;
2349 	return 0;
2350 }
2351 
2352 /* Set the input device levels on input-mixer-enabled devices. */
2353 int
2354 ess_set_in_ports(struct ess_softc *sc, int mask)
2355 {
2356 	mixer_devinfo_t di;
2357 	int i, port;
2358 
2359 	DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2360 
2361 	/*
2362 	 * Get the device info for the record source control,
2363 	 * including the list of available sources.
2364 	 */
2365 	di.index = ESS_RECORD_SOURCE;
2366 	if (ess_query_devinfo(sc, &di))
2367 		return EINVAL;
2368 
2369 	/*
2370 	 * Set or disable the record volume control for each of the
2371 	 * possible sources.
2372 	 */
2373 	for (i = 0; i < di.un.s.num_mem; i++) {
2374 		/*
2375 		 * Calculate the source port number from its mask.
2376 		 */
2377 		port = ffs(di.un.s.member[i].mask);
2378 
2379 		/*
2380 		 * Set the source gain:
2381 		 *	to the current value if source is enabled
2382 		 *	to zero if source is disabled
2383 		 */
2384 		ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2385 	}
2386 
2387 	sc->in_mask = mask;
2388 	return 0;
2389 }
2390 
2391 void
2392 ess_speaker_on(struct ess_softc *sc)
2393 {
2394 
2395 	/* Unmute the DAC. */
2396 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2397 }
2398 
2399 void
2400 ess_speaker_off(struct ess_softc *sc)
2401 {
2402 
2403 	/* Mute the DAC. */
2404 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2405 }
2406 
2407 /*
2408  * Calculate the time constant for the requested sampling rate.
2409  */
2410 u_int
2411 ess_srtotc(u_int rate)
2412 {
2413 	u_int tc;
2414 
2415 	/* The following formulae are from the ESS data sheet. */
2416 	if (rate <= 22050)
2417 		tc = 128 - 397700L / rate;
2418 	else
2419 		tc = 256 - 795500L / rate;
2420 
2421 	return tc;
2422 }
2423 
2424 
2425 /*
2426  * Calculate the filter constant for the reuqested sampling rate.
2427  */
2428 u_int
2429 ess_srtofc(u_int rate)
2430 {
2431 	/*
2432 	 * The following formula is derived from the information in
2433 	 * the ES1887 data sheet, based on a roll-off frequency of
2434 	 * 87%.
2435 	 */
2436 	return 256 - 200279L / rate;
2437 }
2438 
2439 
2440 /*
2441  * Return the status of the DSP.
2442  */
2443 u_char
2444 ess_get_dsp_status(struct ess_softc *sc)
2445 {
2446 	return EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
2447 }
2448 
2449 
2450 /*
2451  * Return the read status of the DSP:	1 -> DSP ready for reading
2452  *					0 -> DSP not ready for reading
2453  */
2454 u_char
2455 ess_dsp_read_ready(struct ess_softc *sc)
2456 {
2457 
2458 	return (ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0;
2459 }
2460 
2461 
2462 /*
2463  * Return the write status of the DSP:	1 -> DSP ready for writing
2464  *					0 -> DSP not ready for writing
2465  */
2466 u_char
2467 ess_dsp_write_ready(struct ess_softc *sc)
2468 {
2469 	return (ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1;
2470 }
2471 
2472 
2473 /*
2474  * Read a byte from the DSP.
2475  */
2476 int
2477 ess_rdsp(struct ess_softc *sc)
2478 {
2479 	bus_space_tag_t iot;
2480 	bus_space_handle_t ioh;
2481 	int i;
2482 
2483 	iot = sc->sc_iot;
2484 	ioh = sc->sc_ioh;
2485 	for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2486 		if (ess_dsp_read_ready(sc)) {
2487 			i = EREAD1(iot, ioh, ESS_DSP_READ);
2488 			DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2489 			return i;
2490 		} else
2491 			delay(10);
2492 	}
2493 
2494 	DPRINTF(("ess_rdsp: timed out\n"));
2495 	return -1;
2496 }
2497 
2498 /*
2499  * Write a byte to the DSP.
2500  */
2501 int
2502 ess_wdsp(struct ess_softc *sc, u_char v)
2503 {
2504 	bus_space_tag_t iot;
2505 	bus_space_handle_t ioh;
2506 	int i;
2507 
2508 	DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2509 
2510 	iot = sc->sc_iot;
2511 	ioh = sc->sc_ioh;
2512 	for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2513 		if (ess_dsp_write_ready(sc)) {
2514 			EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2515 			return 0;
2516 		} else
2517 			delay(10);
2518 	}
2519 
2520 	DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2521 	return -1;
2522 }
2523 
2524 /*
2525  * Write a value to one of the ESS extended registers.
2526  */
2527 int
2528 ess_write_x_reg(struct ess_softc *sc, u_char reg, u_char val)
2529 {
2530 	int error;
2531 
2532 	DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2533 	if ((error = ess_wdsp(sc, reg)) == 0)
2534 		error = ess_wdsp(sc, val);
2535 
2536 	return error;
2537 }
2538 
2539 /*
2540  * Read the value of one of the ESS extended registers.
2541  */
2542 u_char
2543 ess_read_x_reg(struct ess_softc *sc, u_char reg)
2544 {
2545 	int error;
2546 	int val;
2547 
2548 	if ((error = ess_wdsp(sc, 0xC0)) == 0)
2549 		error = ess_wdsp(sc, reg);
2550 	if (error) {
2551 		DPRINTF(("Error reading extended register 0x%02x\n", reg));
2552 	}
2553 /* REVISIT: what if an error is returned above? */
2554 	val = ess_rdsp(sc);
2555 	DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2556 	return val;
2557 }
2558 
2559 void
2560 ess_clear_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2561 {
2562 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) {
2563 		DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2564 			 reg));
2565 	}
2566 }
2567 
2568 void
2569 ess_set_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2570 {
2571 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) {
2572 		DPRINTF(("Error setting bits in extended register 0x%02x\n",
2573 			 reg));
2574 	}
2575 }
2576 
2577 
2578 /*
2579  * Write a value to one of the ESS mixer registers.
2580  */
2581 void
2582 ess_write_mix_reg(struct ess_softc *sc, u_char reg, u_char val)
2583 {
2584 	bus_space_tag_t iot;
2585 	bus_space_handle_t ioh;
2586 	int s;
2587 
2588 	DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2589 
2590 	iot = sc->sc_iot;
2591 	ioh = sc->sc_ioh;
2592 	s = splaudio();
2593 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2594 	EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2595 	splx(s);
2596 }
2597 
2598 /*
2599  * Read the value of one of the ESS mixer registers.
2600  */
2601 u_char
2602 ess_read_mix_reg(struct ess_softc *sc, u_char reg)
2603 {
2604 	bus_space_tag_t iot;
2605 	bus_space_handle_t ioh;
2606 	int s;
2607 	u_char val;
2608 
2609 	iot = sc->sc_iot;
2610 	ioh = sc->sc_ioh;
2611 	s = splaudio();
2612 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2613 	val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2614 	splx(s);
2615 
2616 	DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2617 	return val;
2618 }
2619 
2620 void
2621 ess_clear_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2622 {
2623 
2624 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2625 }
2626 
2627 void
2628 ess_set_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
2629 {
2630 
2631 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2632 }
2633 
2634 void
2635 ess_read_multi_mix_reg(struct ess_softc *sc, u_char reg,
2636 		       uint8_t *datap, bus_size_t count)
2637 {
2638 	bus_space_tag_t iot;
2639 	bus_space_handle_t ioh;
2640 	int s;
2641 
2642 	iot = sc->sc_iot;
2643 	ioh = sc->sc_ioh;
2644 	s = splaudio();
2645 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2646 	bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2647 	splx(s);
2648 }
2649