1 /* $NetBSD: ess.c,v 1.89 2021/08/07 16:19:12 thorpej Exp $ */ 2 3 /* 4 * Copyright 1997 5 * Digital Equipment Corporation. All rights reserved. 6 * 7 * This software is furnished under license and may be used and 8 * copied only in accordance with the following terms and conditions. 9 * Subject to these conditions, you may download, copy, install, 10 * use, modify and distribute this software in source and/or binary 11 * form. No title or ownership is transferred hereby. 12 * 13 * 1) Any source code used, modified or distributed must reproduce 14 * and retain this copyright notice and list of conditions as 15 * they appear in the source file. 16 * 17 * 2) No right is granted to use any trade name, trademark, or logo of 18 * Digital Equipment Corporation. Neither the "Digital Equipment 19 * Corporation" name nor any trademark or logo of Digital Equipment 20 * Corporation may be used to endorse or promote products derived 21 * from this software without the prior written permission of 22 * Digital Equipment Corporation. 23 * 24 * 3) This software is provided "AS-IS" and any express or implied 25 * warranties, including but not limited to, any implied warranties 26 * of merchantability, fitness for a particular purpose, or 27 * non-infringement are disclaimed. In no event shall DIGITAL be 28 * liable for any damages whatsoever, and in particular, DIGITAL 29 * shall not be liable for special, indirect, consequential, or 30 * incidental damages or damages for lost profits, loss of 31 * revenue or loss of use, whether such damages arise in contract, 32 * negligence, tort, under statute, in equity, at law or otherwise, 33 * even if advised of the possibility of such damage. 34 */ 35 36 /* 37 **++ 38 ** 39 ** ess.c 40 ** 41 ** FACILITY: 42 ** 43 ** DIGITAL Network Appliance Reference Design (DNARD) 44 ** 45 ** MODULE DESCRIPTION: 46 ** 47 ** This module contains the device driver for the ESS 48 ** Technologies 1888/1887/888 sound chip. The code in sbdsp.c was 49 ** used as a reference point when implementing this driver. 50 ** 51 ** AUTHORS: 52 ** 53 ** Blair Fidler Software Engineering Australia 54 ** Gold Coast, Australia. 55 ** 56 ** CREATION DATE: 57 ** 58 ** March 10, 1997. 59 ** 60 ** MODIFICATION HISTORY: 61 ** 62 ** Heavily modified by Lennart Augustsson and Charles M. Hannum for 63 ** bus_dma, changes to audio interface, and many bug fixes. 64 ** ESS1788 support by Nathan J. Williams and Charles M. Hannum. 65 **-- 66 */ 67 68 #include <sys/cdefs.h> 69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.89 2021/08/07 16:19:12 thorpej Exp $"); 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/errno.h> 74 #include <sys/ioctl.h> 75 #include <sys/syslog.h> 76 #include <sys/device.h> 77 #include <sys/proc.h> 78 #include <sys/kernel.h> 79 #include <sys/cpu.h> 80 #include <sys/intr.h> 81 #include <sys/bus.h> 82 #include <sys/audioio.h> 83 #include <sys/malloc.h> 84 85 #include <dev/audio/audio_if.h> 86 87 #include <dev/isa/isavar.h> 88 #include <dev/isa/isadmavar.h> 89 90 #include <dev/isa/essvar.h> 91 #include <dev/isa/essreg.h> 92 93 #include "joy_ess.h" 94 95 #ifdef AUDIO_DEBUG 96 #define DPRINTF(x) if (essdebug) printf x 97 #define DPRINTFN(n,x) if (essdebug>(n)) printf x 98 int essdebug = 0; 99 #else 100 #define DPRINTF(x) 101 #define DPRINTFN(n,x) 102 #endif 103 104 #if 0 105 unsigned uuu; 106 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu) 107 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d)) 108 #else 109 #define EREAD1(t, h, a) bus_space_read_1(t, h, a) 110 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d) 111 #endif 112 113 114 int ess_setup_sc(struct ess_softc *, int); 115 116 void ess_close(void *); 117 int ess_getdev(void *, struct audio_device *); 118 119 int ess_query_format(void *, audio_format_query_t *); 120 121 int ess_set_format(void *, int, 122 const audio_params_t *, const audio_params_t *, 123 audio_filter_reg_t *, audio_filter_reg_t *); 124 125 int ess_round_blocksize(void *, int, int, const audio_params_t *); 126 127 int ess_audio1_trigger_output(void *, void *, void *, int, 128 void (*)(void *), void *, const audio_params_t *); 129 int ess_audio2_trigger_output(void *, void *, void *, int, 130 void (*)(void *), void *, const audio_params_t *); 131 int ess_audio1_trigger_input(void *, void *, void *, int, 132 void (*)(void *), void *, const audio_params_t *); 133 int ess_audio1_halt(void *); 134 int ess_audio2_halt(void *); 135 int ess_audio1_intr(void *); 136 int ess_audio2_intr(void *); 137 void ess_audio1_poll(void *); 138 void ess_audio2_poll(void *); 139 140 int ess_speaker_ctl(void *, int); 141 142 int ess_getdev(void *, struct audio_device *); 143 144 int ess_set_port(void *, mixer_ctrl_t *); 145 int ess_get_port(void *, mixer_ctrl_t *); 146 147 void *ess_malloc(void *, int, size_t); 148 void ess_free(void *, void *, size_t); 149 size_t ess_round_buffersize(void *, int, size_t); 150 151 152 int ess_query_devinfo(void *, mixer_devinfo_t *); 153 int ess_1788_get_props(void *); 154 int ess_1888_get_props(void *); 155 void ess_get_locks(void *, kmutex_t **, kmutex_t **); 156 157 void ess_speaker_on(struct ess_softc *); 158 void ess_speaker_off(struct ess_softc *); 159 160 void ess_config_irq(struct ess_softc *); 161 void ess_config_drq(struct ess_softc *); 162 void ess_setup(struct ess_softc *); 163 int ess_identify(struct ess_softc *); 164 165 int ess_reset(struct ess_softc *); 166 void ess_set_gain(struct ess_softc *, int, int); 167 int ess_set_in_port(struct ess_softc *, int); 168 int ess_set_in_ports(struct ess_softc *, int); 169 u_int ess_srtotc(struct ess_softc *, u_int); 170 u_int ess_srtofc(u_int); 171 u_char ess_get_dsp_status(struct ess_softc *); 172 u_char ess_dsp_read_ready(struct ess_softc *); 173 u_char ess_dsp_write_ready(struct ess_softc *); 174 int ess_rdsp(struct ess_softc *); 175 int ess_wdsp(struct ess_softc *, u_char); 176 u_char ess_read_x_reg(struct ess_softc *, u_char); 177 int ess_write_x_reg(struct ess_softc *, u_char, u_char); 178 void ess_clear_xreg_bits(struct ess_softc *, u_char, u_char); 179 void ess_set_xreg_bits(struct ess_softc *, u_char, u_char); 180 u_char ess_read_mix_reg(struct ess_softc *, u_char); 181 void ess_write_mix_reg(struct ess_softc *, u_char, u_char); 182 void ess_clear_mreg_bits(struct ess_softc *, u_char, u_char); 183 void ess_set_mreg_bits(struct ess_softc *, u_char, u_char); 184 void ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *, 185 bus_size_t); 186 187 static const char *essmodel[] = { 188 "unsupported", 189 190 "688", 191 "1688", 192 "1788", 193 "1868", 194 "1869", 195 "1878", 196 "1879", 197 198 "888", 199 "1887", 200 "1888", 201 }; 202 203 struct audio_device ess_device = { 204 "ESS Technology", 205 "x", 206 "ess" 207 }; 208 209 /* 210 * Define our interface to the higher level audio driver. 211 */ 212 213 const struct audio_hw_if ess_1788_hw_if = { 214 .close = ess_close, 215 .query_format = ess_query_format, 216 .set_format = ess_set_format, 217 .round_blocksize = ess_round_blocksize, 218 .halt_output = ess_audio1_halt, 219 .halt_input = ess_audio1_halt, 220 .speaker_ctl = ess_speaker_ctl, 221 .getdev = ess_getdev, 222 .set_port = ess_set_port, 223 .get_port = ess_get_port, 224 .query_devinfo = ess_query_devinfo, 225 .allocm = ess_malloc, 226 .freem = ess_free, 227 .round_buffersize = ess_round_buffersize, 228 .get_props = ess_1788_get_props, 229 .trigger_output = ess_audio1_trigger_output, 230 .trigger_input = ess_audio1_trigger_input, 231 .get_locks = ess_get_locks, 232 }; 233 234 const struct audio_hw_if ess_1888_hw_if = { 235 .close = ess_close, 236 .query_format = ess_query_format, 237 .set_format = ess_set_format, 238 .round_blocksize = ess_round_blocksize, 239 .halt_output = ess_audio2_halt, 240 .halt_input = ess_audio1_halt, 241 .speaker_ctl = ess_speaker_ctl, 242 .getdev = ess_getdev, 243 .set_port = ess_set_port, 244 .get_port = ess_get_port, 245 .query_devinfo = ess_query_devinfo, 246 .allocm = ess_malloc, 247 .freem = ess_free, 248 .round_buffersize = ess_round_buffersize, 249 .get_props = ess_1888_get_props, 250 .trigger_output = ess_audio2_trigger_output, 251 .trigger_input = ess_audio1_trigger_input, 252 .get_locks = ess_get_locks, 253 }; 254 255 static const struct audio_format ess_formats[] = { 256 { 257 .mode = AUMODE_PLAY | AUMODE_RECORD, 258 .encoding = AUDIO_ENCODING_SLINEAR_LE, 259 .validbits = 16, 260 .precision = 16, 261 .channels = 2, 262 .channel_mask = AUFMT_STEREO, 263 .frequency_type = 0, 264 .frequency = { ESS_MINRATE, ESS_MAXRATE }, 265 }, 266 }; 267 #define ESS_NFORMATS __arraycount(ess_formats) 268 269 #ifdef AUDIO_DEBUG 270 void ess_printsc(struct ess_softc *); 271 void ess_dump_mixer(struct ess_softc *); 272 273 void 274 ess_printsc(struct ess_softc *sc) 275 { 276 int i; 277 278 printf("iobase 0x%x outport %u inport %u speaker %s\n", 279 sc->sc_iobase, sc->out_port, 280 sc->in_port, sc->spkr_state ? "on" : "off"); 281 282 printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n", 283 sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr, 284 sc->sc_audio1.intr, sc->sc_audio1.arg); 285 286 if (!ESS_USE_AUDIO1(sc->sc_model)) { 287 printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n", 288 sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr, 289 sc->sc_audio2.intr, sc->sc_audio2.arg); 290 } 291 292 printf("gain:"); 293 for (i = 0; i < sc->ndevs; i++) 294 printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]); 295 printf("\n"); 296 } 297 298 void 299 ess_dump_mixer(struct ess_softc *sc) 300 { 301 302 printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 303 0x7C, ess_read_mix_reg(sc, 0x7C)); 304 printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 305 0x1A, ess_read_mix_reg(sc, 0x1A)); 306 printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 307 0x3E, ess_read_mix_reg(sc, 0x3E)); 308 printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 309 0x36, ess_read_mix_reg(sc, 0x36)); 310 printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 311 0x38, ess_read_mix_reg(sc, 0x38)); 312 printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n", 313 0x3A, ess_read_mix_reg(sc, 0x3A)); 314 printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n", 315 0x32, ess_read_mix_reg(sc, 0x32)); 316 printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n", 317 0x3C, ess_read_mix_reg(sc, 0x3C)); 318 printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n", 319 0x69, ess_read_mix_reg(sc, 0x69)); 320 printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n", 321 0x68, ess_read_mix_reg(sc, 0x68)); 322 printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n", 323 0x6E, ess_read_mix_reg(sc, 0x6E)); 324 printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n", 325 0x6B, ess_read_mix_reg(sc, 0x6B)); 326 printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n", 327 0x6A, ess_read_mix_reg(sc, 0x6A)); 328 printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n", 329 0x6C, ess_read_mix_reg(sc, 0x6C)); 330 printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n", 331 0xB4, ess_read_x_reg(sc, 0xB4)); 332 printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n", 333 0x14, ess_read_mix_reg(sc, 0x14)); 334 335 printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n", 336 ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL)); 337 printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n", 338 ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL)); 339 printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n", 340 ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE), 341 ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2)); 342 } 343 344 #endif 345 346 /* 347 * Configure the ESS chip for the desired audio base address. 348 */ 349 int 350 ess_config_addr(struct ess_softc *sc) 351 { 352 int iobase; 353 bus_space_tag_t iot; 354 /* 355 * Configure using the System Control Register method. This 356 * method is used when the AMODE line is tied high, which is 357 * the case for the Shark, but not for the evaluation board. 358 */ 359 bus_space_handle_t scr_access_ioh; 360 bus_space_handle_t scr_ioh; 361 u_short scr_value; 362 363 iobase = sc->sc_iobase; 364 iot = sc->sc_iot; 365 /* 366 * Set the SCR bit to enable audio. 367 */ 368 scr_value = ESS_SCR_AUDIO_ENABLE; 369 370 /* 371 * Set the SCR bits necessary to select the specified audio 372 * base address. 373 */ 374 switch(iobase) { 375 case 0x220: 376 scr_value |= ESS_SCR_AUDIO_220; 377 break; 378 case 0x230: 379 scr_value |= ESS_SCR_AUDIO_230; 380 break; 381 case 0x240: 382 scr_value |= ESS_SCR_AUDIO_240; 383 break; 384 case 0x250: 385 scr_value |= ESS_SCR_AUDIO_250; 386 break; 387 default: 388 printf("ess: configured iobase 0x%x invalid\n", iobase); 389 return 1; 390 break; 391 } 392 393 /* 394 * Get a mapping for the System Control Register (SCR) access 395 * registers and the SCR data registers. 396 */ 397 if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS, 398 0, &scr_access_ioh)) { 399 printf("ess: can't map SCR access registers\n"); 400 return 1; 401 } 402 if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS, 403 0, &scr_ioh)) { 404 printf("ess: can't map SCR registers\n"); 405 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 406 return 1; 407 } 408 409 /* Unlock the SCR. */ 410 EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0); 411 412 /* Write the base address information into SCR[0]. */ 413 EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0); 414 EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value); 415 416 /* Lock the SCR. */ 417 EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0); 418 419 /* Unmap the SCR access ports and the SCR data ports. */ 420 bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS); 421 bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS); 422 423 return 0; 424 } 425 426 427 /* 428 * Configure the ESS chip for the desired IRQ and DMA channels. 429 * ESS ISA 430 * -------- 431 * IRQA irq9 432 * IRQB irq5 433 * IRQC irq7 434 * IRQD irq10 435 * IRQE irq15 436 * 437 * DRQA drq0 438 * DRQB drq1 439 * DRQC drq3 440 * DRQD drq5 441 */ 442 void 443 ess_config_irq(struct ess_softc *sc) 444 { 445 int v; 446 447 DPRINTFN(2,("ess_config_irq\n")); 448 449 if (sc->sc_model == ESS_1887 && 450 sc->sc_audio1.irq == sc->sc_audio2.irq && 451 sc->sc_audio1.irq != -1) { 452 /* Use new method, both interrupts are the same. */ 453 v = ESS_IS_SELECT_IRQ; /* enable intrs */ 454 switch (sc->sc_audio1.irq) { 455 case 5: 456 v |= ESS_IS_INTRB; 457 break; 458 case 7: 459 v |= ESS_IS_INTRC; 460 break; 461 case 9: 462 v |= ESS_IS_INTRA; 463 break; 464 case 10: 465 v |= ESS_IS_INTRD; 466 break; 467 case 15: 468 v |= ESS_IS_INTRE; 469 break; 470 #ifdef DIAGNOSTIC 471 default: 472 printf("ess_config_irq: configured irq %d not supported for Audio 1\n", 473 sc->sc_audio1.irq); 474 return; 475 #endif 476 } 477 /* Set the IRQ */ 478 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v); 479 return; 480 } 481 482 if (sc->sc_model == ESS_1887) { 483 /* Tell the 1887 to use the old interrupt method. */ 484 ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888); 485 } 486 487 if (sc->sc_audio1.polled) { 488 /* Turn off Audio1 interrupts. */ 489 v = 0; 490 } else { 491 /* Configure Audio 1 for the appropriate IRQ line. */ 492 v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */ 493 switch (sc->sc_audio1.irq) { 494 case 5: 495 v |= ESS_IRQ_CTRL_INTRB; 496 break; 497 case 7: 498 v |= ESS_IRQ_CTRL_INTRC; 499 break; 500 case 9: 501 v |= ESS_IRQ_CTRL_INTRA; 502 break; 503 case 10: 504 v |= ESS_IRQ_CTRL_INTRD; 505 break; 506 #ifdef DIAGNOSTIC 507 default: 508 printf("ess: configured irq %d not supported for Audio 1\n", 509 sc->sc_audio1.irq); 510 return; 511 #endif 512 } 513 } 514 ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v); 515 516 if (ESS_USE_AUDIO1(sc->sc_model)) 517 return; 518 519 if (sc->sc_audio2.polled) { 520 /* Turn off Audio2 interrupts. */ 521 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 522 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 523 } else { 524 /* Audio2 is hardwired to INTRE in this mode. */ 525 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 526 ESS_AUDIO2_CTRL2_IRQ2_ENABLE); 527 } 528 } 529 530 531 void 532 ess_config_drq(struct ess_softc *sc) 533 { 534 int v; 535 536 DPRINTFN(2,("ess_config_drq\n")); 537 538 /* Configure Audio 1 (record) for DMA on the appropriate channel. */ 539 v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT; 540 switch (sc->sc_audio1.drq) { 541 case 0: 542 v |= ESS_DRQ_CTRL_DRQA; 543 break; 544 case 1: 545 v |= ESS_DRQ_CTRL_DRQB; 546 break; 547 case 3: 548 v |= ESS_DRQ_CTRL_DRQC; 549 break; 550 #ifdef DIAGNOSTIC 551 default: 552 printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n", 553 sc->sc_audio1.drq); 554 return; 555 #endif 556 } 557 /* Set DRQ1 */ 558 ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v); 559 560 if (ESS_USE_AUDIO1(sc->sc_model)) 561 return; 562 563 /* Configure DRQ2 */ 564 v = ESS_AUDIO2_CTRL3_DRQ_PD; 565 switch (sc->sc_audio2.drq) { 566 case 0: 567 v |= ESS_AUDIO2_CTRL3_DRQA; 568 break; 569 case 1: 570 v |= ESS_AUDIO2_CTRL3_DRQB; 571 break; 572 case 3: 573 v |= ESS_AUDIO2_CTRL3_DRQC; 574 break; 575 case 5: 576 v |= ESS_AUDIO2_CTRL3_DRQD; 577 break; 578 #ifdef DIAGNOSTIC 579 default: 580 printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n", 581 sc->sc_audio2.drq); 582 return; 583 #endif 584 } 585 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v); 586 /* Enable DMA 2 */ 587 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 588 ESS_AUDIO2_CTRL2_DMA_ENABLE); 589 } 590 591 /* 592 * Set up registers after a reset. 593 */ 594 void 595 ess_setup(struct ess_softc *sc) 596 { 597 598 ess_config_irq(sc); 599 ess_config_drq(sc); 600 601 DPRINTFN(2,("ess_setup: done\n")); 602 } 603 604 /* 605 * Determine the model of ESS chip we are talking to. Currently we 606 * only support ES1888, ES1887 and ES888. The method of determining 607 * the chip is based on the information on page 27 of the ES1887 data 608 * sheet. 609 * 610 * This routine sets the values of sc->sc_model and sc->sc_version. 611 */ 612 int 613 ess_identify(struct ess_softc *sc) 614 { 615 u_char reg1; 616 u_char reg2; 617 u_char reg3; 618 u_int8_t ident[4]; 619 620 sc->sc_model = ESS_UNSUPPORTED; 621 sc->sc_version = 0; 622 623 memset(ident, 0, sizeof(ident)); 624 625 /* 626 * 1. Check legacy ID bytes. These should be 0x68 0x8n, where 627 * n >= 8 for an ES1887 or an ES888. Other values indicate 628 * earlier (unsupported) chips. 629 */ 630 ess_wdsp(sc, ESS_ACMD_LEGACY_ID); 631 632 if ((reg1 = ess_rdsp(sc)) != 0x68) { 633 printf("ess: First ID byte wrong (0x%02x)\n", reg1); 634 return 1; 635 } 636 637 reg2 = ess_rdsp(sc); 638 if (((reg2 & 0xf0) != 0x80) || 639 ((reg2 & 0x0f) < 8)) { 640 sc->sc_model = ESS_688; 641 return 0; 642 } 643 644 /* 645 * Store the ID bytes as the version. 646 */ 647 sc->sc_version = (reg1 << 8) + reg2; 648 649 650 /* 651 * 2. Verify we can change bit 2 in mixer register 0x64. This 652 * should be possible on all supported chips. 653 */ 654 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 655 reg2 = reg1 ^ 0x04; /* toggle bit 2 */ 656 657 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 658 659 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) { 660 switch (sc->sc_version) { 661 case 0x688b: 662 sc->sc_model = ESS_1688; 663 break; 664 default: 665 printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n"); 666 return 1; 667 } 668 return 0; 669 } 670 671 /* 672 * Restore the original value of mixer register 0x64. 673 */ 674 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 675 676 677 /* 678 * 3. Verify we can change the value of mixer register 679 * ESS_MREG_SAMPLE_RATE. 680 * This is possible on the 1888/1887/888, but not on the 1788. 681 * It is not necessary to restore the value of this mixer register. 682 */ 683 reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE); 684 reg2 = reg1 ^ 0xff; /* toggle all bits */ 685 686 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2); 687 688 if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) { 689 /* If we got this far before failing, it's a 1788. */ 690 sc->sc_model = ESS_1788; 691 692 /* 693 * Identify ESS model for ES18[67]8. 694 */ 695 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 696 if(ident[0] == 0x18) { 697 switch(ident[1]) { 698 case 0x68: 699 sc->sc_model = ESS_1868; 700 break; 701 case 0x78: 702 sc->sc_model = ESS_1878; 703 break; 704 } 705 } 706 707 return 0; 708 } 709 710 /* 711 * 4. Determine if we can change bit 5 in mixer register 0x64. 712 * This determines whether we have an ES1887: 713 * 714 * - can change indicates ES1887 715 * - can't change indicates ES1888 or ES888 716 */ 717 reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL); 718 reg2 = reg1 ^ 0x20; /* toggle bit 5 */ 719 720 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2); 721 722 if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) { 723 sc->sc_model = ESS_1887; 724 725 /* 726 * Restore the original value of mixer register 0x64. 727 */ 728 ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1); 729 730 /* 731 * Identify ESS model for ES18[67]9. 732 */ 733 ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident)); 734 if(ident[0] == 0x18) { 735 switch(ident[1]) { 736 case 0x69: 737 sc->sc_model = ESS_1869; 738 break; 739 case 0x79: 740 sc->sc_model = ESS_1879; 741 break; 742 } 743 } 744 745 return 0; 746 } 747 748 /* 749 * 5. Determine if we can change the value of mixer 750 * register 0x69 independently of mixer register 751 * 0x68. This determines which chip we have: 752 * 753 * - can modify idependently indicates ES888 754 * - register 0x69 is an alias of 0x68 indicates ES1888 755 */ 756 reg1 = ess_read_mix_reg(sc, 0x68); 757 reg2 = ess_read_mix_reg(sc, 0x69); 758 reg3 = reg2 ^ 0xff; /* toggle all bits */ 759 760 /* 761 * Write different values to each register. 762 */ 763 ess_write_mix_reg(sc, 0x68, reg2); 764 ess_write_mix_reg(sc, 0x69, reg3); 765 766 if (ess_read_mix_reg(sc, 0x68) == reg2 && 767 ess_read_mix_reg(sc, 0x69) == reg3) 768 sc->sc_model = ESS_888; 769 else 770 sc->sc_model = ESS_1888; 771 772 /* 773 * Restore the original value of the registers. 774 */ 775 ess_write_mix_reg(sc, 0x68, reg1); 776 ess_write_mix_reg(sc, 0x69, reg2); 777 778 return 0; 779 } 780 781 782 int 783 ess_setup_sc(struct ess_softc *sc, int doinit) 784 { 785 786 /* Reset the chip. */ 787 if (ess_reset(sc) != 0) { 788 DPRINTF(("ess_setup_sc: couldn't reset chip\n")); 789 return 1; 790 } 791 792 /* Identify the ESS chip, and check that it is supported. */ 793 if (ess_identify(sc)) { 794 DPRINTF(("ess_setup_sc: couldn't identify\n")); 795 return 1; 796 } 797 798 return 0; 799 } 800 801 /* 802 * Probe for the ESS hardware. 803 */ 804 int 805 essmatch(struct ess_softc *sc) 806 { 807 if (!ESS_BASE_VALID(sc->sc_iobase)) { 808 printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase); 809 return 0; 810 } 811 812 if (ess_setup_sc(sc, 1)) 813 return 0; 814 815 if (sc->sc_model == ESS_UNSUPPORTED) { 816 DPRINTF(("ess: Unsupported model\n")); 817 return 0; 818 } 819 820 /* Check that requested DMA channels are valid and different. */ 821 if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) { 822 printf("ess: record drq %d invalid\n", sc->sc_audio1.drq); 823 return 0; 824 } 825 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq)) 826 return 0; 827 if (!ESS_USE_AUDIO1(sc->sc_model)) { 828 if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) { 829 printf("ess: play drq %d invalid\n", sc->sc_audio2.drq); 830 return 0; 831 } 832 if (sc->sc_audio1.drq == sc->sc_audio2.drq) { 833 printf("ess: play and record drq both %d\n", 834 sc->sc_audio1.drq); 835 return 0; 836 } 837 if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq)) 838 return 0; 839 } 840 841 /* 842 * The 1887 has an additional IRQ mode where both channels are mapped 843 * to the same IRQ. 844 */ 845 if (sc->sc_model == ESS_1887 && 846 sc->sc_audio1.irq == sc->sc_audio2.irq && 847 sc->sc_audio1.irq != -1 && 848 ESS_IRQ12_VALID(sc->sc_audio1.irq)) 849 goto irq_not1888; 850 851 /* Check that requested IRQ lines are valid and different. */ 852 if (sc->sc_audio1.irq != -1 && 853 !ESS_IRQ1_VALID(sc->sc_audio1.irq)) { 854 printf("ess: record irq %d invalid\n", sc->sc_audio1.irq); 855 return 0; 856 } 857 if (!ESS_USE_AUDIO1(sc->sc_model)) { 858 if (sc->sc_audio2.irq != -1 && 859 !ESS_IRQ2_VALID(sc->sc_audio2.irq)) { 860 printf("ess: play irq %d invalid\n", sc->sc_audio2.irq); 861 return 0; 862 } 863 if (sc->sc_audio1.irq == sc->sc_audio2.irq && 864 sc->sc_audio1.irq != -1) { 865 printf("ess: play and record irq both %d\n", 866 sc->sc_audio1.irq); 867 return 0; 868 } 869 } 870 871 irq_not1888: 872 /* XXX should we check IRQs as well? */ 873 874 return 2; /* beat "sb" */ 875 } 876 877 878 /* 879 * Attach hardware to driver, attach hardware driver to audio 880 * pseudo-device driver. 881 */ 882 void 883 essattach(struct ess_softc *sc, int enablejoy) 884 { 885 struct audio_attach_args arg; 886 int i; 887 u_int v; 888 889 if (ess_setup_sc(sc, 0)) { 890 aprint_error(": setup failed\n"); 891 return; 892 } 893 894 aprint_normal("ESS Technology ES%s [version 0x%04x]\n", 895 essmodel[sc->sc_model], sc->sc_version); 896 897 callout_init(&sc->sc_poll1_ch, CALLOUT_MPSAFE); 898 callout_init(&sc->sc_poll2_ch, CALLOUT_MPSAFE); 899 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE); 900 mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO); 901 902 sc->sc_audio1.polled = sc->sc_audio1.irq == -1; 903 if (!sc->sc_audio1.polled) { 904 sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic, 905 sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO, 906 ess_audio1_intr, sc); 907 aprint_normal_dev(sc->sc_dev, 908 "audio1 interrupting at irq %d\n", sc->sc_audio1.irq); 909 } else 910 aprint_normal_dev(sc->sc_dev, "audio1 polled\n"); 911 sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq); 912 913 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) { 914 aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n", 915 sc->sc_audio1.drq); 916 goto fail; 917 } 918 919 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq, 920 sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 921 aprint_error_dev(sc->sc_dev, "can't create map for drq %d\n", 922 sc->sc_audio1.drq); 923 goto fail; 924 } 925 926 if (!ESS_USE_AUDIO1(sc->sc_model)) { 927 sc->sc_audio2.polled = sc->sc_audio2.irq == -1; 928 if (!sc->sc_audio2.polled) { 929 sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic, 930 sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO, 931 ess_audio2_intr, sc); 932 aprint_normal_dev(sc->sc_dev, 933 "audio2 interrupting at irq %d\n", 934 sc->sc_audio2.irq); 935 } else 936 aprint_normal_dev(sc->sc_dev, "audio2 polled\n"); 937 sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic, 938 sc->sc_audio2.drq); 939 940 if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) { 941 aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n", 942 sc->sc_audio2.drq); 943 goto fail; 944 } 945 946 if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq, 947 sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) { 948 aprint_error_dev(sc->sc_dev, 949 "can't create map for drq %d\n", 950 sc->sc_audio2.drq); 951 goto fail; 952 } 953 } 954 955 /* Do a hardware reset on the mixer. */ 956 ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET); 957 958 /* 959 * Set volume of Audio 1 to zero and disable Audio 1 DAC input 960 * to playback mixer, since playback is always through Audio 2. 961 */ 962 if (!ESS_USE_AUDIO1(sc->sc_model)) 963 ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0); 964 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 965 966 if (ESS_USE_AUDIO1(sc->sc_model)) { 967 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC); 968 sc->in_port = ESS_SOURCE_MIC; 969 if (ESS_IS_ES18X9(sc->sc_model)) { 970 sc->ndevs = ESS_18X9_NDEVS; 971 sc->sc_spatializer = 0; 972 ess_set_mreg_bits(sc, ESS_MREG_MODE, 973 ESS_MODE_ASYNC_MODE | ESS_MODE_NEWREG); 974 ess_set_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL, 975 ESS_SPATIAL_CTRL_RESET); 976 ess_clear_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL, 977 ESS_SPATIAL_CTRL_ENABLE | ESS_SPATIAL_CTRL_MONO); 978 } else 979 sc->ndevs = ESS_1788_NDEVS; 980 } else { 981 /* 982 * Set hardware record source to use output of the record 983 * mixer. We do the selection of record source in software by 984 * setting the gain of the unused sources to zero. (See 985 * ess_set_in_ports.) 986 */ 987 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER); 988 sc->in_mask = 1 << ESS_MIC_REC_VOL; 989 sc->ndevs = ESS_1888_NDEVS; 990 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10); 991 ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08); 992 } 993 994 /* 995 * Set gain on each mixer device to a sensible value. 996 * Devices not normally used are turned off, and other devices 997 * are set to 50% volume. 998 */ 999 for (i = 0; i < sc->ndevs; i++) { 1000 if (ESS_IS_ES18X9(sc->sc_model)) { 1001 switch (i) { 1002 case ESS_SPATIALIZER: 1003 case ESS_SPATIALIZER_ENABLE: 1004 v = 0; 1005 goto skip; 1006 } 1007 } 1008 switch (i) { 1009 case ESS_MIC_PLAY_VOL: 1010 case ESS_LINE_PLAY_VOL: 1011 case ESS_CD_PLAY_VOL: 1012 case ESS_AUXB_PLAY_VOL: 1013 case ESS_DAC_REC_VOL: 1014 case ESS_LINE_REC_VOL: 1015 case ESS_SYNTH_REC_VOL: 1016 case ESS_CD_REC_VOL: 1017 case ESS_AUXB_REC_VOL: 1018 v = 0; 1019 break; 1020 default: 1021 v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2); 1022 break; 1023 } 1024 skip: 1025 sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v; 1026 ess_set_gain(sc, i, 1); 1027 } 1028 1029 ess_setup(sc); 1030 1031 /* Disable the speaker until the device is opened. */ 1032 ess_speaker_off(sc); 1033 sc->spkr_state = SPKR_OFF; 1034 1035 snprintf(ess_device.name, sizeof(ess_device.name), "ES%s", 1036 essmodel[sc->sc_model]); 1037 snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x", 1038 sc->sc_version); 1039 1040 if (ESS_USE_AUDIO1(sc->sc_model)) 1041 audio_attach_mi(&ess_1788_hw_if, sc, sc->sc_dev); 1042 else 1043 audio_attach_mi(&ess_1888_hw_if, sc, sc->sc_dev); 1044 1045 arg.type = AUDIODEV_TYPE_OPL; 1046 arg.hwif = 0; 1047 arg.hdl = 0; 1048 (void)config_found(sc->sc_dev, &arg, audioprint, 1049 CFARGS(.iattr = "ess")); 1050 1051 #if NJOY_ESS > 0 1052 if (sc->sc_model == ESS_1888 && enablejoy) { 1053 unsigned char m40; 1054 1055 m40 = ess_read_mix_reg(sc, 0x40); 1056 m40 |= 2; 1057 ess_write_mix_reg(sc, 0x40, m40); 1058 1059 arg.type = AUDIODEV_TYPE_AUX; 1060 (void)config_found(sc->sc_dev, &arg, audioprint, 1061 CFARGS(.iattr = "ess")); 1062 } 1063 #endif 1064 1065 #ifdef AUDIO_DEBUG 1066 if (essdebug > 0) 1067 ess_printsc(sc); 1068 #endif 1069 1070 return; 1071 1072 fail: 1073 callout_destroy(&sc->sc_poll1_ch); 1074 callout_destroy(&sc->sc_poll2_ch); 1075 mutex_destroy(&sc->sc_lock); 1076 mutex_destroy(&sc->sc_intr_lock); 1077 } 1078 1079 /* 1080 * Various routines to interface to higher level audio driver 1081 */ 1082 1083 void 1084 ess_close(void *addr) 1085 { 1086 struct ess_softc *sc; 1087 1088 sc = addr; 1089 DPRINTF(("ess_close: sc=%p\n", sc)); 1090 1091 ess_speaker_off(sc); 1092 sc->spkr_state = SPKR_OFF; 1093 1094 DPRINTF(("ess_close: closed\n")); 1095 } 1096 1097 /* XXX should use reference count */ 1098 int 1099 ess_speaker_ctl(void *addr, int newstate) 1100 { 1101 struct ess_softc *sc; 1102 1103 sc = addr; 1104 if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) { 1105 ess_speaker_on(sc); 1106 sc->spkr_state = SPKR_ON; 1107 } 1108 if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) { 1109 ess_speaker_off(sc); 1110 sc->spkr_state = SPKR_OFF; 1111 } 1112 return 0; 1113 } 1114 1115 int 1116 ess_getdev(void *addr, struct audio_device *retp) 1117 { 1118 1119 *retp = ess_device; 1120 return 0; 1121 } 1122 1123 int 1124 ess_query_format(void *addr, audio_format_query_t *afp) 1125 { 1126 1127 return audio_query_format(ess_formats, ESS_NFORMATS, afp); 1128 } 1129 1130 int 1131 ess_set_format(void *addr, int setmode, 1132 const audio_params_t *play, const audio_params_t *rec, 1133 audio_filter_reg_t *pfil, audio_filter_reg_t *rfil) 1134 { 1135 struct ess_softc *sc; 1136 int rate; 1137 1138 DPRINTF(("%s: set=%d\n", __func__, setmode)); 1139 sc = addr; 1140 1141 /* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */ 1142 1143 rate = play->sample_rate; 1144 ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(sc, rate)); 1145 ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate)); 1146 1147 if (!ESS_USE_AUDIO1(sc->sc_model)) { 1148 ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, 1149 ess_srtotc(sc, rate)); 1150 ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate)); 1151 } 1152 1153 return 0; 1154 } 1155 1156 int 1157 ess_audio1_trigger_output( 1158 void *addr, 1159 void *start, void *end, 1160 int blksize, 1161 void (*intr)(void *), 1162 void *arg, 1163 const audio_params_t *param) 1164 { 1165 struct ess_softc *sc; 1166 u_int8_t reg; 1167 1168 sc = addr; 1169 DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p " 1170 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 1171 1172 if (sc->sc_audio1.active) 1173 panic("ess_audio1_trigger_output: already running"); 1174 1175 sc->sc_audio1.active = 1; 1176 sc->sc_audio1.intr = intr; 1177 sc->sc_audio1.arg = arg; 1178 if (sc->sc_audio1.polled) { 1179 sc->sc_audio1.dmapos = 0; 1180 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1181 sc->sc_audio1.dmacount = 0; 1182 sc->sc_audio1.blksize = blksize; 1183 callout_reset(&sc->sc_poll1_ch, hz / 30, 1184 ess_audio1_poll, sc); 1185 } 1186 1187 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1188 if (param->channels == 2) { 1189 reg &= ~ESS_AUDIO_CTRL_MONO; 1190 reg |= ESS_AUDIO_CTRL_STEREO; 1191 } else { 1192 reg |= ESS_AUDIO_CTRL_MONO; 1193 reg &= ~ESS_AUDIO_CTRL_STEREO; 1194 } 1195 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1196 1197 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1198 if (param->precision == 16) 1199 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1200 else 1201 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1202 if (param->channels == 2) 1203 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1204 else 1205 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1206 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1207 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1208 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1209 else 1210 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1211 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1212 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1213 1214 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start, 1215 (char *)end - (char *)start, NULL, 1216 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1217 1218 /* Program transfer count registers with 2's complement of count. */ 1219 blksize = -blksize; 1220 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1221 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1222 1223 /* Use 4 bytes per output DMA. */ 1224 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1225 1226 /* Start auto-init DMA */ 1227 ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR); 1228 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1229 reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE); 1230 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1231 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1232 1233 return 0; 1234 } 1235 1236 int 1237 ess_audio2_trigger_output( 1238 void *addr, 1239 void *start, void *end, 1240 int blksize, 1241 void (*intr)(void *), 1242 void *arg, 1243 const audio_params_t *param) 1244 { 1245 struct ess_softc *sc; 1246 u_int8_t reg; 1247 1248 sc = addr; 1249 DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p " 1250 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 1251 1252 if (sc->sc_audio2.active) 1253 panic("ess_audio2_trigger_output: already running"); 1254 1255 sc->sc_audio2.active = 1; 1256 sc->sc_audio2.intr = intr; 1257 sc->sc_audio2.arg = arg; 1258 if (sc->sc_audio2.polled) { 1259 sc->sc_audio2.dmapos = 0; 1260 sc->sc_audio2.buffersize = (char *)end - (char *)start; 1261 sc->sc_audio2.dmacount = 0; 1262 sc->sc_audio2.blksize = blksize; 1263 callout_reset(&sc->sc_poll2_ch, hz / 30, 1264 ess_audio2_poll, sc); 1265 } 1266 1267 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1268 if (param->precision == 16) 1269 reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE; 1270 else 1271 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE; 1272 if (param->channels == 2) 1273 reg |= ESS_AUDIO2_CTRL2_CHANNELS; 1274 else 1275 reg &= ~ESS_AUDIO2_CTRL2_CHANNELS; 1276 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1277 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1278 reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1279 else 1280 reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED; 1281 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1282 1283 isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start, 1284 (char *)end - (char *)start, NULL, 1285 DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1286 1287 if (IS16BITDRQ(sc->sc_audio2.drq)) 1288 blksize >>= 1; /* use word count for 16 bit DMA */ 1289 /* Program transfer count registers with 2's complement of count. */ 1290 blksize = -blksize; 1291 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize); 1292 ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8); 1293 1294 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1); 1295 if (IS16BITDRQ(sc->sc_audio2.drq)) 1296 reg |= ESS_AUDIO2_CTRL1_XFER_SIZE; 1297 else 1298 reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE; 1299 reg |= ESS_AUDIO2_CTRL1_DEMAND_8; 1300 reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE | 1301 ESS_AUDIO2_CTRL1_AUTO_INIT; 1302 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg); 1303 1304 return (0); 1305 } 1306 1307 int 1308 ess_audio1_trigger_input( 1309 void *addr, 1310 void *start, void *end, 1311 int blksize, 1312 void (*intr)(void *), 1313 void *arg, 1314 const audio_params_t *param) 1315 { 1316 struct ess_softc *sc; 1317 u_int8_t reg; 1318 1319 sc = addr; 1320 DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p " 1321 "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg)); 1322 1323 if (sc->sc_audio1.active) 1324 panic("ess_audio1_trigger_input: already running"); 1325 1326 sc->sc_audio1.active = 1; 1327 sc->sc_audio1.intr = intr; 1328 sc->sc_audio1.arg = arg; 1329 if (sc->sc_audio1.polled) { 1330 sc->sc_audio1.dmapos = 0; 1331 sc->sc_audio1.buffersize = (char *)end - (char *)start; 1332 sc->sc_audio1.dmacount = 0; 1333 sc->sc_audio1.blksize = blksize; 1334 callout_reset(&sc->sc_poll1_ch, hz / 30, 1335 ess_audio1_poll, sc); 1336 } 1337 1338 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL); 1339 if (param->channels == 2) { 1340 reg &= ~ESS_AUDIO_CTRL_MONO; 1341 reg |= ESS_AUDIO_CTRL_STEREO; 1342 } else { 1343 reg |= ESS_AUDIO_CTRL_MONO; 1344 reg &= ~ESS_AUDIO_CTRL_STEREO; 1345 } 1346 ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg); 1347 1348 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1); 1349 if (param->precision == 16) 1350 reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE; 1351 else 1352 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE; 1353 if (param->channels == 2) 1354 reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO; 1355 else 1356 reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO; 1357 if (param->encoding == AUDIO_ENCODING_SLINEAR_BE || 1358 param->encoding == AUDIO_ENCODING_SLINEAR_LE) 1359 reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1360 else 1361 reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED; 1362 reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT; 1363 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg); 1364 1365 isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start, 1366 (char *)end - (char *)start, NULL, 1367 DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT); 1368 1369 /* Program transfer count registers with 2's complement of count. */ 1370 blksize = -blksize; 1371 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize); 1372 ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8); 1373 1374 /* Use 4 bytes per input DMA. */ 1375 ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4); 1376 1377 /* Start auto-init DMA */ 1378 ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR); 1379 reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2); 1380 reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE; 1381 reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT; 1382 ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg); 1383 1384 return 0; 1385 } 1386 1387 int 1388 ess_audio1_halt(void *addr) 1389 { 1390 struct ess_softc *sc; 1391 1392 sc = addr; 1393 DPRINTF(("ess_audio1_halt: sc=%p\n", sc)); 1394 1395 if (sc->sc_audio1.active) { 1396 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2, 1397 ESS_AUDIO1_CTRL2_FIFO_ENABLE); 1398 isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq); 1399 if (sc->sc_audio1.polled) 1400 callout_stop(&sc->sc_poll1_ch); 1401 sc->sc_audio1.active = 0; 1402 } 1403 1404 return 0; 1405 } 1406 1407 int 1408 ess_audio2_halt(void *addr) 1409 { 1410 struct ess_softc *sc; 1411 1412 sc = addr; 1413 DPRINTF(("ess_audio2_halt: sc=%p\n", sc)); 1414 1415 if (sc->sc_audio2.active) { 1416 ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1, 1417 ESS_AUDIO2_CTRL1_DAC_ENABLE | 1418 ESS_AUDIO2_CTRL1_FIFO_ENABLE); 1419 isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq); 1420 if (sc->sc_audio2.polled) 1421 callout_stop(&sc->sc_poll2_ch); 1422 sc->sc_audio2.active = 0; 1423 } 1424 1425 return 0; 1426 } 1427 1428 int 1429 ess_audio1_intr(void *arg) 1430 { 1431 struct ess_softc *sc; 1432 uint8_t reg; 1433 int rv; 1434 1435 sc = arg; 1436 DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr)); 1437 1438 mutex_spin_enter(&sc->sc_intr_lock); 1439 1440 /* Check and clear interrupt on Audio1. */ 1441 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); 1442 if ((reg & ESS_DSP_READ_OFLOW) == 0) { 1443 mutex_spin_exit(&sc->sc_intr_lock); 1444 return 0; 1445 } 1446 reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR); 1447 1448 sc->sc_audio1.nintr++; 1449 1450 if (sc->sc_audio1.active) { 1451 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1452 rv = 1; 1453 } else 1454 rv = 0; 1455 1456 mutex_spin_exit(&sc->sc_intr_lock); 1457 1458 return rv; 1459 } 1460 1461 int 1462 ess_audio2_intr(void *arg) 1463 { 1464 struct ess_softc *sc; 1465 uint8_t reg; 1466 int rv; 1467 1468 sc = arg; 1469 DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr)); 1470 1471 mutex_spin_enter(&sc->sc_intr_lock); 1472 1473 /* Check and clear interrupt on Audio2. */ 1474 reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2); 1475 if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) { 1476 mutex_spin_exit(&sc->sc_intr_lock); 1477 return 0; 1478 } 1479 reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH; 1480 ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg); 1481 1482 sc->sc_audio2.nintr++; 1483 1484 if (sc->sc_audio2.active) { 1485 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1486 rv = 1; 1487 } else 1488 rv = 0; 1489 1490 mutex_spin_exit(&sc->sc_intr_lock); 1491 1492 return rv; 1493 } 1494 1495 void 1496 ess_audio1_poll(void *addr) 1497 { 1498 struct ess_softc *sc; 1499 int dmapos, dmacount; 1500 1501 sc = addr; 1502 mutex_spin_enter(&sc->sc_intr_lock); 1503 1504 if (!sc->sc_audio1.active) { 1505 mutex_spin_exit(&sc->sc_intr_lock); 1506 return; 1507 } 1508 1509 sc->sc_audio1.nintr++; 1510 1511 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq); 1512 dmacount = sc->sc_audio1.dmapos - dmapos; 1513 if (dmacount < 0) 1514 dmacount += sc->sc_audio1.buffersize; 1515 sc->sc_audio1.dmapos = dmapos; 1516 #if 1 1517 dmacount += sc->sc_audio1.dmacount; 1518 while (dmacount > sc->sc_audio1.blksize) { 1519 dmacount -= sc->sc_audio1.blksize; 1520 (*sc->sc_audio1.intr)(sc->sc_audio1.arg); 1521 } 1522 sc->sc_audio1.dmacount = dmacount; 1523 #else 1524 (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount); 1525 #endif 1526 1527 mutex_spin_exit(&sc->sc_intr_lock); 1528 callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc); 1529 } 1530 1531 void 1532 ess_audio2_poll(void *addr) 1533 { 1534 struct ess_softc *sc; 1535 int dmapos, dmacount; 1536 1537 sc = addr; 1538 mutex_spin_enter(&sc->sc_intr_lock); 1539 1540 if (!sc->sc_audio2.active) { 1541 mutex_spin_exit(&sc->sc_intr_lock); 1542 return; 1543 } 1544 1545 sc->sc_audio2.nintr++; 1546 1547 dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq); 1548 dmacount = sc->sc_audio2.dmapos - dmapos; 1549 if (dmacount < 0) 1550 dmacount += sc->sc_audio2.buffersize; 1551 sc->sc_audio2.dmapos = dmapos; 1552 #if 1 1553 dmacount += sc->sc_audio2.dmacount; 1554 while (dmacount > sc->sc_audio2.blksize) { 1555 dmacount -= sc->sc_audio2.blksize; 1556 (*sc->sc_audio2.intr)(sc->sc_audio2.arg); 1557 } 1558 sc->sc_audio2.dmacount = dmacount; 1559 #else 1560 (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount); 1561 #endif 1562 1563 mutex_spin_exit(&sc->sc_intr_lock); 1564 callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc); 1565 } 1566 1567 int 1568 ess_round_blocksize(void *addr, int blk, int mode, 1569 const audio_params_t *param) 1570 { 1571 1572 return blk & -8; /* round for max DMA size */ 1573 } 1574 1575 int 1576 ess_set_port(void *addr, mixer_ctrl_t *cp) 1577 { 1578 struct ess_softc *sc; 1579 int lgain, rgain; 1580 1581 sc = addr; 1582 DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n", 1583 cp->dev, cp->un.value.num_channels)); 1584 1585 switch (cp->dev) { 1586 /* 1587 * The following mixer ports are all stereo. If we get a 1588 * single-channel gain value passed in, then we duplicate it 1589 * to both left and right channels. 1590 */ 1591 case ESS_MASTER_VOL: 1592 case ESS_DAC_PLAY_VOL: 1593 case ESS_MIC_PLAY_VOL: 1594 case ESS_LINE_PLAY_VOL: 1595 case ESS_SYNTH_PLAY_VOL: 1596 case ESS_CD_PLAY_VOL: 1597 case ESS_AUXB_PLAY_VOL: 1598 case ESS_RECORD_VOL: 1599 if (cp->type != AUDIO_MIXER_VALUE) 1600 return EINVAL; 1601 1602 switch (cp->un.value.num_channels) { 1603 case 1: 1604 lgain = rgain = ESS_4BIT_GAIN( 1605 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1606 break; 1607 case 2: 1608 lgain = ESS_4BIT_GAIN( 1609 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1610 rgain = ESS_4BIT_GAIN( 1611 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1612 break; 1613 default: 1614 return EINVAL; 1615 } 1616 1617 sc->gain[cp->dev][ESS_LEFT] = lgain; 1618 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1619 ess_set_gain(sc, cp->dev, 1); 1620 return 0; 1621 1622 /* 1623 * The PC speaker port is mono. If we get a stereo gain value 1624 * passed in, then we return EINVAL. 1625 */ 1626 case ESS_PCSPEAKER_VOL: 1627 if (cp->un.value.num_channels != 1) 1628 return EINVAL; 1629 1630 sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] = 1631 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1632 ess_set_gain(sc, cp->dev, 1); 1633 return 0; 1634 1635 case ESS_RECORD_SOURCE: 1636 if (ESS_USE_AUDIO1(sc->sc_model)) { 1637 if (cp->type == AUDIO_MIXER_ENUM) 1638 return ess_set_in_port(sc, cp->un.ord); 1639 else 1640 return EINVAL; 1641 } else { 1642 if (cp->type == AUDIO_MIXER_SET) 1643 return ess_set_in_ports(sc, cp->un.mask); 1644 else 1645 return EINVAL; 1646 } 1647 return 0; 1648 1649 case ESS_RECORD_MONITOR: 1650 if (cp->type != AUDIO_MIXER_ENUM) 1651 return EINVAL; 1652 1653 if (cp->un.ord) 1654 /* Enable monitor */ 1655 ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1656 ESS_AUDIO_CTRL_MONITOR); 1657 else 1658 /* Disable monitor */ 1659 ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL, 1660 ESS_AUDIO_CTRL_MONITOR); 1661 return 0; 1662 } 1663 1664 if (ESS_IS_ES18X9(sc->sc_model)) { 1665 1666 switch (cp->dev) { 1667 case ESS_SPATIALIZER: 1668 if (cp->type != AUDIO_MIXER_VALUE || 1669 cp->un.value.num_channels != 1) 1670 return EINVAL; 1671 1672 sc->gain[cp->dev][ESS_LEFT] = 1673 sc->gain[cp->dev][ESS_RIGHT] = ESS_6BIT_GAIN( 1674 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1675 ess_set_gain(sc, cp->dev, 1); 1676 return 0; 1677 1678 case ESS_SPATIALIZER_ENABLE: 1679 if (cp->type != AUDIO_MIXER_ENUM) 1680 return EINVAL; 1681 1682 sc->sc_spatializer = (cp->un.ord != 0); 1683 if (sc->sc_spatializer) 1684 ess_set_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL, 1685 ESS_SPATIAL_CTRL_ENABLE); 1686 else 1687 ess_clear_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL, 1688 ESS_SPATIAL_CTRL_ENABLE); 1689 return 0; 1690 } 1691 } 1692 1693 if (ESS_USE_AUDIO1(sc->sc_model)) 1694 return EINVAL; 1695 1696 switch (cp->dev) { 1697 case ESS_DAC_REC_VOL: 1698 case ESS_MIC_REC_VOL: 1699 case ESS_LINE_REC_VOL: 1700 case ESS_SYNTH_REC_VOL: 1701 case ESS_CD_REC_VOL: 1702 case ESS_AUXB_REC_VOL: 1703 if (cp->type != AUDIO_MIXER_VALUE) 1704 return EINVAL; 1705 1706 switch (cp->un.value.num_channels) { 1707 case 1: 1708 lgain = rgain = ESS_4BIT_GAIN( 1709 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]); 1710 break; 1711 case 2: 1712 lgain = ESS_4BIT_GAIN( 1713 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]); 1714 rgain = ESS_4BIT_GAIN( 1715 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]); 1716 break; 1717 default: 1718 return EINVAL; 1719 } 1720 1721 sc->gain[cp->dev][ESS_LEFT] = lgain; 1722 sc->gain[cp->dev][ESS_RIGHT] = rgain; 1723 ess_set_gain(sc, cp->dev, 1); 1724 return 0; 1725 1726 case ESS_MIC_PREAMP: 1727 if (cp->type != AUDIO_MIXER_ENUM) 1728 return EINVAL; 1729 1730 if (cp->un.ord) 1731 /* Enable microphone preamp */ 1732 ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1733 ESS_PREAMP_CTRL_ENABLE); 1734 else 1735 /* Disable microphone preamp */ 1736 ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL, 1737 ESS_PREAMP_CTRL_ENABLE); 1738 return 0; 1739 } 1740 1741 return EINVAL; 1742 } 1743 1744 int 1745 ess_get_port(void *addr, mixer_ctrl_t *cp) 1746 { 1747 struct ess_softc *sc; 1748 1749 sc = addr; 1750 DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev)); 1751 1752 switch (cp->dev) { 1753 case ESS_MASTER_VOL: 1754 case ESS_DAC_PLAY_VOL: 1755 case ESS_MIC_PLAY_VOL: 1756 case ESS_LINE_PLAY_VOL: 1757 case ESS_SYNTH_PLAY_VOL: 1758 case ESS_CD_PLAY_VOL: 1759 case ESS_AUXB_PLAY_VOL: 1760 case ESS_RECORD_VOL: 1761 switch (cp->un.value.num_channels) { 1762 case 1: 1763 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1764 sc->gain[cp->dev][ESS_LEFT]; 1765 break; 1766 case 2: 1767 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1768 sc->gain[cp->dev][ESS_LEFT]; 1769 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1770 sc->gain[cp->dev][ESS_RIGHT]; 1771 break; 1772 default: 1773 return EINVAL; 1774 } 1775 return 0; 1776 1777 case ESS_PCSPEAKER_VOL: 1778 if (cp->un.value.num_channels != 1) 1779 return EINVAL; 1780 1781 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1782 sc->gain[cp->dev][ESS_LEFT]; 1783 return 0; 1784 1785 case ESS_RECORD_SOURCE: 1786 if (ESS_USE_AUDIO1(sc->sc_model)) 1787 cp->un.ord = sc->in_port; 1788 else 1789 cp->un.mask = sc->in_mask; 1790 return 0; 1791 1792 case ESS_RECORD_MONITOR: 1793 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) & 1794 ESS_AUDIO_CTRL_MONITOR) ? 1 : 0; 1795 return 0; 1796 } 1797 1798 if (ESS_IS_ES18X9(sc->sc_model)) { 1799 1800 switch (cp->dev) { 1801 case ESS_SPATIALIZER: 1802 if (cp->un.value.num_channels != 1) 1803 return EINVAL; 1804 1805 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1806 sc->gain[cp->dev][ESS_LEFT]; 1807 return 0; 1808 1809 case ESS_SPATIALIZER_ENABLE: 1810 cp->un.ord = sc->sc_spatializer; 1811 return 0; 1812 } 1813 } 1814 1815 if (ESS_USE_AUDIO1(sc->sc_model)) 1816 return EINVAL; 1817 1818 switch (cp->dev) { 1819 case ESS_DAC_REC_VOL: 1820 case ESS_MIC_REC_VOL: 1821 case ESS_LINE_REC_VOL: 1822 case ESS_SYNTH_REC_VOL: 1823 case ESS_CD_REC_VOL: 1824 case ESS_AUXB_REC_VOL: 1825 switch (cp->un.value.num_channels) { 1826 case 1: 1827 cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = 1828 sc->gain[cp->dev][ESS_LEFT]; 1829 break; 1830 case 2: 1831 cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = 1832 sc->gain[cp->dev][ESS_LEFT]; 1833 cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = 1834 sc->gain[cp->dev][ESS_RIGHT]; 1835 break; 1836 default: 1837 return EINVAL; 1838 } 1839 return 0; 1840 1841 case ESS_MIC_PREAMP: 1842 cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) & 1843 ESS_PREAMP_CTRL_ENABLE) ? 1 : 0; 1844 return 0; 1845 } 1846 1847 return EINVAL; 1848 } 1849 1850 int 1851 ess_query_devinfo(void *addr, mixer_devinfo_t *dip) 1852 { 1853 struct ess_softc *sc; 1854 1855 sc = addr; 1856 DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n", 1857 sc->sc_model, dip->index)); 1858 1859 /* 1860 * REVISIT: There are some slight differences between the 1861 * mixers on the different ESS chips, which can 1862 * be sorted out using the chip model rather than a 1863 * separate mixer model. 1864 * This is currently coded assuming an ES1887; we 1865 * need to work out which bits are not applicable to 1866 * the other models (1888 and 888). 1867 */ 1868 switch (dip->index) { 1869 case ESS_DAC_PLAY_VOL: 1870 dip->mixer_class = ESS_INPUT_CLASS; 1871 dip->next = dip->prev = AUDIO_MIXER_LAST; 1872 strcpy(dip->label.name, AudioNdac); 1873 dip->type = AUDIO_MIXER_VALUE; 1874 dip->un.v.num_channels = 2; 1875 strcpy(dip->un.v.units.name, AudioNvolume); 1876 return 0; 1877 1878 case ESS_MIC_PLAY_VOL: 1879 dip->mixer_class = ESS_INPUT_CLASS; 1880 dip->prev = AUDIO_MIXER_LAST; 1881 if (ESS_USE_AUDIO1(sc->sc_model)) 1882 dip->next = AUDIO_MIXER_LAST; 1883 else 1884 dip->next = ESS_MIC_PREAMP; 1885 strcpy(dip->label.name, AudioNmicrophone); 1886 dip->type = AUDIO_MIXER_VALUE; 1887 dip->un.v.num_channels = 2; 1888 strcpy(dip->un.v.units.name, AudioNvolume); 1889 return 0; 1890 1891 case ESS_LINE_PLAY_VOL: 1892 dip->mixer_class = ESS_INPUT_CLASS; 1893 dip->next = dip->prev = AUDIO_MIXER_LAST; 1894 strcpy(dip->label.name, AudioNline); 1895 dip->type = AUDIO_MIXER_VALUE; 1896 dip->un.v.num_channels = 2; 1897 strcpy(dip->un.v.units.name, AudioNvolume); 1898 return 0; 1899 1900 case ESS_SYNTH_PLAY_VOL: 1901 dip->mixer_class = ESS_INPUT_CLASS; 1902 dip->next = dip->prev = AUDIO_MIXER_LAST; 1903 strcpy(dip->label.name, AudioNfmsynth); 1904 dip->type = AUDIO_MIXER_VALUE; 1905 dip->un.v.num_channels = 2; 1906 strcpy(dip->un.v.units.name, AudioNvolume); 1907 return 0; 1908 1909 case ESS_CD_PLAY_VOL: 1910 dip->mixer_class = ESS_INPUT_CLASS; 1911 dip->next = dip->prev = AUDIO_MIXER_LAST; 1912 strcpy(dip->label.name, AudioNcd); 1913 dip->type = AUDIO_MIXER_VALUE; 1914 dip->un.v.num_channels = 2; 1915 strcpy(dip->un.v.units.name, AudioNvolume); 1916 return 0; 1917 1918 case ESS_AUXB_PLAY_VOL: 1919 dip->mixer_class = ESS_INPUT_CLASS; 1920 dip->next = dip->prev = AUDIO_MIXER_LAST; 1921 strcpy(dip->label.name, "auxb"); 1922 dip->type = AUDIO_MIXER_VALUE; 1923 dip->un.v.num_channels = 2; 1924 strcpy(dip->un.v.units.name, AudioNvolume); 1925 return 0; 1926 1927 case ESS_INPUT_CLASS: 1928 dip->mixer_class = ESS_INPUT_CLASS; 1929 dip->next = dip->prev = AUDIO_MIXER_LAST; 1930 strcpy(dip->label.name, AudioCinputs); 1931 dip->type = AUDIO_MIXER_CLASS; 1932 return 0; 1933 1934 case ESS_MASTER_VOL: 1935 dip->mixer_class = ESS_OUTPUT_CLASS; 1936 dip->next = dip->prev = AUDIO_MIXER_LAST; 1937 strcpy(dip->label.name, AudioNmaster); 1938 dip->type = AUDIO_MIXER_VALUE; 1939 dip->un.v.num_channels = 2; 1940 strcpy(dip->un.v.units.name, AudioNvolume); 1941 return 0; 1942 1943 case ESS_PCSPEAKER_VOL: 1944 dip->mixer_class = ESS_OUTPUT_CLASS; 1945 dip->next = dip->prev = AUDIO_MIXER_LAST; 1946 strcpy(dip->label.name, "pc_speaker"); 1947 dip->type = AUDIO_MIXER_VALUE; 1948 dip->un.v.num_channels = 1; 1949 strcpy(dip->un.v.units.name, AudioNvolume); 1950 return 0; 1951 1952 case ESS_OUTPUT_CLASS: 1953 dip->mixer_class = ESS_OUTPUT_CLASS; 1954 dip->next = dip->prev = AUDIO_MIXER_LAST; 1955 strcpy(dip->label.name, AudioCoutputs); 1956 dip->type = AUDIO_MIXER_CLASS; 1957 return 0; 1958 1959 case ESS_RECORD_VOL: 1960 dip->mixer_class = ESS_RECORD_CLASS; 1961 dip->next = dip->prev = AUDIO_MIXER_LAST; 1962 strcpy(dip->label.name, AudioNrecord); 1963 dip->type = AUDIO_MIXER_VALUE; 1964 dip->un.v.num_channels = 2; 1965 strcpy(dip->un.v.units.name, AudioNvolume); 1966 return 0; 1967 1968 case ESS_RECORD_SOURCE: 1969 dip->mixer_class = ESS_RECORD_CLASS; 1970 dip->next = dip->prev = AUDIO_MIXER_LAST; 1971 strcpy(dip->label.name, AudioNsource); 1972 if (ESS_USE_AUDIO1(sc->sc_model)) { 1973 /* 1974 * The 1788 doesn't use the input mixer control that 1975 * the 1888 uses, because it's a pain when you only 1976 * have one mixer. 1977 * Perhaps it could be emulated by keeping both sets of 1978 * gain values, and doing a `context switch' of the 1979 * mixer registers when shifting from playing to 1980 * recording. 1981 */ 1982 dip->type = AUDIO_MIXER_ENUM; 1983 dip->un.e.num_mem = 4; 1984 strcpy(dip->un.e.member[0].label.name, AudioNmicrophone); 1985 dip->un.e.member[0].ord = ESS_SOURCE_MIC; 1986 strcpy(dip->un.e.member[1].label.name, AudioNline); 1987 dip->un.e.member[1].ord = ESS_SOURCE_LINE; 1988 strcpy(dip->un.e.member[2].label.name, AudioNcd); 1989 dip->un.e.member[2].ord = ESS_SOURCE_CD; 1990 strcpy(dip->un.e.member[3].label.name, AudioNmixerout); 1991 dip->un.e.member[3].ord = ESS_SOURCE_MIXER; 1992 } else { 1993 dip->type = AUDIO_MIXER_SET; 1994 dip->un.s.num_mem = 6; 1995 strcpy(dip->un.s.member[0].label.name, AudioNdac); 1996 dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL; 1997 strcpy(dip->un.s.member[1].label.name, AudioNmicrophone); 1998 dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL; 1999 strcpy(dip->un.s.member[2].label.name, AudioNline); 2000 dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL; 2001 strcpy(dip->un.s.member[3].label.name, AudioNfmsynth); 2002 dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL; 2003 strcpy(dip->un.s.member[4].label.name, AudioNcd); 2004 dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL; 2005 strcpy(dip->un.s.member[5].label.name, "auxb"); 2006 dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL; 2007 } 2008 return 0; 2009 2010 case ESS_RECORD_CLASS: 2011 dip->mixer_class = ESS_RECORD_CLASS; 2012 dip->next = dip->prev = AUDIO_MIXER_LAST; 2013 strcpy(dip->label.name, AudioCrecord); 2014 dip->type = AUDIO_MIXER_CLASS; 2015 return 0; 2016 2017 case ESS_RECORD_MONITOR: 2018 dip->prev = dip->next = AUDIO_MIXER_LAST; 2019 strcpy(dip->label.name, AudioNmute); 2020 dip->type = AUDIO_MIXER_ENUM; 2021 dip->mixer_class = ESS_MONITOR_CLASS; 2022 dip->un.e.num_mem = 2; 2023 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2024 dip->un.e.member[0].ord = 0; 2025 strcpy(dip->un.e.member[1].label.name, AudioNon); 2026 dip->un.e.member[1].ord = 1; 2027 return 0; 2028 2029 case ESS_MONITOR_CLASS: 2030 dip->mixer_class = ESS_MONITOR_CLASS; 2031 dip->next = dip->prev = AUDIO_MIXER_LAST; 2032 strcpy(dip->label.name, AudioCmonitor); 2033 dip->type = AUDIO_MIXER_CLASS; 2034 return 0; 2035 } 2036 2037 if (ESS_IS_ES18X9(sc->sc_model)) { 2038 2039 switch (dip->index) { 2040 case ESS_SPATIALIZER: 2041 dip->mixer_class = ESS_OUTPUT_CLASS; 2042 dip->prev = AUDIO_MIXER_LAST; 2043 dip->next = ESS_SPATIALIZER_ENABLE; 2044 strcpy(dip->label.name, AudioNspatial); 2045 dip->type = AUDIO_MIXER_VALUE; 2046 dip->un.v.num_channels = 1; 2047 strcpy(dip->un.v.units.name, "level"); 2048 return 0; 2049 2050 case ESS_SPATIALIZER_ENABLE: 2051 dip->mixer_class = ESS_OUTPUT_CLASS; 2052 dip->prev = ESS_SPATIALIZER; 2053 dip->next = AUDIO_MIXER_LAST; 2054 strcpy(dip->label.name, "enable"); 2055 dip->type = AUDIO_MIXER_ENUM; 2056 dip->un.e.num_mem = 2; 2057 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2058 dip->un.e.member[0].ord = 0; 2059 strcpy(dip->un.e.member[1].label.name, AudioNon); 2060 dip->un.e.member[1].ord = 1; 2061 return 0; 2062 } 2063 } 2064 2065 if (ESS_USE_AUDIO1(sc->sc_model)) 2066 return ENXIO; 2067 2068 switch (dip->index) { 2069 case ESS_DAC_REC_VOL: 2070 dip->mixer_class = ESS_RECORD_CLASS; 2071 dip->next = dip->prev = AUDIO_MIXER_LAST; 2072 strcpy(dip->label.name, AudioNdac); 2073 dip->type = AUDIO_MIXER_VALUE; 2074 dip->un.v.num_channels = 2; 2075 strcpy(dip->un.v.units.name, AudioNvolume); 2076 return 0; 2077 2078 case ESS_MIC_REC_VOL: 2079 dip->mixer_class = ESS_RECORD_CLASS; 2080 dip->next = dip->prev = AUDIO_MIXER_LAST; 2081 strcpy(dip->label.name, AudioNmicrophone); 2082 dip->type = AUDIO_MIXER_VALUE; 2083 dip->un.v.num_channels = 2; 2084 strcpy(dip->un.v.units.name, AudioNvolume); 2085 return 0; 2086 2087 case ESS_LINE_REC_VOL: 2088 dip->mixer_class = ESS_RECORD_CLASS; 2089 dip->next = dip->prev = AUDIO_MIXER_LAST; 2090 strcpy(dip->label.name, AudioNline); 2091 dip->type = AUDIO_MIXER_VALUE; 2092 dip->un.v.num_channels = 2; 2093 strcpy(dip->un.v.units.name, AudioNvolume); 2094 return 0; 2095 2096 case ESS_SYNTH_REC_VOL: 2097 dip->mixer_class = ESS_RECORD_CLASS; 2098 dip->next = dip->prev = AUDIO_MIXER_LAST; 2099 strcpy(dip->label.name, AudioNfmsynth); 2100 dip->type = AUDIO_MIXER_VALUE; 2101 dip->un.v.num_channels = 2; 2102 strcpy(dip->un.v.units.name, AudioNvolume); 2103 return 0; 2104 2105 case ESS_CD_REC_VOL: 2106 dip->mixer_class = ESS_RECORD_CLASS; 2107 dip->next = dip->prev = AUDIO_MIXER_LAST; 2108 strcpy(dip->label.name, AudioNcd); 2109 dip->type = AUDIO_MIXER_VALUE; 2110 dip->un.v.num_channels = 2; 2111 strcpy(dip->un.v.units.name, AudioNvolume); 2112 return 0; 2113 2114 case ESS_AUXB_REC_VOL: 2115 dip->mixer_class = ESS_RECORD_CLASS; 2116 dip->next = dip->prev = AUDIO_MIXER_LAST; 2117 strcpy(dip->label.name, "auxb"); 2118 dip->type = AUDIO_MIXER_VALUE; 2119 dip->un.v.num_channels = 2; 2120 strcpy(dip->un.v.units.name, AudioNvolume); 2121 return 0; 2122 2123 case ESS_MIC_PREAMP: 2124 dip->mixer_class = ESS_INPUT_CLASS; 2125 dip->prev = ESS_MIC_PLAY_VOL; 2126 dip->next = AUDIO_MIXER_LAST; 2127 strcpy(dip->label.name, AudioNpreamp); 2128 dip->type = AUDIO_MIXER_ENUM; 2129 dip->un.e.num_mem = 2; 2130 strcpy(dip->un.e.member[0].label.name, AudioNoff); 2131 dip->un.e.member[0].ord = 0; 2132 strcpy(dip->un.e.member[1].label.name, AudioNon); 2133 dip->un.e.member[1].ord = 1; 2134 return 0; 2135 } 2136 2137 return ENXIO; 2138 } 2139 2140 void * 2141 ess_malloc(void *addr, int direction, size_t size) 2142 { 2143 struct ess_softc *sc; 2144 int drq; 2145 2146 sc = addr; 2147 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY) 2148 drq = sc->sc_audio2.drq; 2149 else 2150 drq = sc->sc_audio1.drq; 2151 return (isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK)); 2152 } 2153 2154 void 2155 ess_free(void *addr, void *ptr, size_t size) 2156 { 2157 2158 isa_free(ptr, M_DEVBUF); 2159 } 2160 2161 size_t 2162 ess_round_buffersize(void *addr, int direction, size_t size) 2163 { 2164 struct ess_softc *sc; 2165 bus_size_t maxsize; 2166 2167 sc = addr; 2168 if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY) 2169 maxsize = sc->sc_audio2.maxsize; 2170 else 2171 maxsize = sc->sc_audio1.maxsize; 2172 2173 if (size > maxsize) 2174 size = maxsize; 2175 return size; 2176 } 2177 2178 int 2179 ess_1788_get_props(void *addr) 2180 { 2181 2182 return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE; 2183 } 2184 2185 int 2186 ess_1888_get_props(void *addr) 2187 { 2188 2189 return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE | 2190 AUDIO_PROP_FULLDUPLEX; 2191 } 2192 2193 void 2194 ess_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread) 2195 { 2196 struct ess_softc *sc; 2197 2198 sc = addr; 2199 *intr = &sc->sc_intr_lock; 2200 *thread = &sc->sc_lock; 2201 } 2202 2203 2204 /* ============================================ 2205 * Generic functions for ess, not used by audio h/w i/f 2206 * ============================================= 2207 */ 2208 2209 /* 2210 * Reset the chip. 2211 * Return non-zero if the chip isn't detected. 2212 */ 2213 int 2214 ess_reset(struct ess_softc *sc) 2215 { 2216 bus_space_tag_t iot; 2217 bus_space_handle_t ioh; 2218 2219 iot = sc->sc_iot; 2220 ioh = sc->sc_ioh; 2221 sc->sc_audio1.active = 0; 2222 sc->sc_audio2.active = 0; 2223 2224 EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT); 2225 delay(10000); /* XXX shouldn't delay so long */ 2226 EWRITE1(iot, ioh, ESS_DSP_RESET, 0); 2227 if (ess_rdsp(sc) != ESS_MAGIC) 2228 return 1; 2229 2230 /* Enable access to the ESS extension commands. */ 2231 ess_wdsp(sc, ESS_ACMD_ENABLE_EXT); 2232 2233 return 0; 2234 } 2235 2236 void 2237 ess_set_gain(struct ess_softc *sc, int port, int on) 2238 { 2239 int gain, left, right; 2240 int mix; 2241 int src; 2242 int stereo; 2243 2244 /* 2245 * Most gain controls are found in the mixer registers and 2246 * are stereo. Any that are not, must set mix and stereo as 2247 * required. 2248 */ 2249 mix = 1; 2250 stereo = 1; 2251 2252 if (ESS_IS_ES18X9(sc->sc_model)) { 2253 switch (port) { 2254 case ESS_SPATIALIZER: 2255 src = ESS_MREG_SPATIAL_LEVEL; 2256 stereo = -1; 2257 goto skip; 2258 case ESS_SPATIALIZER_ENABLE: 2259 return; 2260 } 2261 } 2262 switch (port) { 2263 case ESS_MASTER_VOL: 2264 src = ESS_MREG_VOLUME_MASTER; 2265 break; 2266 case ESS_DAC_PLAY_VOL: 2267 if (ESS_USE_AUDIO1(sc->sc_model)) 2268 src = ESS_MREG_VOLUME_VOICE; 2269 else 2270 src = 0x7C; 2271 break; 2272 case ESS_MIC_PLAY_VOL: 2273 src = ESS_MREG_VOLUME_MIC; 2274 break; 2275 case ESS_LINE_PLAY_VOL: 2276 src = ESS_MREG_VOLUME_LINE; 2277 break; 2278 case ESS_SYNTH_PLAY_VOL: 2279 src = ESS_MREG_VOLUME_SYNTH; 2280 break; 2281 case ESS_CD_PLAY_VOL: 2282 src = ESS_MREG_VOLUME_CD; 2283 break; 2284 case ESS_AUXB_PLAY_VOL: 2285 src = ESS_MREG_VOLUME_AUXB; 2286 break; 2287 case ESS_PCSPEAKER_VOL: 2288 src = ESS_MREG_VOLUME_PCSPKR; 2289 stereo = 0; 2290 break; 2291 case ESS_DAC_REC_VOL: 2292 src = 0x69; 2293 break; 2294 case ESS_MIC_REC_VOL: 2295 src = 0x68; 2296 break; 2297 case ESS_LINE_REC_VOL: 2298 src = 0x6E; 2299 break; 2300 case ESS_SYNTH_REC_VOL: 2301 src = 0x6B; 2302 break; 2303 case ESS_CD_REC_VOL: 2304 src = 0x6A; 2305 break; 2306 case ESS_AUXB_REC_VOL: 2307 src = 0x6C; 2308 break; 2309 case ESS_RECORD_VOL: 2310 src = ESS_XCMD_VOLIN_CTRL; 2311 mix = 0; 2312 break; 2313 default: 2314 return; 2315 } 2316 skip: 2317 2318 /* 1788 doesn't have a separate recording mixer */ 2319 if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62) 2320 return; 2321 2322 if (on) { 2323 left = sc->gain[port][ESS_LEFT]; 2324 right = sc->gain[port][ESS_RIGHT]; 2325 } else { 2326 left = right = 0; 2327 } 2328 2329 if (stereo == -1) 2330 gain = ESS_SPATIAL_GAIN(left); 2331 else if (stereo) 2332 gain = ESS_STEREO_GAIN(left, right); 2333 else 2334 gain = ESS_MONO_GAIN(left); 2335 2336 if (mix) 2337 ess_write_mix_reg(sc, src, gain); 2338 else 2339 ess_write_x_reg(sc, src, gain); 2340 } 2341 2342 /* Set the input device on devices without an input mixer. */ 2343 int 2344 ess_set_in_port(struct ess_softc *sc, int ord) 2345 { 2346 mixer_devinfo_t di; 2347 int i; 2348 2349 DPRINTF(("ess_set_in_port: ord=0x%x\n", ord)); 2350 2351 /* 2352 * Get the device info for the record source control, 2353 * including the list of available sources. 2354 */ 2355 di.index = ESS_RECORD_SOURCE; 2356 if (ess_query_devinfo(sc, &di)) 2357 return EINVAL; 2358 2359 /* See if the given ord value was anywhere in the list. */ 2360 for (i = 0; i < di.un.e.num_mem; i++) { 2361 if (ord == di.un.e.member[i].ord) 2362 break; 2363 } 2364 if (i == di.un.e.num_mem) 2365 return EINVAL; 2366 2367 ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord); 2368 2369 sc->in_port = ord; 2370 return 0; 2371 } 2372 2373 /* Set the input device levels on input-mixer-enabled devices. */ 2374 int 2375 ess_set_in_ports(struct ess_softc *sc, int mask) 2376 { 2377 mixer_devinfo_t di; 2378 int i, port; 2379 2380 DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask)); 2381 2382 /* 2383 * Get the device info for the record source control, 2384 * including the list of available sources. 2385 */ 2386 di.index = ESS_RECORD_SOURCE; 2387 if (ess_query_devinfo(sc, &di)) 2388 return EINVAL; 2389 2390 /* 2391 * Set or disable the record volume control for each of the 2392 * possible sources. 2393 */ 2394 for (i = 0; i < di.un.s.num_mem; i++) { 2395 /* 2396 * Calculate the source port number from its mask. 2397 */ 2398 port = ffs(di.un.s.member[i].mask); 2399 2400 /* 2401 * Set the source gain: 2402 * to the current value if source is enabled 2403 * to zero if source is disabled 2404 */ 2405 ess_set_gain(sc, port, mask & di.un.s.member[i].mask); 2406 } 2407 2408 sc->in_mask = mask; 2409 return 0; 2410 } 2411 2412 void 2413 ess_speaker_on(struct ess_softc *sc) 2414 { 2415 2416 /* Unmute the DAC. */ 2417 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1); 2418 } 2419 2420 void 2421 ess_speaker_off(struct ess_softc *sc) 2422 { 2423 2424 /* Mute the DAC. */ 2425 ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0); 2426 } 2427 2428 /* 2429 * Calculate the time constant for the requested sampling rate. 2430 */ 2431 u_int 2432 ess_srtotc(struct ess_softc *sc, u_int rate) 2433 { 2434 u_int tc; 2435 2436 /* The following formulae are from the ESS data sheet. */ 2437 if (ESS_IS_ES18X9(sc->sc_model)) { 2438 if ((rate % 8000) != 0) 2439 tc = 128 - 793800L / rate; 2440 else 2441 tc = 256 - 768000L / rate; 2442 } else { 2443 if (rate <= 22050) 2444 tc = 128 - 397700L / rate; 2445 else 2446 tc = 256 - 795500L / rate; 2447 } 2448 2449 return tc; 2450 } 2451 2452 2453 /* 2454 * Calculate the filter constant for the reuqested sampling rate. 2455 */ 2456 u_int 2457 ess_srtofc(u_int rate) 2458 { 2459 /* 2460 * The following formula is derived from the information in 2461 * the ES1887 data sheet, based on a roll-off frequency of 2462 * 87%. 2463 */ 2464 return 256 - 200279L / rate; 2465 } 2466 2467 2468 /* 2469 * Return the status of the DSP. 2470 */ 2471 u_char 2472 ess_get_dsp_status(struct ess_softc *sc) 2473 { 2474 return EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS); 2475 } 2476 2477 2478 /* 2479 * Return the read status of the DSP: 1 -> DSP ready for reading 2480 * 0 -> DSP not ready for reading 2481 */ 2482 u_char 2483 ess_dsp_read_ready(struct ess_softc *sc) 2484 { 2485 2486 return (ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0; 2487 } 2488 2489 2490 /* 2491 * Return the write status of the DSP: 1 -> DSP ready for writing 2492 * 0 -> DSP not ready for writing 2493 */ 2494 u_char 2495 ess_dsp_write_ready(struct ess_softc *sc) 2496 { 2497 return (ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1; 2498 } 2499 2500 2501 /* 2502 * Read a byte from the DSP. 2503 */ 2504 int 2505 ess_rdsp(struct ess_softc *sc) 2506 { 2507 bus_space_tag_t iot; 2508 bus_space_handle_t ioh; 2509 int i; 2510 2511 iot = sc->sc_iot; 2512 ioh = sc->sc_ioh; 2513 for (i = ESS_READ_TIMEOUT; i > 0; --i) { 2514 if (ess_dsp_read_ready(sc)) { 2515 i = EREAD1(iot, ioh, ESS_DSP_READ); 2516 DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i)); 2517 return i; 2518 } else 2519 delay(10); 2520 } 2521 2522 DPRINTF(("ess_rdsp: timed out\n")); 2523 return -1; 2524 } 2525 2526 /* 2527 * Write a byte to the DSP. 2528 */ 2529 int 2530 ess_wdsp(struct ess_softc *sc, u_char v) 2531 { 2532 bus_space_tag_t iot; 2533 bus_space_handle_t ioh; 2534 int i; 2535 2536 DPRINTFN(8,("ess_wdsp(0x%02x)\n", v)); 2537 2538 iot = sc->sc_iot; 2539 ioh = sc->sc_ioh; 2540 for (i = ESS_WRITE_TIMEOUT; i > 0; --i) { 2541 if (ess_dsp_write_ready(sc)) { 2542 EWRITE1(iot, ioh, ESS_DSP_WRITE, v); 2543 return 0; 2544 } else 2545 delay(10); 2546 } 2547 2548 DPRINTF(("ess_wdsp(0x%02x): timed out\n", v)); 2549 return -1; 2550 } 2551 2552 /* 2553 * Write a value to one of the ESS extended registers. 2554 */ 2555 int 2556 ess_write_x_reg(struct ess_softc *sc, u_char reg, u_char val) 2557 { 2558 int error; 2559 2560 DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val)); 2561 if ((error = ess_wdsp(sc, reg)) == 0) 2562 error = ess_wdsp(sc, val); 2563 2564 return error; 2565 } 2566 2567 /* 2568 * Read the value of one of the ESS extended registers. 2569 */ 2570 u_char 2571 ess_read_x_reg(struct ess_softc *sc, u_char reg) 2572 { 2573 int error; 2574 int val; 2575 2576 if ((error = ess_wdsp(sc, 0xC0)) == 0) 2577 error = ess_wdsp(sc, reg); 2578 if (error) { 2579 DPRINTF(("Error reading extended register 0x%02x\n", reg)); 2580 } 2581 /* REVISIT: what if an error is returned above? */ 2582 val = ess_rdsp(sc); 2583 DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val)); 2584 return val; 2585 } 2586 2587 void 2588 ess_clear_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask) 2589 { 2590 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) { 2591 DPRINTF(("Error clearing bits in extended register 0x%02x\n", 2592 reg)); 2593 } 2594 } 2595 2596 void 2597 ess_set_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask) 2598 { 2599 if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) { 2600 DPRINTF(("Error setting bits in extended register 0x%02x\n", 2601 reg)); 2602 } 2603 } 2604 2605 2606 /* 2607 * Write a value to one of the ESS mixer registers. 2608 */ 2609 void 2610 ess_write_mix_reg(struct ess_softc *sc, u_char reg, u_char val) 2611 { 2612 bus_space_tag_t iot; 2613 bus_space_handle_t ioh; 2614 2615 DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val)); 2616 2617 iot = sc->sc_iot; 2618 ioh = sc->sc_ioh; 2619 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2620 EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val); 2621 } 2622 2623 /* 2624 * Read the value of one of the ESS mixer registers. 2625 */ 2626 u_char 2627 ess_read_mix_reg(struct ess_softc *sc, u_char reg) 2628 { 2629 bus_space_tag_t iot; 2630 bus_space_handle_t ioh; 2631 u_char val; 2632 2633 iot = sc->sc_iot; 2634 ioh = sc->sc_ioh; 2635 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2636 val = EREAD1(iot, ioh, ESS_MIX_REG_DATA); 2637 2638 DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val)); 2639 return val; 2640 } 2641 2642 void 2643 ess_clear_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask) 2644 { 2645 2646 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask); 2647 } 2648 2649 void 2650 ess_set_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask) 2651 { 2652 2653 ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask); 2654 } 2655 2656 void 2657 ess_read_multi_mix_reg(struct ess_softc *sc, u_char reg, 2658 uint8_t *datap, bus_size_t count) 2659 { 2660 bus_space_tag_t iot; 2661 bus_space_handle_t ioh; 2662 2663 iot = sc->sc_iot; 2664 ioh = sc->sc_ioh; 2665 EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg); 2666 bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count); 2667 } 2668