xref: /netbsd-src/sys/dev/isa/ess.c (revision 21e37cc72a480a47828990a439cde7ac9ffaf0c6)
1 /*	$NetBSD: ess.c,v 1.59 2004/04/22 00:17:11 itojun Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37 **++
38 **
39 **  ess.c
40 **
41 **  FACILITY:
42 **
43 **	DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 **  MODULE DESCRIPTION:
46 **
47 **      This module contains the device driver for the ESS
48 **      Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 **	used as a reference point when implementing this driver.
50 **
51 **  AUTHORS:
52 **
53 **	Blair Fidler	Software Engineering Australia
54 **			Gold Coast, Australia.
55 **
56 **  CREATION DATE:
57 **
58 **	March 10, 1997.
59 **
60 **  MODIFICATION HISTORY:
61 **
62 **	Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 **	bus_dma, changes to audio interface, and many bug fixes.
64 **	ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.59 2004/04/22 00:17:11 itojun Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79 
80 #include <machine/cpu.h>
81 #include <machine/intr.h>
82 #include <machine/bus.h>
83 
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88 
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91 
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94 
95 #ifdef AUDIO_DEBUG
96 #define DPRINTF(x)	if (essdebug) printf x
97 #define DPRINTFN(n,x)	if (essdebug>(n)) printf x
98 int	essdebug = 0;
99 #else
100 #define DPRINTF(x)
101 #define DPRINTFN(n,x)
102 #endif
103 
104 #if 0
105 unsigned uuu;
106 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD  %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
107 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
108 #else
109 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
110 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
111 #endif
112 
113 
114 int	ess_setup_sc __P((struct ess_softc *, int));
115 
116 int	ess_open __P((void *, int));
117 void	ess_1788_close __P((void *));
118 void	ess_1888_close __P((void *));
119 int	ess_getdev __P((void *, struct audio_device *));
120 int	ess_drain __P((void *));
121 
122 int	ess_query_encoding __P((void *, struct audio_encoding *));
123 
124 int	ess_set_params __P((void *, int, int, struct audio_params *,
125 	    struct audio_params *));
126 
127 int	ess_round_blocksize __P((void *, int));
128 
129 int	ess_audio1_trigger_output __P((void *, void *, void *, int,
130 	    void (*)(void *), void *, struct audio_params *));
131 int	ess_audio2_trigger_output __P((void *, void *, void *, int,
132 	    void (*)(void *), void *, struct audio_params *));
133 int	ess_audio1_trigger_input __P((void *, void *, void *, int,
134 	    void (*)(void *), void *, struct audio_params *));
135 int	ess_audio1_halt __P((void *));
136 int	ess_audio2_halt __P((void *));
137 int	ess_audio1_intr __P((void *));
138 int	ess_audio2_intr __P((void *));
139 void	ess_audio1_poll __P((void *));
140 void	ess_audio2_poll __P((void *));
141 
142 int	ess_speaker_ctl __P((void *, int));
143 
144 int	ess_getdev __P((void *, struct audio_device *));
145 
146 int	ess_set_port __P((void *, mixer_ctrl_t *));
147 int	ess_get_port __P((void *, mixer_ctrl_t *));
148 
149 void   *ess_malloc __P((void *, int, size_t, struct malloc_type *, int));
150 void	ess_free __P((void *, void *, struct malloc_type *));
151 size_t	ess_round_buffersize __P((void *, int, size_t));
152 paddr_t	ess_mappage __P((void *, void *, off_t, int));
153 
154 
155 int	ess_query_devinfo __P((void *, mixer_devinfo_t *));
156 int	ess_1788_get_props __P((void *));
157 int	ess_1888_get_props __P((void *));
158 
159 void	ess_speaker_on __P((struct ess_softc *));
160 void	ess_speaker_off __P((struct ess_softc *));
161 
162 void	ess_config_irq __P((struct ess_softc *));
163 void	ess_config_drq __P((struct ess_softc *));
164 void	ess_setup __P((struct ess_softc *));
165 int	ess_identify __P((struct ess_softc *));
166 
167 int	ess_reset __P((struct ess_softc *));
168 void	ess_set_gain __P((struct ess_softc *, int, int));
169 int	ess_set_in_port __P((struct ess_softc *, int));
170 int	ess_set_in_ports __P((struct ess_softc *, int));
171 u_int	ess_srtotc __P((u_int));
172 u_int	ess_srtofc __P((u_int));
173 u_char	ess_get_dsp_status __P((struct ess_softc *));
174 u_char	ess_dsp_read_ready __P((struct ess_softc *));
175 u_char	ess_dsp_write_ready __P((struct ess_softc *));
176 int	ess_rdsp __P((struct ess_softc *));
177 int	ess_wdsp __P((struct ess_softc *, u_char));
178 u_char	ess_read_x_reg __P((struct ess_softc *, u_char));
179 int	ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
180 void	ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
181 void	ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
182 u_char	ess_read_mix_reg __P((struct ess_softc *, u_char));
183 void	ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
184 void	ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
185 void	ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
186 void	ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t));
187 
188 static char *essmodel[] = {
189 	"unsupported",
190 	"1888",
191 	"1887",
192 	"888",
193 	"1788",
194 	"1869",
195 	"1879",
196 	"1868",
197 	"1878",
198 };
199 
200 struct audio_device ess_device = {
201 	"ESS Technology",
202 	"x",
203 	"ess"
204 };
205 
206 /*
207  * Define our interface to the higher level audio driver.
208  */
209 
210 struct audio_hw_if ess_1788_hw_if = {
211 	ess_open,
212 	ess_1788_close,
213 	ess_drain,
214 	ess_query_encoding,
215 	ess_set_params,
216 	ess_round_blocksize,
217 	NULL,
218 	NULL,
219 	NULL,
220 	NULL,
221 	NULL,
222 	ess_audio1_halt,
223 	ess_audio1_halt,
224 	ess_speaker_ctl,
225 	ess_getdev,
226 	NULL,
227 	ess_set_port,
228 	ess_get_port,
229 	ess_query_devinfo,
230 	ess_malloc,
231 	ess_free,
232 	ess_round_buffersize,
233 	ess_mappage,
234 	ess_1788_get_props,
235 	ess_audio1_trigger_output,
236 	ess_audio1_trigger_input,
237 	NULL,
238 };
239 
240 struct audio_hw_if ess_1888_hw_if = {
241 	ess_open,
242 	ess_1888_close,
243 	ess_drain,
244 	ess_query_encoding,
245 	ess_set_params,
246 	ess_round_blocksize,
247 	NULL,
248 	NULL,
249 	NULL,
250 	NULL,
251 	NULL,
252 	ess_audio2_halt,
253 	ess_audio1_halt,
254 	ess_speaker_ctl,
255 	ess_getdev,
256 	NULL,
257 	ess_set_port,
258 	ess_get_port,
259 	ess_query_devinfo,
260 	ess_malloc,
261 	ess_free,
262 	ess_round_buffersize,
263 	ess_mappage,
264 	ess_1888_get_props,
265 	ess_audio2_trigger_output,
266 	ess_audio1_trigger_input,
267 	NULL,
268 };
269 
270 #ifdef AUDIO_DEBUG
271 void ess_printsc __P((struct ess_softc *));
272 void ess_dump_mixer __P((struct ess_softc *));
273 
274 void
275 ess_printsc(sc)
276 	struct ess_softc *sc;
277 {
278 	int i;
279 
280 	printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
281 	       (int)sc->sc_open, sc->sc_iobase, sc->out_port,
282 	       sc->in_port, sc->spkr_state ? "on" : "off");
283 
284 	printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
285 	       sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
286 	       sc->sc_audio1.intr, sc->sc_audio1.arg);
287 
288 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
289 		printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
290 		       sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
291 		       sc->sc_audio2.intr, sc->sc_audio2.arg);
292 	}
293 
294 	printf("gain:");
295 	for (i = 0; i < sc->ndevs; i++)
296 		printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
297 	printf("\n");
298 }
299 
300 void
301 ess_dump_mixer(sc)
302 	struct ess_softc *sc;
303 {
304 	printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
305 	       0x7C, ess_read_mix_reg(sc, 0x7C));
306 	printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
307 	       0x1A, ess_read_mix_reg(sc, 0x1A));
308 	printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
309 	       0x3E, ess_read_mix_reg(sc, 0x3E));
310 	printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
311 	       0x36, ess_read_mix_reg(sc, 0x36));
312 	printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
313 	       0x38, ess_read_mix_reg(sc, 0x38));
314 	printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
315 	       0x3A, ess_read_mix_reg(sc, 0x3A));
316 	printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
317 	       0x32, ess_read_mix_reg(sc, 0x32));
318 	printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
319 	       0x3C, ess_read_mix_reg(sc, 0x3C));
320 	printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
321 	       0x69, ess_read_mix_reg(sc, 0x69));
322 	printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
323 	       0x68, ess_read_mix_reg(sc, 0x68));
324 	printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
325 	       0x6E, ess_read_mix_reg(sc, 0x6E));
326 	printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
327 	       0x6B, ess_read_mix_reg(sc, 0x6B));
328 	printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
329 	       0x6A, ess_read_mix_reg(sc, 0x6A));
330 	printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
331 	       0x6C, ess_read_mix_reg(sc, 0x6C));
332 	printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
333 	       0xB4, ess_read_x_reg(sc, 0xB4));
334 	printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
335 	       0x14, ess_read_mix_reg(sc, 0x14));
336 
337 	printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
338 	       ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
339 	printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
340 	       ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
341 	printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
342 	       ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
343 	       ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
344 }
345 
346 #endif
347 
348 /*
349  * Configure the ESS chip for the desired audio base address.
350  */
351 int
352 ess_config_addr(sc)
353 	struct ess_softc *sc;
354 {
355 	int iobase = sc->sc_iobase;
356 	bus_space_tag_t iot = sc->sc_iot;
357 
358 	/*
359 	 * Configure using the System Control Register method.  This
360 	 * method is used when the AMODE line is tied high, which is
361 	 * the case for the Shark, but not for the evaluation board.
362 	 */
363 
364 	bus_space_handle_t scr_access_ioh;
365 	bus_space_handle_t scr_ioh;
366 	u_short scr_value;
367 
368 	/*
369 	 * Set the SCR bit to enable audio.
370 	 */
371 	scr_value = ESS_SCR_AUDIO_ENABLE;
372 
373 	/*
374 	 * Set the SCR bits necessary to select the specified audio
375 	 * base address.
376 	 */
377 	switch(iobase) {
378 	case 0x220:
379 		scr_value |= ESS_SCR_AUDIO_220;
380 		break;
381 	case 0x230:
382 		scr_value |= ESS_SCR_AUDIO_230;
383 		break;
384 	case 0x240:
385 		scr_value |= ESS_SCR_AUDIO_240;
386 		break;
387 	case 0x250:
388 		scr_value |= ESS_SCR_AUDIO_250;
389 		break;
390 	default:
391 		printf("ess: configured iobase 0x%x invalid\n", iobase);
392 		return (1);
393 		break;
394 	}
395 
396 	/*
397 	 * Get a mapping for the System Control Register (SCR) access
398 	 * registers and the SCR data registers.
399 	 */
400 	if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
401 			  0, &scr_access_ioh)) {
402 		printf("ess: can't map SCR access registers\n");
403 		return (1);
404 	}
405 	if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
406 			  0, &scr_ioh)) {
407 		printf("ess: can't map SCR registers\n");
408 		bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
409 		return (1);
410 	}
411 
412 	/* Unlock the SCR. */
413 	EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
414 
415 	/* Write the base address information into SCR[0]. */
416 	EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
417 	EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
418 
419 	/* Lock the SCR. */
420 	EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
421 
422 	/* Unmap the SCR access ports and the SCR data ports. */
423 	bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
424 	bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
425 
426 	return 0;
427 }
428 
429 
430 /*
431  * Configure the ESS chip for the desired IRQ and DMA channels.
432  * ESS  ISA
433  * --------
434  * IRQA irq9
435  * IRQB irq5
436  * IRQC irq7
437  * IRQD irq10
438  * IRQE irq15
439  *
440  * DRQA drq0
441  * DRQB drq1
442  * DRQC drq3
443  * DRQD drq5
444  */
445 void
446 ess_config_irq(sc)
447 	struct ess_softc *sc;
448 {
449 	int v;
450 
451 	DPRINTFN(2,("ess_config_irq\n"));
452 
453 	if (sc->sc_model == ESS_1887 &&
454 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
455 	    sc->sc_audio1.irq != -1) {
456 		/* Use new method, both interrupts are the same. */
457 		v = ESS_IS_SELECT_IRQ;	/* enable intrs */
458 		switch (sc->sc_audio1.irq) {
459 		case 5:
460 			v |= ESS_IS_INTRB;
461 			break;
462 		case 7:
463 			v |= ESS_IS_INTRC;
464 			break;
465 		case 9:
466 			v |= ESS_IS_INTRA;
467 			break;
468 		case 10:
469 			v |= ESS_IS_INTRD;
470 			break;
471 		case 15:
472 			v |= ESS_IS_INTRE;
473 			break;
474 #ifdef DIAGNOSTIC
475 		default:
476 			printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
477 			       sc->sc_audio1.irq);
478 			return;
479 #endif
480 		}
481 		/* Set the IRQ */
482 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
483 		return;
484 	}
485 
486 	if (sc->sc_model == ESS_1887) {
487 		/* Tell the 1887 to use the old interrupt method. */
488 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
489 	}
490 
491 	if (sc->sc_audio1.polled) {
492 		/* Turn off Audio1 interrupts. */
493 		v = 0;
494 	} else {
495 		/* Configure Audio 1 for the appropriate IRQ line. */
496 		v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
497 		switch (sc->sc_audio1.irq) {
498 		case 5:
499 			v |= ESS_IRQ_CTRL_INTRB;
500 			break;
501 		case 7:
502 			v |= ESS_IRQ_CTRL_INTRC;
503 			break;
504 		case 9:
505 			v |= ESS_IRQ_CTRL_INTRA;
506 			break;
507 		case 10:
508 			v |= ESS_IRQ_CTRL_INTRD;
509 			break;
510 #ifdef DIAGNOSTIC
511 		default:
512 			printf("ess: configured irq %d not supported for Audio 1\n",
513 			       sc->sc_audio1.irq);
514 			return;
515 #endif
516 		}
517 	}
518 	ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
519 
520 	if (ESS_USE_AUDIO1(sc->sc_model))
521 		return;
522 
523 	if (sc->sc_audio2.polled) {
524 		/* Turn off Audio2 interrupts. */
525 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
526 				    ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
527 	} else {
528 		/* Audio2 is hardwired to INTRE in this mode. */
529 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
530 				  ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
531 	}
532 }
533 
534 
535 void
536 ess_config_drq(sc)
537 	struct ess_softc *sc;
538 {
539 	int v;
540 
541 	DPRINTFN(2,("ess_config_drq\n"));
542 
543 	/* Configure Audio 1 (record) for DMA on the appropriate channel. */
544 	v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
545 	switch (sc->sc_audio1.drq) {
546 	case 0:
547 		v |= ESS_DRQ_CTRL_DRQA;
548 		break;
549 	case 1:
550 		v |= ESS_DRQ_CTRL_DRQB;
551 		break;
552 	case 3:
553 		v |= ESS_DRQ_CTRL_DRQC;
554 		break;
555 #ifdef DIAGNOSTIC
556 	default:
557 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
558 		       sc->sc_audio1.drq);
559 		return;
560 #endif
561 	}
562 	/* Set DRQ1 */
563 	ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
564 
565 	if (ESS_USE_AUDIO1(sc->sc_model))
566 		return;
567 
568 	/* Configure DRQ2 */
569 	v = ESS_AUDIO2_CTRL3_DRQ_PD;
570 	switch (sc->sc_audio2.drq) {
571 	case 0:
572 		v |= ESS_AUDIO2_CTRL3_DRQA;
573 		break;
574 	case 1:
575 		v |= ESS_AUDIO2_CTRL3_DRQB;
576 		break;
577 	case 3:
578 		v |= ESS_AUDIO2_CTRL3_DRQC;
579 		break;
580 	case 5:
581 		v |= ESS_AUDIO2_CTRL3_DRQD;
582 		break;
583 #ifdef DIAGNOSTIC
584 	default:
585 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
586 		       sc->sc_audio2.drq);
587 		return;
588 #endif
589 	}
590 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
591 	/* Enable DMA 2 */
592 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
593 			  ESS_AUDIO2_CTRL2_DMA_ENABLE);
594 }
595 
596 /*
597  * Set up registers after a reset.
598  */
599 void
600 ess_setup(sc)
601 	struct ess_softc *sc;
602 {
603 
604 	ess_config_irq(sc);
605 	ess_config_drq(sc);
606 
607 	DPRINTFN(2,("ess_setup: done\n"));
608 }
609 
610 /*
611  * Determine the model of ESS chip we are talking to.  Currently we
612  * only support ES1888, ES1887 and ES888.  The method of determining
613  * the chip is based on the information on page 27 of the ES1887 data
614  * sheet.
615  *
616  * This routine sets the values of sc->sc_model and sc->sc_version.
617  */
618 int
619 ess_identify(sc)
620 	struct ess_softc *sc;
621 {
622 	u_char reg1;
623 	u_char reg2;
624 	u_char reg3;
625 	u_int8_t ident[4];
626 
627 	sc->sc_model = ESS_UNSUPPORTED;
628 	sc->sc_version = 0;
629 
630 	memset(ident, 0, sizeof(ident));
631 
632 	/*
633 	 * 1. Check legacy ID bytes.  These should be 0x68 0x8n, where
634 	 *    n >= 8 for an ES1887 or an ES888.  Other values indicate
635 	 *    earlier (unsupported) chips.
636 	 */
637 	ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
638 
639 	if ((reg1 = ess_rdsp(sc)) != 0x68) {
640 		printf("ess: First ID byte wrong (0x%02x)\n", reg1);
641 		return 1;
642 	}
643 
644 	reg2 = ess_rdsp(sc);
645 	if (((reg2 & 0xf0) != 0x80) ||
646 	    ((reg2 & 0x0f) < 8)) {
647 		printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
648 		return 1;
649 	}
650 
651 	/*
652 	 * Store the ID bytes as the version.
653 	 */
654 	sc->sc_version = (reg1 << 8) + reg2;
655 
656 
657 	/*
658 	 * 2. Verify we can change bit 2 in mixer register 0x64.  This
659 	 *    should be possible on all supported chips.
660 	 */
661 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
662 	reg2 = reg1 ^ 0x04;  /* toggle bit 2 */
663 
664 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
665 
666 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
667 		printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
668 		return 1;
669 	}
670 
671 	/*
672 	 * Restore the original value of mixer register 0x64.
673 	 */
674 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
675 
676 
677 	/*
678 	 * 3. Verify we can change the value of mixer register
679 	 *    ESS_MREG_SAMPLE_RATE.
680 	 *    This is possible on the 1888/1887/888, but not on the 1788.
681 	 *    It is not necessary to restore the value of this mixer register.
682 	 */
683 	reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
684 	reg2 = reg1 ^ 0xff;  /* toggle all bits */
685 
686 	ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
687 
688 	if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
689 		/* If we got this far before failing, it's a 1788. */
690 		sc->sc_model = ESS_1788;
691 
692 		/*
693 		 * Identify ESS model for ES18[67]8.
694 		 */
695 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
696 		if(ident[0] == 0x18) {
697 			switch(ident[1]) {
698 			case 0x68:
699 				sc->sc_model = ESS_1868;
700 				break;
701 			case 0x78:
702 				sc->sc_model = ESS_1878;
703 				break;
704 			}
705 		}
706 	} else {
707 		/*
708 		 * 4. Determine if we can change bit 5 in mixer register 0x64.
709 		 *    This determines whether we have an ES1887:
710 		 *
711 		 *    - can change indicates ES1887
712 		 *    - can't change indicates ES1888 or ES888
713 		 */
714 		reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
715 		reg2 = reg1 ^ 0x20;  /* toggle bit 5 */
716 
717 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
718 
719 		if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
720 			sc->sc_model = ESS_1887;
721 
722 			/*
723 			 * Restore the original value of mixer register 0x64.
724 			 */
725 			ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
726 
727 			/*
728 			 * Identify ESS model for ES18[67]9.
729 			 */
730 			ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
731 			if(ident[0] == 0x18) {
732 				switch(ident[1]) {
733 				case 0x69:
734 					sc->sc_model = ESS_1869;
735 					break;
736 				case 0x79:
737 					sc->sc_model = ESS_1879;
738 					break;
739 				}
740 			}
741 		} else {
742 			/*
743 			 * 5. Determine if we can change the value of mixer
744 			 *    register 0x69 independently of mixer register
745 			 *    0x68. This determines which chip we have:
746 			 *
747 			 *    - can modify idependently indicates ES888
748 			 *    - register 0x69 is an alias of 0x68 indicates ES1888
749 			 */
750 			reg1 = ess_read_mix_reg(sc, 0x68);
751 			reg2 = ess_read_mix_reg(sc, 0x69);
752 			reg3 = reg2 ^ 0xff;  /* toggle all bits */
753 
754 			/*
755 			 * Write different values to each register.
756 			 */
757 			ess_write_mix_reg(sc, 0x68, reg2);
758 			ess_write_mix_reg(sc, 0x69, reg3);
759 
760 			if (ess_read_mix_reg(sc, 0x68) == reg2 &&
761 			    ess_read_mix_reg(sc, 0x69) == reg3)
762 				sc->sc_model = ESS_888;
763 			else
764 				sc->sc_model = ESS_1888;
765 
766 			/*
767 			 * Restore the original value of the registers.
768 			 */
769 			ess_write_mix_reg(sc, 0x68, reg1);
770 			ess_write_mix_reg(sc, 0x69, reg2);
771 		}
772 	}
773 
774 	return 0;
775 }
776 
777 
778 int
779 ess_setup_sc(sc, doinit)
780 	struct ess_softc *sc;
781 	int doinit;
782 {
783 
784 	callout_init(&sc->sc_poll1_ch);
785 	callout_init(&sc->sc_poll2_ch);
786 
787 	/* Reset the chip. */
788 	if (ess_reset(sc) != 0) {
789 		DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
790 		return (1);
791 	}
792 
793 	/* Identify the ESS chip, and check that it is supported. */
794 	if (ess_identify(sc)) {
795 		DPRINTF(("ess_setup_sc: couldn't identify\n"));
796 		return (1);
797 	}
798 
799 	return (0);
800 }
801 
802 /*
803  * Probe for the ESS hardware.
804  */
805 int
806 essmatch(sc)
807 	struct ess_softc *sc;
808 {
809 	if (!ESS_BASE_VALID(sc->sc_iobase)) {
810 		printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
811 		return (0);
812 	}
813 
814 	if (ess_setup_sc(sc, 1))
815 		return (0);
816 
817 	if (sc->sc_model == ESS_UNSUPPORTED) {
818 		DPRINTF(("ess: Unsupported model\n"));
819 		return (0);
820 	}
821 
822 	/* Check that requested DMA channels are valid and different. */
823 	if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
824 		printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
825 		return (0);
826 	}
827 	if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
828 		return (0);
829 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
830 		if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
831 			printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
832 			return (0);
833 		}
834 		if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
835 			printf("ess: play and record drq both %d\n",
836 			       sc->sc_audio1.drq);
837 			return (0);
838 		}
839 		if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
840 			return (0);
841 	}
842 
843 	/*
844 	 * The 1887 has an additional IRQ mode where both channels are mapped
845 	 * to the same IRQ.
846 	 */
847 	if (sc->sc_model == ESS_1887 &&
848 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
849 	    sc->sc_audio1.irq != -1 &&
850 	    ESS_IRQ12_VALID(sc->sc_audio1.irq))
851 		goto irq_not1888;
852 
853 	/* Check that requested IRQ lines are valid and different. */
854 	if (sc->sc_audio1.irq != -1 &&
855 	    !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
856 		printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
857 		return (0);
858 	}
859 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
860 		if (sc->sc_audio2.irq != -1 &&
861 		    !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
862 			printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
863 			return (0);
864 		}
865 		if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
866 		    sc->sc_audio1.irq != -1) {
867 			printf("ess: play and record irq both %d\n",
868 			       sc->sc_audio1.irq);
869 			return (0);
870 		}
871 	}
872 
873 irq_not1888:
874 	/* XXX should we check IRQs as well? */
875 
876 	return (1);
877 }
878 
879 
880 /*
881  * Attach hardware to driver, attach hardware driver to audio
882  * pseudo-device driver.
883  */
884 void
885 essattach(sc)
886 	struct ess_softc *sc;
887 {
888 	struct audio_attach_args arg;
889 	struct audio_params pparams, rparams;
890 	int i;
891 	u_int v;
892 
893 	if (ess_setup_sc(sc, 0)) {
894 		printf(": setup failed\n");
895 		return;
896 	}
897 
898 	printf(": ESS Technology ES%s [version 0x%04x]\n",
899 	       essmodel[sc->sc_model], sc->sc_version);
900 
901 	sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
902 	if (!sc->sc_audio1.polled) {
903 		sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
904 		    sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
905 		    ess_audio1_intr, sc);
906 		printf("%s: audio1 interrupting at irq %d\n",
907 		    sc->sc_dev.dv_xname, sc->sc_audio1.irq);
908 	} else
909 		printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
910 	sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
911 
912 	if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
913 		printf("%s: can't reserve drq %d\n",
914 		    sc->sc_dev.dv_xname, sc->sc_audio1.drq);
915 		return;
916 	}
917 
918 	if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
919 	    sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
920 		printf("%s: can't create map for drq %d\n",
921 		       sc->sc_dev.dv_xname, sc->sc_audio1.drq);
922 		return;
923 	}
924 
925 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
926 		sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
927 		if (!sc->sc_audio2.polled) {
928 			sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
929 			    sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
930 			    ess_audio2_intr, sc);
931 			printf("%s: audio2 interrupting at irq %d\n",
932 			    sc->sc_dev.dv_xname, sc->sc_audio2.irq);
933 		} else
934 			printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
935 		sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
936 		    sc->sc_audio2.drq);
937 
938 		if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
939 			printf("%s: can't reserve drq %d\n",
940 			    sc->sc_dev.dv_xname, sc->sc_audio2.drq);
941 			return;
942 		}
943 
944 		if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
945 		    sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
946 			printf("%s: can't create map for drq %d\n",
947 			       sc->sc_dev.dv_xname, sc->sc_audio2.drq);
948 			return;
949 		}
950 	}
951 
952 	/*
953 	 * Set record and play parameters to default values defined in
954 	 * generic audio driver.
955 	 */
956 	pparams = audio_default;
957 	rparams = audio_default;
958 	ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
959 
960 	/* Do a hardware reset on the mixer. */
961 	ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
962 
963 	/*
964 	 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
965 	 * to playback mixer, since playback is always through Audio 2.
966 	 */
967 	if (!ESS_USE_AUDIO1(sc->sc_model))
968 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
969 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
970 
971 	if (ESS_USE_AUDIO1(sc->sc_model)) {
972 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
973 		sc->in_port = ESS_SOURCE_MIC;
974 		sc->ndevs = ESS_1788_NDEVS;
975 	} else {
976 		/*
977 		 * Set hardware record source to use output of the record
978 		 * mixer. We do the selection of record source in software by
979 		 * setting the gain of the unused sources to zero. (See
980 		 * ess_set_in_ports.)
981 		 */
982 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
983 		sc->in_mask = 1 << ESS_MIC_REC_VOL;
984 		sc->ndevs = ESS_1888_NDEVS;
985 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
986 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
987 	}
988 
989 	/*
990 	 * Set gain on each mixer device to a sensible value.
991 	 * Devices not normally used are turned off, and other devices
992 	 * are set to 50% volume.
993 	 */
994 	for (i = 0; i < sc->ndevs; i++) {
995 		switch (i) {
996 		case ESS_MIC_PLAY_VOL:
997 		case ESS_LINE_PLAY_VOL:
998 		case ESS_CD_PLAY_VOL:
999 		case ESS_AUXB_PLAY_VOL:
1000 		case ESS_DAC_REC_VOL:
1001 		case ESS_LINE_REC_VOL:
1002 		case ESS_SYNTH_REC_VOL:
1003 		case ESS_CD_REC_VOL:
1004 		case ESS_AUXB_REC_VOL:
1005 			v = 0;
1006 			break;
1007 		default:
1008 			v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1009 			break;
1010 		}
1011 		sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1012 		ess_set_gain(sc, i, 1);
1013 	}
1014 
1015 	ess_setup(sc);
1016 
1017 	/* Disable the speaker until the device is opened.  */
1018 	ess_speaker_off(sc);
1019 	sc->spkr_state = SPKR_OFF;
1020 
1021 	snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
1022 	    essmodel[sc->sc_model]);
1023 	snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
1024 	    sc->sc_version);
1025 
1026 	if (ESS_USE_AUDIO1(sc->sc_model))
1027 		audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1028 	else
1029 		audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1030 
1031 	arg.type = AUDIODEV_TYPE_OPL;
1032 	arg.hwif = 0;
1033 	arg.hdl = 0;
1034 	(void)config_found(&sc->sc_dev, &arg, audioprint);
1035 
1036 #ifdef AUDIO_DEBUG
1037 	if (essdebug > 0)
1038 		ess_printsc(sc);
1039 #endif
1040 }
1041 
1042 /*
1043  * Various routines to interface to higher level audio driver
1044  */
1045 
1046 int
1047 ess_open(addr, flags)
1048 	void *addr;
1049 	int flags;
1050 {
1051 	struct ess_softc *sc = addr;
1052 	int i;
1053 
1054 	DPRINTF(("ess_open: sc=%p\n", sc));
1055 
1056 	if (sc->sc_open != 0 || ess_reset(sc) != 0)
1057 		return ENXIO;
1058 
1059 	ess_setup(sc);		/* because we did a reset */
1060 
1061 	/* Set all mixer controls again since some change at reset. */
1062 	for (i = 0; i < ESS_MAX_NDEVS; i++)
1063 		ess_set_gain(sc, i, 1);
1064 
1065 	sc->sc_open = 1;
1066 
1067 	DPRINTF(("ess_open: opened\n"));
1068 
1069 	return (0);
1070 }
1071 
1072 void
1073 ess_1788_close(addr)
1074 	void *addr;
1075 {
1076 	struct ess_softc *sc = addr;
1077 
1078 	DPRINTF(("ess_1788_close: sc=%p\n", sc));
1079 
1080 	ess_speaker_off(sc);
1081 	sc->spkr_state = SPKR_OFF;
1082 
1083 	ess_audio1_halt(sc);
1084 
1085 	sc->sc_open = 0;
1086 	DPRINTF(("ess_1788_close: closed\n"));
1087 }
1088 
1089 void
1090 ess_1888_close(addr)
1091 	void *addr;
1092 {
1093 	struct ess_softc *sc = addr;
1094 
1095 	DPRINTF(("ess_1888_close: sc=%p\n", sc));
1096 
1097 	ess_speaker_off(sc);
1098 	sc->spkr_state = SPKR_OFF;
1099 
1100 	ess_audio1_halt(sc);
1101 	ess_audio2_halt(sc);
1102 
1103 	sc->sc_open = 0;
1104 	DPRINTF(("ess_1888_close: closed\n"));
1105 }
1106 
1107 /*
1108  * Wait for FIFO to drain, and analog section to settle.
1109  * XXX should check FIFO empty bit.
1110  */
1111 int
1112 ess_drain(addr)
1113 	void *addr;
1114 {
1115 	tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1116 	return (0);
1117 }
1118 
1119 /* XXX should use reference count */
1120 int
1121 ess_speaker_ctl(addr, newstate)
1122 	void *addr;
1123 	int newstate;
1124 {
1125 	struct ess_softc *sc = addr;
1126 
1127 	if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1128 		ess_speaker_on(sc);
1129 		sc->spkr_state = SPKR_ON;
1130 	}
1131 	if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1132 		ess_speaker_off(sc);
1133 		sc->spkr_state = SPKR_OFF;
1134 	}
1135 	return (0);
1136 }
1137 
1138 int
1139 ess_getdev(addr, retp)
1140 	void *addr;
1141 	struct audio_device *retp;
1142 {
1143 	*retp = ess_device;
1144 	return (0);
1145 }
1146 
1147 int
1148 ess_query_encoding(addr, fp)
1149 	void *addr;
1150 	struct audio_encoding *fp;
1151 {
1152 	/*struct ess_softc *sc = addr;*/
1153 
1154 	switch (fp->index) {
1155 	case 0:
1156 		strcpy(fp->name, AudioEulinear);
1157 		fp->encoding = AUDIO_ENCODING_ULINEAR;
1158 		fp->precision = 8;
1159 		fp->flags = 0;
1160 		return (0);
1161 	case 1:
1162 		strcpy(fp->name, AudioEmulaw);
1163 		fp->encoding = AUDIO_ENCODING_ULAW;
1164 		fp->precision = 8;
1165 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1166 		return (0);
1167 	case 2:
1168 		strcpy(fp->name, AudioEalaw);
1169 		fp->encoding = AUDIO_ENCODING_ALAW;
1170 		fp->precision = 8;
1171 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1172 		return (0);
1173 	case 3:
1174 		strcpy(fp->name, AudioEslinear);
1175 		fp->encoding = AUDIO_ENCODING_SLINEAR;
1176 		fp->precision = 8;
1177 		fp->flags = 0;
1178 		return (0);
1179 	case 4:
1180 		strcpy(fp->name, AudioEslinear_le);
1181 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1182 		fp->precision = 16;
1183 		fp->flags = 0;
1184 		return (0);
1185 	case 5:
1186 		strcpy(fp->name, AudioEulinear_le);
1187 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1188 		fp->precision = 16;
1189 		fp->flags = 0;
1190 		return (0);
1191 	case 6:
1192 		strcpy(fp->name, AudioEslinear_be);
1193 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1194 		fp->precision = 16;
1195 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1196 		return (0);
1197 	case 7:
1198 		strcpy(fp->name, AudioEulinear_be);
1199 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1200 		fp->precision = 16;
1201 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1202 		return (0);
1203 	default:
1204 		return EINVAL;
1205 	}
1206 	return (0);
1207 }
1208 
1209 int
1210 ess_set_params(addr, setmode, usemode, play, rec)
1211 	void *addr;
1212 	int setmode, usemode;
1213 	struct audio_params *play, *rec;
1214 {
1215 	struct ess_softc *sc = addr;
1216 	struct audio_params *p;
1217 	int mode;
1218 	int rate;
1219 
1220 	DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1221 
1222 	/*
1223 	 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1224 	 * full-duplex operation the sample rates must be the same for both
1225 	 * channels.  This appears to be false; the only bit in common is the
1226 	 * clock source selection.  However, we'll be conservative here.
1227 	 * - mycroft
1228 	 */
1229 	if (play->sample_rate != rec->sample_rate &&
1230 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1231 		if (setmode == AUMODE_PLAY) {
1232 			rec->sample_rate = play->sample_rate;
1233 			setmode |= AUMODE_RECORD;
1234 		} else if (setmode == AUMODE_RECORD) {
1235 			play->sample_rate = rec->sample_rate;
1236 			setmode |= AUMODE_PLAY;
1237 		} else
1238 			return (EINVAL);
1239 	}
1240 
1241 	for (mode = AUMODE_RECORD; mode != -1;
1242 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1243 		if ((setmode & mode) == 0)
1244 			continue;
1245 
1246 		p = mode == AUMODE_PLAY ? play : rec;
1247 
1248 		if (p->sample_rate < ESS_MINRATE ||
1249 		    p->sample_rate > ESS_MAXRATE ||
1250 		    (p->precision != 8 && p->precision != 16) ||
1251 		    (p->channels != 1 && p->channels != 2))
1252 			return (EINVAL);
1253 
1254 		p->factor = 1;
1255 		p->sw_code = 0;
1256 		switch (p->encoding) {
1257 		case AUDIO_ENCODING_SLINEAR_BE:
1258 		case AUDIO_ENCODING_ULINEAR_BE:
1259 			if (p->precision == 16)
1260 				p->sw_code = swap_bytes;
1261 			break;
1262 		case AUDIO_ENCODING_SLINEAR_LE:
1263 		case AUDIO_ENCODING_ULINEAR_LE:
1264 			break;
1265 		case AUDIO_ENCODING_ULAW:
1266 			if (mode == AUMODE_PLAY) {
1267 				p->factor = 2;
1268 				p->sw_code = mulaw_to_ulinear16_le;
1269 			} else
1270 				p->sw_code = ulinear8_to_mulaw;
1271 			break;
1272 		case AUDIO_ENCODING_ALAW:
1273 			if (mode == AUMODE_PLAY) {
1274 				p->factor = 2;
1275 				p->sw_code = alaw_to_ulinear16_le;
1276 			} else
1277 				p->sw_code = ulinear8_to_alaw;
1278 			break;
1279 		default:
1280 			return (EINVAL);
1281 		}
1282 	}
1283 
1284 	if (usemode == AUMODE_RECORD)
1285 		rate = rec->sample_rate;
1286 	else
1287 		rate = play->sample_rate;
1288 
1289 	ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1290 	ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1291 
1292 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
1293 		ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1294 		ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1295 	}
1296 
1297 	return (0);
1298 }
1299 
1300 int
1301 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1302 	void *addr;
1303 	void *start, *end;
1304 	int blksize;
1305 	void (*intr) __P((void *));
1306 	void *arg;
1307 	struct audio_params *param;
1308 {
1309 	struct ess_softc *sc = addr;
1310 	u_int8_t reg;
1311 
1312 	DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1313 	    addr, start, end, blksize, intr, arg));
1314 
1315 	if (sc->sc_audio1.active)
1316 		panic("ess_audio1_trigger_output: already running");
1317 
1318 	sc->sc_audio1.active = 1;
1319 	sc->sc_audio1.intr = intr;
1320 	sc->sc_audio1.arg = arg;
1321 	if (sc->sc_audio1.polled) {
1322 		sc->sc_audio1.dmapos = 0;
1323 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1324 		sc->sc_audio1.dmacount = 0;
1325 		sc->sc_audio1.blksize = blksize;
1326 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1327 		    ess_audio1_poll, sc);
1328 	}
1329 
1330 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1331 	if (param->channels == 2) {
1332 		reg &= ~ESS_AUDIO_CTRL_MONO;
1333 		reg |= ESS_AUDIO_CTRL_STEREO;
1334 	} else {
1335 		reg |= ESS_AUDIO_CTRL_MONO;
1336 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1337 	}
1338 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1339 
1340 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1341 	if (param->precision * param->factor == 16)
1342 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1343 	else
1344 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1345 	if (param->channels == 2)
1346 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1347 	else
1348 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1349 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1350 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1351 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1352 	else
1353 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1354 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1355 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1356 
1357 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1358 		     (char *)end - (char *)start, NULL,
1359 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1360 
1361 	/* Program transfer count registers with 2's complement of count. */
1362 	blksize = -blksize;
1363 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1364 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1365 
1366 	/* Use 4 bytes per output DMA. */
1367 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1368 
1369 	/* Start auto-init DMA */
1370   	ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1371 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1372 	reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1373 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1374 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1375 
1376 	return (0);
1377 }
1378 
1379 int
1380 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1381 	void *addr;
1382 	void *start, *end;
1383 	int blksize;
1384 	void (*intr) __P((void *));
1385 	void *arg;
1386 	struct audio_params *param;
1387 {
1388 	struct ess_softc *sc = addr;
1389 	u_int8_t reg;
1390 
1391 	DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1392 	    addr, start, end, blksize, intr, arg));
1393 
1394 	if (sc->sc_audio2.active)
1395 		panic("ess_audio2_trigger_output: already running");
1396 
1397 	sc->sc_audio2.active = 1;
1398 	sc->sc_audio2.intr = intr;
1399 	sc->sc_audio2.arg = arg;
1400 	if (sc->sc_audio2.polled) {
1401 		sc->sc_audio2.dmapos = 0;
1402 		sc->sc_audio2.buffersize = (char *)end - (char *)start;
1403 		sc->sc_audio2.dmacount = 0;
1404 		sc->sc_audio2.blksize = blksize;
1405 		callout_reset(&sc->sc_poll2_ch, hz / 30,
1406 		    ess_audio2_poll, sc);
1407 	}
1408 
1409 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1410 	if (param->precision * param->factor == 16)
1411 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1412 	else
1413 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1414 	if (param->channels == 2)
1415 		reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1416 	else
1417 		reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1418 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1419 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1420 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1421 	else
1422 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1423 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1424 
1425 	isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1426 		     (char *)end - (char *)start, NULL,
1427 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1428 
1429 	if (IS16BITDRQ(sc->sc_audio2.drq))
1430 		blksize >>= 1;	/* use word count for 16 bit DMA */
1431 	/* Program transfer count registers with 2's complement of count. */
1432 	blksize = -blksize;
1433 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1434 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1435 
1436 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1437 	if (IS16BITDRQ(sc->sc_audio2.drq))
1438 		reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1439 	else
1440 		reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1441 	reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1442 	reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1443 	       ESS_AUDIO2_CTRL1_AUTO_INIT;
1444 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1445 
1446 	return (0);
1447 }
1448 
1449 int
1450 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1451 	void *addr;
1452 	void *start, *end;
1453 	int blksize;
1454 	void (*intr) __P((void *));
1455 	void *arg;
1456 	struct audio_params *param;
1457 {
1458 	struct ess_softc *sc = addr;
1459 	u_int8_t reg;
1460 
1461 	DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1462 	    addr, start, end, blksize, intr, arg));
1463 
1464 	if (sc->sc_audio1.active)
1465 		panic("ess_audio1_trigger_input: already running");
1466 
1467 	sc->sc_audio1.active = 1;
1468 	sc->sc_audio1.intr = intr;
1469 	sc->sc_audio1.arg = arg;
1470 	if (sc->sc_audio1.polled) {
1471 		sc->sc_audio1.dmapos = 0;
1472 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1473 		sc->sc_audio1.dmacount = 0;
1474 		sc->sc_audio1.blksize = blksize;
1475 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1476 		    ess_audio1_poll, sc);
1477 	}
1478 
1479 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1480 	if (param->channels == 2) {
1481 		reg &= ~ESS_AUDIO_CTRL_MONO;
1482 		reg |= ESS_AUDIO_CTRL_STEREO;
1483 	} else {
1484 		reg |= ESS_AUDIO_CTRL_MONO;
1485 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1486 	}
1487 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1488 
1489 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1490 	if (param->precision * param->factor == 16)
1491 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1492 	else
1493 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1494 	if (param->channels == 2)
1495 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1496 	else
1497 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1498 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1499 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1500 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1501 	else
1502 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1503 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1504 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1505 
1506 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1507 		     (char *)end - (char *)start, NULL,
1508 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1509 
1510 	/* Program transfer count registers with 2's complement of count. */
1511 	blksize = -blksize;
1512 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1513 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1514 
1515 	/* Use 4 bytes per input DMA. */
1516 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1517 
1518 	/* Start auto-init DMA */
1519   	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1520 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1521 	reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1522 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1523 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1524 
1525 	return (0);
1526 }
1527 
1528 int
1529 ess_audio1_halt(addr)
1530 	void *addr;
1531 {
1532 	struct ess_softc *sc = addr;
1533 
1534 	DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1535 
1536 	if (sc->sc_audio1.active) {
1537 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1538 		    ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1539 		isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1540 		if (sc->sc_audio1.polled)
1541 			callout_stop(&sc->sc_poll1_ch);
1542 		sc->sc_audio1.active = 0;
1543 	}
1544 
1545 	return (0);
1546 }
1547 
1548 int
1549 ess_audio2_halt(addr)
1550 	void *addr;
1551 {
1552 	struct ess_softc *sc = addr;
1553 
1554 	DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1555 
1556 	if (sc->sc_audio2.active) {
1557 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1558 		    ESS_AUDIO2_CTRL1_DAC_ENABLE |
1559 		    ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1560 		isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1561 		if (sc->sc_audio2.polled)
1562 			callout_stop(&sc->sc_poll2_ch);
1563 		sc->sc_audio2.active = 0;
1564 	}
1565 
1566 	return (0);
1567 }
1568 
1569 int
1570 ess_audio1_intr(arg)
1571 	void *arg;
1572 {
1573 	struct ess_softc *sc = arg;
1574 	u_int8_t reg;
1575 
1576 	DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1577 
1578 	/* Check and clear interrupt on Audio1. */
1579 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1580 	if ((reg & ESS_DSP_READ_OFLOW) == 0)
1581 		return (0);
1582 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1583 
1584 	sc->sc_audio1.nintr++;
1585 
1586 	if (sc->sc_audio1.active) {
1587 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1588 		return (1);
1589 	} else
1590 		return (0);
1591 }
1592 
1593 int
1594 ess_audio2_intr(arg)
1595 	void *arg;
1596 {
1597 	struct ess_softc *sc = arg;
1598 	u_int8_t reg;
1599 
1600 	DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1601 
1602 	/* Check and clear interrupt on Audio2. */
1603 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1604 	if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1605 		return (0);
1606 	reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1607 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1608 
1609 	sc->sc_audio2.nintr++;
1610 
1611 	if (sc->sc_audio2.active) {
1612 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1613 		return (1);
1614 	} else
1615 		return (0);
1616 }
1617 
1618 void
1619 ess_audio1_poll(addr)
1620 	void *addr;
1621 {
1622 	struct ess_softc *sc = addr;
1623 	int dmapos, dmacount;
1624 
1625 	if (!sc->sc_audio1.active)
1626 		return;
1627 
1628 	sc->sc_audio1.nintr++;
1629 
1630 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1631 	dmacount = sc->sc_audio1.dmapos - dmapos;
1632 	if (dmacount < 0)
1633 		dmacount += sc->sc_audio1.buffersize;
1634 	sc->sc_audio1.dmapos = dmapos;
1635 #if 1
1636 	dmacount += sc->sc_audio1.dmacount;
1637 	while (dmacount > sc->sc_audio1.blksize) {
1638 		dmacount -= sc->sc_audio1.blksize;
1639 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1640 	}
1641 	sc->sc_audio1.dmacount = dmacount;
1642 #else
1643 	(*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1644 #endif
1645 
1646 	callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1647 }
1648 
1649 void
1650 ess_audio2_poll(addr)
1651 	void *addr;
1652 {
1653 	struct ess_softc *sc = addr;
1654 	int dmapos, dmacount;
1655 
1656 	if (!sc->sc_audio2.active)
1657 		return;
1658 
1659 	sc->sc_audio2.nintr++;
1660 
1661 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1662 	dmacount = sc->sc_audio2.dmapos - dmapos;
1663 	if (dmacount < 0)
1664 		dmacount += sc->sc_audio2.buffersize;
1665 	sc->sc_audio2.dmapos = dmapos;
1666 #if 1
1667 	dmacount += sc->sc_audio2.dmacount;
1668 	while (dmacount > sc->sc_audio2.blksize) {
1669 		dmacount -= sc->sc_audio2.blksize;
1670 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1671 	}
1672 	sc->sc_audio2.dmacount = dmacount;
1673 #else
1674 	(*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1675 #endif
1676 
1677 	callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1678 }
1679 
1680 int
1681 ess_round_blocksize(addr, blk)
1682 	void *addr;
1683 	int blk;
1684 {
1685 	return (blk & -8);	/* round for max DMA size */
1686 }
1687 
1688 int
1689 ess_set_port(addr, cp)
1690 	void *addr;
1691 	mixer_ctrl_t *cp;
1692 {
1693 	struct ess_softc *sc = addr;
1694 	int lgain, rgain;
1695 
1696 	DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1697 		    cp->dev, cp->un.value.num_channels));
1698 
1699 	switch (cp->dev) {
1700 	/*
1701 	 * The following mixer ports are all stereo. If we get a
1702 	 * single-channel gain value passed in, then we duplicate it
1703 	 * to both left and right channels.
1704 	 */
1705 	case ESS_MASTER_VOL:
1706 	case ESS_DAC_PLAY_VOL:
1707 	case ESS_MIC_PLAY_VOL:
1708 	case ESS_LINE_PLAY_VOL:
1709 	case ESS_SYNTH_PLAY_VOL:
1710 	case ESS_CD_PLAY_VOL:
1711 	case ESS_AUXB_PLAY_VOL:
1712 	case ESS_RECORD_VOL:
1713 		if (cp->type != AUDIO_MIXER_VALUE)
1714 			return EINVAL;
1715 
1716 		switch (cp->un.value.num_channels) {
1717 		case 1:
1718 			lgain = rgain = ESS_4BIT_GAIN(
1719 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1720 			break;
1721 		case 2:
1722 			lgain = ESS_4BIT_GAIN(
1723 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1724 			rgain = ESS_4BIT_GAIN(
1725 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1726 			break;
1727 		default:
1728 			return EINVAL;
1729 		}
1730 
1731 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1732 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1733 		ess_set_gain(sc, cp->dev, 1);
1734 		return (0);
1735 
1736 	/*
1737 	 * The PC speaker port is mono. If we get a stereo gain value
1738 	 * passed in, then we return EINVAL.
1739 	 */
1740 	case ESS_PCSPEAKER_VOL:
1741 		if (cp->un.value.num_channels != 1)
1742 			return EINVAL;
1743 
1744 		sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1745 		  ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1746 		ess_set_gain(sc, cp->dev, 1);
1747 		return (0);
1748 
1749 	case ESS_RECORD_SOURCE:
1750 		if (ESS_USE_AUDIO1(sc->sc_model)) {
1751 			if (cp->type == AUDIO_MIXER_ENUM)
1752 				return (ess_set_in_port(sc, cp->un.ord));
1753 			else
1754 				return (EINVAL);
1755 		} else {
1756 			if (cp->type == AUDIO_MIXER_SET)
1757 				return (ess_set_in_ports(sc, cp->un.mask));
1758 			else
1759 				return (EINVAL);
1760 		}
1761 		return (0);
1762 
1763 	case ESS_RECORD_MONITOR:
1764 		if (cp->type != AUDIO_MIXER_ENUM)
1765 			return EINVAL;
1766 
1767 		if (cp->un.ord)
1768 			/* Enable monitor */
1769 			ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1770 					  ESS_AUDIO_CTRL_MONITOR);
1771 		else
1772 			/* Disable monitor */
1773 			ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1774 					    ESS_AUDIO_CTRL_MONITOR);
1775 		return (0);
1776 	}
1777 
1778 	if (ESS_USE_AUDIO1(sc->sc_model))
1779 		return (EINVAL);
1780 
1781 	switch (cp->dev) {
1782 	case ESS_DAC_REC_VOL:
1783 	case ESS_MIC_REC_VOL:
1784 	case ESS_LINE_REC_VOL:
1785 	case ESS_SYNTH_REC_VOL:
1786 	case ESS_CD_REC_VOL:
1787 	case ESS_AUXB_REC_VOL:
1788 		if (cp->type != AUDIO_MIXER_VALUE)
1789 			return EINVAL;
1790 
1791 		switch (cp->un.value.num_channels) {
1792 		case 1:
1793 			lgain = rgain = ESS_4BIT_GAIN(
1794 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1795 			break;
1796 		case 2:
1797 			lgain = ESS_4BIT_GAIN(
1798 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1799 			rgain = ESS_4BIT_GAIN(
1800 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1801 			break;
1802 		default:
1803 			return EINVAL;
1804 		}
1805 
1806 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1807 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1808 		ess_set_gain(sc, cp->dev, 1);
1809 		return (0);
1810 
1811 	case ESS_MIC_PREAMP:
1812 		if (cp->type != AUDIO_MIXER_ENUM)
1813 			return EINVAL;
1814 
1815 		if (cp->un.ord)
1816 			/* Enable microphone preamp */
1817 			ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1818 					  ESS_PREAMP_CTRL_ENABLE);
1819 		else
1820 			/* Disable microphone preamp */
1821 			ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1822 					  ESS_PREAMP_CTRL_ENABLE);
1823 		return (0);
1824 	}
1825 
1826 	return (EINVAL);
1827 }
1828 
1829 int
1830 ess_get_port(addr, cp)
1831 	void *addr;
1832 	mixer_ctrl_t *cp;
1833 {
1834 	struct ess_softc *sc = addr;
1835 
1836 	DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1837 
1838 	switch (cp->dev) {
1839 	case ESS_MASTER_VOL:
1840 	case ESS_DAC_PLAY_VOL:
1841 	case ESS_MIC_PLAY_VOL:
1842 	case ESS_LINE_PLAY_VOL:
1843 	case ESS_SYNTH_PLAY_VOL:
1844 	case ESS_CD_PLAY_VOL:
1845 	case ESS_AUXB_PLAY_VOL:
1846 	case ESS_RECORD_VOL:
1847 		switch (cp->un.value.num_channels) {
1848 		case 1:
1849 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1850 				sc->gain[cp->dev][ESS_LEFT];
1851 			break;
1852 		case 2:
1853 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1854 				sc->gain[cp->dev][ESS_LEFT];
1855 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1856 				sc->gain[cp->dev][ESS_RIGHT];
1857 			break;
1858 		default:
1859 			return EINVAL;
1860 		}
1861 		return (0);
1862 
1863 	case ESS_PCSPEAKER_VOL:
1864 		if (cp->un.value.num_channels != 1)
1865 			return EINVAL;
1866 
1867 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1868 			sc->gain[cp->dev][ESS_LEFT];
1869 		return (0);
1870 
1871 	case ESS_RECORD_SOURCE:
1872 		if (ESS_USE_AUDIO1(sc->sc_model))
1873 			cp->un.ord = sc->in_port;
1874 		else
1875 			cp->un.mask = sc->in_mask;
1876 		return (0);
1877 
1878 	case ESS_RECORD_MONITOR:
1879 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1880 			      ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1881 		return (0);
1882 	}
1883 
1884 	if (ESS_USE_AUDIO1(sc->sc_model))
1885 		return (EINVAL);
1886 
1887 	switch (cp->dev) {
1888 	case ESS_DAC_REC_VOL:
1889 	case ESS_MIC_REC_VOL:
1890 	case ESS_LINE_REC_VOL:
1891 	case ESS_SYNTH_REC_VOL:
1892 	case ESS_CD_REC_VOL:
1893 	case ESS_AUXB_REC_VOL:
1894 		switch (cp->un.value.num_channels) {
1895 		case 1:
1896 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1897 				sc->gain[cp->dev][ESS_LEFT];
1898 			break;
1899 		case 2:
1900 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1901 				sc->gain[cp->dev][ESS_LEFT];
1902 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1903 				sc->gain[cp->dev][ESS_RIGHT];
1904 			break;
1905 		default:
1906 			return EINVAL;
1907 		}
1908 		return (0);
1909 
1910 	case ESS_MIC_PREAMP:
1911 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1912 			      ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1913 		return (0);
1914 	}
1915 
1916 	return (EINVAL);
1917 }
1918 
1919 int
1920 ess_query_devinfo(addr, dip)
1921 	void *addr;
1922 	mixer_devinfo_t *dip;
1923 {
1924 	struct ess_softc *sc = addr;
1925 
1926 	DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1927 		    sc->sc_model, dip->index));
1928 
1929 	/*
1930 	 * REVISIT: There are some slight differences between the
1931 	 *          mixers on the different ESS chips, which can
1932 	 *          be sorted out using the chip model rather than a
1933 	 *          separate mixer model.
1934 	 *          This is currently coded assuming an ES1887; we
1935 	 *          need to work out which bits are not applicable to
1936 	 *          the other models (1888 and 888).
1937 	 */
1938 	switch (dip->index) {
1939 	case ESS_DAC_PLAY_VOL:
1940 		dip->mixer_class = ESS_INPUT_CLASS;
1941 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1942 		strcpy(dip->label.name, AudioNdac);
1943 		dip->type = AUDIO_MIXER_VALUE;
1944 		dip->un.v.num_channels = 2;
1945 		strcpy(dip->un.v.units.name, AudioNvolume);
1946 		return (0);
1947 
1948 	case ESS_MIC_PLAY_VOL:
1949 		dip->mixer_class = ESS_INPUT_CLASS;
1950 		dip->prev = AUDIO_MIXER_LAST;
1951 		if (ESS_USE_AUDIO1(sc->sc_model))
1952 			dip->next = AUDIO_MIXER_LAST;
1953 		else
1954 			dip->next = ESS_MIC_PREAMP;
1955 		strcpy(dip->label.name, AudioNmicrophone);
1956 		dip->type = AUDIO_MIXER_VALUE;
1957 		dip->un.v.num_channels = 2;
1958 		strcpy(dip->un.v.units.name, AudioNvolume);
1959 		return (0);
1960 
1961 	case ESS_LINE_PLAY_VOL:
1962 		dip->mixer_class = ESS_INPUT_CLASS;
1963 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1964 		strcpy(dip->label.name, AudioNline);
1965 		dip->type = AUDIO_MIXER_VALUE;
1966 		dip->un.v.num_channels = 2;
1967 		strcpy(dip->un.v.units.name, AudioNvolume);
1968 		return (0);
1969 
1970 	case ESS_SYNTH_PLAY_VOL:
1971 		dip->mixer_class = ESS_INPUT_CLASS;
1972 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1973 		strcpy(dip->label.name, AudioNfmsynth);
1974 		dip->type = AUDIO_MIXER_VALUE;
1975 		dip->un.v.num_channels = 2;
1976 		strcpy(dip->un.v.units.name, AudioNvolume);
1977 		return (0);
1978 
1979 	case ESS_CD_PLAY_VOL:
1980 		dip->mixer_class = ESS_INPUT_CLASS;
1981 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1982 		strcpy(dip->label.name, AudioNcd);
1983 		dip->type = AUDIO_MIXER_VALUE;
1984 		dip->un.v.num_channels = 2;
1985 		strcpy(dip->un.v.units.name, AudioNvolume);
1986 		return (0);
1987 
1988 	case ESS_AUXB_PLAY_VOL:
1989 		dip->mixer_class = ESS_INPUT_CLASS;
1990 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1991 		strcpy(dip->label.name, "auxb");
1992 		dip->type = AUDIO_MIXER_VALUE;
1993 		dip->un.v.num_channels = 2;
1994 		strcpy(dip->un.v.units.name, AudioNvolume);
1995 		return (0);
1996 
1997 	case ESS_INPUT_CLASS:
1998 		dip->mixer_class = ESS_INPUT_CLASS;
1999 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2000 		strcpy(dip->label.name, AudioCinputs);
2001 		dip->type = AUDIO_MIXER_CLASS;
2002 		return (0);
2003 
2004 	case ESS_MASTER_VOL:
2005 		dip->mixer_class = ESS_OUTPUT_CLASS;
2006 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2007 		strcpy(dip->label.name, AudioNmaster);
2008 		dip->type = AUDIO_MIXER_VALUE;
2009 		dip->un.v.num_channels = 2;
2010 		strcpy(dip->un.v.units.name, AudioNvolume);
2011 		return (0);
2012 
2013 	case ESS_PCSPEAKER_VOL:
2014 		dip->mixer_class = ESS_OUTPUT_CLASS;
2015 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2016 		strcpy(dip->label.name, "pc_speaker");
2017 		dip->type = AUDIO_MIXER_VALUE;
2018 		dip->un.v.num_channels = 1;
2019 		strcpy(dip->un.v.units.name, AudioNvolume);
2020 		return (0);
2021 
2022 	case ESS_OUTPUT_CLASS:
2023 		dip->mixer_class = ESS_OUTPUT_CLASS;
2024 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2025 		strcpy(dip->label.name, AudioCoutputs);
2026 		dip->type = AUDIO_MIXER_CLASS;
2027 		return (0);
2028 
2029 	case ESS_RECORD_VOL:
2030 		dip->mixer_class = ESS_RECORD_CLASS;
2031 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2032 		strcpy(dip->label.name, AudioNrecord);
2033 		dip->type = AUDIO_MIXER_VALUE;
2034 		dip->un.v.num_channels = 2;
2035 		strcpy(dip->un.v.units.name, AudioNvolume);
2036 		return (0);
2037 
2038 	case ESS_RECORD_SOURCE:
2039 		dip->mixer_class = ESS_RECORD_CLASS;
2040 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2041 		strcpy(dip->label.name, AudioNsource);
2042 		if (ESS_USE_AUDIO1(sc->sc_model)) {
2043 			/*
2044 			 * The 1788 doesn't use the input mixer control that
2045 			 * the 1888 uses, because it's a pain when you only
2046 			 * have one mixer.
2047 			 * Perhaps it could be emulated by keeping both sets of
2048 			 * gain values, and doing a `context switch' of the
2049 			 * mixer registers when shifting from playing to
2050 			 * recording.
2051 			 */
2052 			dip->type = AUDIO_MIXER_ENUM;
2053 			dip->un.e.num_mem = 4;
2054 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2055 			dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2056 			strcpy(dip->un.e.member[1].label.name, AudioNline);
2057 			dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2058 			strcpy(dip->un.e.member[2].label.name, AudioNcd);
2059 			dip->un.e.member[2].ord = ESS_SOURCE_CD;
2060 			strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2061 			dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2062 		} else {
2063 			dip->type = AUDIO_MIXER_SET;
2064 			dip->un.s.num_mem = 6;
2065 			strcpy(dip->un.s.member[0].label.name, AudioNdac);
2066 			dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2067 			strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2068 			dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2069 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2070 			dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2071 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2072 			dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2073 			strcpy(dip->un.s.member[4].label.name, AudioNcd);
2074 			dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2075 			strcpy(dip->un.s.member[5].label.name, "auxb");
2076 			dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2077 		}
2078 		return (0);
2079 
2080 	case ESS_RECORD_CLASS:
2081 		dip->mixer_class = ESS_RECORD_CLASS;
2082 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2083 		strcpy(dip->label.name, AudioCrecord);
2084 		dip->type = AUDIO_MIXER_CLASS;
2085 		return (0);
2086 
2087 	case ESS_RECORD_MONITOR:
2088 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2089 		strcpy(dip->label.name, AudioNmute);
2090 		dip->type = AUDIO_MIXER_ENUM;
2091 		dip->mixer_class = ESS_MONITOR_CLASS;
2092 		dip->un.e.num_mem = 2;
2093 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2094 		dip->un.e.member[0].ord = 0;
2095 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2096 		dip->un.e.member[1].ord = 1;
2097 		return (0);
2098 
2099 	case ESS_MONITOR_CLASS:
2100 		dip->mixer_class = ESS_MONITOR_CLASS;
2101 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2102 		strcpy(dip->label.name, AudioCmonitor);
2103 		dip->type = AUDIO_MIXER_CLASS;
2104 		return (0);
2105 	}
2106 
2107 	if (ESS_USE_AUDIO1(sc->sc_model))
2108 		return (ENXIO);
2109 
2110 	switch (dip->index) {
2111 	case ESS_DAC_REC_VOL:
2112 		dip->mixer_class = ESS_RECORD_CLASS;
2113 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2114 		strcpy(dip->label.name, AudioNdac);
2115 		dip->type = AUDIO_MIXER_VALUE;
2116 		dip->un.v.num_channels = 2;
2117 		strcpy(dip->un.v.units.name, AudioNvolume);
2118 		return (0);
2119 
2120 	case ESS_MIC_REC_VOL:
2121 		dip->mixer_class = ESS_RECORD_CLASS;
2122 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2123 		strcpy(dip->label.name, AudioNmicrophone);
2124 		dip->type = AUDIO_MIXER_VALUE;
2125 		dip->un.v.num_channels = 2;
2126 		strcpy(dip->un.v.units.name, AudioNvolume);
2127 		return (0);
2128 
2129 	case ESS_LINE_REC_VOL:
2130 		dip->mixer_class = ESS_RECORD_CLASS;
2131 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2132 		strcpy(dip->label.name, AudioNline);
2133 		dip->type = AUDIO_MIXER_VALUE;
2134 		dip->un.v.num_channels = 2;
2135 		strcpy(dip->un.v.units.name, AudioNvolume);
2136 		return (0);
2137 
2138 	case ESS_SYNTH_REC_VOL:
2139 		dip->mixer_class = ESS_RECORD_CLASS;
2140 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2141 		strcpy(dip->label.name, AudioNfmsynth);
2142 		dip->type = AUDIO_MIXER_VALUE;
2143 		dip->un.v.num_channels = 2;
2144 		strcpy(dip->un.v.units.name, AudioNvolume);
2145 		return (0);
2146 
2147 	case ESS_CD_REC_VOL:
2148 		dip->mixer_class = ESS_RECORD_CLASS;
2149 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2150 		strcpy(dip->label.name, AudioNcd);
2151 		dip->type = AUDIO_MIXER_VALUE;
2152 		dip->un.v.num_channels = 2;
2153 		strcpy(dip->un.v.units.name, AudioNvolume);
2154 		return (0);
2155 
2156 	case ESS_AUXB_REC_VOL:
2157 		dip->mixer_class = ESS_RECORD_CLASS;
2158 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2159 		strcpy(dip->label.name, "auxb");
2160 		dip->type = AUDIO_MIXER_VALUE;
2161 		dip->un.v.num_channels = 2;
2162 		strcpy(dip->un.v.units.name, AudioNvolume);
2163 		return (0);
2164 
2165 	case ESS_MIC_PREAMP:
2166 		dip->mixer_class = ESS_INPUT_CLASS;
2167 		dip->prev = ESS_MIC_PLAY_VOL;
2168 		dip->next = AUDIO_MIXER_LAST;
2169 		strcpy(dip->label.name, AudioNpreamp);
2170 		dip->type = AUDIO_MIXER_ENUM;
2171 		dip->un.e.num_mem = 2;
2172 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2173 		dip->un.e.member[0].ord = 0;
2174 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2175 		dip->un.e.member[1].ord = 1;
2176 		return (0);
2177 	}
2178 
2179 	return (ENXIO);
2180 }
2181 
2182 void *
2183 ess_malloc(addr, direction, size, pool, flags)
2184 	void *addr;
2185 	int direction;
2186 	size_t size;
2187 	struct malloc_type *pool;
2188 	int flags;
2189 {
2190 	struct ess_softc *sc = addr;
2191 	int drq;
2192 
2193 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2194 		drq = sc->sc_audio2.drq;
2195 	else
2196 		drq = sc->sc_audio1.drq;
2197 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2198 }
2199 
2200 void
2201 ess_free(addr, ptr, pool)
2202 	void *addr;
2203 	void *ptr;
2204 	struct malloc_type *pool;
2205 {
2206 	isa_free(ptr, pool);
2207 }
2208 
2209 size_t
2210 ess_round_buffersize(addr, direction, size)
2211 	void *addr;
2212 	int direction;
2213 	size_t size;
2214 {
2215 	struct ess_softc *sc = addr;
2216 	bus_size_t maxsize;
2217 
2218 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2219 		maxsize = sc->sc_audio2.maxsize;
2220 	else
2221 		maxsize = sc->sc_audio1.maxsize;
2222 
2223 	if (size > maxsize)
2224 		size = maxsize;
2225 	return (size);
2226 }
2227 
2228 paddr_t
2229 ess_mappage(addr, mem, off, prot)
2230 	void *addr;
2231 	void *mem;
2232 	off_t off;
2233 	int prot;
2234 {
2235 	return (isa_mappage(mem, off, prot));
2236 }
2237 
2238 int
2239 ess_1788_get_props(addr)
2240 	void *addr;
2241 {
2242 
2243 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2244 }
2245 
2246 int
2247 ess_1888_get_props(addr)
2248 	void *addr;
2249 {
2250 
2251 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2252 }
2253 
2254 /* ============================================
2255  * Generic functions for ess, not used by audio h/w i/f
2256  * =============================================
2257  */
2258 
2259 /*
2260  * Reset the chip.
2261  * Return non-zero if the chip isn't detected.
2262  */
2263 int
2264 ess_reset(sc)
2265 	struct ess_softc *sc;
2266 {
2267 	bus_space_tag_t iot = sc->sc_iot;
2268 	bus_space_handle_t ioh = sc->sc_ioh;
2269 
2270 	sc->sc_audio1.active = 0;
2271 	sc->sc_audio2.active = 0;
2272 
2273 	EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2274 	delay(10000);		/* XXX shouldn't delay so long */
2275 	EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2276 	if (ess_rdsp(sc) != ESS_MAGIC)
2277 		return (1);
2278 
2279 	/* Enable access to the ESS extension commands. */
2280 	ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2281 
2282 	return (0);
2283 }
2284 
2285 void
2286 ess_set_gain(sc, port, on)
2287 	struct ess_softc *sc;
2288 	int port;
2289 	int on;
2290 {
2291 	int gain, left, right;
2292 	int mix;
2293 	int src;
2294 	int stereo;
2295 
2296 	/*
2297 	 * Most gain controls are found in the mixer registers and
2298 	 * are stereo. Any that are not, must set mix and stereo as
2299 	 * required.
2300 	 */
2301 	mix = 1;
2302 	stereo = 1;
2303 
2304 	switch (port) {
2305 	case ESS_MASTER_VOL:
2306 		src = ESS_MREG_VOLUME_MASTER;
2307 		break;
2308 	case ESS_DAC_PLAY_VOL:
2309 		if (ESS_USE_AUDIO1(sc->sc_model))
2310 			src = ESS_MREG_VOLUME_VOICE;
2311 		else
2312 			src = 0x7C;
2313 		break;
2314 	case ESS_MIC_PLAY_VOL:
2315 		src = ESS_MREG_VOLUME_MIC;
2316 		break;
2317 	case ESS_LINE_PLAY_VOL:
2318 		src = ESS_MREG_VOLUME_LINE;
2319 		break;
2320 	case ESS_SYNTH_PLAY_VOL:
2321 		src = ESS_MREG_VOLUME_SYNTH;
2322 		break;
2323 	case ESS_CD_PLAY_VOL:
2324 		src = ESS_MREG_VOLUME_CD;
2325 		break;
2326 	case ESS_AUXB_PLAY_VOL:
2327 		src = ESS_MREG_VOLUME_AUXB;
2328 		break;
2329 	case ESS_PCSPEAKER_VOL:
2330 		src = ESS_MREG_VOLUME_PCSPKR;
2331 		stereo = 0;
2332 		break;
2333 	case ESS_DAC_REC_VOL:
2334 		src = 0x69;
2335 		break;
2336 	case ESS_MIC_REC_VOL:
2337 		src = 0x68;
2338 		break;
2339 	case ESS_LINE_REC_VOL:
2340 		src = 0x6E;
2341 		break;
2342 	case ESS_SYNTH_REC_VOL:
2343 		src = 0x6B;
2344 		break;
2345 	case ESS_CD_REC_VOL:
2346 		src = 0x6A;
2347 		break;
2348 	case ESS_AUXB_REC_VOL:
2349 		src = 0x6C;
2350 		break;
2351 	case ESS_RECORD_VOL:
2352 		src = ESS_XCMD_VOLIN_CTRL;
2353 		mix = 0;
2354 		break;
2355 	default:
2356 		return;
2357 	}
2358 
2359 	/* 1788 doesn't have a separate recording mixer */
2360 	if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2361 		return;
2362 
2363 	if (on) {
2364 		left = sc->gain[port][ESS_LEFT];
2365 		right = sc->gain[port][ESS_RIGHT];
2366 	} else {
2367 		left = right = 0;
2368 	}
2369 
2370 	if (stereo)
2371 		gain = ESS_STEREO_GAIN(left, right);
2372 	else
2373 		gain = ESS_MONO_GAIN(left);
2374 
2375 	if (mix)
2376 		ess_write_mix_reg(sc, src, gain);
2377 	else
2378 		ess_write_x_reg(sc, src, gain);
2379 }
2380 
2381 /* Set the input device on devices without an input mixer. */
2382 int
2383 ess_set_in_port(sc, ord)
2384 	struct ess_softc *sc;
2385 	int ord;
2386 {
2387 	mixer_devinfo_t di;
2388 	int i;
2389 
2390 	DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2391 
2392 	/*
2393 	 * Get the device info for the record source control,
2394 	 * including the list of available sources.
2395 	 */
2396 	di.index = ESS_RECORD_SOURCE;
2397 	if (ess_query_devinfo(sc, &di))
2398 		return EINVAL;
2399 
2400 	/* See if the given ord value was anywhere in the list. */
2401 	for (i = 0; i < di.un.e.num_mem; i++) {
2402 		if (ord == di.un.e.member[i].ord)
2403 			break;
2404 	}
2405 	if (i == di.un.e.num_mem)
2406 		return EINVAL;
2407 
2408 	ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2409 
2410 	sc->in_port = ord;
2411 	return (0);
2412 }
2413 
2414 /* Set the input device levels on input-mixer-enabled devices. */
2415 int
2416 ess_set_in_ports(sc, mask)
2417 	struct ess_softc *sc;
2418 	int mask;
2419 {
2420 	mixer_devinfo_t di;
2421 	int i, port;
2422 
2423 	DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2424 
2425 	/*
2426 	 * Get the device info for the record source control,
2427 	 * including the list of available sources.
2428 	 */
2429 	di.index = ESS_RECORD_SOURCE;
2430 	if (ess_query_devinfo(sc, &di))
2431 		return EINVAL;
2432 
2433 	/*
2434 	 * Set or disable the record volume control for each of the
2435 	 * possible sources.
2436 	 */
2437 	for (i = 0; i < di.un.s.num_mem; i++) {
2438 		/*
2439 		 * Calculate the source port number from its mask.
2440 		 */
2441 		port = ffs(di.un.s.member[i].mask);
2442 
2443 		/*
2444 		 * Set the source gain:
2445 		 *	to the current value if source is enabled
2446 		 *	to zero if source is disabled
2447 		 */
2448 		ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2449 	}
2450 
2451 	sc->in_mask = mask;
2452 	return (0);
2453 }
2454 
2455 void
2456 ess_speaker_on(sc)
2457 	struct ess_softc *sc;
2458 {
2459 	/* Unmute the DAC. */
2460 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2461 }
2462 
2463 void
2464 ess_speaker_off(sc)
2465 	struct ess_softc *sc;
2466 {
2467 	/* Mute the DAC. */
2468 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2469 }
2470 
2471 /*
2472  * Calculate the time constant for the requested sampling rate.
2473  */
2474 u_int
2475 ess_srtotc(rate)
2476 	u_int rate;
2477 {
2478 	u_int tc;
2479 
2480 	/* The following formulae are from the ESS data sheet. */
2481 	if (rate <= 22050)
2482 		tc = 128 - 397700L / rate;
2483 	else
2484 		tc = 256 - 795500L / rate;
2485 
2486 	return (tc);
2487 }
2488 
2489 
2490 /*
2491  * Calculate the filter constant for the reuqested sampling rate.
2492  */
2493 u_int
2494 ess_srtofc(rate)
2495 	u_int rate;
2496 {
2497 	/*
2498 	 * The following formula is derived from the information in
2499 	 * the ES1887 data sheet, based on a roll-off frequency of
2500 	 * 87%.
2501 	 */
2502 	return (256 - 200279L / rate);
2503 }
2504 
2505 
2506 /*
2507  * Return the status of the DSP.
2508  */
2509 u_char
2510 ess_get_dsp_status(sc)
2511 	struct ess_softc *sc;
2512 {
2513 	return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2514 }
2515 
2516 
2517 /*
2518  * Return the read status of the DSP:	1 -> DSP ready for reading
2519  *					0 -> DSP not ready for reading
2520  */
2521 u_char
2522 ess_dsp_read_ready(sc)
2523 	struct ess_softc *sc;
2524 {
2525 	return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2526 }
2527 
2528 
2529 /*
2530  * Return the write status of the DSP:	1 -> DSP ready for writing
2531  *					0 -> DSP not ready for writing
2532  */
2533 u_char
2534 ess_dsp_write_ready(sc)
2535 	struct ess_softc *sc;
2536 {
2537 	return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2538 }
2539 
2540 
2541 /*
2542  * Read a byte from the DSP.
2543  */
2544 int
2545 ess_rdsp(sc)
2546 	struct ess_softc *sc;
2547 {
2548 	bus_space_tag_t iot = sc->sc_iot;
2549 	bus_space_handle_t ioh = sc->sc_ioh;
2550 	int i;
2551 
2552 	for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2553 		if (ess_dsp_read_ready(sc)) {
2554 			i = EREAD1(iot, ioh, ESS_DSP_READ);
2555 			DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2556 			return i;
2557 		} else
2558 			delay(10);
2559 	}
2560 
2561 	DPRINTF(("ess_rdsp: timed out\n"));
2562 	return (-1);
2563 }
2564 
2565 /*
2566  * Write a byte to the DSP.
2567  */
2568 int
2569 ess_wdsp(sc, v)
2570 	struct ess_softc *sc;
2571 	u_char v;
2572 {
2573 	bus_space_tag_t iot = sc->sc_iot;
2574 	bus_space_handle_t ioh = sc->sc_ioh;
2575 	int i;
2576 
2577 	DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2578 
2579 	for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2580 		if (ess_dsp_write_ready(sc)) {
2581 			EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2582 			return (0);
2583 		} else
2584 			delay(10);
2585 	}
2586 
2587 	DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2588 	return (-1);
2589 }
2590 
2591 /*
2592  * Write a value to one of the ESS extended registers.
2593  */
2594 int
2595 ess_write_x_reg(sc, reg, val)
2596 	struct ess_softc *sc;
2597 	u_char reg;
2598 	u_char val;
2599 {
2600 	int error;
2601 
2602 	DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2603 	if ((error = ess_wdsp(sc, reg)) == 0)
2604 		error = ess_wdsp(sc, val);
2605 
2606 	return error;
2607 }
2608 
2609 /*
2610  * Read the value of one of the ESS extended registers.
2611  */
2612 u_char
2613 ess_read_x_reg(sc, reg)
2614 	struct ess_softc *sc;
2615 	u_char reg;
2616 {
2617 	int error;
2618 	int val;
2619 
2620 	if ((error = ess_wdsp(sc, 0xC0)) == 0)
2621 		error = ess_wdsp(sc, reg);
2622 	if (error)
2623 		DPRINTF(("Error reading extended register 0x%02x\n", reg));
2624 /* REVISIT: what if an error is returned above? */
2625 	val = ess_rdsp(sc);
2626 	DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2627 	return val;
2628 }
2629 
2630 void
2631 ess_clear_xreg_bits(sc, reg, mask)
2632 	struct ess_softc *sc;
2633 	u_char reg;
2634 	u_char mask;
2635 {
2636 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2637 		DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2638 			 reg));
2639 }
2640 
2641 void
2642 ess_set_xreg_bits(sc, reg, mask)
2643 	struct ess_softc *sc;
2644 	u_char reg;
2645 	u_char mask;
2646 {
2647 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2648 		DPRINTF(("Error setting bits in extended register 0x%02x\n",
2649 			 reg));
2650 }
2651 
2652 
2653 /*
2654  * Write a value to one of the ESS mixer registers.
2655  */
2656 void
2657 ess_write_mix_reg(sc, reg, val)
2658 	struct ess_softc *sc;
2659 	u_char reg;
2660 	u_char val;
2661 {
2662 	bus_space_tag_t iot = sc->sc_iot;
2663 	bus_space_handle_t ioh = sc->sc_ioh;
2664 	int s;
2665 
2666 	DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2667 
2668 	s = splaudio();
2669 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2670 	EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2671 	splx(s);
2672 }
2673 
2674 /*
2675  * Read the value of one of the ESS mixer registers.
2676  */
2677 u_char
2678 ess_read_mix_reg(sc, reg)
2679 	struct ess_softc *sc;
2680 	u_char reg;
2681 {
2682 	bus_space_tag_t iot = sc->sc_iot;
2683 	bus_space_handle_t ioh = sc->sc_ioh;
2684 	int s;
2685 	u_char val;
2686 
2687 	s = splaudio();
2688 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2689 	val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2690 	splx(s);
2691 
2692 	DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2693 	return val;
2694 }
2695 
2696 void
2697 ess_clear_mreg_bits(sc, reg, mask)
2698 	struct ess_softc *sc;
2699 	u_char reg;
2700 	u_char mask;
2701 {
2702 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2703 }
2704 
2705 void
2706 ess_set_mreg_bits(sc, reg, mask)
2707 	struct ess_softc *sc;
2708 	u_char reg;
2709 	u_char mask;
2710 {
2711 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2712 }
2713 
2714 void
2715 ess_read_multi_mix_reg(sc, reg, datap, count)
2716 	struct ess_softc *sc;
2717 	u_char reg;
2718 	u_int8_t *datap;
2719 	bus_size_t count;
2720 {
2721 	bus_space_tag_t iot = sc->sc_iot;
2722 	bus_space_handle_t ioh = sc->sc_ioh;
2723 	int s;
2724 
2725 	s = splaudio();
2726 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2727 	bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2728 	splx(s);
2729 }
2730