1 /* $NetBSD: ess.c,v 1.86 2019/06/08 08:02:38 isaki Exp $ */ 2 3 /* 4 * Copyright 1997 5 * Digital Equipment Corporation. All rights reserved. 6 * 7 * This software is furnished under license and may be used and 8 * copied only in accordance with the following terms and conditions. 9 * Subject to these conditions, you may download, copy, install, 10 * use, modify and distribute this software in source and/or binary 11 * form. No title or ownership is transferred hereby. 12 * 13 * 1) Any source code used, modified or distributed must reproduce 14 * and retain this copyright notice and list of conditions as 15 * they appear in the source file. 16 * 17 * 2) No right is granted to use any trade name, trademark, or logo of 18 * Digital Equipment Corporation. Neither the "Digital Equipment 19 * Corporation" name nor any trademark or logo of Digital Equipment 20 * Corporation may be used to endorse or promote products derived 21 * from this software without the prior written permission of 22 * Digital Equipment Corporation. 23 * 24 * 3) This software is provided "AS-IS" and any express or implied 25 * warranties, including but not limited to, any implied warranties 26 * of merchantability, fitness for a particular purpose, or 27 * non-infringement are disclaimed. In no event shall DIGITAL be 28 * liable for any damages whatsoever, and in particular, DIGITAL 29 * shall not be liable for special, indirect, consequential, or 30 * incidental damages or damages for lost profits, loss of 31 * revenue or loss of use, whether such damages arise in contract, 32 * negligence, tort, under statute, in equity, at law or otherwise, 33 * even if advised of the possibility of such damage. 34 */ 35 36 /* 37 **++ 38 ** 39 ** ess.c 40 ** 41 ** FACILITY: 42 ** 43 ** DIGITAL Network Appliance Reference Design (DNARD) 44 ** 45 ** MODULE DESCRIPTION: 46 ** 47 ** This module contains the device driver for the ESS 48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was 49 ** used as a reference point when implementing this driver. 50 ** 51 ** AUTHORS: 52 ** 53 ** Blair Fidler Software Engineering Australia 54 ** Gold Coast, Australia. 55 ** 56 ** CREATION DATE: 57 ** 58 ** March 10, 1997. 59 ** 60 ** MODIFICATION HISTORY: 61 ** 62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for 63 ** bus_dma, changes to audio interface, and many bug fixes. 64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum. 65 **-- 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.86 2019/06/08 08:02:38 isaki Exp $"); 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/errno.h> 74 #include <sys/ioctl.h> 75 #include <sys/syslog.h> 76 #include <sys/device.h> 77 #include <sys/proc.h> 78 #include <sys/kernel.h> 79 #include <sys/cpu.h> 80 #include <sys/intr.h> 81 #include <sys/bus.h> 82 #include <sys/audioio.h> 83 #include <sys/malloc.h> 84 85 #include <dev/audio/audio_if.h> 86 87 #include <dev/isa/isavar.h> 88 #include <dev/isa/isadmavar.h> 89 90 #include <dev/isa/essvar.h> 91 #include <dev/isa/essreg.h> 92 93 #include "joy_ess.h" 94 95 #ifdef AUDIO_DEBUG 96 #define DPRINTF(x) if (essdebug) printf x 97 #define DPRINTFN(n,x) if (essdebug>(n)) printf x 98 int essdebug = 0; 99 #else 100 #define DPRINTF(x) 101 #define DPRINTFN(n,x) 102 #endif 103 104 #if 0 105 unsigned uuu; 106 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu) 107 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d)) 108 #else 109 #define EREAD1(t, h, a) bus_space_read_1(t, h, a) 110 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d) 111 #endif 112 113 114 int ess_setup_sc(struct ess_softc *, int); 115 116 void ess_close(void *); 117 int ess_getdev(void *, struct audio_device *); 118 119 int ess_query_format(void *, audio_format_query_t *); 120 121 int ess_set_format(void *, int, 122 const audio_params_t *, const audio_params_t *, 123 audio_filter_reg_t *, audio_filter_reg_t *); 124 125 int ess_round_blocksize(void *, int, int, const audio_params_t *); 126 127 int ess_audio1_trigger_output(void *, void *, void *, int, 128 void (*)(void *), void *, const audio_params_t *); 129 int ess_audio2_trigger_output(void *, void *, void *, int, 130 void (*)(void *), void *, const audio_params_t *); 131 int ess_audio1_trigger_input(void *, void *, void *, int, 132 void (*)(void *), void *, const audio_params_t *); 133 int ess_audio1_halt(void *); 134 int ess_audio2_halt(void *); 135 int ess_audio1_intr(void *); 136 int ess_audio2_intr(void *); 137 void ess_audio1_poll(void *); 138 void ess_audio2_poll(void *); 139 140 int ess_speaker_ctl(void *, int); 141 142 int ess_getdev(void *, struct audio_device *); 143 144 int ess_set_port(void *, mixer_ctrl_t *); 145 int ess_get_port(void *, mixer_ctrl_t *); 146 147 void *ess_malloc(void *, int, size_t); 148 void ess_free(void *, void *, size_t); 149 size_t ess_round_buffersize(void *, int, size_t); 150 151 152 int ess_query_devinfo(void *, mixer_devinfo_t *); 153 int ess_1788_get_props(void *); 154 int ess_1888_get_props(void *); 155 void ess_get_locks(void *, kmutex_t **, kmutex_t **); 156 157 void ess_speaker_on(struct ess_softc *); 158 void ess_speaker_off(struct ess_softc *); 159 160 void ess_config_irq(struct ess_softc *); 161 void ess_config_drq(struct ess_softc *); 162 void ess_setup(struct ess_softc *); 163 int ess_identify(struct ess_softc *); 164 165 int ess_reset(struct ess_softc *); 166 void ess_set_gain(struct ess_softc *, int, int); 167 int ess_set_in_port(struct ess_softc *, int); 168 int ess_set_in_ports(struct ess_softc *, int); 169 u_int ess_srtotc(struct ess_softc *, u_int); 170 u_int ess_srtofc(u_int); 171 u_char ess_get_dsp_status(struct ess_softc *); 172 u_char ess_dsp_read_ready(struct ess_softc *); 173 u_char ess_dsp_write_ready(struct ess_softc *); 174 int ess_rdsp(struct ess_softc *); 175 int ess_wdsp(struct ess_softc *, u_char); 176 u_char ess_read_x_reg(struct ess_softc *, u_char); 177 int ess_write_x_reg(struct ess_softc *, u_char, u_char); 178 void ess_clear_xreg_bits(struct ess_softc *, u_char, u_char); 179 void ess_set_xreg_bits(struct ess_softc *, u_char, u_char); 180 u_char ess_read_mix_reg(struct ess_softc *, u_char); 181 void ess_write_mix_reg(struct ess_softc *, u_char, u_char); 182 void ess_clear_mreg_bits(struct ess_softc *, u_char, u_char); 183 void ess_set_mreg_bits(struct ess_softc *, u_char, u_char); 184 void ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, 185 bus_size_t); 186 187 static const char *essmodel[] = { 188 "unsupported", 189 190 "688", 191 "1688", 192 "1788", 193 "1868", 194 "1869", 195 "1878", 196 "1879", 197 198 "888", 199 "1887", 200 "1888", 201 }; 202 203 struct audio_device ess_device = { 204 "ESS Technology", 205 "x", 206 "ess" 207 }; 208 209 /* 210 * Define our interface to the higher level audio driver. 211 */ 212 213 const struct audio_hw_if ess_1788_hw_if = { 214 .close = ess_close, 215 .query_format = ess_query_format, 216 .set_format = ess_set_format, 217 .round_blocksize = ess_round_blocksize, 218 .halt_output = ess_audio1_halt, 219 .halt_input = ess_audio1_halt, 220 .speaker_ctl = ess_speaker_ctl, 221 .getdev = ess_getdev, 222 .set_port = ess_set_port, 223 .get_port = ess_get_port, 224 .query_devinfo = ess_query_devinfo, 225 .allocm = ess_malloc, 226 .freem = ess_free, 227 .round_buffersize = ess_round_buffersize, 228 .get_props = ess_1788_get_props, 229 .trigger_output = ess_audio1_trigger_output, 230 .trigger_input = ess_audio1_trigger_input, 231 .get_locks = ess_get_locks, 232 }; 233 234 const struct audio_hw_if ess_1888_hw_if = { 235 .close = ess_close, 236 .query_format = ess_query_format, 237 .set_format = ess_set_format, 238 .round_blocksize = ess_round_blocksize, 239 .halt_output = ess_audio2_halt, 240 .halt_input = ess_audio1_halt, 241 .speaker_ctl = ess_speaker_ctl, 242 .getdev = ess_getdev, 243 .set_port = ess_set_port, 244 .get_port = ess_get_port, 245 .query_devinfo = ess_query_devinfo, 246 .allocm = ess_malloc, 247 .freem = ess_free, 248 .round_buffersize = ess_round_buffersize, 249 .get_props = ess_1888_get_props, 250 .trigger_output = ess_audio2_trigger_output, 251 .trigger_input = ess_audio1_trigger_input, 252 .get_locks = ess_get_locks, 253 }; 254 255 static const struct audio_format ess_formats[] = { 256 { 257 .mode = AUMODE_PLAY | AUMODE_RECORD, 258 .encoding = AUDIO_ENCODING_SLINEAR_LE, 259 .validbits = 16, 260 .precision = 16, 261 .channels = 2, 262 .channel_mask = AUFMT_STEREO, 263 .frequency_type = 0, 264 .frequency = { ESS_MINRATE, ESS_MAXRATE }, 265 }, 266 }; 267 #define ESS_NFORMATS __arraycount(ess_formats) 268 269 #ifdef AUDIO_DEBUG 270 void ess_printsc(struct ess_softc *); 271 void ess_dump_mixer(struct ess_softc *); 272 273 void 274 ess_printsc(struct ess_softc *sc) 275 { 276 int i; 277 278 printf("iobase 0x%x outport %u inport %u speaker %s\n", 279 sc->sc_iobase, sc->out_port, 280 sc->in_port, sc->spkr_state ? "on" : "off"); 281 282 printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n", 283 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr, 284 sc->sc_audio1.intr, sc->sc_audio1.arg); 285 286 if (!ESS_USE_AUDIO1(sc->sc_model)) { 287 printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n", 288 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr, 289 sc->sc_audio2.intr, sc->sc_audio2.arg); 290 } 291 292 printf("gain:"); 293 for (i = 0; i < sc->ndevs; i++) 294 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]); 295 printf("\n"); 296 } 297 298 void 299 ess_dump_mixer(struct ess_softc *sc) 300 { 301 302 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 303 0x7C, ess_read_mix_reg(sc, 0x7C)); 304 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 305 0x1A, ess_read_mix_reg(sc, 0x1A)); 306 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 307 0x3E, ess_read_mix_reg(sc, 0x3E)); 308 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 309 0x36, ess_read_mix_reg(sc, 0x36)); 310 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 311 0x38, ess_read_mix_reg(sc, 0x38)); 312 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 313 0x3A, ess_read_mix_reg(sc, 0x3A)); 314 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n", 315 0x32, ess_read_mix_reg(sc, 0x32)); 316 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n", 317 0x3C, ess_read_mix_reg(sc, 0x3C)); 318 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n", 319 0x69, ess_read_mix_reg(sc, 0x69)); 320 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n", 321 0x68, ess_read_mix_reg(sc, 0x68)); 322 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n", 323 0x6E, ess_read_mix_reg(sc, 0x6E)); 324 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n", 325 0x6B, ess_read_mix_reg(sc, 0x6B)); 326 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n", 327 0x6A, ess_read_mix_reg(sc, 0x6A)); 328 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n", 329 0x6C, ess_read_mix_reg(sc, 0x6C)); 330 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n", 331 0xB4, ess_read_x_reg(sc, 0xB4)); 332 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n", 333 0x14, ess_read_mix_reg(sc, 0x14)); 334 335 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n", 336 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL)); 337 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n", 338 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL)); 339 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n", 340 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE), 341 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2)); 342 } 343 344 #endif 345 346 /* 347 * Configure the ESS chip for the desired audio base address. 348 */ 349 int 350 ess_config_addr(struct ess_softc *sc) 351 { 352 int iobase; 353 bus_space_tag_t iot; 354 /* 355 * Configure using the System Control Register method. This 356 * method is used when the AMODE line is tied high, which is 357 * the case for the Shark, but not for the evaluation board. 358 */ 359 bus_space_handle_t scr_access_ioh; 360 bus_space_handle_t scr_ioh; 361 u_short scr_value; 362 363 iobase = sc->sc_iobase; 364 iot = sc->sc_iot; 365 /* 366 * Set the SCR bit to enable audio. 367 */ 368 scr_value = ESS_SCR_AUDIO_ENABLE; 369 370 /* 371 * Set the SCR bits necessary to select the specified audio 372 * base address. 373 */ 374 switch(iobase) { 375 case 0x220: 376 scr_value |= ESS_SCR_AUDIO_220; 377 break; 378 case 0x230: 379 scr_value |= ESS_SCR_AUDIO_230; 380 break; 381 case 0x240: 382 scr_value |= ESS_SCR_AUDIO_240; 383 break; 384 case 0x250: 385 scr_value |= ESS_SCR_AUDIO_250; 386 break; 387 default: 388 printf("ess: configured iobase 0x%x invalid\n", iobase); 389 return 1; 390 break; 391 } 392 393 /* 394 * Get a mapping for the System Control Register (SCR) access 395 * registers and the SCR data registers. 396 */ 397 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS, 398 0, &scr_access_ioh)) { 399 printf("ess: can't map SCR access registers\n"); 400 return 1; 401 } 402 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS, 403 0, &scr_ioh)) { 404 printf("ess: can't map SCR registers\n"); 405 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 406 return 1; 407 } 408 409 /* Unlock the SCR. */ 410 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0); 411 412 /* Write the base address information into SCR[0]. */ 413 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0); 414 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value); 415 416 /* Lock the SCR. */ 417 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0); 418 419 /* Unmap the SCR access ports and the SCR data ports. */ 420 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 421 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS); 422 423 return 0; 424 } 425 426 427 /* 428 * Configure the ESS chip for the desired IRQ and DMA channels. 429 * ESS ISA 430 * -------- 431 * IRQA irq9 432 * IRQB irq5 433 * IRQC irq7 434 * IRQD irq10 435 * IRQE irq15 436 * 437 * DRQA drq0 438 * DRQB drq1 439 * DRQC drq3 440 * DRQD drq5 441 */ 442 void 443 ess_config_irq(struct ess_softc *sc) 444 { 445 int v; 446 447 DPRINTFN(2,("ess_config_irq\n")); 448 449 if (sc->sc_model == ESS_1887 && 450 sc->sc_audio1.irq == sc->sc_audio2.irq && 451 sc->sc_audio1.irq != -1) { 452 /* Use new method, both interrupts are the same. */ 453 v = ESS_IS_SELECT_IRQ; /* enable intrs */ 454 switch (sc->sc_audio1.irq) { 455 case 5: 456 v |= ESS_IS_INTRB; 457 break; 458 case 7: 459 v |= ESS_IS_INTRC; 460 break; 461 case 9: 462 v |= ESS_IS_INTRA; 463 break; 464 case 10: 465 v |= ESS_IS_INTRD; 466 break; 467 case 15: 468 v |= ESS_IS_INTRE; 469 break; 470 #ifdef DIAGNOSTIC 471 default: 472 printf("ess_config_irq: configured irq %d not supported for Audio 1\n", 473 sc->sc_audio1.irq); 474 return; 475 #endif 476 } 477 /* Set the IRQ */ 478 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v); 479 return; 480 } 481 482 if (sc->sc_model == ESS_1887) { 483 /* Tell the 1887 to use the old interrupt method. */ 484 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888); 485 } 486 487 if (sc->sc_audio1.polled) { 488 /* Turn off Audio1 interrupts. */ 489 v = 0; 490 } else { 491 /* Configure Audio 1 for the appropriate IRQ line. */ 492 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */ 493 switch (sc->sc_audio1.irq) { 494 case 5: 495 v |= ESS_IRQ_CTRL_INTRB; 496 break; 497 case 7: 498 v |= ESS_IRQ_CTRL_INTRC; 499 break; 500 case 9: 501 v |= ESS_IRQ_CTRL_INTRA; 502 break; 503 case 10: 504 v |= ESS_IRQ_CTRL_INTRD; 505 break; 506 #ifdef DIAGNOSTIC 507 default: 508 printf("ess: configured irq %d not supported for Audio 1\n", 509 sc->sc_audio1.irq); 510 return; 511 #endif 512 } 513 } 514 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v); 515 516 if (ESS_USE_AUDIO1(sc->sc_model)) 517 return; 518 519 if (sc->sc_audio2.polled) { 520 /* Turn off Audio2 interrupts. */ 521 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 522 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 523 } else { 524 /* Audio2 is hardwired to INTRE in this mode. */ 525 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 526 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 527 } 528 } 529 530 531 void 532 ess_config_drq(struct ess_softc *sc) 533 { 534 int v; 535 536 DPRINTFN(2,("ess_config_drq\n")); 537 538 /* Configure Audio 1 (record) for DMA on the appropriate channel. */ 539 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT; 540 switch (sc->sc_audio1.drq) { 541 case 0: 542 v |= ESS_DRQ_CTRL_DRQA; 543 break; 544 case 1: 545 v |= ESS_DRQ_CTRL_DRQB; 546 break; 547 case 3: 548 v |= ESS_DRQ_CTRL_DRQC; 549 break; 550 #ifdef DIAGNOSTIC 551 default: 552 printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n", 553 sc->sc_audio1.drq); 554 return; 555 #endif 556 } 557 /* Set DRQ1 */ 558 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v); 559 560 if (ESS_USE_AUDIO1(sc->sc_model)) 561 return; 562 563 /* Configure DRQ2 */ 564 v = ESS_AUDIO2_CTRL3_DRQ_PD; 565 switch (sc->sc_audio2.drq) { 566 case 0: 567 v |= ESS_AUDIO2_CTRL3_DRQA; 568 break; 569 case 1: 570 v |= ESS_AUDIO2_CTRL3_DRQB; 571 break; 572 case 3: 573 v |= ESS_AUDIO2_CTRL3_DRQC; 574 break; 575 case 5: 576 v |= ESS_AUDIO2_CTRL3_DRQD; 577 break; 578 #ifdef DIAGNOSTIC 579 default: 580 printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n", 581 sc->sc_audio2.drq); 582 return; 583 #endif 584 } 585 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v); 586 /* Enable DMA 2 */ 587 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 588 ESS_AUDIO2_CTRL2_DMA_ENABLE); 589 } 590 591 /* 592 * Set up registers after a reset. 593 */ 594 void 595 ess_setup(struct ess_softc *sc) 596 { 597 598 ess_config_irq(sc); 599 ess_config_drq(sc); 600 601 DPRINTFN(2,("ess_setup: done\n")); 602 } 603 604 /* 605 * Determine the model of ESS chip we are talking to. Currently we 606 * only support ES1888, ES1887 and ES888. The method of determining 607 * the chip is based on the information on page 27 of the ES1887 data 608 * sheet. 609 * 610 * This routine sets the values of sc->sc_model and sc->sc_version. 611 */ 612 int 613 ess_identify(struct ess_softc *sc) 614 { 615 u_char reg1; 616 u_char reg2; 617 u_char reg3; 618 u_int8_t ident[4]; 619 620 sc->sc_model = ESS_UNSUPPORTED; 621 sc->sc_version = 0; 622 623 memset(ident, 0, sizeof(ident)); 624 625 /* 626 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where 627 * n >= 8 for an ES1887 or an ES888. Other values indicate 628 * earlier (unsupported) chips. 629 */ 630 ess_wdsp(sc, ESS_ACMD_LEGACY_ID); 631 632 if ((reg1 = ess_rdsp(sc)) != 0x68) { 633 printf("ess: First ID byte wrong (0x%02x)\n", reg1); 634 return 1; 635 } 636 637 reg2 = ess_rdsp(sc); 638 if (((reg2 & 0xf0) != 0x80) || 639 ((reg2 & 0x0f) < 8)) { 640 sc->sc_model = ESS_688; 641 return 0; 642 } 643 644 /* 645 * Store the ID bytes as the version. 646 */ 647 sc->sc_version = (reg1 << 8) + reg2; 648 649 650 /* 651 * 2. Verify we can change bit 2 in mixer register 0x64. This 652 * should be possible on all supported chips. 653 */ 654 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 655 reg2 = reg1 ^ 0x04; /* toggle bit 2 */ 656 657 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 658 659 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) { 660 switch (sc->sc_version) { 661 case 0x688b: 662 sc->sc_model = ESS_1688; 663 break; 664 default: 665 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n"); 666 return 1; 667 } 668 return 0; 669 } 670 671 /* 672 * Restore the original value of mixer register 0x64. 673 */ 674 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 675 676 677 /* 678 * 3. Verify we can change the value of mixer register 679 * ESS_MREG_SAMPLE_RATE. 680 * This is possible on the 1888/1887/888, but not on the 1788. 681 * It is not necessary to restore the value of this mixer register. 682 */ 683 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE); 684 reg2 = reg1 ^ 0xff; /* toggle all bits */ 685 686 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2); 687 688 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) { 689 /* If we got this far before failing, it's a 1788. */ 690 sc->sc_model = ESS_1788; 691 692 /* 693 * Identify ESS model for ES18[67]8. 694 */ 695 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 696 if(ident[0] == 0x18) { 697 switch(ident[1]) { 698 case 0x68: 699 sc->sc_model = ESS_1868; 700 break; 701 case 0x78: 702 sc->sc_model = ESS_1878; 703 break; 704 } 705 } 706 707 return 0; 708 } 709 710 /* 711 * 4. Determine if we can change bit 5 in mixer register 0x64. 712 * This determines whether we have an ES1887: 713 * 714 * - can change indicates ES1887 715 * - can't change indicates ES1888 or ES888 716 */ 717 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 718 reg2 = reg1 ^ 0x20; /* toggle bit 5 */ 719 720 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 721 722 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) { 723 sc->sc_model = ESS_1887; 724 725 /* 726 * Restore the original value of mixer register 0x64. 727 */ 728 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 729 730 /* 731 * Identify ESS model for ES18[67]9. 732 */ 733 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 734 if(ident[0] == 0x18) { 735 switch(ident[1]) { 736 case 0x69: 737 sc->sc_model = ESS_1869; 738 break; 739 case 0x79: 740 sc->sc_model = ESS_1879; 741 break; 742 } 743 } 744 745 return 0; 746 } 747 748 /* 749 * 5. Determine if we can change the value of mixer 750 * register 0x69 independently of mixer register 751 * 0x68. This determines which chip we have: 752 * 753 * - can modify idependently indicates ES888 754 * - register 0x69 is an alias of 0x68 indicates ES1888 755 */ 756 reg1 = ess_read_mix_reg(sc, 0x68); 757 reg2 = ess_read_mix_reg(sc, 0x69); 758 reg3 = reg2 ^ 0xff; /* toggle all bits */ 759 760 /* 761 * Write different values to each register. 762 */ 763 ess_write_mix_reg(sc, 0x68, reg2); 764 ess_write_mix_reg(sc, 0x69, reg3); 765 766 if (ess_read_mix_reg(sc, 0x68) == reg2 && 767 ess_read_mix_reg(sc, 0x69) == reg3) 768 sc->sc_model = ESS_888; 769 else 770 sc->sc_model = ESS_1888; 771 772 /* 773 * Restore the original value of the registers. 774 */ 775 ess_write_mix_reg(sc, 0x68, reg1); 776 ess_write_mix_reg(sc, 0x69, reg2); 777 778 return 0; 779 } 780 781 782 int 783 ess_setup_sc(struct ess_softc *sc, int doinit) 784 { 785 786 /* Reset the chip. */ 787 if (ess_reset(sc) != 0) { 788 DPRINTF(("ess_setup_sc: couldn't reset chip\n")); 789 return 1; 790 } 791 792 /* Identify the ESS chip, and check that it is supported. */ 793 if (ess_identify(sc)) { 794 DPRINTF(("ess_setup_sc: couldn't identify\n")); 795 return 1; 796 } 797 798 return 0; 799 } 800 801 /* 802 * Probe for the ESS hardware. 803 */ 804 int 805 essmatch(struct ess_softc *sc) 806 { 807 if (!ESS_BASE_VALID(sc->sc_iobase)) { 808 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase); 809 return 0; 810 } 811 812 if (ess_setup_sc(sc, 1)) 813 return 0; 814 815 if (sc->sc_model == ESS_UNSUPPORTED) { 816 DPRINTF(("ess: Unsupported model\n")); 817 return 0; 818 } 819 820 /* Check that requested DMA channels are valid and different. */ 821 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) { 822 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq); 823 return 0; 824 } 825 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq)) 826 return 0; 827 if (!ESS_USE_AUDIO1(sc->sc_model)) { 828 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) { 829 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq); 830 return 0; 831 } 832 if (sc->sc_audio1.drq == sc->sc_audio2.drq) { 833 printf("ess: play and record drq both %d\n", 834 sc->sc_audio1.drq); 835 return 0; 836 } 837 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq)) 838 return 0; 839 } 840 841 /* 842 * The 1887 has an additional IRQ mode where both channels are mapped 843 * to the same IRQ. 844 */ 845 if (sc->sc_model == ESS_1887 && 846 sc->sc_audio1.irq == sc->sc_audio2.irq && 847 sc->sc_audio1.irq != -1 && 848 ESS_IRQ12_VALID(sc->sc_audio1.irq)) 849 goto irq_not1888; 850 851 /* Check that requested IRQ lines are valid and different. */ 852 if (sc->sc_audio1.irq != -1 && 853 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) { 854 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq); 855 return 0; 856 } 857 if (!ESS_USE_AUDIO1(sc->sc_model)) { 858 if (sc->sc_audio2.irq != -1 && 859 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) { 860 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq); 861 return 0; 862 } 863 if (sc->sc_audio1.irq == sc->sc_audio2.irq && 864 sc->sc_audio1.irq != -1) { 865 printf("ess: play and record irq both %d\n", 866 sc->sc_audio1.irq); 867 return 0; 868 } 869 } 870 871 irq_not1888: 872 /* XXX should we check IRQs as well? */ 873 874 return 2; /* beat "sb" */ 875 } 876 877 878 /* 879 * Attach hardware to driver, attach hardware driver to audio 880 * pseudo-device driver. 881 */ 882 void 883 essattach(struct ess_softc *sc, int enablejoy) 884 { 885 struct audio_attach_args arg; 886 int i; 887 u_int v; 888 889 if (ess_setup_sc(sc, 0)) { 890 aprint_error(": setup failed\n"); 891 return; 892 } 893 894 aprint_normal("ESS Technology ES%s [version 0x%04x]\n", 895 essmodel[sc->sc_model], sc->sc_version); 896 897 callout_init(&sc->sc_poll1_ch, CALLOUT_MPSAFE); 898 callout_init(&sc->sc_poll2_ch, CALLOUT_MPSAFE); 899 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); 900 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); 901 902 sc->sc_audio1.polled = sc->sc_audio1.irq == -1; 903 if (!sc->sc_audio1.polled) { 904 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic, 905 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO, 906 ess_audio1_intr, sc); 907 aprint_normal_dev(sc->sc_dev, 908 "audio1 interrupting at irq %d\n", sc->sc_audio1.irq); 909 } else 910 aprint_normal_dev(sc->sc_dev, "audio1 polled\n"); 911 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq); 912 913 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) { 914 aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n", 915 sc->sc_audio1.drq); 916 goto fail; 917 } 918 919 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq, 920 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 921 aprint_error_dev(sc->sc_dev, "can't create map for drq %d\n", 922 sc->sc_audio1.drq); 923 goto fail; 924 } 925 926 if (!ESS_USE_AUDIO1(sc->sc_model)) { 927 sc->sc_audio2.polled = sc->sc_audio2.irq == -1; 928 if (!sc->sc_audio2.polled) { 929 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic, 930 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO, 931 ess_audio2_intr, sc); 932 aprint_normal_dev(sc->sc_dev, 933 "audio2 interrupting at irq %d\n", 934 sc->sc_audio2.irq); 935 } else 936 aprint_normal_dev(sc->sc_dev, "audio2 polled\n"); 937 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic, 938 sc->sc_audio2.drq); 939 940 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) { 941 aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n", 942 sc->sc_audio2.drq); 943 goto fail; 944 } 945 946 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq, 947 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 948 aprint_error_dev(sc->sc_dev, 949 "can't create map for drq %d\n", 950 sc->sc_audio2.drq); 951 goto fail; 952 } 953 } 954 955 /* Do a hardware reset on the mixer. */ 956 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET); 957 958 /* 959 * Set volume of Audio 1 to zero and disable Audio 1 DAC input 960 * to playback mixer, since playback is always through Audio 2. 961 */ 962 if (!ESS_USE_AUDIO1(sc->sc_model)) 963 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0); 964 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 965 966 if (ESS_USE_AUDIO1(sc->sc_model)) { 967 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC); 968 sc->in_port = ESS_SOURCE_MIC; 969 if (ESS_IS_ES18X9(sc->sc_model)) { 970 sc->ndevs = ESS_18X9_NDEVS; 971 sc->sc_spatializer = 0; 972 ess_set_mreg_bits(sc, ESS_MREG_MODE, 973 ESS_MODE_ASYNC_MODE | ESS_MODE_NEWREG); 974 ess_set_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL, 975 ESS_SPATIAL_CTRL_RESET); 976 ess_clear_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL, 977 ESS_SPATIAL_CTRL_ENABLE | ESS_SPATIAL_CTRL_MONO); 978 } else 979 sc->ndevs = ESS_1788_NDEVS; 980 } else { 981 /* 982 * Set hardware record source to use output of the record 983 * mixer. We do the selection of record source in software by 984 * setting the gain of the unused sources to zero. (See 985 * ess_set_in_ports.) 986 */ 987 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER); 988 sc->in_mask = 1 << ESS_MIC_REC_VOL; 989 sc->ndevs = ESS_1888_NDEVS; 990 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10); 991 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08); 992 } 993 994 /* 995 * Set gain on each mixer device to a sensible value. 996 * Devices not normally used are turned off, and other devices 997 * are set to 50% volume. 998 */ 999 for (i = 0; i < sc->ndevs; i++) { 1000 if (ESS_IS_ES18X9(sc->sc_model)) { 1001 switch (i) { 1002 case ESS_SPATIALIZER: 1003 case ESS_SPATIALIZER_ENABLE: 1004 v = 0; 1005 goto skip; 1006 } 1007 } 1008 switch (i) { 1009 case ESS_MIC_PLAY_VOL: 1010 case ESS_LINE_PLAY_VOL: 1011 case ESS_CD_PLAY_VOL: 1012 case ESS_AUXB_PLAY_VOL: 1013 case ESS_DAC_REC_VOL: 1014 case ESS_LINE_REC_VOL: 1015 case ESS_SYNTH_REC_VOL: 1016 case ESS_CD_REC_VOL: 1017 case ESS_AUXB_REC_VOL: 1018 v = 0; 1019 break; 1020 default: 1021 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2); 1022 break; 1023 } 1024 skip: 1025 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v; 1026 ess_set_gain(sc, i, 1); 1027 } 1028 1029 ess_setup(sc); 1030 1031 /* Disable the speaker until the device is opened. */ 1032 ess_speaker_off(sc); 1033 sc->spkr_state = SPKR_OFF; 1034 1035 snprintf(ess_device.name, sizeof(ess_device.name), "ES%s", 1036 essmodel[sc->sc_model]); 1037 snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x", 1038 sc->sc_version); 1039 1040 if (ESS_USE_AUDIO1(sc->sc_model)) 1041 audio_attach_mi(&ess_1788_hw_if, sc, sc->sc_dev); 1042 else 1043 audio_attach_mi(&ess_1888_hw_if, sc, sc->sc_dev); 1044 1045 arg.type = AUDIODEV_TYPE_OPL; 1046 arg.hwif = 0; 1047 arg.hdl = 0; 1048 (void)config_found(sc->sc_dev, &arg, audioprint); 1049 1050 #if NJOY_ESS > 0 1051 if (sc->sc_model == ESS_1888 && enablejoy) { 1052 unsigned char m40; 1053 1054 m40 = ess_read_mix_reg(sc, 0x40); 1055 m40 |= 2; 1056 ess_write_mix_reg(sc, 0x40, m40); 1057 1058 arg.type = AUDIODEV_TYPE_AUX; 1059 (void)config_found(sc->sc_dev, &arg, audioprint); 1060 } 1061 #endif 1062 1063 #ifdef AUDIO_DEBUG 1064 if (essdebug > 0) 1065 ess_printsc(sc); 1066 #endif 1067 1068 return; 1069 1070 fail: 1071 callout_destroy(&sc->sc_poll1_ch); 1072 callout_destroy(&sc->sc_poll2_ch); 1073 mutex_destroy(&sc->sc_lock); 1074 mutex_destroy(&sc->sc_intr_lock); 1075 } 1076 1077 /* 1078 * Various routines to interface to higher level audio driver 1079 */ 1080 1081 void 1082 ess_close(void *addr) 1083 { 1084 struct ess_softc *sc; 1085 1086 sc = addr; 1087 DPRINTF(("ess_close: sc=%p\n", sc)); 1088 1089 ess_speaker_off(sc); 1090 sc->spkr_state = SPKR_OFF; 1091 1092 DPRINTF(("ess_close: closed\n")); 1093 } 1094 1095 /* XXX should use reference count */ 1096 int 1097 ess_speaker_ctl(void *addr, int newstate) 1098 { 1099 struct ess_softc *sc; 1100 1101 sc = addr; 1102 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) { 1103 ess_speaker_on(sc); 1104 sc->spkr_state = SPKR_ON; 1105 } 1106 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) { 1107 ess_speaker_off(sc); 1108 sc->spkr_state = SPKR_OFF; 1109 } 1110 return 0; 1111 } 1112 1113 int 1114 ess_getdev(void *addr, struct audio_device *retp) 1115 { 1116 1117 *retp = ess_device; 1118 return 0; 1119 } 1120 1121 int 1122 ess_query_format(void *addr, audio_format_query_t *afp) 1123 { 1124 1125 return audio_query_format(ess_formats, ESS_NFORMATS, afp); 1126 } 1127 1128 int 1129 ess_set_format(void *addr, int setmode, 1130 const audio_params_t *play, const audio_params_t *rec, 1131 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil) 1132 { 1133 struct ess_softc *sc; 1134 int rate; 1135 1136 DPRINTF(("%s: set=%d\n", __func__, setmode)); 1137 sc = addr; 1138 1139 /* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */ 1140 1141 rate = play->sample_rate; 1142 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(sc, rate)); 1143 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate)); 1144 1145 if (!ESS_USE_AUDIO1(sc->sc_model)) { 1146 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, 1147 ess_srtotc(sc, rate)); 1148 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate)); 1149 } 1150 1151 return 0; 1152 } 1153 1154 int 1155 ess_audio1_trigger_output( 1156 void *addr, 1157 void *start, void *end, 1158 int blksize, 1159 void (*intr)(void *), 1160 void *arg, 1161 const audio_params_t *param) 1162 { 1163 struct ess_softc *sc; 1164 u_int8_t reg; 1165 1166 sc = addr; 1167 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p " 1168 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 1169 1170 if (sc->sc_audio1.active) 1171 panic("ess_audio1_trigger_output: already running"); 1172 1173 sc->sc_audio1.active = 1; 1174 sc->sc_audio1.intr = intr; 1175 sc->sc_audio1.arg = arg; 1176 if (sc->sc_audio1.polled) { 1177 sc->sc_audio1.dmapos = 0; 1178 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1179 sc->sc_audio1.dmacount = 0; 1180 sc->sc_audio1.blksize = blksize; 1181 callout_reset(&sc->sc_poll1_ch, hz / 30, 1182 ess_audio1_poll, sc); 1183 } 1184 1185 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1186 if (param->channels == 2) { 1187 reg &= ~ESS_AUDIO_CTRL_MONO; 1188 reg |= ESS_AUDIO_CTRL_STEREO; 1189 } else { 1190 reg |= ESS_AUDIO_CTRL_MONO; 1191 reg &= ~ESS_AUDIO_CTRL_STEREO; 1192 } 1193 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1194 1195 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1196 if (param->precision == 16) 1197 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1198 else 1199 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1200 if (param->channels == 2) 1201 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1202 else 1203 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1204 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1205 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1206 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1207 else 1208 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1209 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1210 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1211 1212 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start, 1213 (char *)end - (char *)start, NULL, 1214 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1215 1216 /* Program transfer count registers with 2's complement of count. */ 1217 blksize = -blksize; 1218 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1219 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1220 1221 /* Use 4 bytes per output DMA. */ 1222 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1223 1224 /* Start auto-init DMA */ 1225 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR); 1226 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1227 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE); 1228 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1229 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1230 1231 return 0; 1232 } 1233 1234 int 1235 ess_audio2_trigger_output( 1236 void *addr, 1237 void *start, void *end, 1238 int blksize, 1239 void (*intr)(void *), 1240 void *arg, 1241 const audio_params_t *param) 1242 { 1243 struct ess_softc *sc; 1244 u_int8_t reg; 1245 1246 sc = addr; 1247 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p " 1248 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 1249 1250 if (sc->sc_audio2.active) 1251 panic("ess_audio2_trigger_output: already running"); 1252 1253 sc->sc_audio2.active = 1; 1254 sc->sc_audio2.intr = intr; 1255 sc->sc_audio2.arg = arg; 1256 if (sc->sc_audio2.polled) { 1257 sc->sc_audio2.dmapos = 0; 1258 sc->sc_audio2.buffersize = (char *)end - (char *)start; 1259 sc->sc_audio2.dmacount = 0; 1260 sc->sc_audio2.blksize = blksize; 1261 callout_reset(&sc->sc_poll2_ch, hz / 30, 1262 ess_audio2_poll, sc); 1263 } 1264 1265 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1266 if (param->precision == 16) 1267 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE; 1268 else 1269 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE; 1270 if (param->channels == 2) 1271 reg |= ESS_AUDIO2_CTRL2_CHANNELS; 1272 else 1273 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS; 1274 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1275 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1276 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1277 else 1278 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1279 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1280 1281 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start, 1282 (char *)end - (char *)start, NULL, 1283 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1284 1285 if (IS16BITDRQ(sc->sc_audio2.drq)) 1286 blksize >>= 1; /* use word count for 16 bit DMA */ 1287 /* Program transfer count registers with 2's complement of count. */ 1288 blksize = -blksize; 1289 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize); 1290 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8); 1291 1292 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1); 1293 if (IS16BITDRQ(sc->sc_audio2.drq)) 1294 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE; 1295 else 1296 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE; 1297 reg |= ESS_AUDIO2_CTRL1_DEMAND_8; 1298 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE | 1299 ESS_AUDIO2_CTRL1_AUTO_INIT; 1300 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg); 1301 1302 return (0); 1303 } 1304 1305 int 1306 ess_audio1_trigger_input( 1307 void *addr, 1308 void *start, void *end, 1309 int blksize, 1310 void (*intr)(void *), 1311 void *arg, 1312 const audio_params_t *param) 1313 { 1314 struct ess_softc *sc; 1315 u_int8_t reg; 1316 1317 sc = addr; 1318 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p " 1319 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 1320 1321 if (sc->sc_audio1.active) 1322 panic("ess_audio1_trigger_input: already running"); 1323 1324 sc->sc_audio1.active = 1; 1325 sc->sc_audio1.intr = intr; 1326 sc->sc_audio1.arg = arg; 1327 if (sc->sc_audio1.polled) { 1328 sc->sc_audio1.dmapos = 0; 1329 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1330 sc->sc_audio1.dmacount = 0; 1331 sc->sc_audio1.blksize = blksize; 1332 callout_reset(&sc->sc_poll1_ch, hz / 30, 1333 ess_audio1_poll, sc); 1334 } 1335 1336 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1337 if (param->channels == 2) { 1338 reg &= ~ESS_AUDIO_CTRL_MONO; 1339 reg |= ESS_AUDIO_CTRL_STEREO; 1340 } else { 1341 reg |= ESS_AUDIO_CTRL_MONO; 1342 reg &= ~ESS_AUDIO_CTRL_STEREO; 1343 } 1344 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1345 1346 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1347 if (param->precision == 16) 1348 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1349 else 1350 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1351 if (param->channels == 2) 1352 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1353 else 1354 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1355 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1356 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1357 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1358 else 1359 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1360 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1361 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1362 1363 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start, 1364 (char *)end - (char *)start, NULL, 1365 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1366 1367 /* Program transfer count registers with 2's complement of count. */ 1368 blksize = -blksize; 1369 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1370 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1371 1372 /* Use 4 bytes per input DMA. */ 1373 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1374 1375 /* Start auto-init DMA */ 1376 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 1377 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1378 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE; 1379 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1380 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1381 1382 return 0; 1383 } 1384 1385 int 1386 ess_audio1_halt(void *addr) 1387 { 1388 struct ess_softc *sc; 1389 1390 sc = addr; 1391 DPRINTF(("ess_audio1_halt: sc=%p\n", sc)); 1392 1393 if (sc->sc_audio1.active) { 1394 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2, 1395 ESS_AUDIO1_CTRL2_FIFO_ENABLE); 1396 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq); 1397 if (sc->sc_audio1.polled) 1398 callout_stop(&sc->sc_poll1_ch); 1399 sc->sc_audio1.active = 0; 1400 } 1401 1402 return 0; 1403 } 1404 1405 int 1406 ess_audio2_halt(void *addr) 1407 { 1408 struct ess_softc *sc; 1409 1410 sc = addr; 1411 DPRINTF(("ess_audio2_halt: sc=%p\n", sc)); 1412 1413 if (sc->sc_audio2.active) { 1414 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1, 1415 ESS_AUDIO2_CTRL1_DAC_ENABLE | 1416 ESS_AUDIO2_CTRL1_FIFO_ENABLE); 1417 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq); 1418 if (sc->sc_audio2.polled) 1419 callout_stop(&sc->sc_poll2_ch); 1420 sc->sc_audio2.active = 0; 1421 } 1422 1423 return 0; 1424 } 1425 1426 int 1427 ess_audio1_intr(void *arg) 1428 { 1429 struct ess_softc *sc; 1430 uint8_t reg; 1431 int rv; 1432 1433 sc = arg; 1434 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr)); 1435 1436 mutex_spin_enter(&sc->sc_intr_lock); 1437 1438 /* Check and clear interrupt on Audio1. */ 1439 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); 1440 if ((reg & ESS_DSP_READ_OFLOW) == 0) { 1441 mutex_spin_exit(&sc->sc_intr_lock); 1442 return 0; 1443 } 1444 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR); 1445 1446 sc->sc_audio1.nintr++; 1447 1448 if (sc->sc_audio1.active) { 1449 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1450 rv = 1; 1451 } else 1452 rv = 0; 1453 1454 mutex_spin_exit(&sc->sc_intr_lock); 1455 1456 return rv; 1457 } 1458 1459 int 1460 ess_audio2_intr(void *arg) 1461 { 1462 struct ess_softc *sc; 1463 uint8_t reg; 1464 int rv; 1465 1466 sc = arg; 1467 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr)); 1468 1469 mutex_spin_enter(&sc->sc_intr_lock); 1470 1471 /* Check and clear interrupt on Audio2. */ 1472 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1473 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) { 1474 mutex_spin_exit(&sc->sc_intr_lock); 1475 return 0; 1476 } 1477 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH; 1478 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1479 1480 sc->sc_audio2.nintr++; 1481 1482 if (sc->sc_audio2.active) { 1483 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1484 rv = 1; 1485 } else 1486 rv = 0; 1487 1488 mutex_spin_exit(&sc->sc_intr_lock); 1489 1490 return rv; 1491 } 1492 1493 void 1494 ess_audio1_poll(void *addr) 1495 { 1496 struct ess_softc *sc; 1497 int dmapos, dmacount; 1498 1499 sc = addr; 1500 mutex_spin_enter(&sc->sc_intr_lock); 1501 1502 if (!sc->sc_audio1.active) { 1503 mutex_spin_exit(&sc->sc_intr_lock); 1504 return; 1505 } 1506 1507 sc->sc_audio1.nintr++; 1508 1509 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq); 1510 dmacount = sc->sc_audio1.dmapos - dmapos; 1511 if (dmacount < 0) 1512 dmacount += sc->sc_audio1.buffersize; 1513 sc->sc_audio1.dmapos = dmapos; 1514 #if 1 1515 dmacount += sc->sc_audio1.dmacount; 1516 while (dmacount > sc->sc_audio1.blksize) { 1517 dmacount -= sc->sc_audio1.blksize; 1518 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1519 } 1520 sc->sc_audio1.dmacount = dmacount; 1521 #else 1522 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount); 1523 #endif 1524 1525 mutex_spin_exit(&sc->sc_intr_lock); 1526 callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc); 1527 } 1528 1529 void 1530 ess_audio2_poll(void *addr) 1531 { 1532 struct ess_softc *sc; 1533 int dmapos, dmacount; 1534 1535 sc = addr; 1536 mutex_spin_enter(&sc->sc_intr_lock); 1537 1538 if (!sc->sc_audio2.active) { 1539 mutex_spin_exit(&sc->sc_intr_lock); 1540 return; 1541 } 1542 1543 sc->sc_audio2.nintr++; 1544 1545 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq); 1546 dmacount = sc->sc_audio2.dmapos - dmapos; 1547 if (dmacount < 0) 1548 dmacount += sc->sc_audio2.buffersize; 1549 sc->sc_audio2.dmapos = dmapos; 1550 #if 1 1551 dmacount += sc->sc_audio2.dmacount; 1552 while (dmacount > sc->sc_audio2.blksize) { 1553 dmacount -= sc->sc_audio2.blksize; 1554 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1555 } 1556 sc->sc_audio2.dmacount = dmacount; 1557 #else 1558 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount); 1559 #endif 1560 1561 mutex_spin_exit(&sc->sc_intr_lock); 1562 callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc); 1563 } 1564 1565 int 1566 ess_round_blocksize(void *addr, int blk, int mode, 1567 const audio_params_t *param) 1568 { 1569 1570 return blk & -8; /* round for max DMA size */ 1571 } 1572 1573 int 1574 ess_set_port(void *addr, mixer_ctrl_t *cp) 1575 { 1576 struct ess_softc *sc; 1577 int lgain, rgain; 1578 1579 sc = addr; 1580 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n", 1581 cp->dev, cp->un.value.num_channels)); 1582 1583 switch (cp->dev) { 1584 /* 1585 * The following mixer ports are all stereo. If we get a 1586 * single-channel gain value passed in, then we duplicate it 1587 * to both left and right channels. 1588 */ 1589 case ESS_MASTER_VOL: 1590 case ESS_DAC_PLAY_VOL: 1591 case ESS_MIC_PLAY_VOL: 1592 case ESS_LINE_PLAY_VOL: 1593 case ESS_SYNTH_PLAY_VOL: 1594 case ESS_CD_PLAY_VOL: 1595 case ESS_AUXB_PLAY_VOL: 1596 case ESS_RECORD_VOL: 1597 if (cp->type != AUDIO_MIXER_VALUE) 1598 return EINVAL; 1599 1600 switch (cp->un.value.num_channels) { 1601 case 1: 1602 lgain = rgain = ESS_4BIT_GAIN( 1603 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1604 break; 1605 case 2: 1606 lgain = ESS_4BIT_GAIN( 1607 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1608 rgain = ESS_4BIT_GAIN( 1609 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1610 break; 1611 default: 1612 return EINVAL; 1613 } 1614 1615 sc->gain[cp->dev][ESS_LEFT] = lgain; 1616 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1617 ess_set_gain(sc, cp->dev, 1); 1618 return 0; 1619 1620 /* 1621 * The PC speaker port is mono. If we get a stereo gain value 1622 * passed in, then we return EINVAL. 1623 */ 1624 case ESS_PCSPEAKER_VOL: 1625 if (cp->un.value.num_channels != 1) 1626 return EINVAL; 1627 1628 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] = 1629 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1630 ess_set_gain(sc, cp->dev, 1); 1631 return 0; 1632 1633 case ESS_RECORD_SOURCE: 1634 if (ESS_USE_AUDIO1(sc->sc_model)) { 1635 if (cp->type == AUDIO_MIXER_ENUM) 1636 return ess_set_in_port(sc, cp->un.ord); 1637 else 1638 return EINVAL; 1639 } else { 1640 if (cp->type == AUDIO_MIXER_SET) 1641 return ess_set_in_ports(sc, cp->un.mask); 1642 else 1643 return EINVAL; 1644 } 1645 return 0; 1646 1647 case ESS_RECORD_MONITOR: 1648 if (cp->type != AUDIO_MIXER_ENUM) 1649 return EINVAL; 1650 1651 if (cp->un.ord) 1652 /* Enable monitor */ 1653 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1654 ESS_AUDIO_CTRL_MONITOR); 1655 else 1656 /* Disable monitor */ 1657 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1658 ESS_AUDIO_CTRL_MONITOR); 1659 return 0; 1660 } 1661 1662 if (ESS_IS_ES18X9(sc->sc_model)) { 1663 1664 switch (cp->dev) { 1665 case ESS_SPATIALIZER: 1666 if (cp->type != AUDIO_MIXER_VALUE || 1667 cp->un.value.num_channels != 1) 1668 return EINVAL; 1669 1670 sc->gain[cp->dev][ESS_LEFT] = 1671 sc->gain[cp->dev][ESS_RIGHT] = ESS_6BIT_GAIN( 1672 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1673 ess_set_gain(sc, cp->dev, 1); 1674 return 0; 1675 1676 case ESS_SPATIALIZER_ENABLE: 1677 if (cp->type != AUDIO_MIXER_ENUM) 1678 return EINVAL; 1679 1680 sc->sc_spatializer = (cp->un.ord != 0); 1681 if (sc->sc_spatializer) 1682 ess_set_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL, 1683 ESS_SPATIAL_CTRL_ENABLE); 1684 else 1685 ess_clear_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL, 1686 ESS_SPATIAL_CTRL_ENABLE); 1687 return 0; 1688 } 1689 } 1690 1691 if (ESS_USE_AUDIO1(sc->sc_model)) 1692 return EINVAL; 1693 1694 switch (cp->dev) { 1695 case ESS_DAC_REC_VOL: 1696 case ESS_MIC_REC_VOL: 1697 case ESS_LINE_REC_VOL: 1698 case ESS_SYNTH_REC_VOL: 1699 case ESS_CD_REC_VOL: 1700 case ESS_AUXB_REC_VOL: 1701 if (cp->type != AUDIO_MIXER_VALUE) 1702 return EINVAL; 1703 1704 switch (cp->un.value.num_channels) { 1705 case 1: 1706 lgain = rgain = ESS_4BIT_GAIN( 1707 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1708 break; 1709 case 2: 1710 lgain = ESS_4BIT_GAIN( 1711 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1712 rgain = ESS_4BIT_GAIN( 1713 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1714 break; 1715 default: 1716 return EINVAL; 1717 } 1718 1719 sc->gain[cp->dev][ESS_LEFT] = lgain; 1720 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1721 ess_set_gain(sc, cp->dev, 1); 1722 return 0; 1723 1724 case ESS_MIC_PREAMP: 1725 if (cp->type != AUDIO_MIXER_ENUM) 1726 return EINVAL; 1727 1728 if (cp->un.ord) 1729 /* Enable microphone preamp */ 1730 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1731 ESS_PREAMP_CTRL_ENABLE); 1732 else 1733 /* Disable microphone preamp */ 1734 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1735 ESS_PREAMP_CTRL_ENABLE); 1736 return 0; 1737 } 1738 1739 return EINVAL; 1740 } 1741 1742 int 1743 ess_get_port(void *addr, mixer_ctrl_t *cp) 1744 { 1745 struct ess_softc *sc; 1746 1747 sc = addr; 1748 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev)); 1749 1750 switch (cp->dev) { 1751 case ESS_MASTER_VOL: 1752 case ESS_DAC_PLAY_VOL: 1753 case ESS_MIC_PLAY_VOL: 1754 case ESS_LINE_PLAY_VOL: 1755 case ESS_SYNTH_PLAY_VOL: 1756 case ESS_CD_PLAY_VOL: 1757 case ESS_AUXB_PLAY_VOL: 1758 case ESS_RECORD_VOL: 1759 switch (cp->un.value.num_channels) { 1760 case 1: 1761 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1762 sc->gain[cp->dev][ESS_LEFT]; 1763 break; 1764 case 2: 1765 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1766 sc->gain[cp->dev][ESS_LEFT]; 1767 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1768 sc->gain[cp->dev][ESS_RIGHT]; 1769 break; 1770 default: 1771 return EINVAL; 1772 } 1773 return 0; 1774 1775 case ESS_PCSPEAKER_VOL: 1776 if (cp->un.value.num_channels != 1) 1777 return EINVAL; 1778 1779 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1780 sc->gain[cp->dev][ESS_LEFT]; 1781 return 0; 1782 1783 case ESS_RECORD_SOURCE: 1784 if (ESS_USE_AUDIO1(sc->sc_model)) 1785 cp->un.ord = sc->in_port; 1786 else 1787 cp->un.mask = sc->in_mask; 1788 return 0; 1789 1790 case ESS_RECORD_MONITOR: 1791 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) & 1792 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0; 1793 return 0; 1794 } 1795 1796 if (ESS_IS_ES18X9(sc->sc_model)) { 1797 1798 switch (cp->dev) { 1799 case ESS_SPATIALIZER: 1800 if (cp->un.value.num_channels != 1) 1801 return EINVAL; 1802 1803 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1804 sc->gain[cp->dev][ESS_LEFT]; 1805 return 0; 1806 1807 case ESS_SPATIALIZER_ENABLE: 1808 cp->un.ord = sc->sc_spatializer; 1809 return 0; 1810 } 1811 } 1812 1813 if (ESS_USE_AUDIO1(sc->sc_model)) 1814 return EINVAL; 1815 1816 switch (cp->dev) { 1817 case ESS_DAC_REC_VOL: 1818 case ESS_MIC_REC_VOL: 1819 case ESS_LINE_REC_VOL: 1820 case ESS_SYNTH_REC_VOL: 1821 case ESS_CD_REC_VOL: 1822 case ESS_AUXB_REC_VOL: 1823 switch (cp->un.value.num_channels) { 1824 case 1: 1825 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1826 sc->gain[cp->dev][ESS_LEFT]; 1827 break; 1828 case 2: 1829 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1830 sc->gain[cp->dev][ESS_LEFT]; 1831 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1832 sc->gain[cp->dev][ESS_RIGHT]; 1833 break; 1834 default: 1835 return EINVAL; 1836 } 1837 return 0; 1838 1839 case ESS_MIC_PREAMP: 1840 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) & 1841 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0; 1842 return 0; 1843 } 1844 1845 return EINVAL; 1846 } 1847 1848 int 1849 ess_query_devinfo(void *addr, mixer_devinfo_t *dip) 1850 { 1851 struct ess_softc *sc; 1852 1853 sc = addr; 1854 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n", 1855 sc->sc_model, dip->index)); 1856 1857 /* 1858 * REVISIT: There are some slight differences between the 1859 * mixers on the different ESS chips, which can 1860 * be sorted out using the chip model rather than a 1861 * separate mixer model. 1862 * This is currently coded assuming an ES1887; we 1863 * need to work out which bits are not applicable to 1864 * the other models (1888 and 888). 1865 */ 1866 switch (dip->index) { 1867 case ESS_DAC_PLAY_VOL: 1868 dip->mixer_class = ESS_INPUT_CLASS; 1869 dip->next = dip->prev = AUDIO_MIXER_LAST; 1870 strcpy(dip->label.name, AudioNdac); 1871 dip->type = AUDIO_MIXER_VALUE; 1872 dip->un.v.num_channels = 2; 1873 strcpy(dip->un.v.units.name, AudioNvolume); 1874 return 0; 1875 1876 case ESS_MIC_PLAY_VOL: 1877 dip->mixer_class = ESS_INPUT_CLASS; 1878 dip->prev = AUDIO_MIXER_LAST; 1879 if (ESS_USE_AUDIO1(sc->sc_model)) 1880 dip->next = AUDIO_MIXER_LAST; 1881 else 1882 dip->next = ESS_MIC_PREAMP; 1883 strcpy(dip->label.name, AudioNmicrophone); 1884 dip->type = AUDIO_MIXER_VALUE; 1885 dip->un.v.num_channels = 2; 1886 strcpy(dip->un.v.units.name, AudioNvolume); 1887 return 0; 1888 1889 case ESS_LINE_PLAY_VOL: 1890 dip->mixer_class = ESS_INPUT_CLASS; 1891 dip->next = dip->prev = AUDIO_MIXER_LAST; 1892 strcpy(dip->label.name, AudioNline); 1893 dip->type = AUDIO_MIXER_VALUE; 1894 dip->un.v.num_channels = 2; 1895 strcpy(dip->un.v.units.name, AudioNvolume); 1896 return 0; 1897 1898 case ESS_SYNTH_PLAY_VOL: 1899 dip->mixer_class = ESS_INPUT_CLASS; 1900 dip->next = dip->prev = AUDIO_MIXER_LAST; 1901 strcpy(dip->label.name, AudioNfmsynth); 1902 dip->type = AUDIO_MIXER_VALUE; 1903 dip->un.v.num_channels = 2; 1904 strcpy(dip->un.v.units.name, AudioNvolume); 1905 return 0; 1906 1907 case ESS_CD_PLAY_VOL: 1908 dip->mixer_class = ESS_INPUT_CLASS; 1909 dip->next = dip->prev = AUDIO_MIXER_LAST; 1910 strcpy(dip->label.name, AudioNcd); 1911 dip->type = AUDIO_MIXER_VALUE; 1912 dip->un.v.num_channels = 2; 1913 strcpy(dip->un.v.units.name, AudioNvolume); 1914 return 0; 1915 1916 case ESS_AUXB_PLAY_VOL: 1917 dip->mixer_class = ESS_INPUT_CLASS; 1918 dip->next = dip->prev = AUDIO_MIXER_LAST; 1919 strcpy(dip->label.name, "auxb"); 1920 dip->type = AUDIO_MIXER_VALUE; 1921 dip->un.v.num_channels = 2; 1922 strcpy(dip->un.v.units.name, AudioNvolume); 1923 return 0; 1924 1925 case ESS_INPUT_CLASS: 1926 dip->mixer_class = ESS_INPUT_CLASS; 1927 dip->next = dip->prev = AUDIO_MIXER_LAST; 1928 strcpy(dip->label.name, AudioCinputs); 1929 dip->type = AUDIO_MIXER_CLASS; 1930 return 0; 1931 1932 case ESS_MASTER_VOL: 1933 dip->mixer_class = ESS_OUTPUT_CLASS; 1934 dip->next = dip->prev = AUDIO_MIXER_LAST; 1935 strcpy(dip->label.name, AudioNmaster); 1936 dip->type = AUDIO_MIXER_VALUE; 1937 dip->un.v.num_channels = 2; 1938 strcpy(dip->un.v.units.name, AudioNvolume); 1939 return 0; 1940 1941 case ESS_PCSPEAKER_VOL: 1942 dip->mixer_class = ESS_OUTPUT_CLASS; 1943 dip->next = dip->prev = AUDIO_MIXER_LAST; 1944 strcpy(dip->label.name, "pc_speaker"); 1945 dip->type = AUDIO_MIXER_VALUE; 1946 dip->un.v.num_channels = 1; 1947 strcpy(dip->un.v.units.name, AudioNvolume); 1948 return 0; 1949 1950 case ESS_OUTPUT_CLASS: 1951 dip->mixer_class = ESS_OUTPUT_CLASS; 1952 dip->next = dip->prev = AUDIO_MIXER_LAST; 1953 strcpy(dip->label.name, AudioCoutputs); 1954 dip->type = AUDIO_MIXER_CLASS; 1955 return 0; 1956 1957 case ESS_RECORD_VOL: 1958 dip->mixer_class = ESS_RECORD_CLASS; 1959 dip->next = dip->prev = AUDIO_MIXER_LAST; 1960 strcpy(dip->label.name, AudioNrecord); 1961 dip->type = AUDIO_MIXER_VALUE; 1962 dip->un.v.num_channels = 2; 1963 strcpy(dip->un.v.units.name, AudioNvolume); 1964 return 0; 1965 1966 case ESS_RECORD_SOURCE: 1967 dip->mixer_class = ESS_RECORD_CLASS; 1968 dip->next = dip->prev = AUDIO_MIXER_LAST; 1969 strcpy(dip->label.name, AudioNsource); 1970 if (ESS_USE_AUDIO1(sc->sc_model)) { 1971 /* 1972 * The 1788 doesn't use the input mixer control that 1973 * the 1888 uses, because it's a pain when you only 1974 * have one mixer. 1975 * Perhaps it could be emulated by keeping both sets of 1976 * gain values, and doing a `context switch' of the 1977 * mixer registers when shifting from playing to 1978 * recording. 1979 */ 1980 dip->type = AUDIO_MIXER_ENUM; 1981 dip->un.e.num_mem = 4; 1982 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 1983 dip->un.e.member[0].ord = ESS_SOURCE_MIC; 1984 strcpy(dip->un.e.member[1].label.name, AudioNline); 1985 dip->un.e.member[1].ord = ESS_SOURCE_LINE; 1986 strcpy(dip->un.e.member[2].label.name, AudioNcd); 1987 dip->un.e.member[2].ord = ESS_SOURCE_CD; 1988 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 1989 dip->un.e.member[3].ord = ESS_SOURCE_MIXER; 1990 } else { 1991 dip->type = AUDIO_MIXER_SET; 1992 dip->un.s.num_mem = 6; 1993 strcpy(dip->un.s.member[0].label.name, AudioNdac); 1994 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL; 1995 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone); 1996 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL; 1997 strcpy(dip->un.s.member[2].label.name, AudioNline); 1998 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL; 1999 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth); 2000 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL; 2001 strcpy(dip->un.s.member[4].label.name, AudioNcd); 2002 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL; 2003 strcpy(dip->un.s.member[5].label.name, "auxb"); 2004 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL; 2005 } 2006 return 0; 2007 2008 case ESS_RECORD_CLASS: 2009 dip->mixer_class = ESS_RECORD_CLASS; 2010 dip->next = dip->prev = AUDIO_MIXER_LAST; 2011 strcpy(dip->label.name, AudioCrecord); 2012 dip->type = AUDIO_MIXER_CLASS; 2013 return 0; 2014 2015 case ESS_RECORD_MONITOR: 2016 dip->prev = dip->next = AUDIO_MIXER_LAST; 2017 strcpy(dip->label.name, AudioNmute); 2018 dip->type = AUDIO_MIXER_ENUM; 2019 dip->mixer_class = ESS_MONITOR_CLASS; 2020 dip->un.e.num_mem = 2; 2021 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2022 dip->un.e.member[0].ord = 0; 2023 strcpy(dip->un.e.member[1].label.name, AudioNon); 2024 dip->un.e.member[1].ord = 1; 2025 return 0; 2026 2027 case ESS_MONITOR_CLASS: 2028 dip->mixer_class = ESS_MONITOR_CLASS; 2029 dip->next = dip->prev = AUDIO_MIXER_LAST; 2030 strcpy(dip->label.name, AudioCmonitor); 2031 dip->type = AUDIO_MIXER_CLASS; 2032 return 0; 2033 } 2034 2035 if (ESS_IS_ES18X9(sc->sc_model)) { 2036 2037 switch (dip->index) { 2038 case ESS_SPATIALIZER: 2039 dip->mixer_class = ESS_OUTPUT_CLASS; 2040 dip->prev = AUDIO_MIXER_LAST; 2041 dip->next = ESS_SPATIALIZER_ENABLE; 2042 strcpy(dip->label.name, AudioNspatial); 2043 dip->type = AUDIO_MIXER_VALUE; 2044 dip->un.v.num_channels = 1; 2045 strcpy(dip->un.v.units.name, "level"); 2046 return 0; 2047 2048 case ESS_SPATIALIZER_ENABLE: 2049 dip->mixer_class = ESS_OUTPUT_CLASS; 2050 dip->prev = ESS_SPATIALIZER; 2051 dip->next = AUDIO_MIXER_LAST; 2052 strcpy(dip->label.name, "enable"); 2053 dip->type = AUDIO_MIXER_ENUM; 2054 dip->un.e.num_mem = 2; 2055 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2056 dip->un.e.member[0].ord = 0; 2057 strcpy(dip->un.e.member[1].label.name, AudioNon); 2058 dip->un.e.member[1].ord = 1; 2059 return 0; 2060 } 2061 } 2062 2063 if (ESS_USE_AUDIO1(sc->sc_model)) 2064 return ENXIO; 2065 2066 switch (dip->index) { 2067 case ESS_DAC_REC_VOL: 2068 dip->mixer_class = ESS_RECORD_CLASS; 2069 dip->next = dip->prev = AUDIO_MIXER_LAST; 2070 strcpy(dip->label.name, AudioNdac); 2071 dip->type = AUDIO_MIXER_VALUE; 2072 dip->un.v.num_channels = 2; 2073 strcpy(dip->un.v.units.name, AudioNvolume); 2074 return 0; 2075 2076 case ESS_MIC_REC_VOL: 2077 dip->mixer_class = ESS_RECORD_CLASS; 2078 dip->next = dip->prev = AUDIO_MIXER_LAST; 2079 strcpy(dip->label.name, AudioNmicrophone); 2080 dip->type = AUDIO_MIXER_VALUE; 2081 dip->un.v.num_channels = 2; 2082 strcpy(dip->un.v.units.name, AudioNvolume); 2083 return 0; 2084 2085 case ESS_LINE_REC_VOL: 2086 dip->mixer_class = ESS_RECORD_CLASS; 2087 dip->next = dip->prev = AUDIO_MIXER_LAST; 2088 strcpy(dip->label.name, AudioNline); 2089 dip->type = AUDIO_MIXER_VALUE; 2090 dip->un.v.num_channels = 2; 2091 strcpy(dip->un.v.units.name, AudioNvolume); 2092 return 0; 2093 2094 case ESS_SYNTH_REC_VOL: 2095 dip->mixer_class = ESS_RECORD_CLASS; 2096 dip->next = dip->prev = AUDIO_MIXER_LAST; 2097 strcpy(dip->label.name, AudioNfmsynth); 2098 dip->type = AUDIO_MIXER_VALUE; 2099 dip->un.v.num_channels = 2; 2100 strcpy(dip->un.v.units.name, AudioNvolume); 2101 return 0; 2102 2103 case ESS_CD_REC_VOL: 2104 dip->mixer_class = ESS_RECORD_CLASS; 2105 dip->next = dip->prev = AUDIO_MIXER_LAST; 2106 strcpy(dip->label.name, AudioNcd); 2107 dip->type = AUDIO_MIXER_VALUE; 2108 dip->un.v.num_channels = 2; 2109 strcpy(dip->un.v.units.name, AudioNvolume); 2110 return 0; 2111 2112 case ESS_AUXB_REC_VOL: 2113 dip->mixer_class = ESS_RECORD_CLASS; 2114 dip->next = dip->prev = AUDIO_MIXER_LAST; 2115 strcpy(dip->label.name, "auxb"); 2116 dip->type = AUDIO_MIXER_VALUE; 2117 dip->un.v.num_channels = 2; 2118 strcpy(dip->un.v.units.name, AudioNvolume); 2119 return 0; 2120 2121 case ESS_MIC_PREAMP: 2122 dip->mixer_class = ESS_INPUT_CLASS; 2123 dip->prev = ESS_MIC_PLAY_VOL; 2124 dip->next = AUDIO_MIXER_LAST; 2125 strcpy(dip->label.name, AudioNpreamp); 2126 dip->type = AUDIO_MIXER_ENUM; 2127 dip->un.e.num_mem = 2; 2128 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2129 dip->un.e.member[0].ord = 0; 2130 strcpy(dip->un.e.member[1].label.name, AudioNon); 2131 dip->un.e.member[1].ord = 1; 2132 return 0; 2133 } 2134 2135 return ENXIO; 2136 } 2137 2138 void * 2139 ess_malloc(void *addr, int direction, size_t size) 2140 { 2141 struct ess_softc *sc; 2142 int drq; 2143 2144 sc = addr; 2145 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY) 2146 drq = sc->sc_audio2.drq; 2147 else 2148 drq = sc->sc_audio1.drq; 2149 return (isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK)); 2150 } 2151 2152 void 2153 ess_free(void *addr, void *ptr, size_t size) 2154 { 2155 2156 isa_free(ptr, M_DEVBUF); 2157 } 2158 2159 size_t 2160 ess_round_buffersize(void *addr, int direction, size_t size) 2161 { 2162 struct ess_softc *sc; 2163 bus_size_t maxsize; 2164 2165 sc = addr; 2166 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY) 2167 maxsize = sc->sc_audio2.maxsize; 2168 else 2169 maxsize = sc->sc_audio1.maxsize; 2170 2171 if (size > maxsize) 2172 size = maxsize; 2173 return size; 2174 } 2175 2176 int 2177 ess_1788_get_props(void *addr) 2178 { 2179 2180 return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE; 2181 } 2182 2183 int 2184 ess_1888_get_props(void *addr) 2185 { 2186 2187 return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE | 2188 AUDIO_PROP_FULLDUPLEX; 2189 } 2190 2191 void 2192 ess_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) 2193 { 2194 struct ess_softc *sc; 2195 2196 sc = addr; 2197 *intr = &sc->sc_intr_lock; 2198 *thread = &sc->sc_lock; 2199 } 2200 2201 2202 /* ============================================ 2203 * Generic functions for ess, not used by audio h/w i/f 2204 * ============================================= 2205 */ 2206 2207 /* 2208 * Reset the chip. 2209 * Return non-zero if the chip isn't detected. 2210 */ 2211 int 2212 ess_reset(struct ess_softc *sc) 2213 { 2214 bus_space_tag_t iot; 2215 bus_space_handle_t ioh; 2216 2217 iot = sc->sc_iot; 2218 ioh = sc->sc_ioh; 2219 sc->sc_audio1.active = 0; 2220 sc->sc_audio2.active = 0; 2221 2222 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT); 2223 delay(10000); /* XXX shouldn't delay so long */ 2224 EWRITE1(iot, ioh, ESS_DSP_RESET, 0); 2225 if (ess_rdsp(sc) != ESS_MAGIC) 2226 return 1; 2227 2228 /* Enable access to the ESS extension commands. */ 2229 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT); 2230 2231 return 0; 2232 } 2233 2234 void 2235 ess_set_gain(struct ess_softc *sc, int port, int on) 2236 { 2237 int gain, left, right; 2238 int mix; 2239 int src; 2240 int stereo; 2241 2242 /* 2243 * Most gain controls are found in the mixer registers and 2244 * are stereo. Any that are not, must set mix and stereo as 2245 * required. 2246 */ 2247 mix = 1; 2248 stereo = 1; 2249 2250 if (ESS_IS_ES18X9(sc->sc_model)) { 2251 switch (port) { 2252 case ESS_SPATIALIZER: 2253 src = ESS_MREG_SPATIAL_LEVEL; 2254 stereo = -1; 2255 goto skip; 2256 case ESS_SPATIALIZER_ENABLE: 2257 return; 2258 } 2259 } 2260 switch (port) { 2261 case ESS_MASTER_VOL: 2262 src = ESS_MREG_VOLUME_MASTER; 2263 break; 2264 case ESS_DAC_PLAY_VOL: 2265 if (ESS_USE_AUDIO1(sc->sc_model)) 2266 src = ESS_MREG_VOLUME_VOICE; 2267 else 2268 src = 0x7C; 2269 break; 2270 case ESS_MIC_PLAY_VOL: 2271 src = ESS_MREG_VOLUME_MIC; 2272 break; 2273 case ESS_LINE_PLAY_VOL: 2274 src = ESS_MREG_VOLUME_LINE; 2275 break; 2276 case ESS_SYNTH_PLAY_VOL: 2277 src = ESS_MREG_VOLUME_SYNTH; 2278 break; 2279 case ESS_CD_PLAY_VOL: 2280 src = ESS_MREG_VOLUME_CD; 2281 break; 2282 case ESS_AUXB_PLAY_VOL: 2283 src = ESS_MREG_VOLUME_AUXB; 2284 break; 2285 case ESS_PCSPEAKER_VOL: 2286 src = ESS_MREG_VOLUME_PCSPKR; 2287 stereo = 0; 2288 break; 2289 case ESS_DAC_REC_VOL: 2290 src = 0x69; 2291 break; 2292 case ESS_MIC_REC_VOL: 2293 src = 0x68; 2294 break; 2295 case ESS_LINE_REC_VOL: 2296 src = 0x6E; 2297 break; 2298 case ESS_SYNTH_REC_VOL: 2299 src = 0x6B; 2300 break; 2301 case ESS_CD_REC_VOL: 2302 src = 0x6A; 2303 break; 2304 case ESS_AUXB_REC_VOL: 2305 src = 0x6C; 2306 break; 2307 case ESS_RECORD_VOL: 2308 src = ESS_XCMD_VOLIN_CTRL; 2309 mix = 0; 2310 break; 2311 default: 2312 return; 2313 } 2314 skip: 2315 2316 /* 1788 doesn't have a separate recording mixer */ 2317 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62) 2318 return; 2319 2320 if (on) { 2321 left = sc->gain[port][ESS_LEFT]; 2322 right = sc->gain[port][ESS_RIGHT]; 2323 } else { 2324 left = right = 0; 2325 } 2326 2327 if (stereo == -1) 2328 gain = ESS_SPATIAL_GAIN(left); 2329 else if (stereo) 2330 gain = ESS_STEREO_GAIN(left, right); 2331 else 2332 gain = ESS_MONO_GAIN(left); 2333 2334 if (mix) 2335 ess_write_mix_reg(sc, src, gain); 2336 else 2337 ess_write_x_reg(sc, src, gain); 2338 } 2339 2340 /* Set the input device on devices without an input mixer. */ 2341 int 2342 ess_set_in_port(struct ess_softc *sc, int ord) 2343 { 2344 mixer_devinfo_t di; 2345 int i; 2346 2347 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord)); 2348 2349 /* 2350 * Get the device info for the record source control, 2351 * including the list of available sources. 2352 */ 2353 di.index = ESS_RECORD_SOURCE; 2354 if (ess_query_devinfo(sc, &di)) 2355 return EINVAL; 2356 2357 /* See if the given ord value was anywhere in the list. */ 2358 for (i = 0; i < di.un.e.num_mem; i++) { 2359 if (ord == di.un.e.member[i].ord) 2360 break; 2361 } 2362 if (i == di.un.e.num_mem) 2363 return EINVAL; 2364 2365 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord); 2366 2367 sc->in_port = ord; 2368 return 0; 2369 } 2370 2371 /* Set the input device levels on input-mixer-enabled devices. */ 2372 int 2373 ess_set_in_ports(struct ess_softc *sc, int mask) 2374 { 2375 mixer_devinfo_t di; 2376 int i, port; 2377 2378 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask)); 2379 2380 /* 2381 * Get the device info for the record source control, 2382 * including the list of available sources. 2383 */ 2384 di.index = ESS_RECORD_SOURCE; 2385 if (ess_query_devinfo(sc, &di)) 2386 return EINVAL; 2387 2388 /* 2389 * Set or disable the record volume control for each of the 2390 * possible sources. 2391 */ 2392 for (i = 0; i < di.un.s.num_mem; i++) { 2393 /* 2394 * Calculate the source port number from its mask. 2395 */ 2396 port = ffs(di.un.s.member[i].mask); 2397 2398 /* 2399 * Set the source gain: 2400 * to the current value if source is enabled 2401 * to zero if source is disabled 2402 */ 2403 ess_set_gain(sc, port, mask & di.un.s.member[i].mask); 2404 } 2405 2406 sc->in_mask = mask; 2407 return 0; 2408 } 2409 2410 void 2411 ess_speaker_on(struct ess_softc *sc) 2412 { 2413 2414 /* Unmute the DAC. */ 2415 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1); 2416 } 2417 2418 void 2419 ess_speaker_off(struct ess_softc *sc) 2420 { 2421 2422 /* Mute the DAC. */ 2423 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0); 2424 } 2425 2426 /* 2427 * Calculate the time constant for the requested sampling rate. 2428 */ 2429 u_int 2430 ess_srtotc(struct ess_softc *sc, u_int rate) 2431 { 2432 u_int tc; 2433 2434 /* The following formulae are from the ESS data sheet. */ 2435 if (ESS_IS_ES18X9(sc->sc_model)) { 2436 if ((rate % 8000) != 0) 2437 tc = 128 - 793800L / rate; 2438 else 2439 tc = 256 - 768000L / rate; 2440 } else { 2441 if (rate <= 22050) 2442 tc = 128 - 397700L / rate; 2443 else 2444 tc = 256 - 795500L / rate; 2445 } 2446 2447 return tc; 2448 } 2449 2450 2451 /* 2452 * Calculate the filter constant for the reuqested sampling rate. 2453 */ 2454 u_int 2455 ess_srtofc(u_int rate) 2456 { 2457 /* 2458 * The following formula is derived from the information in 2459 * the ES1887 data sheet, based on a roll-off frequency of 2460 * 87%. 2461 */ 2462 return 256 - 200279L / rate; 2463 } 2464 2465 2466 /* 2467 * Return the status of the DSP. 2468 */ 2469 u_char 2470 ess_get_dsp_status(struct ess_softc *sc) 2471 { 2472 return EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); 2473 } 2474 2475 2476 /* 2477 * Return the read status of the DSP: 1 -> DSP ready for reading 2478 * 0 -> DSP not ready for reading 2479 */ 2480 u_char 2481 ess_dsp_read_ready(struct ess_softc *sc) 2482 { 2483 2484 return (ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0; 2485 } 2486 2487 2488 /* 2489 * Return the write status of the DSP: 1 -> DSP ready for writing 2490 * 0 -> DSP not ready for writing 2491 */ 2492 u_char 2493 ess_dsp_write_ready(struct ess_softc *sc) 2494 { 2495 return (ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1; 2496 } 2497 2498 2499 /* 2500 * Read a byte from the DSP. 2501 */ 2502 int 2503 ess_rdsp(struct ess_softc *sc) 2504 { 2505 bus_space_tag_t iot; 2506 bus_space_handle_t ioh; 2507 int i; 2508 2509 iot = sc->sc_iot; 2510 ioh = sc->sc_ioh; 2511 for (i = ESS_READ_TIMEOUT; i > 0; --i) { 2512 if (ess_dsp_read_ready(sc)) { 2513 i = EREAD1(iot, ioh, ESS_DSP_READ); 2514 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i)); 2515 return i; 2516 } else 2517 delay(10); 2518 } 2519 2520 DPRINTF(("ess_rdsp: timed out\n")); 2521 return -1; 2522 } 2523 2524 /* 2525 * Write a byte to the DSP. 2526 */ 2527 int 2528 ess_wdsp(struct ess_softc *sc, u_char v) 2529 { 2530 bus_space_tag_t iot; 2531 bus_space_handle_t ioh; 2532 int i; 2533 2534 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v)); 2535 2536 iot = sc->sc_iot; 2537 ioh = sc->sc_ioh; 2538 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) { 2539 if (ess_dsp_write_ready(sc)) { 2540 EWRITE1(iot, ioh, ESS_DSP_WRITE, v); 2541 return 0; 2542 } else 2543 delay(10); 2544 } 2545 2546 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v)); 2547 return -1; 2548 } 2549 2550 /* 2551 * Write a value to one of the ESS extended registers. 2552 */ 2553 int 2554 ess_write_x_reg(struct ess_softc *sc, u_char reg, u_char val) 2555 { 2556 int error; 2557 2558 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val)); 2559 if ((error = ess_wdsp(sc, reg)) == 0) 2560 error = ess_wdsp(sc, val); 2561 2562 return error; 2563 } 2564 2565 /* 2566 * Read the value of one of the ESS extended registers. 2567 */ 2568 u_char 2569 ess_read_x_reg(struct ess_softc *sc, u_char reg) 2570 { 2571 int error; 2572 int val; 2573 2574 if ((error = ess_wdsp(sc, 0xC0)) == 0) 2575 error = ess_wdsp(sc, reg); 2576 if (error) { 2577 DPRINTF(("Error reading extended register 0x%02x\n", reg)); 2578 } 2579 /* REVISIT: what if an error is returned above? */ 2580 val = ess_rdsp(sc); 2581 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val)); 2582 return val; 2583 } 2584 2585 void 2586 ess_clear_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask) 2587 { 2588 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) { 2589 DPRINTF(("Error clearing bits in extended register 0x%02x\n", 2590 reg)); 2591 } 2592 } 2593 2594 void 2595 ess_set_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask) 2596 { 2597 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) { 2598 DPRINTF(("Error setting bits in extended register 0x%02x\n", 2599 reg)); 2600 } 2601 } 2602 2603 2604 /* 2605 * Write a value to one of the ESS mixer registers. 2606 */ 2607 void 2608 ess_write_mix_reg(struct ess_softc *sc, u_char reg, u_char val) 2609 { 2610 bus_space_tag_t iot; 2611 bus_space_handle_t ioh; 2612 2613 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val)); 2614 2615 iot = sc->sc_iot; 2616 ioh = sc->sc_ioh; 2617 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2618 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val); 2619 } 2620 2621 /* 2622 * Read the value of one of the ESS mixer registers. 2623 */ 2624 u_char 2625 ess_read_mix_reg(struct ess_softc *sc, u_char reg) 2626 { 2627 bus_space_tag_t iot; 2628 bus_space_handle_t ioh; 2629 u_char val; 2630 2631 iot = sc->sc_iot; 2632 ioh = sc->sc_ioh; 2633 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2634 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA); 2635 2636 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val)); 2637 return val; 2638 } 2639 2640 void 2641 ess_clear_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask) 2642 { 2643 2644 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask); 2645 } 2646 2647 void 2648 ess_set_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask) 2649 { 2650 2651 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask); 2652 } 2653 2654 void 2655 ess_read_multi_mix_reg(struct ess_softc *sc, u_char reg, 2656 uint8_t *datap, bus_size_t count) 2657 { 2658 bus_space_tag_t iot; 2659 bus_space_handle_t ioh; 2660 2661 iot = sc->sc_iot; 2662 ioh = sc->sc_ioh; 2663 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2664 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count); 2665 } 2666