xref: /netbsd-src/sys/dev/isa/ess.c (revision 001c68bd94f75ce9270b69227c4199fbf34ee396)
1 /*	$NetBSD: ess.c,v 1.58 2003/05/09 23:51:28 fvdl Exp $	*/
2 
3 /*
4  * Copyright 1997
5  * Digital Equipment Corporation. All rights reserved.
6  *
7  * This software is furnished under license and may be used and
8  * copied only in accordance with the following terms and conditions.
9  * Subject to these conditions, you may download, copy, install,
10  * use, modify and distribute this software in source and/or binary
11  * form. No title or ownership is transferred hereby.
12  *
13  * 1) Any source code used, modified or distributed must reproduce
14  *    and retain this copyright notice and list of conditions as
15  *    they appear in the source file.
16  *
17  * 2) No right is granted to use any trade name, trademark, or logo of
18  *    Digital Equipment Corporation. Neither the "Digital Equipment
19  *    Corporation" name nor any trademark or logo of Digital Equipment
20  *    Corporation may be used to endorse or promote products derived
21  *    from this software without the prior written permission of
22  *    Digital Equipment Corporation.
23  *
24  * 3) This software is provided "AS-IS" and any express or implied
25  *    warranties, including but not limited to, any implied warranties
26  *    of merchantability, fitness for a particular purpose, or
27  *    non-infringement are disclaimed. In no event shall DIGITAL be
28  *    liable for any damages whatsoever, and in particular, DIGITAL
29  *    shall not be liable for special, indirect, consequential, or
30  *    incidental damages or damages for lost profits, loss of
31  *    revenue or loss of use, whether such damages arise in contract,
32  *    negligence, tort, under statute, in equity, at law or otherwise,
33  *    even if advised of the possibility of such damage.
34  */
35 
36 /*
37 **++
38 **
39 **  ess.c
40 **
41 **  FACILITY:
42 **
43 **	DIGITAL Network Appliance Reference Design (DNARD)
44 **
45 **  MODULE DESCRIPTION:
46 **
47 **      This module contains the device driver for the ESS
48 **      Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
49 **	used as a reference point when implementing this driver.
50 **
51 **  AUTHORS:
52 **
53 **	Blair Fidler	Software Engineering Australia
54 **			Gold Coast, Australia.
55 **
56 **  CREATION DATE:
57 **
58 **	March 10, 1997.
59 **
60 **  MODIFICATION HISTORY:
61 **
62 **	Heavily modified by Lennart Augustsson and Charles M. Hannum for
63 **	bus_dma, changes to audio interface, and many bug fixes.
64 **	ESS1788 support by Nathan J. Williams and Charles M. Hannum.
65 **--
66 */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.58 2003/05/09 23:51:28 fvdl Exp $");
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/errno.h>
74 #include <sys/ioctl.h>
75 #include <sys/syslog.h>
76 #include <sys/device.h>
77 #include <sys/proc.h>
78 #include <sys/kernel.h>
79 
80 #include <machine/cpu.h>
81 #include <machine/intr.h>
82 #include <machine/bus.h>
83 
84 #include <sys/audioio.h>
85 #include <dev/audio_if.h>
86 #include <dev/auconv.h>
87 #include <dev/mulaw.h>
88 
89 #include <dev/isa/isavar.h>
90 #include <dev/isa/isadmavar.h>
91 
92 #include <dev/isa/essvar.h>
93 #include <dev/isa/essreg.h>
94 
95 #ifdef AUDIO_DEBUG
96 #define DPRINTF(x)	if (essdebug) printf x
97 #define DPRINTFN(n,x)	if (essdebug>(n)) printf x
98 int	essdebug = 0;
99 #else
100 #define DPRINTF(x)
101 #define DPRINTFN(n,x)
102 #endif
103 
104 #if 0
105 unsigned uuu;
106 #define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD  %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
107 #define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
108 #else
109 #define EREAD1(t, h, a) bus_space_read_1(t, h, a)
110 #define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
111 #endif
112 
113 
114 int	ess_setup_sc __P((struct ess_softc *, int));
115 
116 int	ess_open __P((void *, int));
117 void	ess_1788_close __P((void *));
118 void	ess_1888_close __P((void *));
119 int	ess_getdev __P((void *, struct audio_device *));
120 int	ess_drain __P((void *));
121 
122 int	ess_query_encoding __P((void *, struct audio_encoding *));
123 
124 int	ess_set_params __P((void *, int, int, struct audio_params *,
125 	    struct audio_params *));
126 
127 int	ess_round_blocksize __P((void *, int));
128 
129 int	ess_audio1_trigger_output __P((void *, void *, void *, int,
130 	    void (*)(void *), void *, struct audio_params *));
131 int	ess_audio2_trigger_output __P((void *, void *, void *, int,
132 	    void (*)(void *), void *, struct audio_params *));
133 int	ess_audio1_trigger_input __P((void *, void *, void *, int,
134 	    void (*)(void *), void *, struct audio_params *));
135 int	ess_audio1_halt __P((void *));
136 int	ess_audio2_halt __P((void *));
137 int	ess_audio1_intr __P((void *));
138 int	ess_audio2_intr __P((void *));
139 void	ess_audio1_poll __P((void *));
140 void	ess_audio2_poll __P((void *));
141 
142 int	ess_speaker_ctl __P((void *, int));
143 
144 int	ess_getdev __P((void *, struct audio_device *));
145 
146 int	ess_set_port __P((void *, mixer_ctrl_t *));
147 int	ess_get_port __P((void *, mixer_ctrl_t *));
148 
149 void   *ess_malloc __P((void *, int, size_t, struct malloc_type *, int));
150 void	ess_free __P((void *, void *, struct malloc_type *));
151 size_t	ess_round_buffersize __P((void *, int, size_t));
152 paddr_t	ess_mappage __P((void *, void *, off_t, int));
153 
154 
155 int	ess_query_devinfo __P((void *, mixer_devinfo_t *));
156 int	ess_1788_get_props __P((void *));
157 int	ess_1888_get_props __P((void *));
158 
159 void	ess_speaker_on __P((struct ess_softc *));
160 void	ess_speaker_off __P((struct ess_softc *));
161 
162 void	ess_config_irq __P((struct ess_softc *));
163 void	ess_config_drq __P((struct ess_softc *));
164 void	ess_setup __P((struct ess_softc *));
165 int	ess_identify __P((struct ess_softc *));
166 
167 int	ess_reset __P((struct ess_softc *));
168 void	ess_set_gain __P((struct ess_softc *, int, int));
169 int	ess_set_in_port __P((struct ess_softc *, int));
170 int	ess_set_in_ports __P((struct ess_softc *, int));
171 u_int	ess_srtotc __P((u_int));
172 u_int	ess_srtofc __P((u_int));
173 u_char	ess_get_dsp_status __P((struct ess_softc *));
174 u_char	ess_dsp_read_ready __P((struct ess_softc *));
175 u_char	ess_dsp_write_ready __P((struct ess_softc *));
176 int	ess_rdsp __P((struct ess_softc *));
177 int	ess_wdsp __P((struct ess_softc *, u_char));
178 u_char	ess_read_x_reg __P((struct ess_softc *, u_char));
179 int	ess_write_x_reg __P((struct ess_softc *, u_char, u_char));
180 void	ess_clear_xreg_bits __P((struct ess_softc *, u_char, u_char));
181 void	ess_set_xreg_bits __P((struct ess_softc *, u_char, u_char));
182 u_char	ess_read_mix_reg __P((struct ess_softc *, u_char));
183 void	ess_write_mix_reg __P((struct ess_softc *, u_char, u_char));
184 void	ess_clear_mreg_bits __P((struct ess_softc *, u_char, u_char));
185 void	ess_set_mreg_bits __P((struct ess_softc *, u_char, u_char));
186 void	ess_read_multi_mix_reg __P((struct ess_softc *, u_char, u_int8_t *, bus_size_t));
187 
188 static char *essmodel[] = {
189 	"unsupported",
190 	"1888",
191 	"1887",
192 	"888",
193 	"1788",
194 	"1869",
195 	"1879",
196 	"1868",
197 	"1878",
198 };
199 
200 struct audio_device ess_device = {
201 	"ESS Technology",
202 	"x",
203 	"ess"
204 };
205 
206 /*
207  * Define our interface to the higher level audio driver.
208  */
209 
210 struct audio_hw_if ess_1788_hw_if = {
211 	ess_open,
212 	ess_1788_close,
213 	ess_drain,
214 	ess_query_encoding,
215 	ess_set_params,
216 	ess_round_blocksize,
217 	NULL,
218 	NULL,
219 	NULL,
220 	NULL,
221 	NULL,
222 	ess_audio1_halt,
223 	ess_audio1_halt,
224 	ess_speaker_ctl,
225 	ess_getdev,
226 	NULL,
227 	ess_set_port,
228 	ess_get_port,
229 	ess_query_devinfo,
230 	ess_malloc,
231 	ess_free,
232 	ess_round_buffersize,
233 	ess_mappage,
234 	ess_1788_get_props,
235 	ess_audio1_trigger_output,
236 	ess_audio1_trigger_input,
237 	NULL,
238 };
239 
240 struct audio_hw_if ess_1888_hw_if = {
241 	ess_open,
242 	ess_1888_close,
243 	ess_drain,
244 	ess_query_encoding,
245 	ess_set_params,
246 	ess_round_blocksize,
247 	NULL,
248 	NULL,
249 	NULL,
250 	NULL,
251 	NULL,
252 	ess_audio2_halt,
253 	ess_audio1_halt,
254 	ess_speaker_ctl,
255 	ess_getdev,
256 	NULL,
257 	ess_set_port,
258 	ess_get_port,
259 	ess_query_devinfo,
260 	ess_malloc,
261 	ess_free,
262 	ess_round_buffersize,
263 	ess_mappage,
264 	ess_1888_get_props,
265 	ess_audio2_trigger_output,
266 	ess_audio1_trigger_input,
267 	NULL,
268 };
269 
270 #ifdef AUDIO_DEBUG
271 void ess_printsc __P((struct ess_softc *));
272 void ess_dump_mixer __P((struct ess_softc *));
273 
274 void
275 ess_printsc(sc)
276 	struct ess_softc *sc;
277 {
278 	int i;
279 
280 	printf("open %d iobase 0x%x outport %u inport %u speaker %s\n",
281 	       (int)sc->sc_open, sc->sc_iobase, sc->out_port,
282 	       sc->in_port, sc->spkr_state ? "on" : "off");
283 
284 	printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
285 	       sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
286 	       sc->sc_audio1.intr, sc->sc_audio1.arg);
287 
288 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
289 		printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
290 		       sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
291 		       sc->sc_audio2.intr, sc->sc_audio2.arg);
292 	}
293 
294 	printf("gain:");
295 	for (i = 0; i < sc->ndevs; i++)
296 		printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
297 	printf("\n");
298 }
299 
300 void
301 ess_dump_mixer(sc)
302 	struct ess_softc *sc;
303 {
304 	printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
305 	       0x7C, ess_read_mix_reg(sc, 0x7C));
306 	printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
307 	       0x1A, ess_read_mix_reg(sc, 0x1A));
308 	printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
309 	       0x3E, ess_read_mix_reg(sc, 0x3E));
310 	printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
311 	       0x36, ess_read_mix_reg(sc, 0x36));
312 	printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
313 	       0x38, ess_read_mix_reg(sc, 0x38));
314 	printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
315 	       0x3A, ess_read_mix_reg(sc, 0x3A));
316 	printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
317 	       0x32, ess_read_mix_reg(sc, 0x32));
318 	printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
319 	       0x3C, ess_read_mix_reg(sc, 0x3C));
320 	printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
321 	       0x69, ess_read_mix_reg(sc, 0x69));
322 	printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
323 	       0x68, ess_read_mix_reg(sc, 0x68));
324 	printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
325 	       0x6E, ess_read_mix_reg(sc, 0x6E));
326 	printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
327 	       0x6B, ess_read_mix_reg(sc, 0x6B));
328 	printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
329 	       0x6A, ess_read_mix_reg(sc, 0x6A));
330 	printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
331 	       0x6C, ess_read_mix_reg(sc, 0x6C));
332 	printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
333 	       0xB4, ess_read_x_reg(sc, 0xB4));
334 	printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
335 	       0x14, ess_read_mix_reg(sc, 0x14));
336 
337 	printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
338 	       ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
339 	printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
340 	       ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
341 	printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
342 	       ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
343 	       ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
344 }
345 
346 #endif
347 
348 /*
349  * Configure the ESS chip for the desired audio base address.
350  */
351 int
352 ess_config_addr(sc)
353 	struct ess_softc *sc;
354 {
355 	int iobase = sc->sc_iobase;
356 	bus_space_tag_t iot = sc->sc_iot;
357 
358 	/*
359 	 * Configure using the System Control Register method.  This
360 	 * method is used when the AMODE line is tied high, which is
361 	 * the case for the Shark, but not for the evaluation board.
362 	 */
363 
364 	bus_space_handle_t scr_access_ioh;
365 	bus_space_handle_t scr_ioh;
366 	u_short scr_value;
367 
368 	/*
369 	 * Set the SCR bit to enable audio.
370 	 */
371 	scr_value = ESS_SCR_AUDIO_ENABLE;
372 
373 	/*
374 	 * Set the SCR bits necessary to select the specified audio
375 	 * base address.
376 	 */
377 	switch(iobase) {
378 	case 0x220:
379 		scr_value |= ESS_SCR_AUDIO_220;
380 		break;
381 	case 0x230:
382 		scr_value |= ESS_SCR_AUDIO_230;
383 		break;
384 	case 0x240:
385 		scr_value |= ESS_SCR_AUDIO_240;
386 		break;
387 	case 0x250:
388 		scr_value |= ESS_SCR_AUDIO_250;
389 		break;
390 	default:
391 		printf("ess: configured iobase 0x%x invalid\n", iobase);
392 		return (1);
393 		break;
394 	}
395 
396 	/*
397 	 * Get a mapping for the System Control Register (SCR) access
398 	 * registers and the SCR data registers.
399 	 */
400 	if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
401 			  0, &scr_access_ioh)) {
402 		printf("ess: can't map SCR access registers\n");
403 		return (1);
404 	}
405 	if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
406 			  0, &scr_ioh)) {
407 		printf("ess: can't map SCR registers\n");
408 		bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
409 		return (1);
410 	}
411 
412 	/* Unlock the SCR. */
413 	EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);
414 
415 	/* Write the base address information into SCR[0]. */
416 	EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
417 	EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);
418 
419 	/* Lock the SCR. */
420 	EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);
421 
422 	/* Unmap the SCR access ports and the SCR data ports. */
423 	bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
424 	bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);
425 
426 	return 0;
427 }
428 
429 
430 /*
431  * Configure the ESS chip for the desired IRQ and DMA channels.
432  * ESS  ISA
433  * --------
434  * IRQA irq9
435  * IRQB irq5
436  * IRQC irq7
437  * IRQD irq10
438  * IRQE irq15
439  *
440  * DRQA drq0
441  * DRQB drq1
442  * DRQC drq3
443  * DRQD drq5
444  */
445 void
446 ess_config_irq(sc)
447 	struct ess_softc *sc;
448 {
449 	int v;
450 
451 	DPRINTFN(2,("ess_config_irq\n"));
452 
453 	if (sc->sc_model == ESS_1887 &&
454 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
455 	    sc->sc_audio1.irq != -1) {
456 		/* Use new method, both interrupts are the same. */
457 		v = ESS_IS_SELECT_IRQ;	/* enable intrs */
458 		switch (sc->sc_audio1.irq) {
459 		case 5:
460 			v |= ESS_IS_INTRB;
461 			break;
462 		case 7:
463 			v |= ESS_IS_INTRC;
464 			break;
465 		case 9:
466 			v |= ESS_IS_INTRA;
467 			break;
468 		case 10:
469 			v |= ESS_IS_INTRD;
470 			break;
471 		case 15:
472 			v |= ESS_IS_INTRE;
473 			break;
474 #ifdef DIAGNOSTIC
475 		default:
476 			printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
477 			       sc->sc_audio1.irq);
478 			return;
479 #endif
480 		}
481 		/* Set the IRQ */
482 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
483 		return;
484 	}
485 
486 	if (sc->sc_model == ESS_1887) {
487 		/* Tell the 1887 to use the old interrupt method. */
488 		ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
489 	}
490 
491 	if (sc->sc_audio1.polled) {
492 		/* Turn off Audio1 interrupts. */
493 		v = 0;
494 	} else {
495 		/* Configure Audio 1 for the appropriate IRQ line. */
496 		v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
497 		switch (sc->sc_audio1.irq) {
498 		case 5:
499 			v |= ESS_IRQ_CTRL_INTRB;
500 			break;
501 		case 7:
502 			v |= ESS_IRQ_CTRL_INTRC;
503 			break;
504 		case 9:
505 			v |= ESS_IRQ_CTRL_INTRA;
506 			break;
507 		case 10:
508 			v |= ESS_IRQ_CTRL_INTRD;
509 			break;
510 #ifdef DIAGNOSTIC
511 		default:
512 			printf("ess: configured irq %d not supported for Audio 1\n",
513 			       sc->sc_audio1.irq);
514 			return;
515 #endif
516 		}
517 	}
518 	ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);
519 
520 	if (ESS_USE_AUDIO1(sc->sc_model))
521 		return;
522 
523 	if (sc->sc_audio2.polled) {
524 		/* Turn off Audio2 interrupts. */
525 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
526 				    ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
527 	} else {
528 		/* Audio2 is hardwired to INTRE in this mode. */
529 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
530 				  ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
531 	}
532 }
533 
534 
535 void
536 ess_config_drq(sc)
537 	struct ess_softc *sc;
538 {
539 	int v;
540 
541 	DPRINTFN(2,("ess_config_drq\n"));
542 
543 	/* Configure Audio 1 (record) for DMA on the appropriate channel. */
544 	v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
545 	switch (sc->sc_audio1.drq) {
546 	case 0:
547 		v |= ESS_DRQ_CTRL_DRQA;
548 		break;
549 	case 1:
550 		v |= ESS_DRQ_CTRL_DRQB;
551 		break;
552 	case 3:
553 		v |= ESS_DRQ_CTRL_DRQC;
554 		break;
555 #ifdef DIAGNOSTIC
556 	default:
557 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
558 		       sc->sc_audio1.drq);
559 		return;
560 #endif
561 	}
562 	/* Set DRQ1 */
563 	ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);
564 
565 	if (ESS_USE_AUDIO1(sc->sc_model))
566 		return;
567 
568 	/* Configure DRQ2 */
569 	v = ESS_AUDIO2_CTRL3_DRQ_PD;
570 	switch (sc->sc_audio2.drq) {
571 	case 0:
572 		v |= ESS_AUDIO2_CTRL3_DRQA;
573 		break;
574 	case 1:
575 		v |= ESS_AUDIO2_CTRL3_DRQB;
576 		break;
577 	case 3:
578 		v |= ESS_AUDIO2_CTRL3_DRQC;
579 		break;
580 	case 5:
581 		v |= ESS_AUDIO2_CTRL3_DRQD;
582 		break;
583 #ifdef DIAGNOSTIC
584 	default:
585 		printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
586 		       sc->sc_audio2.drq);
587 		return;
588 #endif
589 	}
590 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
591 	/* Enable DMA 2 */
592 	ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
593 			  ESS_AUDIO2_CTRL2_DMA_ENABLE);
594 }
595 
596 /*
597  * Set up registers after a reset.
598  */
599 void
600 ess_setup(sc)
601 	struct ess_softc *sc;
602 {
603 
604 	ess_config_irq(sc);
605 	ess_config_drq(sc);
606 
607 	DPRINTFN(2,("ess_setup: done\n"));
608 }
609 
610 /*
611  * Determine the model of ESS chip we are talking to.  Currently we
612  * only support ES1888, ES1887 and ES888.  The method of determining
613  * the chip is based on the information on page 27 of the ES1887 data
614  * sheet.
615  *
616  * This routine sets the values of sc->sc_model and sc->sc_version.
617  */
618 int
619 ess_identify(sc)
620 	struct ess_softc *sc;
621 {
622 	u_char reg1;
623 	u_char reg2;
624 	u_char reg3;
625 	u_int8_t ident[4];
626 
627 	sc->sc_model = ESS_UNSUPPORTED;
628 	sc->sc_version = 0;
629 
630 	memset(ident, 0, sizeof(ident));
631 
632 	/*
633 	 * 1. Check legacy ID bytes.  These should be 0x68 0x8n, where
634 	 *    n >= 8 for an ES1887 or an ES888.  Other values indicate
635 	 *    earlier (unsupported) chips.
636 	 */
637 	ess_wdsp(sc, ESS_ACMD_LEGACY_ID);
638 
639 	if ((reg1 = ess_rdsp(sc)) != 0x68) {
640 		printf("ess: First ID byte wrong (0x%02x)\n", reg1);
641 		return 1;
642 	}
643 
644 	reg2 = ess_rdsp(sc);
645 	if (((reg2 & 0xf0) != 0x80) ||
646 	    ((reg2 & 0x0f) < 8)) {
647 		printf("ess: Second ID byte wrong (0x%02x)\n", reg2);
648 		return 1;
649 	}
650 
651 	/*
652 	 * Store the ID bytes as the version.
653 	 */
654 	sc->sc_version = (reg1 << 8) + reg2;
655 
656 
657 	/*
658 	 * 2. Verify we can change bit 2 in mixer register 0x64.  This
659 	 *    should be possible on all supported chips.
660 	 */
661 	reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
662 	reg2 = reg1 ^ 0x04;  /* toggle bit 2 */
663 
664 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
665 
666 	if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
667 		printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
668 		return 1;
669 	}
670 
671 	/*
672 	 * Restore the original value of mixer register 0x64.
673 	 */
674 	ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
675 
676 
677 	/*
678 	 * 3. Verify we can change the value of mixer register
679 	 *    ESS_MREG_SAMPLE_RATE.
680 	 *    This is possible on the 1888/1887/888, but not on the 1788.
681 	 *    It is not necessary to restore the value of this mixer register.
682 	 */
683 	reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
684 	reg2 = reg1 ^ 0xff;  /* toggle all bits */
685 
686 	ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);
687 
688 	if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
689 		/* If we got this far before failing, it's a 1788. */
690 		sc->sc_model = ESS_1788;
691 
692 		/*
693 		 * Identify ESS model for ES18[67]8.
694 		 */
695 		ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
696 		if(ident[0] == 0x18) {
697 			switch(ident[1]) {
698 			case 0x68:
699 				sc->sc_model = ESS_1868;
700 				break;
701 			case 0x78:
702 				sc->sc_model = ESS_1878;
703 				break;
704 			}
705 		}
706 	} else {
707 		/*
708 		 * 4. Determine if we can change bit 5 in mixer register 0x64.
709 		 *    This determines whether we have an ES1887:
710 		 *
711 		 *    - can change indicates ES1887
712 		 *    - can't change indicates ES1888 or ES888
713 		 */
714 		reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
715 		reg2 = reg1 ^ 0x20;  /* toggle bit 5 */
716 
717 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);
718 
719 		if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
720 			sc->sc_model = ESS_1887;
721 
722 			/*
723 			 * Restore the original value of mixer register 0x64.
724 			 */
725 			ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);
726 
727 			/*
728 			 * Identify ESS model for ES18[67]9.
729 			 */
730 			ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
731 			if(ident[0] == 0x18) {
732 				switch(ident[1]) {
733 				case 0x69:
734 					sc->sc_model = ESS_1869;
735 					break;
736 				case 0x79:
737 					sc->sc_model = ESS_1879;
738 					break;
739 				}
740 			}
741 		} else {
742 			/*
743 			 * 5. Determine if we can change the value of mixer
744 			 *    register 0x69 independently of mixer register
745 			 *    0x68. This determines which chip we have:
746 			 *
747 			 *    - can modify idependently indicates ES888
748 			 *    - register 0x69 is an alias of 0x68 indicates ES1888
749 			 */
750 			reg1 = ess_read_mix_reg(sc, 0x68);
751 			reg2 = ess_read_mix_reg(sc, 0x69);
752 			reg3 = reg2 ^ 0xff;  /* toggle all bits */
753 
754 			/*
755 			 * Write different values to each register.
756 			 */
757 			ess_write_mix_reg(sc, 0x68, reg2);
758 			ess_write_mix_reg(sc, 0x69, reg3);
759 
760 			if (ess_read_mix_reg(sc, 0x68) == reg2 &&
761 			    ess_read_mix_reg(sc, 0x69) == reg3)
762 				sc->sc_model = ESS_888;
763 			else
764 				sc->sc_model = ESS_1888;
765 
766 			/*
767 			 * Restore the original value of the registers.
768 			 */
769 			ess_write_mix_reg(sc, 0x68, reg1);
770 			ess_write_mix_reg(sc, 0x69, reg2);
771 		}
772 	}
773 
774 	return 0;
775 }
776 
777 
778 int
779 ess_setup_sc(sc, doinit)
780 	struct ess_softc *sc;
781 	int doinit;
782 {
783 
784 	callout_init(&sc->sc_poll1_ch);
785 	callout_init(&sc->sc_poll2_ch);
786 
787 	/* Reset the chip. */
788 	if (ess_reset(sc) != 0) {
789 		DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
790 		return (1);
791 	}
792 
793 	/* Identify the ESS chip, and check that it is supported. */
794 	if (ess_identify(sc)) {
795 		DPRINTF(("ess_setup_sc: couldn't identify\n"));
796 		return (1);
797 	}
798 
799 	return (0);
800 }
801 
802 /*
803  * Probe for the ESS hardware.
804  */
805 int
806 essmatch(sc)
807 	struct ess_softc *sc;
808 {
809 	if (!ESS_BASE_VALID(sc->sc_iobase)) {
810 		printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
811 		return (0);
812 	}
813 
814 	if (ess_setup_sc(sc, 1))
815 		return (0);
816 
817 	if (sc->sc_model == ESS_UNSUPPORTED) {
818 		DPRINTF(("ess: Unsupported model\n"));
819 		return (0);
820 	}
821 
822 	/* Check that requested DMA channels are valid and different. */
823 	if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
824 		printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
825 		return (0);
826 	}
827 	if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
828 		return (0);
829 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
830 		if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
831 			printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
832 			return (0);
833 		}
834 		if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
835 			printf("ess: play and record drq both %d\n",
836 			       sc->sc_audio1.drq);
837 			return (0);
838 		}
839 		if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
840 			return (0);
841 	}
842 
843 	/*
844 	 * The 1887 has an additional IRQ mode where both channels are mapped
845 	 * to the same IRQ.
846 	 */
847 	if (sc->sc_model == ESS_1887 &&
848 	    sc->sc_audio1.irq == sc->sc_audio2.irq &&
849 	    sc->sc_audio1.irq != -1 &&
850 	    ESS_IRQ12_VALID(sc->sc_audio1.irq))
851 		goto irq_not1888;
852 
853 	/* Check that requested IRQ lines are valid and different. */
854 	if (sc->sc_audio1.irq != -1 &&
855 	    !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
856 		printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
857 		return (0);
858 	}
859 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
860 		if (sc->sc_audio2.irq != -1 &&
861 		    !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
862 			printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
863 			return (0);
864 		}
865 		if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
866 		    sc->sc_audio1.irq != -1) {
867 			printf("ess: play and record irq both %d\n",
868 			       sc->sc_audio1.irq);
869 			return (0);
870 		}
871 	}
872 
873 irq_not1888:
874 	/* XXX should we check IRQs as well? */
875 
876 	return (1);
877 }
878 
879 
880 /*
881  * Attach hardware to driver, attach hardware driver to audio
882  * pseudo-device driver.
883  */
884 void
885 essattach(sc)
886 	struct ess_softc *sc;
887 {
888 	struct audio_attach_args arg;
889 	struct audio_params pparams, rparams;
890 	int i;
891 	u_int v;
892 
893 	if (ess_setup_sc(sc, 0)) {
894 		printf(": setup failed\n");
895 		return;
896 	}
897 
898 	printf(": ESS Technology ES%s [version 0x%04x]\n",
899 	       essmodel[sc->sc_model], sc->sc_version);
900 
901 	sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
902 	if (!sc->sc_audio1.polled) {
903 		sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
904 		    sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
905 		    ess_audio1_intr, sc);
906 		printf("%s: audio1 interrupting at irq %d\n",
907 		    sc->sc_dev.dv_xname, sc->sc_audio1.irq);
908 	} else
909 		printf("%s: audio1 polled\n", sc->sc_dev.dv_xname);
910 	sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);
911 
912 	if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
913 		printf("%s: can't reserve drq %d\n",
914 		    sc->sc_dev.dv_xname, sc->sc_audio1.drq);
915 		return;
916 	}
917 
918 	if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
919 	    sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
920 		printf("%s: can't create map for drq %d\n",
921 		       sc->sc_dev.dv_xname, sc->sc_audio1.drq);
922 		return;
923 	}
924 
925 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
926 		sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
927 		if (!sc->sc_audio2.polled) {
928 			sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
929 			    sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
930 			    ess_audio2_intr, sc);
931 			printf("%s: audio2 interrupting at irq %d\n",
932 			    sc->sc_dev.dv_xname, sc->sc_audio2.irq);
933 		} else
934 			printf("%s: audio2 polled\n", sc->sc_dev.dv_xname);
935 		sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
936 		    sc->sc_audio2.drq);
937 
938 		if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
939 			printf("%s: can't reserve drq %d\n",
940 			    sc->sc_dev.dv_xname, sc->sc_audio2.drq);
941 			return;
942 		}
943 
944 		if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
945 		    sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
946 			printf("%s: can't create map for drq %d\n",
947 			       sc->sc_dev.dv_xname, sc->sc_audio2.drq);
948 			return;
949 		}
950 	}
951 
952 	/*
953 	 * Set record and play parameters to default values defined in
954 	 * generic audio driver.
955 	 */
956 	pparams = audio_default;
957 	rparams = audio_default;
958 	ess_set_params(sc, AUMODE_RECORD|AUMODE_PLAY, 0, &pparams, &rparams);
959 
960 	/* Do a hardware reset on the mixer. */
961 	ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);
962 
963 	/*
964 	 * Set volume of Audio 1 to zero and disable Audio 1 DAC input
965 	 * to playback mixer, since playback is always through Audio 2.
966 	 */
967 	if (!ESS_USE_AUDIO1(sc->sc_model))
968 		ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
969 	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
970 
971 	if (ESS_USE_AUDIO1(sc->sc_model)) {
972 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
973 		sc->in_port = ESS_SOURCE_MIC;
974 		sc->ndevs = ESS_1788_NDEVS;
975 	} else {
976 		/*
977 		 * Set hardware record source to use output of the record
978 		 * mixer. We do the selection of record source in software by
979 		 * setting the gain of the unused sources to zero. (See
980 		 * ess_set_in_ports.)
981 		 */
982 		ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
983 		sc->in_mask = 1 << ESS_MIC_REC_VOL;
984 		sc->ndevs = ESS_1888_NDEVS;
985 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
986 		ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
987 	}
988 
989 	/*
990 	 * Set gain on each mixer device to a sensible value.
991 	 * Devices not normally used are turned off, and other devices
992 	 * are set to 50% volume.
993 	 */
994 	for (i = 0; i < sc->ndevs; i++) {
995 		switch (i) {
996 		case ESS_MIC_PLAY_VOL:
997 		case ESS_LINE_PLAY_VOL:
998 		case ESS_CD_PLAY_VOL:
999 		case ESS_AUXB_PLAY_VOL:
1000 		case ESS_DAC_REC_VOL:
1001 		case ESS_LINE_REC_VOL:
1002 		case ESS_SYNTH_REC_VOL:
1003 		case ESS_CD_REC_VOL:
1004 		case ESS_AUXB_REC_VOL:
1005 			v = 0;
1006 			break;
1007 		default:
1008 			v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
1009 			break;
1010 		}
1011 		sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
1012 		ess_set_gain(sc, i, 1);
1013 	}
1014 
1015 	ess_setup(sc);
1016 
1017 	/* Disable the speaker until the device is opened.  */
1018 	ess_speaker_off(sc);
1019 	sc->spkr_state = SPKR_OFF;
1020 
1021 	sprintf(ess_device.name, "ES%s", essmodel[sc->sc_model]);
1022 	sprintf(ess_device.version, "0x%04x", sc->sc_version);
1023 
1024 	if (ESS_USE_AUDIO1(sc->sc_model))
1025 		audio_attach_mi(&ess_1788_hw_if, sc, &sc->sc_dev);
1026 	else
1027 		audio_attach_mi(&ess_1888_hw_if, sc, &sc->sc_dev);
1028 
1029 	arg.type = AUDIODEV_TYPE_OPL;
1030 	arg.hwif = 0;
1031 	arg.hdl = 0;
1032 	(void)config_found(&sc->sc_dev, &arg, audioprint);
1033 
1034 #ifdef AUDIO_DEBUG
1035 	if (essdebug > 0)
1036 		ess_printsc(sc);
1037 #endif
1038 }
1039 
1040 /*
1041  * Various routines to interface to higher level audio driver
1042  */
1043 
1044 int
1045 ess_open(addr, flags)
1046 	void *addr;
1047 	int flags;
1048 {
1049 	struct ess_softc *sc = addr;
1050 	int i;
1051 
1052 	DPRINTF(("ess_open: sc=%p\n", sc));
1053 
1054 	if (sc->sc_open != 0 || ess_reset(sc) != 0)
1055 		return ENXIO;
1056 
1057 	ess_setup(sc);		/* because we did a reset */
1058 
1059 	/* Set all mixer controls again since some change at reset. */
1060 	for (i = 0; i < ESS_MAX_NDEVS; i++)
1061 		ess_set_gain(sc, i, 1);
1062 
1063 	sc->sc_open = 1;
1064 
1065 	DPRINTF(("ess_open: opened\n"));
1066 
1067 	return (0);
1068 }
1069 
1070 void
1071 ess_1788_close(addr)
1072 	void *addr;
1073 {
1074 	struct ess_softc *sc = addr;
1075 
1076 	DPRINTF(("ess_1788_close: sc=%p\n", sc));
1077 
1078 	ess_speaker_off(sc);
1079 	sc->spkr_state = SPKR_OFF;
1080 
1081 	ess_audio1_halt(sc);
1082 
1083 	sc->sc_open = 0;
1084 	DPRINTF(("ess_1788_close: closed\n"));
1085 }
1086 
1087 void
1088 ess_1888_close(addr)
1089 	void *addr;
1090 {
1091 	struct ess_softc *sc = addr;
1092 
1093 	DPRINTF(("ess_1888_close: sc=%p\n", sc));
1094 
1095 	ess_speaker_off(sc);
1096 	sc->spkr_state = SPKR_OFF;
1097 
1098 	ess_audio1_halt(sc);
1099 	ess_audio2_halt(sc);
1100 
1101 	sc->sc_open = 0;
1102 	DPRINTF(("ess_1888_close: closed\n"));
1103 }
1104 
1105 /*
1106  * Wait for FIFO to drain, and analog section to settle.
1107  * XXX should check FIFO empty bit.
1108  */
1109 int
1110 ess_drain(addr)
1111 	void *addr;
1112 {
1113 	tsleep(addr, PWAIT | PCATCH, "essdr", hz/20); /* XXX */
1114 	return (0);
1115 }
1116 
1117 /* XXX should use reference count */
1118 int
1119 ess_speaker_ctl(addr, newstate)
1120 	void *addr;
1121 	int newstate;
1122 {
1123 	struct ess_softc *sc = addr;
1124 
1125 	if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
1126 		ess_speaker_on(sc);
1127 		sc->spkr_state = SPKR_ON;
1128 	}
1129 	if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
1130 		ess_speaker_off(sc);
1131 		sc->spkr_state = SPKR_OFF;
1132 	}
1133 	return (0);
1134 }
1135 
1136 int
1137 ess_getdev(addr, retp)
1138 	void *addr;
1139 	struct audio_device *retp;
1140 {
1141 	*retp = ess_device;
1142 	return (0);
1143 }
1144 
1145 int
1146 ess_query_encoding(addr, fp)
1147 	void *addr;
1148 	struct audio_encoding *fp;
1149 {
1150 	/*struct ess_softc *sc = addr;*/
1151 
1152 	switch (fp->index) {
1153 	case 0:
1154 		strcpy(fp->name, AudioEulinear);
1155 		fp->encoding = AUDIO_ENCODING_ULINEAR;
1156 		fp->precision = 8;
1157 		fp->flags = 0;
1158 		return (0);
1159 	case 1:
1160 		strcpy(fp->name, AudioEmulaw);
1161 		fp->encoding = AUDIO_ENCODING_ULAW;
1162 		fp->precision = 8;
1163 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1164 		return (0);
1165 	case 2:
1166 		strcpy(fp->name, AudioEalaw);
1167 		fp->encoding = AUDIO_ENCODING_ALAW;
1168 		fp->precision = 8;
1169 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1170 		return (0);
1171 	case 3:
1172 		strcpy(fp->name, AudioEslinear);
1173 		fp->encoding = AUDIO_ENCODING_SLINEAR;
1174 		fp->precision = 8;
1175 		fp->flags = 0;
1176 		return (0);
1177 	case 4:
1178 		strcpy(fp->name, AudioEslinear_le);
1179 		fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
1180 		fp->precision = 16;
1181 		fp->flags = 0;
1182 		return (0);
1183 	case 5:
1184 		strcpy(fp->name, AudioEulinear_le);
1185 		fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
1186 		fp->precision = 16;
1187 		fp->flags = 0;
1188 		return (0);
1189 	case 6:
1190 		strcpy(fp->name, AudioEslinear_be);
1191 		fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
1192 		fp->precision = 16;
1193 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1194 		return (0);
1195 	case 7:
1196 		strcpy(fp->name, AudioEulinear_be);
1197 		fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
1198 		fp->precision = 16;
1199 		fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
1200 		return (0);
1201 	default:
1202 		return EINVAL;
1203 	}
1204 	return (0);
1205 }
1206 
1207 int
1208 ess_set_params(addr, setmode, usemode, play, rec)
1209 	void *addr;
1210 	int setmode, usemode;
1211 	struct audio_params *play, *rec;
1212 {
1213 	struct ess_softc *sc = addr;
1214 	struct audio_params *p;
1215 	int mode;
1216 	int rate;
1217 
1218 	DPRINTF(("ess_set_params: set=%d use=%d\n", setmode, usemode));
1219 
1220 	/*
1221 	 * The ES1887 manual (page 39, `Full-Duplex DMA Mode') claims that in
1222 	 * full-duplex operation the sample rates must be the same for both
1223 	 * channels.  This appears to be false; the only bit in common is the
1224 	 * clock source selection.  However, we'll be conservative here.
1225 	 * - mycroft
1226 	 */
1227 	if (play->sample_rate != rec->sample_rate &&
1228 	    usemode == (AUMODE_PLAY | AUMODE_RECORD)) {
1229 		if (setmode == AUMODE_PLAY) {
1230 			rec->sample_rate = play->sample_rate;
1231 			setmode |= AUMODE_RECORD;
1232 		} else if (setmode == AUMODE_RECORD) {
1233 			play->sample_rate = rec->sample_rate;
1234 			setmode |= AUMODE_PLAY;
1235 		} else
1236 			return (EINVAL);
1237 	}
1238 
1239 	for (mode = AUMODE_RECORD; mode != -1;
1240 	     mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
1241 		if ((setmode & mode) == 0)
1242 			continue;
1243 
1244 		p = mode == AUMODE_PLAY ? play : rec;
1245 
1246 		if (p->sample_rate < ESS_MINRATE ||
1247 		    p->sample_rate > ESS_MAXRATE ||
1248 		    (p->precision != 8 && p->precision != 16) ||
1249 		    (p->channels != 1 && p->channels != 2))
1250 			return (EINVAL);
1251 
1252 		p->factor = 1;
1253 		p->sw_code = 0;
1254 		switch (p->encoding) {
1255 		case AUDIO_ENCODING_SLINEAR_BE:
1256 		case AUDIO_ENCODING_ULINEAR_BE:
1257 			if (p->precision == 16)
1258 				p->sw_code = swap_bytes;
1259 			break;
1260 		case AUDIO_ENCODING_SLINEAR_LE:
1261 		case AUDIO_ENCODING_ULINEAR_LE:
1262 			break;
1263 		case AUDIO_ENCODING_ULAW:
1264 			if (mode == AUMODE_PLAY) {
1265 				p->factor = 2;
1266 				p->sw_code = mulaw_to_ulinear16_le;
1267 			} else
1268 				p->sw_code = ulinear8_to_mulaw;
1269 			break;
1270 		case AUDIO_ENCODING_ALAW:
1271 			if (mode == AUMODE_PLAY) {
1272 				p->factor = 2;
1273 				p->sw_code = alaw_to_ulinear16_le;
1274 			} else
1275 				p->sw_code = ulinear8_to_alaw;
1276 			break;
1277 		default:
1278 			return (EINVAL);
1279 		}
1280 	}
1281 
1282 	if (usemode == AUMODE_RECORD)
1283 		rate = rec->sample_rate;
1284 	else
1285 		rate = play->sample_rate;
1286 
1287 	ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(rate));
1288 	ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));
1289 
1290 	if (!ESS_USE_AUDIO1(sc->sc_model)) {
1291 		ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, ess_srtotc(rate));
1292 		ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
1293 	}
1294 
1295 	return (0);
1296 }
1297 
1298 int
1299 ess_audio1_trigger_output(addr, start, end, blksize, intr, arg, param)
1300 	void *addr;
1301 	void *start, *end;
1302 	int blksize;
1303 	void (*intr) __P((void *));
1304 	void *arg;
1305 	struct audio_params *param;
1306 {
1307 	struct ess_softc *sc = addr;
1308 	u_int8_t reg;
1309 
1310 	DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1311 	    addr, start, end, blksize, intr, arg));
1312 
1313 	if (sc->sc_audio1.active)
1314 		panic("ess_audio1_trigger_output: already running");
1315 
1316 	sc->sc_audio1.active = 1;
1317 	sc->sc_audio1.intr = intr;
1318 	sc->sc_audio1.arg = arg;
1319 	if (sc->sc_audio1.polled) {
1320 		sc->sc_audio1.dmapos = 0;
1321 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1322 		sc->sc_audio1.dmacount = 0;
1323 		sc->sc_audio1.blksize = blksize;
1324 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1325 		    ess_audio1_poll, sc);
1326 	}
1327 
1328 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1329 	if (param->channels == 2) {
1330 		reg &= ~ESS_AUDIO_CTRL_MONO;
1331 		reg |= ESS_AUDIO_CTRL_STEREO;
1332 	} else {
1333 		reg |= ESS_AUDIO_CTRL_MONO;
1334 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1335 	}
1336 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1337 
1338 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1339 	if (param->precision * param->factor == 16)
1340 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1341 	else
1342 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1343 	if (param->channels == 2)
1344 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1345 	else
1346 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1347 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1348 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1349 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1350 	else
1351 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1352 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1353 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1354 
1355 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1356 		     (char *)end - (char *)start, NULL,
1357 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1358 
1359 	/* Program transfer count registers with 2's complement of count. */
1360 	blksize = -blksize;
1361 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1362 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1363 
1364 	/* Use 4 bytes per output DMA. */
1365 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1366 
1367 	/* Start auto-init DMA */
1368   	ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
1369 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1370 	reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
1371 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1372 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1373 
1374 	return (0);
1375 }
1376 
1377 int
1378 ess_audio2_trigger_output(addr, start, end, blksize, intr, arg, param)
1379 	void *addr;
1380 	void *start, *end;
1381 	int blksize;
1382 	void (*intr) __P((void *));
1383 	void *arg;
1384 	struct audio_params *param;
1385 {
1386 	struct ess_softc *sc = addr;
1387 	u_int8_t reg;
1388 
1389 	DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1390 	    addr, start, end, blksize, intr, arg));
1391 
1392 	if (sc->sc_audio2.active)
1393 		panic("ess_audio2_trigger_output: already running");
1394 
1395 	sc->sc_audio2.active = 1;
1396 	sc->sc_audio2.intr = intr;
1397 	sc->sc_audio2.arg = arg;
1398 	if (sc->sc_audio2.polled) {
1399 		sc->sc_audio2.dmapos = 0;
1400 		sc->sc_audio2.buffersize = (char *)end - (char *)start;
1401 		sc->sc_audio2.dmacount = 0;
1402 		sc->sc_audio2.blksize = blksize;
1403 		callout_reset(&sc->sc_poll2_ch, hz / 30,
1404 		    ess_audio2_poll, sc);
1405 	}
1406 
1407 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1408 	if (param->precision * param->factor == 16)
1409 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
1410 	else
1411 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
1412 	if (param->channels == 2)
1413 		reg |= ESS_AUDIO2_CTRL2_CHANNELS;
1414 	else
1415 		reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
1416 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1417 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1418 		reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1419 	else
1420 		reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
1421 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1422 
1423 	isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
1424 		     (char *)end - (char *)start, NULL,
1425 	    DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1426 
1427 	if (IS16BITDRQ(sc->sc_audio2.drq))
1428 		blksize >>= 1;	/* use word count for 16 bit DMA */
1429 	/* Program transfer count registers with 2's complement of count. */
1430 	blksize = -blksize;
1431 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
1432 	ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);
1433 
1434 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
1435 	if (IS16BITDRQ(sc->sc_audio2.drq))
1436 		reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
1437 	else
1438 		reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
1439 	reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
1440 	reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
1441 	       ESS_AUDIO2_CTRL1_AUTO_INIT;
1442 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);
1443 
1444 	return (0);
1445 }
1446 
1447 int
1448 ess_audio1_trigger_input(addr, start, end, blksize, intr, arg, param)
1449 	void *addr;
1450 	void *start, *end;
1451 	int blksize;
1452 	void (*intr) __P((void *));
1453 	void *arg;
1454 	struct audio_params *param;
1455 {
1456 	struct ess_softc *sc = addr;
1457 	u_int8_t reg;
1458 
1459 	DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p blksize=%d intr=%p(%p)\n",
1460 	    addr, start, end, blksize, intr, arg));
1461 
1462 	if (sc->sc_audio1.active)
1463 		panic("ess_audio1_trigger_input: already running");
1464 
1465 	sc->sc_audio1.active = 1;
1466 	sc->sc_audio1.intr = intr;
1467 	sc->sc_audio1.arg = arg;
1468 	if (sc->sc_audio1.polled) {
1469 		sc->sc_audio1.dmapos = 0;
1470 		sc->sc_audio1.buffersize = (char *)end - (char *)start;
1471 		sc->sc_audio1.dmacount = 0;
1472 		sc->sc_audio1.blksize = blksize;
1473 		callout_reset(&sc->sc_poll1_ch, hz / 30,
1474 		    ess_audio1_poll, sc);
1475 	}
1476 
1477 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
1478 	if (param->channels == 2) {
1479 		reg &= ~ESS_AUDIO_CTRL_MONO;
1480 		reg |= ESS_AUDIO_CTRL_STEREO;
1481 	} else {
1482 		reg |= ESS_AUDIO_CTRL_MONO;
1483 		reg &= ~ESS_AUDIO_CTRL_STEREO;
1484 	}
1485 	ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);
1486 
1487 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
1488 	if (param->precision * param->factor == 16)
1489 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
1490 	else
1491 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
1492 	if (param->channels == 2)
1493 		reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
1494 	else
1495 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
1496 	if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
1497 	    param->encoding == AUDIO_ENCODING_SLINEAR_LE)
1498 		reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1499 	else
1500 		reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
1501 	reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
1502 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);
1503 
1504 	isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
1505 		     (char *)end - (char *)start, NULL,
1506 	    DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);
1507 
1508 	/* Program transfer count registers with 2's complement of count. */
1509 	blksize = -blksize;
1510 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
1511 	ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);
1512 
1513 	/* Use 4 bytes per input DMA. */
1514 	ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);
1515 
1516 	/* Start auto-init DMA */
1517   	ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
1518 	reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
1519 	reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
1520 	reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
1521 	ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);
1522 
1523 	return (0);
1524 }
1525 
1526 int
1527 ess_audio1_halt(addr)
1528 	void *addr;
1529 {
1530 	struct ess_softc *sc = addr;
1531 
1532 	DPRINTF(("ess_audio1_halt: sc=%p\n", sc));
1533 
1534 	if (sc->sc_audio1.active) {
1535 		ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
1536 		    ESS_AUDIO1_CTRL2_FIFO_ENABLE);
1537 		isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
1538 		if (sc->sc_audio1.polled)
1539 			callout_stop(&sc->sc_poll1_ch);
1540 		sc->sc_audio1.active = 0;
1541 	}
1542 
1543 	return (0);
1544 }
1545 
1546 int
1547 ess_audio2_halt(addr)
1548 	void *addr;
1549 {
1550 	struct ess_softc *sc = addr;
1551 
1552 	DPRINTF(("ess_audio2_halt: sc=%p\n", sc));
1553 
1554 	if (sc->sc_audio2.active) {
1555 		ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
1556 		    ESS_AUDIO2_CTRL1_DAC_ENABLE |
1557 		    ESS_AUDIO2_CTRL1_FIFO_ENABLE);
1558 		isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
1559 		if (sc->sc_audio2.polled)
1560 			callout_stop(&sc->sc_poll2_ch);
1561 		sc->sc_audio2.active = 0;
1562 	}
1563 
1564 	return (0);
1565 }
1566 
1567 int
1568 ess_audio1_intr(arg)
1569 	void *arg;
1570 {
1571 	struct ess_softc *sc = arg;
1572 	u_int8_t reg;
1573 
1574 	DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));
1575 
1576 	/* Check and clear interrupt on Audio1. */
1577 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
1578 	if ((reg & ESS_DSP_READ_OFLOW) == 0)
1579 		return (0);
1580 	reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);
1581 
1582 	sc->sc_audio1.nintr++;
1583 
1584 	if (sc->sc_audio1.active) {
1585 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1586 		return (1);
1587 	} else
1588 		return (0);
1589 }
1590 
1591 int
1592 ess_audio2_intr(arg)
1593 	void *arg;
1594 {
1595 	struct ess_softc *sc = arg;
1596 	u_int8_t reg;
1597 
1598 	DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));
1599 
1600 	/* Check and clear interrupt on Audio2. */
1601 	reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
1602 	if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0)
1603 		return (0);
1604 	reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
1605 	ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);
1606 
1607 	sc->sc_audio2.nintr++;
1608 
1609 	if (sc->sc_audio2.active) {
1610 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1611 		return (1);
1612 	} else
1613 		return (0);
1614 }
1615 
1616 void
1617 ess_audio1_poll(addr)
1618 	void *addr;
1619 {
1620 	struct ess_softc *sc = addr;
1621 	int dmapos, dmacount;
1622 
1623 	if (!sc->sc_audio1.active)
1624 		return;
1625 
1626 	sc->sc_audio1.nintr++;
1627 
1628 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
1629 	dmacount = sc->sc_audio1.dmapos - dmapos;
1630 	if (dmacount < 0)
1631 		dmacount += sc->sc_audio1.buffersize;
1632 	sc->sc_audio1.dmapos = dmapos;
1633 #if 1
1634 	dmacount += sc->sc_audio1.dmacount;
1635 	while (dmacount > sc->sc_audio1.blksize) {
1636 		dmacount -= sc->sc_audio1.blksize;
1637 		(*sc->sc_audio1.intr)(sc->sc_audio1.arg);
1638 	}
1639 	sc->sc_audio1.dmacount = dmacount;
1640 #else
1641 	(*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
1642 #endif
1643 
1644 	callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
1645 }
1646 
1647 void
1648 ess_audio2_poll(addr)
1649 	void *addr;
1650 {
1651 	struct ess_softc *sc = addr;
1652 	int dmapos, dmacount;
1653 
1654 	if (!sc->sc_audio2.active)
1655 		return;
1656 
1657 	sc->sc_audio2.nintr++;
1658 
1659 	dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
1660 	dmacount = sc->sc_audio2.dmapos - dmapos;
1661 	if (dmacount < 0)
1662 		dmacount += sc->sc_audio2.buffersize;
1663 	sc->sc_audio2.dmapos = dmapos;
1664 #if 1
1665 	dmacount += sc->sc_audio2.dmacount;
1666 	while (dmacount > sc->sc_audio2.blksize) {
1667 		dmacount -= sc->sc_audio2.blksize;
1668 		(*sc->sc_audio2.intr)(sc->sc_audio2.arg);
1669 	}
1670 	sc->sc_audio2.dmacount = dmacount;
1671 #else
1672 	(*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
1673 #endif
1674 
1675 	callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
1676 }
1677 
1678 int
1679 ess_round_blocksize(addr, blk)
1680 	void *addr;
1681 	int blk;
1682 {
1683 	return (blk & -8);	/* round for max DMA size */
1684 }
1685 
1686 int
1687 ess_set_port(addr, cp)
1688 	void *addr;
1689 	mixer_ctrl_t *cp;
1690 {
1691 	struct ess_softc *sc = addr;
1692 	int lgain, rgain;
1693 
1694 	DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
1695 		    cp->dev, cp->un.value.num_channels));
1696 
1697 	switch (cp->dev) {
1698 	/*
1699 	 * The following mixer ports are all stereo. If we get a
1700 	 * single-channel gain value passed in, then we duplicate it
1701 	 * to both left and right channels.
1702 	 */
1703 	case ESS_MASTER_VOL:
1704 	case ESS_DAC_PLAY_VOL:
1705 	case ESS_MIC_PLAY_VOL:
1706 	case ESS_LINE_PLAY_VOL:
1707 	case ESS_SYNTH_PLAY_VOL:
1708 	case ESS_CD_PLAY_VOL:
1709 	case ESS_AUXB_PLAY_VOL:
1710 	case ESS_RECORD_VOL:
1711 		if (cp->type != AUDIO_MIXER_VALUE)
1712 			return EINVAL;
1713 
1714 		switch (cp->un.value.num_channels) {
1715 		case 1:
1716 			lgain = rgain = ESS_4BIT_GAIN(
1717 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1718 			break;
1719 		case 2:
1720 			lgain = ESS_4BIT_GAIN(
1721 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1722 			rgain = ESS_4BIT_GAIN(
1723 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1724 			break;
1725 		default:
1726 			return EINVAL;
1727 		}
1728 
1729 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1730 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1731 		ess_set_gain(sc, cp->dev, 1);
1732 		return (0);
1733 
1734 	/*
1735 	 * The PC speaker port is mono. If we get a stereo gain value
1736 	 * passed in, then we return EINVAL.
1737 	 */
1738 	case ESS_PCSPEAKER_VOL:
1739 		if (cp->un.value.num_channels != 1)
1740 			return EINVAL;
1741 
1742 		sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
1743 		  ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1744 		ess_set_gain(sc, cp->dev, 1);
1745 		return (0);
1746 
1747 	case ESS_RECORD_SOURCE:
1748 		if (ESS_USE_AUDIO1(sc->sc_model)) {
1749 			if (cp->type == AUDIO_MIXER_ENUM)
1750 				return (ess_set_in_port(sc, cp->un.ord));
1751 			else
1752 				return (EINVAL);
1753 		} else {
1754 			if (cp->type == AUDIO_MIXER_SET)
1755 				return (ess_set_in_ports(sc, cp->un.mask));
1756 			else
1757 				return (EINVAL);
1758 		}
1759 		return (0);
1760 
1761 	case ESS_RECORD_MONITOR:
1762 		if (cp->type != AUDIO_MIXER_ENUM)
1763 			return EINVAL;
1764 
1765 		if (cp->un.ord)
1766 			/* Enable monitor */
1767 			ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1768 					  ESS_AUDIO_CTRL_MONITOR);
1769 		else
1770 			/* Disable monitor */
1771 			ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
1772 					    ESS_AUDIO_CTRL_MONITOR);
1773 		return (0);
1774 	}
1775 
1776 	if (ESS_USE_AUDIO1(sc->sc_model))
1777 		return (EINVAL);
1778 
1779 	switch (cp->dev) {
1780 	case ESS_DAC_REC_VOL:
1781 	case ESS_MIC_REC_VOL:
1782 	case ESS_LINE_REC_VOL:
1783 	case ESS_SYNTH_REC_VOL:
1784 	case ESS_CD_REC_VOL:
1785 	case ESS_AUXB_REC_VOL:
1786 		if (cp->type != AUDIO_MIXER_VALUE)
1787 			return EINVAL;
1788 
1789 		switch (cp->un.value.num_channels) {
1790 		case 1:
1791 			lgain = rgain = ESS_4BIT_GAIN(
1792 			  cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
1793 			break;
1794 		case 2:
1795 			lgain = ESS_4BIT_GAIN(
1796 			  cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
1797 			rgain = ESS_4BIT_GAIN(
1798 			  cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
1799 			break;
1800 		default:
1801 			return EINVAL;
1802 		}
1803 
1804 		sc->gain[cp->dev][ESS_LEFT]  = lgain;
1805 		sc->gain[cp->dev][ESS_RIGHT] = rgain;
1806 		ess_set_gain(sc, cp->dev, 1);
1807 		return (0);
1808 
1809 	case ESS_MIC_PREAMP:
1810 		if (cp->type != AUDIO_MIXER_ENUM)
1811 			return EINVAL;
1812 
1813 		if (cp->un.ord)
1814 			/* Enable microphone preamp */
1815 			ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1816 					  ESS_PREAMP_CTRL_ENABLE);
1817 		else
1818 			/* Disable microphone preamp */
1819 			ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
1820 					  ESS_PREAMP_CTRL_ENABLE);
1821 		return (0);
1822 	}
1823 
1824 	return (EINVAL);
1825 }
1826 
1827 int
1828 ess_get_port(addr, cp)
1829 	void *addr;
1830 	mixer_ctrl_t *cp;
1831 {
1832 	struct ess_softc *sc = addr;
1833 
1834 	DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));
1835 
1836 	switch (cp->dev) {
1837 	case ESS_MASTER_VOL:
1838 	case ESS_DAC_PLAY_VOL:
1839 	case ESS_MIC_PLAY_VOL:
1840 	case ESS_LINE_PLAY_VOL:
1841 	case ESS_SYNTH_PLAY_VOL:
1842 	case ESS_CD_PLAY_VOL:
1843 	case ESS_AUXB_PLAY_VOL:
1844 	case ESS_RECORD_VOL:
1845 		switch (cp->un.value.num_channels) {
1846 		case 1:
1847 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1848 				sc->gain[cp->dev][ESS_LEFT];
1849 			break;
1850 		case 2:
1851 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1852 				sc->gain[cp->dev][ESS_LEFT];
1853 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1854 				sc->gain[cp->dev][ESS_RIGHT];
1855 			break;
1856 		default:
1857 			return EINVAL;
1858 		}
1859 		return (0);
1860 
1861 	case ESS_PCSPEAKER_VOL:
1862 		if (cp->un.value.num_channels != 1)
1863 			return EINVAL;
1864 
1865 		cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1866 			sc->gain[cp->dev][ESS_LEFT];
1867 		return (0);
1868 
1869 	case ESS_RECORD_SOURCE:
1870 		if (ESS_USE_AUDIO1(sc->sc_model))
1871 			cp->un.ord = sc->in_port;
1872 		else
1873 			cp->un.mask = sc->in_mask;
1874 		return (0);
1875 
1876 	case ESS_RECORD_MONITOR:
1877 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
1878 			      ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
1879 		return (0);
1880 	}
1881 
1882 	if (ESS_USE_AUDIO1(sc->sc_model))
1883 		return (EINVAL);
1884 
1885 	switch (cp->dev) {
1886 	case ESS_DAC_REC_VOL:
1887 	case ESS_MIC_REC_VOL:
1888 	case ESS_LINE_REC_VOL:
1889 	case ESS_SYNTH_REC_VOL:
1890 	case ESS_CD_REC_VOL:
1891 	case ESS_AUXB_REC_VOL:
1892 		switch (cp->un.value.num_channels) {
1893 		case 1:
1894 			cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
1895 				sc->gain[cp->dev][ESS_LEFT];
1896 			break;
1897 		case 2:
1898 			cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
1899 				sc->gain[cp->dev][ESS_LEFT];
1900 			cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
1901 				sc->gain[cp->dev][ESS_RIGHT];
1902 			break;
1903 		default:
1904 			return EINVAL;
1905 		}
1906 		return (0);
1907 
1908 	case ESS_MIC_PREAMP:
1909 		cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
1910 			      ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
1911 		return (0);
1912 	}
1913 
1914 	return (EINVAL);
1915 }
1916 
1917 int
1918 ess_query_devinfo(addr, dip)
1919 	void *addr;
1920 	mixer_devinfo_t *dip;
1921 {
1922 	struct ess_softc *sc = addr;
1923 
1924 	DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
1925 		    sc->sc_model, dip->index));
1926 
1927 	/*
1928 	 * REVISIT: There are some slight differences between the
1929 	 *          mixers on the different ESS chips, which can
1930 	 *          be sorted out using the chip model rather than a
1931 	 *          separate mixer model.
1932 	 *          This is currently coded assuming an ES1887; we
1933 	 *          need to work out which bits are not applicable to
1934 	 *          the other models (1888 and 888).
1935 	 */
1936 	switch (dip->index) {
1937 	case ESS_DAC_PLAY_VOL:
1938 		dip->mixer_class = ESS_INPUT_CLASS;
1939 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1940 		strcpy(dip->label.name, AudioNdac);
1941 		dip->type = AUDIO_MIXER_VALUE;
1942 		dip->un.v.num_channels = 2;
1943 		strcpy(dip->un.v.units.name, AudioNvolume);
1944 		return (0);
1945 
1946 	case ESS_MIC_PLAY_VOL:
1947 		dip->mixer_class = ESS_INPUT_CLASS;
1948 		dip->prev = AUDIO_MIXER_LAST;
1949 		if (ESS_USE_AUDIO1(sc->sc_model))
1950 			dip->next = AUDIO_MIXER_LAST;
1951 		else
1952 			dip->next = ESS_MIC_PREAMP;
1953 		strcpy(dip->label.name, AudioNmicrophone);
1954 		dip->type = AUDIO_MIXER_VALUE;
1955 		dip->un.v.num_channels = 2;
1956 		strcpy(dip->un.v.units.name, AudioNvolume);
1957 		return (0);
1958 
1959 	case ESS_LINE_PLAY_VOL:
1960 		dip->mixer_class = ESS_INPUT_CLASS;
1961 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1962 		strcpy(dip->label.name, AudioNline);
1963 		dip->type = AUDIO_MIXER_VALUE;
1964 		dip->un.v.num_channels = 2;
1965 		strcpy(dip->un.v.units.name, AudioNvolume);
1966 		return (0);
1967 
1968 	case ESS_SYNTH_PLAY_VOL:
1969 		dip->mixer_class = ESS_INPUT_CLASS;
1970 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1971 		strcpy(dip->label.name, AudioNfmsynth);
1972 		dip->type = AUDIO_MIXER_VALUE;
1973 		dip->un.v.num_channels = 2;
1974 		strcpy(dip->un.v.units.name, AudioNvolume);
1975 		return (0);
1976 
1977 	case ESS_CD_PLAY_VOL:
1978 		dip->mixer_class = ESS_INPUT_CLASS;
1979 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1980 		strcpy(dip->label.name, AudioNcd);
1981 		dip->type = AUDIO_MIXER_VALUE;
1982 		dip->un.v.num_channels = 2;
1983 		strcpy(dip->un.v.units.name, AudioNvolume);
1984 		return (0);
1985 
1986 	case ESS_AUXB_PLAY_VOL:
1987 		dip->mixer_class = ESS_INPUT_CLASS;
1988 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1989 		strcpy(dip->label.name, "auxb");
1990 		dip->type = AUDIO_MIXER_VALUE;
1991 		dip->un.v.num_channels = 2;
1992 		strcpy(dip->un.v.units.name, AudioNvolume);
1993 		return (0);
1994 
1995 	case ESS_INPUT_CLASS:
1996 		dip->mixer_class = ESS_INPUT_CLASS;
1997 		dip->next = dip->prev = AUDIO_MIXER_LAST;
1998 		strcpy(dip->label.name, AudioCinputs);
1999 		dip->type = AUDIO_MIXER_CLASS;
2000 		return (0);
2001 
2002 	case ESS_MASTER_VOL:
2003 		dip->mixer_class = ESS_OUTPUT_CLASS;
2004 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2005 		strcpy(dip->label.name, AudioNmaster);
2006 		dip->type = AUDIO_MIXER_VALUE;
2007 		dip->un.v.num_channels = 2;
2008 		strcpy(dip->un.v.units.name, AudioNvolume);
2009 		return (0);
2010 
2011 	case ESS_PCSPEAKER_VOL:
2012 		dip->mixer_class = ESS_OUTPUT_CLASS;
2013 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2014 		strcpy(dip->label.name, "pc_speaker");
2015 		dip->type = AUDIO_MIXER_VALUE;
2016 		dip->un.v.num_channels = 1;
2017 		strcpy(dip->un.v.units.name, AudioNvolume);
2018 		return (0);
2019 
2020 	case ESS_OUTPUT_CLASS:
2021 		dip->mixer_class = ESS_OUTPUT_CLASS;
2022 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2023 		strcpy(dip->label.name, AudioCoutputs);
2024 		dip->type = AUDIO_MIXER_CLASS;
2025 		return (0);
2026 
2027 	case ESS_RECORD_VOL:
2028 		dip->mixer_class = ESS_RECORD_CLASS;
2029 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2030 		strcpy(dip->label.name, AudioNrecord);
2031 		dip->type = AUDIO_MIXER_VALUE;
2032 		dip->un.v.num_channels = 2;
2033 		strcpy(dip->un.v.units.name, AudioNvolume);
2034 		return (0);
2035 
2036 	case ESS_RECORD_SOURCE:
2037 		dip->mixer_class = ESS_RECORD_CLASS;
2038 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2039 		strcpy(dip->label.name, AudioNsource);
2040 		if (ESS_USE_AUDIO1(sc->sc_model)) {
2041 			/*
2042 			 * The 1788 doesn't use the input mixer control that
2043 			 * the 1888 uses, because it's a pain when you only
2044 			 * have one mixer.
2045 			 * Perhaps it could be emulated by keeping both sets of
2046 			 * gain values, and doing a `context switch' of the
2047 			 * mixer registers when shifting from playing to
2048 			 * recording.
2049 			 */
2050 			dip->type = AUDIO_MIXER_ENUM;
2051 			dip->un.e.num_mem = 4;
2052 			strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
2053 			dip->un.e.member[0].ord = ESS_SOURCE_MIC;
2054 			strcpy(dip->un.e.member[1].label.name, AudioNline);
2055 			dip->un.e.member[1].ord = ESS_SOURCE_LINE;
2056 			strcpy(dip->un.e.member[2].label.name, AudioNcd);
2057 			dip->un.e.member[2].ord = ESS_SOURCE_CD;
2058 			strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
2059 			dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
2060 		} else {
2061 			dip->type = AUDIO_MIXER_SET;
2062 			dip->un.s.num_mem = 6;
2063 			strcpy(dip->un.s.member[0].label.name, AudioNdac);
2064 			dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
2065 			strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
2066 			dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
2067 			strcpy(dip->un.s.member[2].label.name, AudioNline);
2068 			dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
2069 			strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
2070 			dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
2071 			strcpy(dip->un.s.member[4].label.name, AudioNcd);
2072 			dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
2073 			strcpy(dip->un.s.member[5].label.name, "auxb");
2074 			dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
2075 		}
2076 		return (0);
2077 
2078 	case ESS_RECORD_CLASS:
2079 		dip->mixer_class = ESS_RECORD_CLASS;
2080 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2081 		strcpy(dip->label.name, AudioCrecord);
2082 		dip->type = AUDIO_MIXER_CLASS;
2083 		return (0);
2084 
2085 	case ESS_RECORD_MONITOR:
2086 		dip->prev = dip->next = AUDIO_MIXER_LAST;
2087 		strcpy(dip->label.name, AudioNmute);
2088 		dip->type = AUDIO_MIXER_ENUM;
2089 		dip->mixer_class = ESS_MONITOR_CLASS;
2090 		dip->un.e.num_mem = 2;
2091 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2092 		dip->un.e.member[0].ord = 0;
2093 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2094 		dip->un.e.member[1].ord = 1;
2095 		return (0);
2096 
2097 	case ESS_MONITOR_CLASS:
2098 		dip->mixer_class = ESS_MONITOR_CLASS;
2099 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2100 		strcpy(dip->label.name, AudioCmonitor);
2101 		dip->type = AUDIO_MIXER_CLASS;
2102 		return (0);
2103 	}
2104 
2105 	if (ESS_USE_AUDIO1(sc->sc_model))
2106 		return (ENXIO);
2107 
2108 	switch (dip->index) {
2109 	case ESS_DAC_REC_VOL:
2110 		dip->mixer_class = ESS_RECORD_CLASS;
2111 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2112 		strcpy(dip->label.name, AudioNdac);
2113 		dip->type = AUDIO_MIXER_VALUE;
2114 		dip->un.v.num_channels = 2;
2115 		strcpy(dip->un.v.units.name, AudioNvolume);
2116 		return (0);
2117 
2118 	case ESS_MIC_REC_VOL:
2119 		dip->mixer_class = ESS_RECORD_CLASS;
2120 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2121 		strcpy(dip->label.name, AudioNmicrophone);
2122 		dip->type = AUDIO_MIXER_VALUE;
2123 		dip->un.v.num_channels = 2;
2124 		strcpy(dip->un.v.units.name, AudioNvolume);
2125 		return (0);
2126 
2127 	case ESS_LINE_REC_VOL:
2128 		dip->mixer_class = ESS_RECORD_CLASS;
2129 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2130 		strcpy(dip->label.name, AudioNline);
2131 		dip->type = AUDIO_MIXER_VALUE;
2132 		dip->un.v.num_channels = 2;
2133 		strcpy(dip->un.v.units.name, AudioNvolume);
2134 		return (0);
2135 
2136 	case ESS_SYNTH_REC_VOL:
2137 		dip->mixer_class = ESS_RECORD_CLASS;
2138 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2139 		strcpy(dip->label.name, AudioNfmsynth);
2140 		dip->type = AUDIO_MIXER_VALUE;
2141 		dip->un.v.num_channels = 2;
2142 		strcpy(dip->un.v.units.name, AudioNvolume);
2143 		return (0);
2144 
2145 	case ESS_CD_REC_VOL:
2146 		dip->mixer_class = ESS_RECORD_CLASS;
2147 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2148 		strcpy(dip->label.name, AudioNcd);
2149 		dip->type = AUDIO_MIXER_VALUE;
2150 		dip->un.v.num_channels = 2;
2151 		strcpy(dip->un.v.units.name, AudioNvolume);
2152 		return (0);
2153 
2154 	case ESS_AUXB_REC_VOL:
2155 		dip->mixer_class = ESS_RECORD_CLASS;
2156 		dip->next = dip->prev = AUDIO_MIXER_LAST;
2157 		strcpy(dip->label.name, "auxb");
2158 		dip->type = AUDIO_MIXER_VALUE;
2159 		dip->un.v.num_channels = 2;
2160 		strcpy(dip->un.v.units.name, AudioNvolume);
2161 		return (0);
2162 
2163 	case ESS_MIC_PREAMP:
2164 		dip->mixer_class = ESS_INPUT_CLASS;
2165 		dip->prev = ESS_MIC_PLAY_VOL;
2166 		dip->next = AUDIO_MIXER_LAST;
2167 		strcpy(dip->label.name, AudioNpreamp);
2168 		dip->type = AUDIO_MIXER_ENUM;
2169 		dip->un.e.num_mem = 2;
2170 		strcpy(dip->un.e.member[0].label.name, AudioNoff);
2171 		dip->un.e.member[0].ord = 0;
2172 		strcpy(dip->un.e.member[1].label.name, AudioNon);
2173 		dip->un.e.member[1].ord = 1;
2174 		return (0);
2175 	}
2176 
2177 	return (ENXIO);
2178 }
2179 
2180 void *
2181 ess_malloc(addr, direction, size, pool, flags)
2182 	void *addr;
2183 	int direction;
2184 	size_t size;
2185 	struct malloc_type *pool;
2186 	int flags;
2187 {
2188 	struct ess_softc *sc = addr;
2189 	int drq;
2190 
2191 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2192 		drq = sc->sc_audio2.drq;
2193 	else
2194 		drq = sc->sc_audio1.drq;
2195 	return (isa_malloc(sc->sc_ic, drq, size, pool, flags));
2196 }
2197 
2198 void
2199 ess_free(addr, ptr, pool)
2200 	void *addr;
2201 	void *ptr;
2202 	struct malloc_type *pool;
2203 {
2204 	isa_free(ptr, pool);
2205 }
2206 
2207 size_t
2208 ess_round_buffersize(addr, direction, size)
2209 	void *addr;
2210 	int direction;
2211 	size_t size;
2212 {
2213 	struct ess_softc *sc = addr;
2214 	bus_size_t maxsize;
2215 
2216 	if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
2217 		maxsize = sc->sc_audio2.maxsize;
2218 	else
2219 		maxsize = sc->sc_audio1.maxsize;
2220 
2221 	if (size > maxsize)
2222 		size = maxsize;
2223 	return (size);
2224 }
2225 
2226 paddr_t
2227 ess_mappage(addr, mem, off, prot)
2228 	void *addr;
2229 	void *mem;
2230 	off_t off;
2231 	int prot;
2232 {
2233 	return (isa_mappage(mem, off, prot));
2234 }
2235 
2236 int
2237 ess_1788_get_props(addr)
2238 	void *addr;
2239 {
2240 
2241 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT);
2242 }
2243 
2244 int
2245 ess_1888_get_props(addr)
2246 	void *addr;
2247 {
2248 
2249 	return (AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX);
2250 }
2251 
2252 /* ============================================
2253  * Generic functions for ess, not used by audio h/w i/f
2254  * =============================================
2255  */
2256 
2257 /*
2258  * Reset the chip.
2259  * Return non-zero if the chip isn't detected.
2260  */
2261 int
2262 ess_reset(sc)
2263 	struct ess_softc *sc;
2264 {
2265 	bus_space_tag_t iot = sc->sc_iot;
2266 	bus_space_handle_t ioh = sc->sc_ioh;
2267 
2268 	sc->sc_audio1.active = 0;
2269 	sc->sc_audio2.active = 0;
2270 
2271 	EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
2272 	delay(10000);		/* XXX shouldn't delay so long */
2273 	EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
2274 	if (ess_rdsp(sc) != ESS_MAGIC)
2275 		return (1);
2276 
2277 	/* Enable access to the ESS extension commands. */
2278 	ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);
2279 
2280 	return (0);
2281 }
2282 
2283 void
2284 ess_set_gain(sc, port, on)
2285 	struct ess_softc *sc;
2286 	int port;
2287 	int on;
2288 {
2289 	int gain, left, right;
2290 	int mix;
2291 	int src;
2292 	int stereo;
2293 
2294 	/*
2295 	 * Most gain controls are found in the mixer registers and
2296 	 * are stereo. Any that are not, must set mix and stereo as
2297 	 * required.
2298 	 */
2299 	mix = 1;
2300 	stereo = 1;
2301 
2302 	switch (port) {
2303 	case ESS_MASTER_VOL:
2304 		src = ESS_MREG_VOLUME_MASTER;
2305 		break;
2306 	case ESS_DAC_PLAY_VOL:
2307 		if (ESS_USE_AUDIO1(sc->sc_model))
2308 			src = ESS_MREG_VOLUME_VOICE;
2309 		else
2310 			src = 0x7C;
2311 		break;
2312 	case ESS_MIC_PLAY_VOL:
2313 		src = ESS_MREG_VOLUME_MIC;
2314 		break;
2315 	case ESS_LINE_PLAY_VOL:
2316 		src = ESS_MREG_VOLUME_LINE;
2317 		break;
2318 	case ESS_SYNTH_PLAY_VOL:
2319 		src = ESS_MREG_VOLUME_SYNTH;
2320 		break;
2321 	case ESS_CD_PLAY_VOL:
2322 		src = ESS_MREG_VOLUME_CD;
2323 		break;
2324 	case ESS_AUXB_PLAY_VOL:
2325 		src = ESS_MREG_VOLUME_AUXB;
2326 		break;
2327 	case ESS_PCSPEAKER_VOL:
2328 		src = ESS_MREG_VOLUME_PCSPKR;
2329 		stereo = 0;
2330 		break;
2331 	case ESS_DAC_REC_VOL:
2332 		src = 0x69;
2333 		break;
2334 	case ESS_MIC_REC_VOL:
2335 		src = 0x68;
2336 		break;
2337 	case ESS_LINE_REC_VOL:
2338 		src = 0x6E;
2339 		break;
2340 	case ESS_SYNTH_REC_VOL:
2341 		src = 0x6B;
2342 		break;
2343 	case ESS_CD_REC_VOL:
2344 		src = 0x6A;
2345 		break;
2346 	case ESS_AUXB_REC_VOL:
2347 		src = 0x6C;
2348 		break;
2349 	case ESS_RECORD_VOL:
2350 		src = ESS_XCMD_VOLIN_CTRL;
2351 		mix = 0;
2352 		break;
2353 	default:
2354 		return;
2355 	}
2356 
2357 	/* 1788 doesn't have a separate recording mixer */
2358 	if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
2359 		return;
2360 
2361 	if (on) {
2362 		left = sc->gain[port][ESS_LEFT];
2363 		right = sc->gain[port][ESS_RIGHT];
2364 	} else {
2365 		left = right = 0;
2366 	}
2367 
2368 	if (stereo)
2369 		gain = ESS_STEREO_GAIN(left, right);
2370 	else
2371 		gain = ESS_MONO_GAIN(left);
2372 
2373 	if (mix)
2374 		ess_write_mix_reg(sc, src, gain);
2375 	else
2376 		ess_write_x_reg(sc, src, gain);
2377 }
2378 
2379 /* Set the input device on devices without an input mixer. */
2380 int
2381 ess_set_in_port(sc, ord)
2382 	struct ess_softc *sc;
2383 	int ord;
2384 {
2385 	mixer_devinfo_t di;
2386 	int i;
2387 
2388 	DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));
2389 
2390 	/*
2391 	 * Get the device info for the record source control,
2392 	 * including the list of available sources.
2393 	 */
2394 	di.index = ESS_RECORD_SOURCE;
2395 	if (ess_query_devinfo(sc, &di))
2396 		return EINVAL;
2397 
2398 	/* See if the given ord value was anywhere in the list. */
2399 	for (i = 0; i < di.un.e.num_mem; i++) {
2400 		if (ord == di.un.e.member[i].ord)
2401 			break;
2402 	}
2403 	if (i == di.un.e.num_mem)
2404 		return EINVAL;
2405 
2406 	ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);
2407 
2408 	sc->in_port = ord;
2409 	return (0);
2410 }
2411 
2412 /* Set the input device levels on input-mixer-enabled devices. */
2413 int
2414 ess_set_in_ports(sc, mask)
2415 	struct ess_softc *sc;
2416 	int mask;
2417 {
2418 	mixer_devinfo_t di;
2419 	int i, port;
2420 
2421 	DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));
2422 
2423 	/*
2424 	 * Get the device info for the record source control,
2425 	 * including the list of available sources.
2426 	 */
2427 	di.index = ESS_RECORD_SOURCE;
2428 	if (ess_query_devinfo(sc, &di))
2429 		return EINVAL;
2430 
2431 	/*
2432 	 * Set or disable the record volume control for each of the
2433 	 * possible sources.
2434 	 */
2435 	for (i = 0; i < di.un.s.num_mem; i++) {
2436 		/*
2437 		 * Calculate the source port number from its mask.
2438 		 */
2439 		port = ffs(di.un.s.member[i].mask);
2440 
2441 		/*
2442 		 * Set the source gain:
2443 		 *	to the current value if source is enabled
2444 		 *	to zero if source is disabled
2445 		 */
2446 		ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
2447 	}
2448 
2449 	sc->in_mask = mask;
2450 	return (0);
2451 }
2452 
2453 void
2454 ess_speaker_on(sc)
2455 	struct ess_softc *sc;
2456 {
2457 	/* Unmute the DAC. */
2458 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
2459 }
2460 
2461 void
2462 ess_speaker_off(sc)
2463 	struct ess_softc *sc;
2464 {
2465 	/* Mute the DAC. */
2466 	ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
2467 }
2468 
2469 /*
2470  * Calculate the time constant for the requested sampling rate.
2471  */
2472 u_int
2473 ess_srtotc(rate)
2474 	u_int rate;
2475 {
2476 	u_int tc;
2477 
2478 	/* The following formulae are from the ESS data sheet. */
2479 	if (rate <= 22050)
2480 		tc = 128 - 397700L / rate;
2481 	else
2482 		tc = 256 - 795500L / rate;
2483 
2484 	return (tc);
2485 }
2486 
2487 
2488 /*
2489  * Calculate the filter constant for the reuqested sampling rate.
2490  */
2491 u_int
2492 ess_srtofc(rate)
2493 	u_int rate;
2494 {
2495 	/*
2496 	 * The following formula is derived from the information in
2497 	 * the ES1887 data sheet, based on a roll-off frequency of
2498 	 * 87%.
2499 	 */
2500 	return (256 - 200279L / rate);
2501 }
2502 
2503 
2504 /*
2505  * Return the status of the DSP.
2506  */
2507 u_char
2508 ess_get_dsp_status(sc)
2509 	struct ess_softc *sc;
2510 {
2511 	return (EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS));
2512 }
2513 
2514 
2515 /*
2516  * Return the read status of the DSP:	1 -> DSP ready for reading
2517  *					0 -> DSP not ready for reading
2518  */
2519 u_char
2520 ess_dsp_read_ready(sc)
2521 	struct ess_softc *sc;
2522 {
2523 	return ((ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0);
2524 }
2525 
2526 
2527 /*
2528  * Return the write status of the DSP:	1 -> DSP ready for writing
2529  *					0 -> DSP not ready for writing
2530  */
2531 u_char
2532 ess_dsp_write_ready(sc)
2533 	struct ess_softc *sc;
2534 {
2535 	return ((ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1);
2536 }
2537 
2538 
2539 /*
2540  * Read a byte from the DSP.
2541  */
2542 int
2543 ess_rdsp(sc)
2544 	struct ess_softc *sc;
2545 {
2546 	bus_space_tag_t iot = sc->sc_iot;
2547 	bus_space_handle_t ioh = sc->sc_ioh;
2548 	int i;
2549 
2550 	for (i = ESS_READ_TIMEOUT; i > 0; --i) {
2551 		if (ess_dsp_read_ready(sc)) {
2552 			i = EREAD1(iot, ioh, ESS_DSP_READ);
2553 			DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
2554 			return i;
2555 		} else
2556 			delay(10);
2557 	}
2558 
2559 	DPRINTF(("ess_rdsp: timed out\n"));
2560 	return (-1);
2561 }
2562 
2563 /*
2564  * Write a byte to the DSP.
2565  */
2566 int
2567 ess_wdsp(sc, v)
2568 	struct ess_softc *sc;
2569 	u_char v;
2570 {
2571 	bus_space_tag_t iot = sc->sc_iot;
2572 	bus_space_handle_t ioh = sc->sc_ioh;
2573 	int i;
2574 
2575 	DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));
2576 
2577 	for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
2578 		if (ess_dsp_write_ready(sc)) {
2579 			EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
2580 			return (0);
2581 		} else
2582 			delay(10);
2583 	}
2584 
2585 	DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
2586 	return (-1);
2587 }
2588 
2589 /*
2590  * Write a value to one of the ESS extended registers.
2591  */
2592 int
2593 ess_write_x_reg(sc, reg, val)
2594 	struct ess_softc *sc;
2595 	u_char reg;
2596 	u_char val;
2597 {
2598 	int error;
2599 
2600 	DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
2601 	if ((error = ess_wdsp(sc, reg)) == 0)
2602 		error = ess_wdsp(sc, val);
2603 
2604 	return error;
2605 }
2606 
2607 /*
2608  * Read the value of one of the ESS extended registers.
2609  */
2610 u_char
2611 ess_read_x_reg(sc, reg)
2612 	struct ess_softc *sc;
2613 	u_char reg;
2614 {
2615 	int error;
2616 	int val;
2617 
2618 	if ((error = ess_wdsp(sc, 0xC0)) == 0)
2619 		error = ess_wdsp(sc, reg);
2620 	if (error)
2621 		DPRINTF(("Error reading extended register 0x%02x\n", reg));
2622 /* REVISIT: what if an error is returned above? */
2623 	val = ess_rdsp(sc);
2624 	DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
2625 	return val;
2626 }
2627 
2628 void
2629 ess_clear_xreg_bits(sc, reg, mask)
2630 	struct ess_softc *sc;
2631 	u_char reg;
2632 	u_char mask;
2633 {
2634 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1)
2635 		DPRINTF(("Error clearing bits in extended register 0x%02x\n",
2636 			 reg));
2637 }
2638 
2639 void
2640 ess_set_xreg_bits(sc, reg, mask)
2641 	struct ess_softc *sc;
2642 	u_char reg;
2643 	u_char mask;
2644 {
2645 	if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1)
2646 		DPRINTF(("Error setting bits in extended register 0x%02x\n",
2647 			 reg));
2648 }
2649 
2650 
2651 /*
2652  * Write a value to one of the ESS mixer registers.
2653  */
2654 void
2655 ess_write_mix_reg(sc, reg, val)
2656 	struct ess_softc *sc;
2657 	u_char reg;
2658 	u_char val;
2659 {
2660 	bus_space_tag_t iot = sc->sc_iot;
2661 	bus_space_handle_t ioh = sc->sc_ioh;
2662 	int s;
2663 
2664 	DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));
2665 
2666 	s = splaudio();
2667 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2668 	EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
2669 	splx(s);
2670 }
2671 
2672 /*
2673  * Read the value of one of the ESS mixer registers.
2674  */
2675 u_char
2676 ess_read_mix_reg(sc, reg)
2677 	struct ess_softc *sc;
2678 	u_char reg;
2679 {
2680 	bus_space_tag_t iot = sc->sc_iot;
2681 	bus_space_handle_t ioh = sc->sc_ioh;
2682 	int s;
2683 	u_char val;
2684 
2685 	s = splaudio();
2686 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2687 	val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);
2688 	splx(s);
2689 
2690 	DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
2691 	return val;
2692 }
2693 
2694 void
2695 ess_clear_mreg_bits(sc, reg, mask)
2696 	struct ess_softc *sc;
2697 	u_char reg;
2698 	u_char mask;
2699 {
2700 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
2701 }
2702 
2703 void
2704 ess_set_mreg_bits(sc, reg, mask)
2705 	struct ess_softc *sc;
2706 	u_char reg;
2707 	u_char mask;
2708 {
2709 	ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
2710 }
2711 
2712 void
2713 ess_read_multi_mix_reg(sc, reg, datap, count)
2714 	struct ess_softc *sc;
2715 	u_char reg;
2716 	u_int8_t *datap;
2717 	bus_size_t count;
2718 {
2719 	bus_space_tag_t iot = sc->sc_iot;
2720 	bus_space_handle_t ioh = sc->sc_ioh;
2721 	int s;
2722 
2723 	s = splaudio();
2724 	EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
2725 	bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
2726 	splx(s);
2727 }
2728