xref: /netbsd-src/sys/dev/ipmi.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: ipmi.c,v 1.5 2020/08/17 08:34:36 nonaka Exp $ */
2 
3 /*
4  * Copyright (c) 2019 Michael van Elst
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  *
26  */
27 /*
28  * Copyright (c) 2006 Manuel Bouyer.
29  *
30  * Redistribution and use in source and binary forms, with or without
31  * modification, are permitted provided that the following conditions
32  * are met:
33  * 1. Redistributions of source code must retain the above copyright
34  *    notice, this list of conditions and the following disclaimer.
35  * 2. Redistributions in binary form must reproduce the above copyright
36  *    notice, this list of conditions and the following disclaimer in the
37  *    documentation and/or other materials provided with the distribution.
38  *
39  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
40  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
41  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
42  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
43  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
45  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
46  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
47  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
48  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
49  *
50  */
51 
52 /*
53  * Copyright (c) 2005 Jordan Hargrave
54  * All rights reserved.
55  *
56  * Redistribution and use in source and binary forms, with or without
57  * modification, are permitted provided that the following conditions
58  * are met:
59  * 1. Redistributions of source code must retain the above copyright
60  *    notice, this list of conditions and the following disclaimer.
61  * 2. Redistributions in binary form must reproduce the above copyright
62  *    notice, this list of conditions and the following disclaimer in the
63  *    documentation and/or other materials provided with the distribution.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
66  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
69  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
73  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
74  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
75  * SUCH DAMAGE.
76  */
77 
78 #include <sys/cdefs.h>
79 __KERNEL_RCSID(0, "$NetBSD: ipmi.c,v 1.5 2020/08/17 08:34:36 nonaka Exp $");
80 
81 #include <sys/types.h>
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/device.h>
86 #include <sys/extent.h>
87 #include <sys/callout.h>
88 #include <sys/envsys.h>
89 #include <sys/malloc.h>
90 #include <sys/kthread.h>
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 #include <sys/ioctl.h>
94 #include <sys/poll.h>
95 #include <sys/conf.h>
96 
97 #include <dev/isa/isareg.h>
98 #include <dev/isa/isavar.h>
99 
100 #include <sys/ipmi.h>
101 #include <dev/ipmivar.h>
102 
103 #include <uvm/uvm_extern.h>
104 
105 #include "ioconf.h"
106 
107 static dev_type_open(ipmi_open);
108 static dev_type_close(ipmi_close);
109 static dev_type_ioctl(ipmi_ioctl);
110 static dev_type_poll(ipmi_poll);
111 
112 const struct cdevsw ipmi_cdevsw = {
113 	.d_open = ipmi_open,
114 	.d_close = ipmi_close,
115 	.d_read = noread,
116 	.d_write = nowrite,
117 	.d_ioctl = ipmi_ioctl,
118 	.d_stop = nostop,
119 	.d_tty = notty,
120 	.d_poll = ipmi_poll,
121 	.d_mmap = nommap,
122 	.d_kqfilter = nokqfilter,
123 	.d_discard = nodiscard,
124 	.d_flag = D_OTHER
125 };
126 
127 #define IPMIUNIT(n) (minor(n))
128 
129 struct ipmi_sensor {
130 	uint8_t	*i_sdr;
131 	int		i_num;
132 	int		i_stype;
133 	int		i_etype;
134 	char		i_envdesc[64];
135 	int 		i_envtype; /* envsys compatible type */
136 	int		i_envnum; /* envsys index */
137 	sysmon_envsys_lim_t i_limits, i_deflims;
138 	uint32_t	i_props, i_defprops;
139 	SLIST_ENTRY(ipmi_sensor) i_list;
140 	int32_t		i_prevval;	/* feed rnd source on change */
141 };
142 
143 #if 0
144 static	int ipmi_nintr;
145 #endif
146 static	int ipmi_dbg = 0;
147 static	int ipmi_enabled = 0;
148 
149 #define SENSOR_REFRESH_RATE (hz / 2)
150 
151 #define IPMI_BTMSG_LEN			0
152 #define IPMI_BTMSG_NFLN			1
153 #define IPMI_BTMSG_SEQ			2
154 #define IPMI_BTMSG_CMD			3
155 #define IPMI_BTMSG_CCODE		4
156 #define IPMI_BTMSG_DATASND		4
157 #define IPMI_BTMSG_DATARCV		5
158 
159 #define IPMI_MSG_NFLN			0
160 #define IPMI_MSG_CMD			1
161 #define IPMI_MSG_CCODE			2
162 #define IPMI_MSG_DATASND		2
163 #define IPMI_MSG_DATARCV		3
164 
165 #define IPMI_SENSOR_TYPE_TEMP		0x0101
166 #define IPMI_SENSOR_TYPE_VOLT		0x0102
167 #define IPMI_SENSOR_TYPE_FAN		0x0104
168 #define IPMI_SENSOR_TYPE_INTRUSION	0x6F05
169 #define IPMI_SENSOR_TYPE_PWRSUPPLY	0x6F08
170 
171 #define IPMI_NAME_UNICODE		0x00
172 #define IPMI_NAME_BCDPLUS		0x01
173 #define IPMI_NAME_ASCII6BIT		0x02
174 #define IPMI_NAME_ASCII8BIT		0x03
175 
176 #define IPMI_ENTITY_PWRSUPPLY		0x0A
177 
178 #define IPMI_SENSOR_SCANNING_ENABLED	(1L << 6)
179 #define IPMI_SENSOR_UNAVAILABLE		(1L << 5)
180 #define IPMI_INVALID_SENSOR_P(x) \
181 	(((x) & (IPMI_SENSOR_SCANNING_ENABLED|IPMI_SENSOR_UNAVAILABLE)) \
182 	!= IPMI_SENSOR_SCANNING_ENABLED)
183 
184 #define IPMI_SDR_TYPEFULL		1
185 #define IPMI_SDR_TYPECOMPACT		2
186 
187 #define byteof(x) ((x) >> 3)
188 #define bitof(x)  (1L << ((x) & 0x7))
189 #define TB(b,m)	  (data[2+byteof(b)] & bitof(b))
190 
191 #define dbg_printf(lvl, fmt...) \
192 	if (ipmi_dbg >= lvl) \
193 		printf(fmt);
194 #define dbg_dump(lvl, msg, len, buf) \
195 	if (len && ipmi_dbg >= lvl) \
196 		dumpb(msg, len, (const uint8_t *)(buf));
197 
198 static	long signextend(unsigned long, int);
199 
200 SLIST_HEAD(ipmi_sensors_head, ipmi_sensor);
201 static struct ipmi_sensors_head ipmi_sensor_list =
202     SLIST_HEAD_INITIALIZER(&ipmi_sensor_list);
203 
204 static	void dumpb(const char *, int, const uint8_t *);
205 
206 static	int read_sensor(struct ipmi_softc *, struct ipmi_sensor *);
207 static	int add_sdr_sensor(struct ipmi_softc *, uint8_t *);
208 static	int get_sdr_partial(struct ipmi_softc *, uint16_t, uint16_t,
209 	    uint8_t, uint8_t, void *, uint16_t *);
210 static	int get_sdr(struct ipmi_softc *, uint16_t, uint16_t *);
211 
212 static	char *ipmi_buf_acquire(struct ipmi_softc *, size_t);
213 static	void ipmi_buf_release(struct ipmi_softc *, char *);
214 static	int ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*);
215 static	int ipmi_recvcmd(struct ipmi_softc *, int, int *, void *);
216 static	void ipmi_delay(struct ipmi_softc *, int);
217 
218 static	int ipmi_get_device_id(struct ipmi_softc *, struct ipmi_device_id *);
219 static	int ipmi_watchdog_setmode(struct sysmon_wdog *);
220 static	int ipmi_watchdog_tickle(struct sysmon_wdog *);
221 static	void ipmi_dotickle(struct ipmi_softc *);
222 
223 #if 0
224 static	int ipmi_intr(void *);
225 #endif
226 
227 static	int ipmi_match(device_t, cfdata_t, void *);
228 static	void ipmi_attach(device_t, device_t, void *);
229 static	int ipmi_detach(device_t, int);
230 
231 static	long	ipmi_convert(uint8_t, struct sdrtype1 *, long);
232 static	void	ipmi_sensor_name(char *, int, uint8_t, uint8_t *);
233 
234 /* BMC Helper Functions */
235 static	uint8_t bmc_read(struct ipmi_softc *, int);
236 static	void bmc_write(struct ipmi_softc *, int, uint8_t);
237 static	int bmc_io_wait(struct ipmi_softc *, int, uint8_t, uint8_t, const char *);
238 static	int bmc_io_wait_spin(struct ipmi_softc *, int, uint8_t, uint8_t);
239 static	int bmc_io_wait_sleep(struct ipmi_softc *, int, uint8_t, uint8_t);
240 
241 static	void *bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
242 static	void *cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
243 
244 static	int getbits(uint8_t *, int, int);
245 static	int ipmi_sensor_type(int, int, int);
246 
247 static	void ipmi_refresh_sensors(struct ipmi_softc *);
248 static	int ipmi_map_regs(struct ipmi_softc *, struct ipmi_attach_args *);
249 static	void ipmi_unmap_regs(struct ipmi_softc *);
250 
251 static	int32_t ipmi_convert_sensor(uint8_t *, struct ipmi_sensor *);
252 static	void ipmi_set_limits(struct sysmon_envsys *, envsys_data_t *,
253 		sysmon_envsys_lim_t *, uint32_t *);
254 static	void ipmi_get_limits(struct sysmon_envsys *, envsys_data_t *,
255 		sysmon_envsys_lim_t *, uint32_t *);
256 static	void ipmi_get_sensor_limits(struct ipmi_softc *, struct ipmi_sensor *,
257 		sysmon_envsys_lim_t *, uint32_t *);
258 static	int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *,
259 		envsys_data_t *, uint8_t *);
260 
261 static	int add_child_sensors(struct ipmi_softc *, uint8_t *, int, int, int,
262 		int, int, int, const char *);
263 
264 static	bool ipmi_suspend(device_t, const pmf_qual_t *);
265 
266 static	int kcs_probe(struct ipmi_softc *);
267 static	int kcs_reset(struct ipmi_softc *);
268 static	int kcs_sendmsg(struct ipmi_softc *, int, const uint8_t *);
269 static	int kcs_recvmsg(struct ipmi_softc *, int, int *len, uint8_t *);
270 
271 static	int bt_probe(struct ipmi_softc *);
272 static	int bt_reset(struct ipmi_softc *);
273 static	int bt_sendmsg(struct ipmi_softc *, int, const uint8_t *);
274 static	int bt_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);
275 
276 static	int smic_probe(struct ipmi_softc *);
277 static	int smic_reset(struct ipmi_softc *);
278 static	int smic_sendmsg(struct ipmi_softc *, int, const uint8_t *);
279 static	int smic_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);
280 
281 static struct ipmi_if kcs_if = {
282 	"KCS",
283 	IPMI_IF_KCS_NREGS,
284 	cmn_buildmsg,
285 	kcs_sendmsg,
286 	kcs_recvmsg,
287 	kcs_reset,
288 	kcs_probe,
289 };
290 
291 static struct ipmi_if smic_if = {
292 	"SMIC",
293 	IPMI_IF_SMIC_NREGS,
294 	cmn_buildmsg,
295 	smic_sendmsg,
296 	smic_recvmsg,
297 	smic_reset,
298 	smic_probe,
299 };
300 
301 static struct ipmi_if bt_if = {
302 	"BT",
303 	IPMI_IF_BT_NREGS,
304 	bt_buildmsg,
305 	bt_sendmsg,
306 	bt_recvmsg,
307 	bt_reset,
308 	bt_probe,
309 };
310 
311 static	struct ipmi_if *ipmi_get_if(int);
312 
313 static struct ipmi_if *
314 ipmi_get_if(int iftype)
315 {
316 	switch (iftype) {
317 	case IPMI_IF_KCS:
318 		return &kcs_if;
319 	case IPMI_IF_SMIC:
320 		return &smic_if;
321 	case IPMI_IF_BT:
322 		return &bt_if;
323 	default:
324 		return NULL;
325 	}
326 }
327 
328 /*
329  * BMC Helper Functions
330  */
331 static uint8_t
332 bmc_read(struct ipmi_softc *sc, int offset)
333 {
334 	return bus_space_read_1(sc->sc_iot, sc->sc_ioh,
335 	    offset * sc->sc_if_iospacing);
336 }
337 
338 static void
339 bmc_write(struct ipmi_softc *sc, int offset, uint8_t val)
340 {
341 	bus_space_write_1(sc->sc_iot, sc->sc_ioh,
342 	    offset * sc->sc_if_iospacing, val);
343 }
344 
345 static int
346 bmc_io_wait_sleep(struct ipmi_softc *sc, int offset, uint8_t mask,
347     uint8_t value)
348 {
349 	int retries;
350 	uint8_t v;
351 
352 	KASSERT(mutex_owned(&sc->sc_cmd_mtx));
353 
354 	for (retries = 0; retries < sc->sc_max_retries; retries++) {
355 		v = bmc_read(sc, offset);
356 		if ((v & mask) == value)
357 			return v;
358 		mutex_enter(&sc->sc_sleep_mtx);
359 		cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, 1);
360 		mutex_exit(&sc->sc_sleep_mtx);
361 	}
362 	return -1;
363 }
364 
365 static int
366 bmc_io_wait(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value,
367     const char *lbl)
368 {
369 	int v;
370 
371 	v = bmc_io_wait_spin(sc, offset, mask, value);
372 	if (cold || v != -1)
373 		return v;
374 
375 	return bmc_io_wait_sleep(sc, offset, mask, value);
376 }
377 
378 static int
379 bmc_io_wait_spin(struct ipmi_softc *sc, int offset, uint8_t mask,
380     uint8_t value)
381 {
382 	uint8_t	v;
383 	int			count = cold ? 15000 : 500;
384 	/* ~us */
385 
386 	while (count--) {
387 		v = bmc_read(sc, offset);
388 		if ((v & mask) == value)
389 			return v;
390 
391 		delay(1);
392 	}
393 
394 	return -1;
395 
396 }
397 
398 #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3))
399 #define GET_NETFN(m) (((m) >> 2)
400 #define GET_LUN(m) ((m) & 0x03)
401 
402 /*
403  * BT interface
404  */
405 #define _BT_CTRL_REG			0
406 #define	  BT_CLR_WR_PTR			(1L << 0)
407 #define	  BT_CLR_RD_PTR			(1L << 1)
408 #define	  BT_HOST2BMC_ATN		(1L << 2)
409 #define	  BT_BMC2HOST_ATN		(1L << 3)
410 #define	  BT_EVT_ATN			(1L << 4)
411 #define	  BT_HOST_BUSY			(1L << 6)
412 #define	  BT_BMC_BUSY			(1L << 7)
413 
414 #define	  BT_READY	(BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN)
415 
416 #define _BT_DATAIN_REG			1
417 #define _BT_DATAOUT_REG			1
418 
419 #define _BT_INTMASK_REG			2
420 #define	 BT_IM_HIRQ_PEND		(1L << 1)
421 #define	 BT_IM_SCI_EN			(1L << 2)
422 #define	 BT_IM_SMI_EN			(1L << 3)
423 #define	 BT_IM_NMI2SMI			(1L << 4)
424 
425 static int bt_read(struct ipmi_softc *, int);
426 static int bt_write(struct ipmi_softc *, int, uint8_t);
427 
428 static int
429 bt_read(struct ipmi_softc *sc, int reg)
430 {
431 	return bmc_read(sc, reg);
432 }
433 
434 static int
435 bt_write(struct ipmi_softc *sc, int reg, uint8_t data)
436 {
437 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC_BUSY, 0, __func__) < 0)
438 		return -1;
439 
440 	bmc_write(sc, reg, data);
441 	return 0;
442 }
443 
444 static int
445 bt_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
446 {
447 	int i;
448 
449 	bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR);
450 	for (i = 0; i < len; i++)
451 		bt_write(sc, _BT_DATAOUT_REG, data[i]);
452 
453 	bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN);
454 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN | BT_BMC_BUSY, 0,
455 	    __func__) < 0)
456 		return -1;
457 
458 	return 0;
459 }
460 
461 static int
462 bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t *data)
463 {
464 	uint8_t len, v, i;
465 
466 	if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN,
467 	    __func__) < 0)
468 		return -1;
469 
470 	bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
471 	bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN);
472 	bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR);
473 	len = bt_read(sc, _BT_DATAIN_REG);
474 	for (i = IPMI_BTMSG_NFLN; i <= len; i++) {
475 		v = bt_read(sc, _BT_DATAIN_REG);
476 		if (i != IPMI_BTMSG_SEQ)
477 			*(data++) = v;
478 	}
479 	bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
480 	*rxlen = len - 1;
481 
482 	return 0;
483 }
484 
485 static int
486 bt_reset(struct ipmi_softc *sc)
487 {
488 	return -1;
489 }
490 
491 static int
492 bt_probe(struct ipmi_softc *sc)
493 {
494 	uint8_t rv;
495 
496 	rv = bmc_read(sc, _BT_CTRL_REG);
497 	rv &= BT_HOST_BUSY;
498 	rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN;
499 	bmc_write(sc, _BT_CTRL_REG, rv);
500 
501 	rv = bmc_read(sc, _BT_INTMASK_REG);
502 	rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI;
503 	rv |= BT_IM_HIRQ_PEND;
504 	bmc_write(sc, _BT_INTMASK_REG, rv);
505 
506 #if 0
507 	printf("%s: %2x\n", __func__, v);
508 	printf(" WR    : %2x\n", v & BT_CLR_WR_PTR);
509 	printf(" RD    : %2x\n", v & BT_CLR_RD_PTR);
510 	printf(" H2B   : %2x\n", v & BT_HOST2BMC_ATN);
511 	printf(" B2H   : %2x\n", v & BT_BMC2HOST_ATN);
512 	printf(" EVT   : %2x\n", v & BT_EVT_ATN);
513 	printf(" HBSY  : %2x\n", v & BT_HOST_BUSY);
514 	printf(" BBSY  : %2x\n", v & BT_BMC_BUSY);
515 #endif
516 	return 0;
517 }
518 
519 /*
520  * SMIC interface
521  */
522 #define _SMIC_DATAIN_REG		0
523 #define _SMIC_DATAOUT_REG		0
524 
525 #define _SMIC_CTRL_REG			1
526 #define	  SMS_CC_GET_STATUS		 0x40
527 #define	  SMS_CC_START_TRANSFER		 0x41
528 #define	  SMS_CC_NEXT_TRANSFER		 0x42
529 #define	  SMS_CC_END_TRANSFER		 0x43
530 #define	  SMS_CC_START_RECEIVE		 0x44
531 #define	  SMS_CC_NEXT_RECEIVE		 0x45
532 #define	  SMS_CC_END_RECEIVE		 0x46
533 #define	  SMS_CC_TRANSFER_ABORT		 0x47
534 
535 #define	  SMS_SC_READY			 0xc0
536 #define	  SMS_SC_WRITE_START		 0xc1
537 #define	  SMS_SC_WRITE_NEXT		 0xc2
538 #define	  SMS_SC_WRITE_END		 0xc3
539 #define	  SMS_SC_READ_START		 0xc4
540 #define	  SMS_SC_READ_NEXT		 0xc5
541 #define	  SMS_SC_READ_END		 0xc6
542 
543 #define _SMIC_FLAG_REG			2
544 #define	  SMIC_BUSY			(1L << 0)
545 #define	  SMIC_SMS_ATN			(1L << 2)
546 #define	  SMIC_EVT_ATN			(1L << 3)
547 #define	  SMIC_SMI			(1L << 4)
548 #define	  SMIC_TX_DATA_RDY		(1L << 6)
549 #define	  SMIC_RX_DATA_RDY		(1L << 7)
550 
551 static int smic_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
552 static int smic_write_cmd_data(struct ipmi_softc *, uint8_t, const uint8_t *);
553 static int smic_read_data(struct ipmi_softc *, uint8_t *);
554 
555 static int
556 smic_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t val, const char *lbl)
557 {
558 	int v;
559 
560 	/* Wait for expected flag bits */
561 	v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, __func__);
562 	if (v < 0)
563 		return -1;
564 
565 	/* Return current status */
566 	v = bmc_read(sc, _SMIC_CTRL_REG);
567 	dbg_printf(99, "%s(%s) = %#.2x\n", __func__, lbl, v);
568 	return v;
569 }
570 
571 static int
572 smic_write_cmd_data(struct ipmi_softc *sc, uint8_t cmd, const uint8_t *data)
573 {
574 	int	sts, v;
575 
576 	dbg_printf(50, "%s: %#.2x %#.2x\n", __func__, cmd, data ? *data : -1);
577 	sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY,
578 	    "smic_write_cmd_data ready");
579 	if (sts < 0)
580 		return sts;
581 
582 	bmc_write(sc, _SMIC_CTRL_REG, cmd);
583 	if (data)
584 		bmc_write(sc, _SMIC_DATAOUT_REG, *data);
585 
586 	/* Toggle BUSY bit, then wait for busy bit to clear */
587 	v = bmc_read(sc, _SMIC_FLAG_REG);
588 	bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY);
589 
590 	return smic_wait(sc, SMIC_BUSY, 0, __func__);
591 }
592 
593 static int
594 smic_read_data(struct ipmi_softc *sc, uint8_t *data)
595 {
596 	int sts;
597 
598 	sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY,
599 	    __func__);
600 	if (sts >= 0) {
601 		*data = bmc_read(sc, _SMIC_DATAIN_REG);
602 		dbg_printf(50, "%s: %#.2x\n", __func__, *data);
603 	}
604 	return sts;
605 }
606 
607 #define ErrStat(a, ...) if (a) printf(__VA_ARGS__);
608 
609 static int
610 smic_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
611 {
612 	int sts, idx;
613 
614 	sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]);
615 	ErrStat(sts != SMS_SC_WRITE_START, "%s: wstart", __func__);
616 	for (idx = 1; idx < len - 1; idx++) {
617 		sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER,
618 		    &data[idx]);
619 		ErrStat(sts != SMS_SC_WRITE_NEXT, "%s: write", __func__);
620 	}
621 	sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]);
622 	if (sts != SMS_SC_WRITE_END) {
623 		dbg_printf(50, "%s: %d/%d = %#.2x\n", __func__, idx, len, sts);
624 		return -1;
625 	}
626 
627 	return 0;
628 }
629 
630 static int
631 smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, uint8_t *data)
632 {
633 	int sts, idx;
634 
635 	*len = 0;
636 	sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, __func__);
637 	if (sts < 0)
638 		return -1;
639 
640 	sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL);
641 	ErrStat(sts != SMS_SC_READ_START, "%s: rstart", __func__);
642 	for (idx = 0;; ) {
643 		sts = smic_read_data(sc, &data[idx++]);
644 		if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT)
645 			break;
646 		smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL);
647 	}
648 	ErrStat(sts != SMS_SC_READ_END, "%s: rend", __func__);
649 
650 	*len = idx;
651 
652 	sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL);
653 	if (sts != SMS_SC_READY) {
654 		dbg_printf(50, "%s: %d/%d = %#.2x\n",
655 		    __func__, idx, maxlen, sts);
656 		return -1;
657 	}
658 
659 	return 0;
660 }
661 
662 static int
663 smic_reset(struct ipmi_softc *sc)
664 {
665 	return -1;
666 }
667 
668 static int
669 smic_probe(struct ipmi_softc *sc)
670 {
671 	/* Flag register should not be 0xFF on a good system */
672 	if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF)
673 		return -1;
674 
675 	return 0;
676 }
677 
678 /*
679  * KCS interface
680  */
681 #define _KCS_DATAIN_REGISTER		0
682 #define _KCS_DATAOUT_REGISTER		0
683 #define	  KCS_READ_NEXT			0x68
684 
685 #define _KCS_COMMAND_REGISTER		1
686 #define	  KCS_GET_STATUS		0x60
687 #define	  KCS_WRITE_START		0x61
688 #define	  KCS_WRITE_END			0x62
689 
690 #define _KCS_STATUS_REGISTER		1
691 #define	  KCS_OBF			(1L << 0)
692 #define	  KCS_IBF			(1L << 1)
693 #define	  KCS_SMS_ATN			(1L << 2)
694 #define	  KCS_CD			(1L << 3)
695 #define	  KCS_OEM1			(1L << 4)
696 #define	  KCS_OEM2			(1L << 5)
697 #define	  KCS_STATE_MASK		0xc0
698 #define	    KCS_IDLE_STATE		0x00
699 #define	    KCS_READ_STATE		0x40
700 #define	    KCS_WRITE_STATE		0x80
701 #define	    KCS_ERROR_STATE		0xC0
702 
703 static int kcs_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
704 static int kcs_write_cmd(struct ipmi_softc *, uint8_t);
705 static int kcs_write_data(struct ipmi_softc *, uint8_t);
706 static int kcs_read_data(struct ipmi_softc *, uint8_t *);
707 
708 static int
709 kcs_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t value, const char *lbl)
710 {
711 	int v;
712 
713 	v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl);
714 	if (v < 0)
715 		return v;
716 
717 	/* Check if output buffer full, read dummy byte	 */
718 	if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE))
719 		bmc_read(sc, _KCS_DATAIN_REGISTER);
720 
721 	/* Check for error state */
722 	if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) {
723 		bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS);
724 		while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF)
725 			;
726 		aprint_error_dev(sc->sc_dev, "error code: %#x\n",
727 		    bmc_read(sc, _KCS_DATAIN_REGISTER));
728 	}
729 
730 	return v & KCS_STATE_MASK;
731 }
732 
733 static int
734 kcs_write_cmd(struct ipmi_softc *sc, uint8_t cmd)
735 {
736 	/* ASSERT: IBF and OBF are clear */
737 	dbg_printf(50, "%s: %#.2x\n", __func__, cmd);
738 	bmc_write(sc, _KCS_COMMAND_REGISTER, cmd);
739 
740 	return kcs_wait(sc, KCS_IBF, 0, "write_cmd");
741 }
742 
743 static int
744 kcs_write_data(struct ipmi_softc *sc, uint8_t data)
745 {
746 	/* ASSERT: IBF and OBF are clear */
747 	dbg_printf(50, "%s: %#.2x\n", __func__, data);
748 	bmc_write(sc, _KCS_DATAOUT_REGISTER, data);
749 
750 	return kcs_wait(sc, KCS_IBF, 0, "write_data");
751 }
752 
753 static int
754 kcs_read_data(struct ipmi_softc *sc, uint8_t * data)
755 {
756 	int sts;
757 
758 	sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, __func__);
759 	if (sts != KCS_READ_STATE)
760 		return sts;
761 
762 	/* ASSERT: OBF is set read data, request next byte */
763 	*data = bmc_read(sc, _KCS_DATAIN_REGISTER);
764 	bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT);
765 
766 	dbg_printf(50, "%s: %#.2x\n", __func__, *data);
767 
768 	return sts;
769 }
770 
771 /* Exported KCS functions */
772 static int
773 kcs_sendmsg(struct ipmi_softc *sc, int len, const uint8_t * data)
774 {
775 	int idx, sts;
776 
777 	/* ASSERT: IBF is clear */
778 	dbg_dump(50, __func__, len, data);
779 	sts = kcs_write_cmd(sc, KCS_WRITE_START);
780 	for (idx = 0; idx < len; idx++) {
781 		if (idx == len - 1)
782 			sts = kcs_write_cmd(sc, KCS_WRITE_END);
783 
784 		if (sts != KCS_WRITE_STATE)
785 			break;
786 
787 		sts = kcs_write_data(sc, data[idx]);
788 	}
789 	if (sts != KCS_READ_STATE) {
790 		dbg_printf(1, "%s: %d/%d <%#.2x>\n", __func__, idx, len, sts);
791 		dbg_dump(1, __func__, len, data);
792 		return -1;
793 	}
794 
795 	return 0;
796 }
797 
798 static int
799 kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t * data)
800 {
801 	int idx, sts;
802 
803 	for (idx = 0; idx < maxlen; idx++) {
804 		sts = kcs_read_data(sc, &data[idx]);
805 		if (sts != KCS_READ_STATE)
806 			break;
807 	}
808 	sts = kcs_wait(sc, KCS_IBF, 0, __func__);
809 	*rxlen = idx;
810 	if (sts != KCS_IDLE_STATE) {
811 		dbg_printf(1, "%s: %d/%d <%#.2x>\n",
812 		    __func__, idx, maxlen, sts);
813 		return -1;
814 	}
815 
816 	dbg_dump(50, __func__, idx, data);
817 
818 	return 0;
819 }
820 
821 static int
822 kcs_reset(struct ipmi_softc *sc)
823 {
824 	return -1;
825 }
826 
827 static int
828 kcs_probe(struct ipmi_softc *sc)
829 {
830 	uint8_t v;
831 
832 	v = bmc_read(sc, _KCS_STATUS_REGISTER);
833 #if 0
834 	printf("%s: %2x\n", __func__, v);
835 	printf(" STS: %2x\n", v & KCS_STATE_MASK);
836 	printf(" ATN: %2x\n", v & KCS_SMS_ATN);
837 	printf(" C/D: %2x\n", v & KCS_CD);
838 	printf(" IBF: %2x\n", v & KCS_IBF);
839 	printf(" OBF: %2x\n", v & KCS_OBF);
840 #else
841 	__USE(v);
842 #endif
843 	return 0;
844 }
845 
846 /*
847  * IPMI code
848  */
849 #define READ_SMS_BUFFER		0x37
850 #define WRITE_I2C		0x50
851 
852 #define GET_MESSAGE_CMD		0x33
853 #define SEND_MESSAGE_CMD	0x34
854 
855 #define IPMB_CHANNEL_NUMBER	0
856 
857 #define PUBLIC_BUS		0
858 
859 #define MIN_I2C_PACKET_SIZE	3
860 #define MIN_IMB_PACKET_SIZE	7	/* one byte for cksum */
861 
862 #define MIN_BTBMC_REQ_SIZE	4
863 #define MIN_BTBMC_RSP_SIZE	5
864 #define MIN_BMC_REQ_SIZE	2
865 #define MIN_BMC_RSP_SIZE	3
866 
867 #define BMC_SA			0x20	/* BMC/ESM3 */
868 #define FPC_SA			0x22	/* front panel */
869 #define BP_SA			0xC0	/* Primary Backplane */
870 #define BP2_SA			0xC2	/* Secondary Backplane */
871 #define PBP_SA			0xC4	/* Peripheral Backplane */
872 #define DRAC_SA			0x28	/* DRAC-III */
873 #define DRAC3_SA		0x30	/* DRAC-III */
874 #define BMC_LUN			0
875 #define SMS_LUN			2
876 
877 struct ipmi_request {
878 	uint8_t	rsSa;
879 	uint8_t	rsLun;
880 	uint8_t	netFn;
881 	uint8_t	cmd;
882 	uint8_t	data_len;
883 	uint8_t	*data;
884 };
885 
886 struct ipmi_response {
887 	uint8_t	cCode;
888 	uint8_t	data_len;
889 	uint8_t	*data;
890 };
891 
892 struct ipmi_bmc_request {
893 	uint8_t	bmc_nfLn;
894 	uint8_t	bmc_cmd;
895 	uint8_t	bmc_data_len;
896 	uint8_t	bmc_data[1];
897 };
898 
899 struct ipmi_bmc_response {
900 	uint8_t	bmc_nfLn;
901 	uint8_t	bmc_cmd;
902 	uint8_t	bmc_cCode;
903 	uint8_t	bmc_data_len;
904 	uint8_t	bmc_data[1];
905 };
906 
907 
908 CFATTACH_DECL2_NEW(ipmi, sizeof(struct ipmi_softc),
909     ipmi_match, ipmi_attach, ipmi_detach, NULL, NULL, NULL);
910 
911 static void
912 dumpb(const char *lbl, int len, const uint8_t *data)
913 {
914 	int idx;
915 
916 	printf("%s: ", lbl);
917 	for (idx = 0; idx < len; idx++)
918 		printf("%.2x ", data[idx]);
919 
920 	printf("\n");
921 }
922 
923 /*
924  * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data
925  * This is used by BT protocol
926  *
927  * Returns a buffer to an allocated message, txlen contains length
928  *   of allocated message
929  */
930 static void *
931 bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
932     const void *data, int *txlen)
933 {
934 	uint8_t *buf;
935 
936 	/* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */
937 	*txlen = len + 4;
938 	buf = ipmi_buf_acquire(sc, *txlen);
939 	if (buf == NULL)
940 		return NULL;
941 
942 	buf[IPMI_BTMSG_LEN] = len + 3;
943 	buf[IPMI_BTMSG_NFLN] = nfLun;
944 	buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++;
945 	buf[IPMI_BTMSG_CMD] = cmd;
946 	if (len && data)
947 		memcpy(buf + IPMI_BTMSG_DATASND, data, len);
948 
949 	return buf;
950 }
951 
952 /*
953  * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data
954  * This is used by both SMIC and KCS protocols
955  *
956  * Returns a buffer to an allocated message, txlen contains length
957  *   of allocated message
958  */
959 static void *
960 cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
961     const void *data, int *txlen)
962 {
963 	uint8_t *buf;
964 
965 	/* Common needs two extra bytes: nfLun/cmd + data */
966 	*txlen = len + 2;
967 	buf = ipmi_buf_acquire(sc, *txlen);
968 	if (buf == NULL)
969 		return NULL;
970 
971 	buf[IPMI_MSG_NFLN] = nfLun;
972 	buf[IPMI_MSG_CMD] = cmd;
973 	if (len && data)
974 		memcpy(buf + IPMI_MSG_DATASND, data, len);
975 
976 	return buf;
977 }
978 
979 /*
980  * ipmi_sendcmd: caller must hold sc_cmd_mtx.
981  *
982  * Send an IPMI command
983  */
984 static int
985 ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd,
986     int txlen, const void *data)
987 {
988 	uint8_t	*buf;
989 	int		rc = -1;
990 
991 	dbg_printf(50, "%s: rssa=%#.2x nfln=%#.2x cmd=%#.2x len=%#.2x\n",
992 	    __func__, rssa, NETFN_LUN(netfn, rslun), cmd, txlen);
993 	dbg_dump(10, __func__, txlen, data);
994 	if (rssa != BMC_SA) {
995 #if 0
996 		buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN),
997 		    APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen);
998 		pI2C->bus = (sc->if_ver == 0x09) ?
999 		    PUBLIC_BUS :
1000 		    IPMB_CHANNEL_NUMBER;
1001 
1002 		imbreq->rsSa = rssa;
1003 		imbreq->nfLn = NETFN_LUN(netfn, rslun);
1004 		imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn);
1005 		imbreq->rqSa = BMC_SA;
1006 		imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN);
1007 		imbreq->cmd = cmd;
1008 		if (txlen)
1009 			memcpy(imbreq->data, data, txlen);
1010 		/* Set message checksum */
1011 		imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3);
1012 #endif
1013 		goto done;
1014 	} else
1015 		buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd,
1016 		    txlen, data, &txlen);
1017 
1018 	if (buf == NULL) {
1019 		aprint_error_dev(sc->sc_dev, "sendcmd buffer busy\n");
1020 		goto done;
1021 	}
1022 	rc = sc->sc_if->sendmsg(sc, txlen, buf);
1023 	ipmi_buf_release(sc, buf);
1024 
1025 	ipmi_delay(sc, 50); /* give bmc chance to digest command */
1026 
1027 done:
1028 	return rc;
1029 }
1030 
1031 static void
1032 ipmi_buf_release(struct ipmi_softc *sc, char *buf)
1033 {
1034 	KASSERT(sc->sc_buf_rsvd);
1035 	KASSERT(sc->sc_buf == buf);
1036 	sc->sc_buf_rsvd = false;
1037 }
1038 
1039 static char *
1040 ipmi_buf_acquire(struct ipmi_softc *sc, size_t len)
1041 {
1042 	KASSERT(len <= sizeof(sc->sc_buf));
1043 
1044 	if (sc->sc_buf_rsvd || len > sizeof(sc->sc_buf))
1045 		return NULL;
1046 	sc->sc_buf_rsvd = true;
1047 	return sc->sc_buf;
1048 }
1049 
1050 /*
1051  * ipmi_recvcmd: caller must hold sc_cmd_mtx.
1052  */
1053 static int
1054 ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data)
1055 {
1056 	uint8_t	*buf, rc = 0;
1057 	int		rawlen;
1058 
1059 	/* Need three extra bytes: netfn/cmd/ccode + data */
1060 	buf = ipmi_buf_acquire(sc, maxlen + 3);
1061 	if (buf == NULL) {
1062 		aprint_error_dev(sc->sc_dev, "%s: malloc fails\n", __func__);
1063 		return -1;
1064 	}
1065 	/* Receive message from interface, copy out result data */
1066 	if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) {
1067 		ipmi_buf_release(sc, buf);
1068 		return -1;
1069 	}
1070 
1071 	*rxlen = rawlen >= IPMI_MSG_DATARCV ? rawlen - IPMI_MSG_DATARCV : 0;
1072 	if (*rxlen > 0 && data)
1073 		memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen);
1074 
1075 	if ((rc = buf[IPMI_MSG_CCODE]) != 0)
1076 		dbg_printf(1, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x\n", __func__,
1077 		    buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]);
1078 
1079 	dbg_printf(50, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x len=%#.2x\n",
1080 	    __func__, buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD],
1081 	    buf[IPMI_MSG_CCODE], *rxlen);
1082 	dbg_dump(10, __func__, *rxlen, data);
1083 
1084 	ipmi_buf_release(sc, buf);
1085 
1086 	return rc;
1087 }
1088 
1089 /*
1090  * ipmi_delay: caller must hold sc_cmd_mtx.
1091  */
1092 static void
1093 ipmi_delay(struct ipmi_softc *sc, int ms)
1094 {
1095 	if (cold) {
1096 		delay(ms * 1000);
1097 		return;
1098 	}
1099 	mutex_enter(&sc->sc_sleep_mtx);
1100 	cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, mstohz(ms));
1101 	mutex_exit(&sc->sc_sleep_mtx);
1102 }
1103 
1104 /* Read a partial SDR entry */
1105 static int
1106 get_sdr_partial(struct ipmi_softc *sc, uint16_t recordId, uint16_t reserveId,
1107     uint8_t offset, uint8_t length, void *buffer, uint16_t *nxtRecordId)
1108 {
1109 	uint8_t	cmd[256 + 8];
1110 	int		len;
1111 
1112 	((uint16_t *) cmd)[0] = reserveId;
1113 	((uint16_t *) cmd)[1] = recordId;
1114 	cmd[4] = offset;
1115 	cmd[5] = length;
1116 	mutex_enter(&sc->sc_cmd_mtx);
1117 	if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR, 6,
1118 	    cmd)) {
1119 		mutex_exit(&sc->sc_cmd_mtx);
1120 		aprint_error_dev(sc->sc_dev, "%s: sendcmd fails\n", __func__);
1121 		return -1;
1122 	}
1123 	if (ipmi_recvcmd(sc, 8 + length, &len, cmd)) {
1124 		mutex_exit(&sc->sc_cmd_mtx);
1125 		aprint_error_dev(sc->sc_dev, "%s: recvcmd fails\n", __func__);
1126 		return -1;
1127 	}
1128 	mutex_exit(&sc->sc_cmd_mtx);
1129 	if (nxtRecordId)
1130 		*nxtRecordId = *(uint16_t *) cmd;
1131 	memcpy(buffer, cmd + 2, len - 2);
1132 
1133 	return 0;
1134 }
1135 
1136 static int maxsdrlen = 0x10;
1137 
1138 /* Read an entire SDR; pass to add sensor */
1139 static int
1140 get_sdr(struct ipmi_softc *sc, uint16_t recid, uint16_t *nxtrec)
1141 {
1142 	uint16_t	resid = 0;
1143 	int		len, sdrlen, offset;
1144 	uint8_t	*psdr;
1145 	struct sdrhdr	shdr;
1146 
1147 	mutex_enter(&sc->sc_cmd_mtx);
1148 	/* Reserve SDR */
1149 	if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR,
1150 	    0, NULL)) {
1151 		mutex_exit(&sc->sc_cmd_mtx);
1152 		aprint_error_dev(sc->sc_dev, "reserve send fails\n");
1153 		return -1;
1154 	}
1155 	if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) {
1156 		mutex_exit(&sc->sc_cmd_mtx);
1157 		aprint_error_dev(sc->sc_dev, "reserve recv fails\n");
1158 		return -1;
1159 	}
1160 	mutex_exit(&sc->sc_cmd_mtx);
1161 	/* Get SDR Header */
1162 	if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) {
1163 		aprint_error_dev(sc->sc_dev, "get header fails\n");
1164 		return -1;
1165 	}
1166 	/* Allocate space for entire SDR Length of SDR in header does not
1167 	 * include header length */
1168 	sdrlen = sizeof(shdr) + shdr.record_length;
1169 	psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK);
1170 	if (psdr == NULL)
1171 		return -1;
1172 
1173 	memcpy(psdr, &shdr, sizeof(shdr));
1174 
1175 	/* Read SDR Data maxsdrlen bytes at a time */
1176 	for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) {
1177 		len = sdrlen - offset;
1178 		if (len > maxsdrlen)
1179 			len = maxsdrlen;
1180 
1181 		if (get_sdr_partial(sc, recid, resid, offset, len,
1182 		    psdr + offset, NULL)) {
1183 			aprint_error_dev(sc->sc_dev,
1184 			    "get chunk : %d,%d fails\n", offset, len);
1185 			free(psdr, M_DEVBUF);
1186 			return -1;
1187 		}
1188 	}
1189 
1190 	/* Add SDR to sensor list, if not wanted, free buffer */
1191 	if (add_sdr_sensor(sc, psdr) == 0)
1192 		free(psdr, M_DEVBUF);
1193 
1194 	return 0;
1195 }
1196 
1197 static int
1198 getbits(uint8_t *bytes, int bitpos, int bitlen)
1199 {
1200 	int	v;
1201 	int	mask;
1202 
1203 	bitpos += bitlen - 1;
1204 	for (v = 0; bitlen--;) {
1205 		v <<= 1;
1206 		mask = 1L << (bitpos & 7);
1207 		if (bytes[bitpos >> 3] & mask)
1208 			v |= 1;
1209 		bitpos--;
1210 	}
1211 
1212 	return v;
1213 }
1214 
1215 /* Decode IPMI sensor name */
1216 static void
1217 ipmi_sensor_name(char *name, int len, uint8_t typelen, uint8_t *bits)
1218 {
1219 	int	i, slen;
1220 	char	bcdplus[] = "0123456789 -.:,_";
1221 
1222 	slen = typelen & 0x1F;
1223 	switch (typelen >> 6) {
1224 	case IPMI_NAME_UNICODE:
1225 		//unicode
1226 		break;
1227 
1228 	case IPMI_NAME_BCDPLUS:
1229 		/* Characters are encoded in 4-bit BCDPLUS */
1230 		if (len < slen * 2 + 1)
1231 			slen = (len >> 1) - 1;
1232 		for (i = 0; i < slen; i++) {
1233 			*(name++) = bcdplus[bits[i] >> 4];
1234 			*(name++) = bcdplus[bits[i] & 0xF];
1235 		}
1236 		break;
1237 
1238 	case IPMI_NAME_ASCII6BIT:
1239 		/* Characters are encoded in 6-bit ASCII
1240 		 *   0x00 - 0x3F maps to 0x20 - 0x5F */
1241 		/* XXX: need to calculate max len: slen = 3/4 * len */
1242 		if (len < slen + 1)
1243 			slen = len - 1;
1244 		for (i = 0; i < slen * 8; i += 6)
1245 			*(name++) = getbits(bits, i, 6) + ' ';
1246 		break;
1247 
1248 	case IPMI_NAME_ASCII8BIT:
1249 		/* Characters are 8-bit ascii */
1250 		if (len < slen + 1)
1251 			slen = len - 1;
1252 		while (slen--)
1253 			*(name++) = *(bits++);
1254 		break;
1255 	}
1256 	*name = 0;
1257 }
1258 
1259 /* Sign extend a n-bit value */
1260 static long
1261 signextend(unsigned long val, int bits)
1262 {
1263 	long msk = (1L << (bits-1))-1;
1264 
1265 	return -(val & ~msk) | val;
1266 }
1267 
1268 
1269 /* fixpoint arithmetic */
1270 #define FIX2INT(x)   ((int64_t)((x) >> 32))
1271 #define INT2FIX(x)   ((int64_t)((uint64_t)(x) << 32))
1272 
1273 #define FIX2            0x0000000200000000ll /* 2.0 */
1274 #define FIX3            0x0000000300000000ll /* 3.0 */
1275 #define FIXE            0x00000002b7e15163ll /* 2.71828182845904523536 */
1276 #define FIX10           0x0000000a00000000ll /* 10.0 */
1277 #define FIXMONE         0xffffffff00000000ll /* -1.0 */
1278 #define FIXHALF         0x0000000080000000ll /* 0.5 */
1279 #define FIXTHIRD        0x0000000055555555ll /* 0.33333333333333333333 */
1280 
1281 #define FIX1LOG2        0x0000000171547653ll /* 1.0/log(2) */
1282 #define FIX1LOGE        0x0000000100000000ll /* 1.0/log(2.71828182845904523536) */
1283 #define FIX1LOG10       0x000000006F2DEC55ll /* 1.0/log(10) */
1284 
1285 #define FIX1E           0x000000005E2D58D9ll /* 1.0/2.71828182845904523536 */
1286 
1287 static int64_t fixlog_a[] = {
1288 	0x0000000100000000ll /* 1.0/1.0 */,
1289 	0xffffffff80000000ll /* -1.0/2.0 */,
1290 	0x0000000055555555ll /* 1.0/3.0 */,
1291 	0xffffffffc0000000ll /* -1.0/4.0 */,
1292 	0x0000000033333333ll /* 1.0/5.0 */,
1293 	0x000000002aaaaaabll /* -1.0/6.0 */,
1294 	0x0000000024924925ll /* 1.0/7.0 */,
1295 	0x0000000020000000ll /* -1.0/8.0 */,
1296 	0x000000001c71c71cll /* 1.0/9.0 */
1297 };
1298 
1299 static int64_t fixexp_a[] = {
1300 	0x0000000100000000ll /* 1.0/1.0 */,
1301 	0x0000000100000000ll /* 1.0/1.0 */,
1302 	0x0000000080000000ll /* 1.0/2.0 */,
1303 	0x000000002aaaaaabll /* 1.0/6.0 */,
1304 	0x000000000aaaaaabll /* 1.0/24.0 */,
1305 	0x0000000002222222ll /* 1.0/120.0 */,
1306 	0x00000000005b05b0ll /* 1.0/720.0 */,
1307 	0x00000000000d00d0ll /* 1.0/5040.0 */,
1308 	0x000000000001a01all /* 1.0/40320.0 */
1309 };
1310 
1311 static int64_t
1312 fixmul(int64_t x, int64_t y)
1313 {
1314 	int64_t z;
1315 	int64_t a,b,c,d;
1316 	int neg;
1317 
1318 	neg = 0;
1319 	if (x < 0) {
1320 		x = -x;
1321 		neg = !neg;
1322 	}
1323 	if (y < 0) {
1324 		y = -y;
1325 		neg = !neg;
1326 	}
1327 
1328 	a = FIX2INT(x);
1329 	b = x - INT2FIX(a);
1330 	c = FIX2INT(y);
1331 	d = y - INT2FIX(c);
1332 
1333 	z = INT2FIX(a*c) + a * d + b * c + (b/2 * d/2 >> 30);
1334 
1335 	return neg ? -z : z;
1336 }
1337 
1338 static int64_t
1339 poly(int64_t x0, int64_t x, int64_t a[], int n)
1340 {
1341 	int64_t z;
1342 	int i;
1343 
1344 	z  = fixmul(x0, a[0]);
1345 	for (i=1; i<n; ++i) {
1346 		x0 = fixmul(x0, x);
1347 		z  = fixmul(x0, a[i]) + z;
1348 	}
1349 	return z;
1350 }
1351 
1352 static int64_t
1353 logx(int64_t x, int64_t y)
1354 {
1355 	int64_t z;
1356 
1357 	if (x <= INT2FIX(0)) {
1358 		z = INT2FIX(-99999);
1359 		goto done;
1360 	}
1361 
1362 	z = INT2FIX(0);
1363 	while (x >= FIXE) {
1364 		x = fixmul(x, FIX1E);
1365 		z += INT2FIX(1);
1366 	}
1367 	while (x < INT2FIX(1)) {
1368 		x = fixmul(x, FIXE);
1369 		z -= INT2FIX(1);
1370 	}
1371 
1372 	x -= INT2FIX(1);
1373 	z += poly(x, x, fixlog_a, sizeof(fixlog_a)/sizeof(fixlog_a[0]));
1374 	z  = fixmul(z, y);
1375 
1376 done:
1377 	return z;
1378 }
1379 
1380 static int64_t
1381 powx(int64_t x, int64_t y)
1382 {
1383 	int64_t k;
1384 
1385 	if (x == INT2FIX(0))
1386 		goto done;
1387 
1388 	x = logx(x,y);
1389 
1390 	if (x < INT2FIX(0)) {
1391 		x = INT2FIX(0) - x;
1392 		k = -FIX2INT(x);
1393 		x = INT2FIX(-k) - x;
1394 	} else {
1395 		k = FIX2INT(x);
1396 		x = x - INT2FIX(k);
1397 	}
1398 
1399 	x = poly(INT2FIX(1), x, fixexp_a, sizeof(fixexp_a)/sizeof(fixexp_a[0]));
1400 
1401 	while (k < 0) {
1402 		x = fixmul(x, FIX1E);
1403 		++k;
1404 	}
1405 	while (k > 0) {
1406 		x = fixmul(x, FIXE);
1407 		--k;
1408 	}
1409 
1410 done:
1411 	return x;
1412 }
1413 
1414 /* Convert IPMI reading from sensor factors */
1415 static long
1416 ipmi_convert(uint8_t v, struct sdrtype1 *s1, long adj)
1417 {
1418 	int64_t	M, B;
1419 	char	K1, K2;
1420 	int64_t	val, v1, v2, vs;
1421 	int sign = (s1->units1 >> 6) & 0x3;
1422 
1423 	vs = (sign == 0x1 || sign == 0x2) ? (int8_t)v : v;
1424 	if ((vs < 0) && (sign == 0x1))
1425 		vs++;
1426 
1427 	/* Calculate linear reading variables */
1428 	M  = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10);
1429 	B  = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10);
1430 	K1 = signextend(s1->rbexp & 0xF, 4);
1431 	K2 = signextend(s1->rbexp >> 4, 4);
1432 
1433 	/* Calculate sensor reading:
1434 	 *  y = L((M * v + (B * 10^K1)) * 10^(K2+adj)
1435 	 *
1436 	 * This commutes out to:
1437 	 *  y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */
1438 	v1 = powx(FIX10, INT2FIX(K2 + adj));
1439 	v2 = powx(FIX10, INT2FIX(K1 + K2 + adj));
1440 	val = M * vs * v1 + B * v2;
1441 
1442 	/* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y =
1443 	 * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y
1444 	 * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube
1445 	 * root(x) */
1446 	switch (s1->linear & 0x7f) {
1447 	case 0: break;
1448 	case 1: val = logx(val,FIX1LOGE); break;
1449 	case 2: val = logx(val,FIX1LOG10); break;
1450 	case 3: val = logx(val,FIX1LOG2); break;
1451 	case 4: val = powx(FIXE,val); break;
1452 	case 5: val = powx(FIX10,val); break;
1453 	case 6: val = powx(FIX2,val); break;
1454 	case 7: val = powx(val,FIXMONE); break;
1455 	case 8: val = powx(val,FIX2); break;
1456 	case 9: val = powx(val,FIX3); break;
1457 	case 10: val = powx(val,FIXHALF); break;
1458 	case 11: val = powx(val,FIXTHIRD); break;
1459 	}
1460 
1461 	return FIX2INT(val);
1462 }
1463 
1464 static int32_t
1465 ipmi_convert_sensor(uint8_t *reading, struct ipmi_sensor *psensor)
1466 {
1467 	struct sdrtype1	*s1 = (struct sdrtype1 *)psensor->i_sdr;
1468 	int32_t val;
1469 
1470 	switch (psensor->i_envtype) {
1471 	case ENVSYS_STEMP:
1472 		val = ipmi_convert(reading[0], s1, 6) + 273150000;
1473 		break;
1474 
1475 	case ENVSYS_SVOLTS_DC:
1476 		val = ipmi_convert(reading[0], s1, 6);
1477 		break;
1478 
1479 	case ENVSYS_SFANRPM:
1480 		val = ipmi_convert(reading[0], s1, 0);
1481 		if (((s1->units1>>3)&0x7) == 0x3)
1482 			val *= 60; /* RPS -> RPM */
1483 		break;
1484 	default:
1485 		val = 0;
1486 		break;
1487 	}
1488 	return val;
1489 }
1490 
1491 static void
1492 ipmi_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1493 		sysmon_envsys_lim_t *limits, uint32_t *props)
1494 {
1495 	struct ipmi_sensor *ipmi_s;
1496 
1497 	/* Find the ipmi_sensor corresponding to this edata */
1498 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1499 		if (ipmi_s->i_envnum == edata->sensor) {
1500 			if (limits == NULL) {
1501 				limits = &ipmi_s->i_deflims;
1502 				props  = &ipmi_s->i_defprops;
1503 			}
1504 			*props |= PROP_DRIVER_LIMITS;
1505 			ipmi_s->i_limits = *limits;
1506 			ipmi_s->i_props  = *props;
1507 			return;
1508 		}
1509 	}
1510 	return;
1511 }
1512 
1513 static void
1514 ipmi_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
1515 		sysmon_envsys_lim_t *limits, uint32_t *props)
1516 {
1517 	struct ipmi_sensor *ipmi_s;
1518 	struct ipmi_softc *sc = sme->sme_cookie;
1519 
1520 	/* Find the ipmi_sensor corresponding to this edata */
1521 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1522 		if (ipmi_s->i_envnum == edata->sensor) {
1523 			ipmi_get_sensor_limits(sc, ipmi_s, limits, props);
1524 			ipmi_s->i_limits = *limits;
1525 			ipmi_s->i_props  = *props;
1526 			if (ipmi_s->i_defprops == 0) {
1527 				ipmi_s->i_defprops = *props;
1528 				ipmi_s->i_deflims  = *limits;
1529 			}
1530 			return;
1531 		}
1532 	}
1533 	return;
1534 }
1535 
1536 static void
1537 ipmi_get_sensor_limits(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
1538 		       sysmon_envsys_lim_t *limits, uint32_t *props)
1539 {
1540 	struct sdrtype1	*s1 = (struct sdrtype1 *)psensor->i_sdr;
1541 	bool failure;
1542 	int	rxlen;
1543 	uint8_t	data[32];
1544 	uint32_t prop_critmax, prop_warnmax, prop_critmin, prop_warnmin;
1545 	int32_t *pcritmax, *pwarnmax, *pcritmin, *pwarnmin;
1546 
1547 	*props &= ~(PROP_CRITMIN | PROP_CRITMAX | PROP_WARNMIN | PROP_WARNMAX);
1548 	data[0] = psensor->i_num;
1549 	mutex_enter(&sc->sc_cmd_mtx);
1550 	failure =
1551 	    ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun,
1552 			 SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data) ||
1553 	    ipmi_recvcmd(sc, sizeof(data), &rxlen, data);
1554 	mutex_exit(&sc->sc_cmd_mtx);
1555 	if (failure)
1556 		return;
1557 
1558 	dbg_printf(25, "%s: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
1559 	    __func__, data[0], data[1], data[2], data[3], data[4], data[5],
1560 	    data[6]);
1561 
1562 	switch (s1->linear & 0x7f) {
1563 	case 7: /* 1/x sensor, exchange upper and lower limits */
1564 		prop_critmax = PROP_CRITMIN;
1565 		prop_warnmax = PROP_WARNMIN;
1566 		prop_critmin = PROP_CRITMAX;
1567 		prop_warnmin = PROP_WARNMAX;
1568 		pcritmax = &limits->sel_critmin;
1569 		pwarnmax = &limits->sel_warnmin;
1570 		pcritmin = &limits->sel_critmax;
1571 		pwarnmin = &limits->sel_warnmax;
1572 		break;
1573 	default:
1574 		prop_critmax = PROP_CRITMAX;
1575 		prop_warnmax = PROP_WARNMAX;
1576 		prop_critmin = PROP_CRITMIN;
1577 		prop_warnmin = PROP_WARNMIN;
1578 		pcritmax = &limits->sel_critmax;
1579 		pwarnmax = &limits->sel_warnmax;
1580 		pcritmin = &limits->sel_critmin;
1581 		pwarnmin = &limits->sel_warnmin;
1582 		break;
1583 	}
1584 
1585 	if (data[0] & 0x20 && data[6] != 0xff) {
1586 		*pcritmax = ipmi_convert_sensor(&data[6], psensor);
1587 		*props |= prop_critmax;
1588 	}
1589 	if (data[0] & 0x10 && data[5] != 0xff) {
1590 		*pcritmax = ipmi_convert_sensor(&data[5], psensor);
1591 		*props |= prop_critmax;
1592 	}
1593 	if (data[0] & 0x08 && data[4] != 0xff) {
1594 		*pwarnmax = ipmi_convert_sensor(&data[4], psensor);
1595 		*props |= prop_warnmax;
1596 	}
1597 	if (data[0] & 0x04 && data[3] != 0x00) {
1598 		*pcritmin = ipmi_convert_sensor(&data[3], psensor);
1599 		*props |= prop_critmin;
1600 	}
1601 	if (data[0] & 0x02 && data[2] != 0x00) {
1602 		*pcritmin = ipmi_convert_sensor(&data[2], psensor);
1603 		*props |= prop_critmin;
1604 	}
1605 	if (data[0] & 0x01 && data[1] != 0x00) {
1606 		*pwarnmin = ipmi_convert_sensor(&data[1], psensor);
1607 		*props |= prop_warnmin;
1608 	}
1609 	return;
1610 }
1611 
1612 static int
1613 ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
1614     envsys_data_t *edata, uint8_t *reading)
1615 {
1616 	int	etype;
1617 
1618 	/* Get reading of sensor */
1619 	edata->value_cur = ipmi_convert_sensor(reading, psensor);
1620 
1621 	/* Return Sensor Status */
1622 	etype = (psensor->i_etype << 8) + psensor->i_stype;
1623 	switch (etype) {
1624 	case IPMI_SENSOR_TYPE_TEMP:
1625 	case IPMI_SENSOR_TYPE_VOLT:
1626 	case IPMI_SENSOR_TYPE_FAN:
1627 		if (psensor->i_props & PROP_CRITMAX &&
1628 		    edata->value_cur > psensor->i_limits.sel_critmax)
1629 			return ENVSYS_SCRITOVER;
1630 
1631 		if (psensor->i_props & PROP_WARNMAX &&
1632 		    edata->value_cur > psensor->i_limits.sel_warnmax)
1633 			return ENVSYS_SWARNOVER;
1634 
1635 		if (psensor->i_props & PROP_CRITMIN &&
1636 		    edata->value_cur < psensor->i_limits.sel_critmin)
1637 			return ENVSYS_SCRITUNDER;
1638 
1639 		if (psensor->i_props & PROP_WARNMIN &&
1640 		    edata->value_cur < psensor->i_limits.sel_warnmin)
1641 			return ENVSYS_SWARNUNDER;
1642 
1643 		break;
1644 
1645 	case IPMI_SENSOR_TYPE_INTRUSION:
1646 		edata->value_cur = (reading[2] & 1) ? 0 : 1;
1647 		if (reading[2] & 0x1)
1648 			return ENVSYS_SCRITICAL;
1649 		break;
1650 
1651 	case IPMI_SENSOR_TYPE_PWRSUPPLY:
1652 		/* Reading: 1 = present+powered, 0 = otherwise */
1653 		edata->value_cur = (reading[2] & 1) ? 0 : 1;
1654 		if (reading[2] & 0x10) {
1655 			/* XXX: Need envsys type for Power Supply types
1656 			 *   ok: power supply installed && powered
1657 			 * warn: power supply installed && !powered
1658 			 * crit: power supply !installed
1659 			 */
1660 			return ENVSYS_SCRITICAL;
1661 		}
1662 		if (reading[2] & 0x08) {
1663 			/* Power supply AC lost */
1664 			return ENVSYS_SWARNOVER;
1665 		}
1666 		break;
1667 	}
1668 
1669 	return ENVSYS_SVALID;
1670 }
1671 
1672 static int
1673 read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor)
1674 {
1675 	struct sdrtype1	*s1 = (struct sdrtype1 *) psensor->i_sdr;
1676 	uint8_t	data[8];
1677 	int		rxlen;
1678 	envsys_data_t *edata = &sc->sc_sensor[psensor->i_envnum];
1679 
1680 	memset(data, 0, sizeof(data));
1681 	data[0] = psensor->i_num;
1682 
1683 	mutex_enter(&sc->sc_cmd_mtx);
1684 	if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN,
1685 	    SE_GET_SENSOR_READING, 1, data))
1686 		goto err;
1687 
1688 	if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data))
1689 		goto err;
1690 	mutex_exit(&sc->sc_cmd_mtx);
1691 
1692 	dbg_printf(10, "m=%u, m_tolerance=%u, b=%u, b_accuracy=%u, "
1693 	    "rbexp=%u, linear=%d\n", s1->m, s1->m_tolerance, s1->b,
1694 	    s1->b_accuracy, s1->rbexp, s1->linear);
1695 	dbg_printf(10, "values=%#.2x %#.2x %#.2x %#.2x %s\n",
1696 	    data[0],data[1],data[2],data[3], edata->desc);
1697 	if (IPMI_INVALID_SENSOR_P(data[1])) {
1698 		/* Check if sensor is valid */
1699 		edata->state = ENVSYS_SINVALID;
1700 	} else {
1701 		edata->state = ipmi_sensor_status(sc, psensor, edata, data);
1702 	}
1703 	return 0;
1704 err:
1705 	mutex_exit(&sc->sc_cmd_mtx);
1706 	return -1;
1707 }
1708 
1709 static int
1710 ipmi_sensor_type(int type, int ext_type, int entity)
1711 {
1712 	switch (ext_type << 8L | type) {
1713 	case IPMI_SENSOR_TYPE_TEMP:
1714 		return ENVSYS_STEMP;
1715 
1716 	case IPMI_SENSOR_TYPE_VOLT:
1717 		return ENVSYS_SVOLTS_DC;
1718 
1719 	case IPMI_SENSOR_TYPE_FAN:
1720 		return ENVSYS_SFANRPM;
1721 
1722 	case IPMI_SENSOR_TYPE_PWRSUPPLY:
1723 		if (entity == IPMI_ENTITY_PWRSUPPLY)
1724 			return ENVSYS_INDICATOR;
1725 		break;
1726 
1727 	case IPMI_SENSOR_TYPE_INTRUSION:
1728 		return ENVSYS_INDICATOR;
1729 	}
1730 
1731 	return -1;
1732 }
1733 
1734 /* Add Sensor to BSD Sysctl interface */
1735 static int
1736 add_sdr_sensor(struct ipmi_softc *sc, uint8_t *psdr)
1737 {
1738 	int			rc;
1739 	struct sdrtype1		*s1 = (struct sdrtype1 *)psdr;
1740 	struct sdrtype2		*s2 = (struct sdrtype2 *)psdr;
1741 	char			name[64];
1742 
1743 	switch (s1->sdrhdr.record_type) {
1744 	case IPMI_SDR_TYPEFULL:
1745 		ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name);
1746 		rc = add_child_sensors(sc, psdr, 1, s1->sensor_num,
1747 		    s1->sensor_type, s1->event_code, 0, s1->entity_id, name);
1748 		break;
1749 
1750 	case IPMI_SDR_TYPECOMPACT:
1751 		ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name);
1752 		rc = add_child_sensors(sc, psdr, s2->share1 & 0xF,
1753 		    s2->sensor_num, s2->sensor_type, s2->event_code,
1754 		    s2->share2 & 0x7F, s2->entity_id, name);
1755 		break;
1756 
1757 	default:
1758 		return 0;
1759 	}
1760 
1761 	return rc;
1762 }
1763 
1764 static int
1765 ipmi_is_dupname(char *name)
1766 {
1767 	struct ipmi_sensor *ipmi_s;
1768 
1769 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
1770 		if (strcmp(ipmi_s->i_envdesc, name) == 0) {
1771 			return 1;
1772 		}
1773 	}
1774 	return 0;
1775 }
1776 
1777 static int
1778 add_child_sensors(struct ipmi_softc *sc, uint8_t *psdr, int count,
1779     int sensor_num, int sensor_type, int ext_type, int sensor_base,
1780     int entity, const char *name)
1781 {
1782 	int			typ, idx, dupcnt, c;
1783 	char			*e;
1784 	struct ipmi_sensor	*psensor;
1785 	struct sdrtype1		*s1 = (struct sdrtype1 *)psdr;
1786 
1787 	typ = ipmi_sensor_type(sensor_type, ext_type, entity);
1788 	if (typ == -1) {
1789 		dbg_printf(5, "Unknown sensor type:%#.2x et:%#.2x sn:%#.2x "
1790 		    "name:%s\n", sensor_type, ext_type, sensor_num, name);
1791 		return 0;
1792 	}
1793 	dupcnt = 0;
1794 	sc->sc_nsensors += count;
1795 	for (idx = 0; idx < count; idx++) {
1796 		psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF,
1797 		    M_WAITOK);
1798 		if (psensor == NULL)
1799 			break;
1800 
1801 		memset(psensor, 0, sizeof(struct ipmi_sensor));
1802 
1803 		/* Initialize BSD Sensor info */
1804 		psensor->i_sdr = psdr;
1805 		psensor->i_num = sensor_num + idx;
1806 		psensor->i_stype = sensor_type;
1807 		psensor->i_etype = ext_type;
1808 		psensor->i_envtype = typ;
1809 		if (count > 1)
1810 			snprintf(psensor->i_envdesc,
1811 			    sizeof(psensor->i_envdesc),
1812 			    "%s - %d", name, sensor_base + idx);
1813 		else
1814 			strlcpy(psensor->i_envdesc, name,
1815 			    sizeof(psensor->i_envdesc));
1816 
1817 		/*
1818 		 * Check for duplicates.  If there are duplicates,
1819 		 * make sure there is space in the name (if not,
1820 		 * truncate to make space) for a count (1-99) to
1821 		 * add to make the name unique.  If we run the
1822 		 * counter out, just accept the duplicate (@name99)
1823 		 * for now.
1824 		 */
1825 		if (ipmi_is_dupname(psensor->i_envdesc)) {
1826 			if (strlen(psensor->i_envdesc) >=
1827 			    sizeof(psensor->i_envdesc) - 3) {
1828 				e = psensor->i_envdesc +
1829 				    sizeof(psensor->i_envdesc) - 3;
1830 			} else {
1831 				e = psensor->i_envdesc +
1832 				    strlen(psensor->i_envdesc);
1833 			}
1834 			c = psensor->i_envdesc +
1835 			    sizeof(psensor->i_envdesc) - e;
1836 			do {
1837 				dupcnt++;
1838 				snprintf(e, c, "%d", dupcnt);
1839 			} while (dupcnt < 100 &&
1840 			         ipmi_is_dupname(psensor->i_envdesc));
1841 		}
1842 
1843 		dbg_printf(5, "%s: %#.4x %#.2x:%d ent:%#.2x:%#.2x %s\n",
1844 		    __func__,
1845 		    s1->sdrhdr.record_id, s1->sensor_type,
1846 		    typ, s1->entity_id, s1->entity_instance,
1847 		    psensor->i_envdesc);
1848 		SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, i_list);
1849 	}
1850 
1851 	return 1;
1852 }
1853 
1854 #if 0
1855 /* Interrupt handler */
1856 static int
1857 ipmi_intr(void *arg)
1858 {
1859 	struct ipmi_softc	*sc = (struct ipmi_softc *)arg;
1860 	int			v;
1861 
1862 	v = bmc_read(sc, _KCS_STATUS_REGISTER);
1863 	if (v & KCS_OBF)
1864 		++ipmi_nintr;
1865 
1866 	return 0;
1867 }
1868 #endif
1869 
1870 /* Handle IPMI Timer - reread sensor values */
1871 static void
1872 ipmi_refresh_sensors(struct ipmi_softc *sc)
1873 {
1874 
1875 	if (SLIST_EMPTY(&ipmi_sensor_list))
1876 		return;
1877 
1878 	sc->current_sensor = SLIST_NEXT(sc->current_sensor, i_list);
1879 	if (sc->current_sensor == NULL)
1880 		sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
1881 
1882 	if (read_sensor(sc, sc->current_sensor)) {
1883 		dbg_printf(1, "%s: error reading\n", __func__);
1884 	}
1885 }
1886 
1887 static int
1888 ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia)
1889 {
1890 	int error;
1891 
1892 	sc->sc_if = ipmi_get_if(ia->iaa_if_type);
1893 	if (sc->sc_if == NULL)
1894 		return -1;
1895 
1896 	if (ia->iaa_if_iotype == 'i')
1897 		sc->sc_iot = ia->iaa_iot;
1898 	else
1899 		sc->sc_iot = ia->iaa_memt;
1900 
1901 	sc->sc_if_rev = ia->iaa_if_rev;
1902 	sc->sc_if_iospacing = ia->iaa_if_iospacing;
1903 	if ((error = bus_space_map(sc->sc_iot, ia->iaa_if_iobase,
1904 	    sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) != 0) {
1905 		const char *xname = sc->sc_dev ? device_xname(sc->sc_dev) :
1906 		    "ipmi0";
1907 		aprint_error("%s: %s:bus_space_map(..., %" PRIx64 ", %x"
1908 		    ", 0, %p) type %c failed %d\n",
1909 		    xname, __func__, (uint64_t)ia->iaa_if_iobase,
1910 		    sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh,
1911 		    ia->iaa_if_iotype, error);
1912 		return -1;
1913 	}
1914 #if 0
1915 	if (iaa->if_if_irq != -1)
1916 		sc->ih = isa_intr_establish(-1, iaa->if_if_irq,
1917 		    iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc,
1918 		    device_xname(sc->sc_dev);
1919 #endif
1920 	return 0;
1921 }
1922 
1923 static void
1924 ipmi_unmap_regs(struct ipmi_softc *sc)
1925 {
1926 	bus_space_unmap(sc->sc_iot, sc->sc_ioh,
1927 	    sc->sc_if->nregs * sc->sc_if_iospacing);
1928 }
1929 
1930 static int
1931 ipmi_match(device_t parent, cfdata_t cf, void *aux)
1932 {
1933 	struct ipmi_softc sc;
1934 	struct ipmi_attach_args *ia = aux;
1935 	int			rv = 0;
1936 
1937 	memset(&sc, 0, sizeof(sc));
1938 
1939 	/* Map registers */
1940 	if (ipmi_map_regs(&sc, ia) != 0)
1941 		return 0;
1942 
1943 	sc.sc_if->probe(&sc);
1944 
1945 	mutex_init(&sc.sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
1946 	cv_init(&sc.sc_cmd_sleep, "ipmimtch");
1947 
1948 	if (ipmi_get_device_id(&sc, NULL) == 0)
1949 		rv = 1;
1950 
1951 	cv_destroy(&sc.sc_cmd_sleep);
1952 	mutex_destroy(&sc.sc_cmd_mtx);
1953 	ipmi_unmap_regs(&sc);
1954 
1955 	return rv;
1956 }
1957 
1958 static void
1959 ipmi_thread(void *cookie)
1960 {
1961 	device_t		self = cookie;
1962 	struct ipmi_softc	*sc = device_private(self);
1963 	struct ipmi_attach_args *ia = &sc->sc_ia;
1964 	uint16_t		rec;
1965 	struct ipmi_sensor *ipmi_s;
1966 	struct ipmi_device_id	id;
1967 	int i;
1968 
1969 	sc->sc_thread_running = true;
1970 
1971 	/* setup ticker */
1972 	sc->sc_max_retries = hz * 90; /* 90 seconds max */
1973 
1974 	/* Map registers */
1975 	ipmi_map_regs(sc, ia);
1976 
1977 	memset(&id, 0, sizeof(id));
1978 	if (ipmi_get_device_id(sc, &id))
1979 		aprint_error_dev(self, "Failed to re-query device ID\n");
1980 
1981 	/* Scan SDRs, add sensors to list */
1982 	for (rec = 0; rec != 0xFFFF;)
1983 		if (get_sdr(sc, rec, &rec))
1984 			break;
1985 
1986 	/* allocate and fill sensor arrays */
1987 	sc->sc_sensor =
1988 	    malloc(sizeof(envsys_data_t) * sc->sc_nsensors,
1989 	        M_DEVBUF, M_WAITOK | M_ZERO);
1990 	if (sc->sc_sensor == NULL) {
1991 		aprint_error_dev(self, "can't allocate envsys_data_t\n");
1992 		kthread_exit(0);
1993 	}
1994 
1995 	sc->sc_envsys = sysmon_envsys_create();
1996 	sc->sc_envsys->sme_cookie = sc;
1997 	sc->sc_envsys->sme_get_limits = ipmi_get_limits;
1998 	sc->sc_envsys->sme_set_limits = ipmi_set_limits;
1999 
2000 	i = 0;
2001 	SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
2002 		ipmi_s->i_props = 0;
2003 		ipmi_s->i_envnum = -1;
2004 		sc->sc_sensor[i].units = ipmi_s->i_envtype;
2005 		sc->sc_sensor[i].state = ENVSYS_SINVALID;
2006 		sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
2007 		/*
2008 		 * Monitor threshold limits in the sensors.
2009 		 */
2010 		switch (sc->sc_sensor[i].units) {
2011 		case ENVSYS_STEMP:
2012 		case ENVSYS_SVOLTS_DC:
2013 		case ENVSYS_SFANRPM:
2014 			sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
2015 			break;
2016 		default:
2017 			sc->sc_sensor[i].flags |= ENVSYS_FMONCRITICAL;
2018 		}
2019 		(void)strlcpy(sc->sc_sensor[i].desc, ipmi_s->i_envdesc,
2020 		    sizeof(sc->sc_sensor[i].desc));
2021 		++i;
2022 
2023 		if (sysmon_envsys_sensor_attach(sc->sc_envsys,
2024 						&sc->sc_sensor[i-1]))
2025 			continue;
2026 
2027 		/* get reference number from envsys */
2028 		ipmi_s->i_envnum = sc->sc_sensor[i-1].sensor;
2029 	}
2030 
2031 	sc->sc_envsys->sme_name = device_xname(sc->sc_dev);
2032 	sc->sc_envsys->sme_flags = SME_DISABLE_REFRESH;
2033 
2034 	if (sysmon_envsys_register(sc->sc_envsys)) {
2035 		aprint_error_dev(self, "unable to register with sysmon\n");
2036 		sysmon_envsys_destroy(sc->sc_envsys);
2037 	}
2038 
2039 	/* initialize sensor list for thread */
2040 	if (!SLIST_EMPTY(&ipmi_sensor_list))
2041 		sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);
2042 
2043 	aprint_verbose_dev(self, "version %d.%d interface %s %sbase "
2044 	    "0x%" PRIx64 "/%#x spacing %d\n",
2045 	    ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name,
2046 	    ia->iaa_if_iotype == 'i' ? "io" : "mem",
2047 	    (uint64_t)ia->iaa_if_iobase,
2048 	    ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing);
2049 	if (ia->iaa_if_irq != -1)
2050 		aprint_verbose_dev(self, " irq %d\n", ia->iaa_if_irq);
2051 
2052 	if (id.deviceid != 0) {
2053 		aprint_normal_dev(self, "ID %u.%u IPMI %x.%x%s%s\n",
2054 			id.deviceid, (id.revision & 0xf),
2055 			(id.version & 0xf), (id.version >> 4) & 0xf,
2056 			(id.fwrev1 & 0x80) ? " Initializing" : " Available",
2057 			(id.revision & 0x80) ? " +SDRs" : "");
2058 		if (id.additional != 0)
2059 			aprint_verbose_dev(self, "Additional%s%s%s%s%s%s%s%s\n",
2060 				(id.additional & 0x80) ? " Chassis" : "",
2061 				(id.additional & 0x40) ? " Bridge" : "",
2062 				(id.additional & 0x20) ? " IPMBGen" : "",
2063 				(id.additional & 0x10) ? " IPMBRcv" : "",
2064 				(id.additional & 0x08) ? " FRU" : "",
2065 				(id.additional & 0x04) ? " SEL" : "",
2066 				(id.additional & 0x02) ? " SDR" : "",
2067 				(id.additional & 0x01) ? " Sensor" : "");
2068 		aprint_verbose_dev(self, "Manufacturer %05x Product %04x\n",
2069 			(id.manufacturer[2] & 0xf) << 16
2070 			    | id.manufacturer[1] << 8
2071 			    | id.manufacturer[0],
2072 			id.product[1] << 8
2073 			    | id.manufacturer[0]);
2074 		aprint_verbose_dev(self, "Firmware %u.%x\n",
2075 			(id.fwrev1 & 0x7f), id.fwrev2);
2076 	}
2077 
2078 	/* setup flag to exclude iic */
2079 	ipmi_enabled = 1;
2080 
2081 	/* Setup Watchdog timer */
2082 	sc->sc_wdog.smw_name = device_xname(sc->sc_dev);
2083 	sc->sc_wdog.smw_cookie = sc;
2084 	sc->sc_wdog.smw_setmode = ipmi_watchdog_setmode;
2085 	sc->sc_wdog.smw_tickle = ipmi_watchdog_tickle;
2086 	sysmon_wdog_register(&sc->sc_wdog);
2087 
2088 	/* Set up a power handler so we can possibly sleep */
2089 	if (!pmf_device_register(self, ipmi_suspend, NULL))
2090                 aprint_error_dev(self, "couldn't establish a power handler\n");
2091 
2092 	mutex_enter(&sc->sc_poll_mtx);
2093 	while (sc->sc_thread_running) {
2094 		while (sc->sc_mode == IPMI_MODE_COMMAND)
2095 			cv_wait(&sc->sc_mode_cv, &sc->sc_poll_mtx);
2096 		sc->sc_mode = IPMI_MODE_ENVSYS;
2097 
2098 		if (sc->sc_tickle_due) {
2099 			ipmi_dotickle(sc);
2100 			sc->sc_tickle_due = false;
2101 		}
2102 		ipmi_refresh_sensors(sc);
2103 
2104 		sc->sc_mode = IPMI_MODE_IDLE;
2105 		cv_broadcast(&sc->sc_mode_cv);
2106 		cv_timedwait(&sc->sc_poll_cv, &sc->sc_poll_mtx,
2107 		    SENSOR_REFRESH_RATE);
2108 	}
2109 	mutex_exit(&sc->sc_poll_mtx);
2110 	self->dv_flags &= ~DVF_ATTACH_INPROGRESS;
2111 	kthread_exit(0);
2112 }
2113 
2114 static void
2115 ipmi_attach(device_t parent, device_t self, void *aux)
2116 {
2117 	struct ipmi_softc	*sc = device_private(self);
2118 
2119 	sc->sc_ia = *(struct ipmi_attach_args *)aux;
2120 	sc->sc_dev = self;
2121 	aprint_naive("\n");
2122 	aprint_normal("\n");
2123 
2124 	/* lock around read_sensor so that no one messes with the bmc regs */
2125 	mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2126 	mutex_init(&sc->sc_sleep_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2127 	cv_init(&sc->sc_cmd_sleep, "ipmicmd");
2128 
2129 	mutex_init(&sc->sc_poll_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
2130 	cv_init(&sc->sc_poll_cv, "ipmipoll");
2131 	cv_init(&sc->sc_mode_cv, "ipmimode");
2132 
2133 	if (kthread_create(PRI_NONE, 0, NULL, ipmi_thread, self,
2134 	    &sc->sc_kthread, "%s", device_xname(self)) != 0) {
2135 		aprint_error_dev(self, "unable to create thread, disabled\n");
2136 	} else
2137 		self->dv_flags |= DVF_ATTACH_INPROGRESS;
2138 }
2139 
2140 static int
2141 ipmi_detach(device_t self, int flags)
2142 {
2143 	struct ipmi_sensor *i;
2144 	int rc;
2145 	struct ipmi_softc *sc = device_private(self);
2146 
2147 	mutex_enter(&sc->sc_poll_mtx);
2148 	sc->sc_thread_running = false;
2149 	cv_signal(&sc->sc_poll_cv);
2150 	mutex_exit(&sc->sc_poll_mtx);
2151 
2152 	if ((rc = sysmon_wdog_unregister(&sc->sc_wdog)) != 0) {
2153 		if (rc == ERESTART)
2154 			rc = EINTR;
2155 		return rc;
2156 	}
2157 
2158 	/* cancel any pending countdown */
2159 	sc->sc_wdog.smw_mode &= ~WDOG_MODE_MASK;
2160 	sc->sc_wdog.smw_mode |= WDOG_MODE_DISARMED;
2161 	sc->sc_wdog.smw_period = WDOG_PERIOD_DEFAULT;
2162 
2163 	if ((rc = ipmi_watchdog_setmode(&sc->sc_wdog)) != 0)
2164 		return rc;
2165 
2166 	ipmi_enabled = 0;
2167 
2168 	if (sc->sc_envsys != NULL) {
2169 		/* _unregister also destroys */
2170 		sysmon_envsys_unregister(sc->sc_envsys);
2171 		sc->sc_envsys = NULL;
2172 	}
2173 
2174 	while ((i = SLIST_FIRST(&ipmi_sensor_list)) != NULL) {
2175 		SLIST_REMOVE_HEAD(&ipmi_sensor_list, i_list);
2176 		free(i, M_DEVBUF);
2177 	}
2178 
2179 	if (sc->sc_sensor != NULL) {
2180 		free(sc->sc_sensor, M_DEVBUF);
2181 		sc->sc_sensor = NULL;
2182 	}
2183 
2184 	ipmi_unmap_regs(sc);
2185 
2186 	cv_destroy(&sc->sc_mode_cv);
2187 	cv_destroy(&sc->sc_poll_cv);
2188 	mutex_destroy(&sc->sc_poll_mtx);
2189 	cv_destroy(&sc->sc_cmd_sleep);
2190 	mutex_destroy(&sc->sc_sleep_mtx);
2191 	mutex_destroy(&sc->sc_cmd_mtx);
2192 
2193 	return 0;
2194 }
2195 
2196 static int
2197 ipmi_get_device_id(struct ipmi_softc *sc, struct ipmi_device_id *res)
2198 {
2199 	uint8_t		buf[32];
2200 	int		len;
2201 	int		rc;
2202 
2203 	mutex_enter(&sc->sc_cmd_mtx);
2204 	/* Identify BMC device early to detect lying bios */
2205 	rc = ipmi_sendcmd(sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID, 0, NULL);
2206 	if (rc) {
2207 		dbg_printf(1, ": unable to send get device id "
2208 		    "command\n");
2209 		goto done;
2210 	}
2211 	rc = ipmi_recvcmd(sc, sizeof(buf), &len, buf);
2212 	if (rc) {
2213 		dbg_printf(1, ": unable to retrieve device id\n");
2214 	}
2215 done:
2216 	mutex_exit(&sc->sc_cmd_mtx);
2217 
2218 	if (rc == 0 && res != NULL)
2219 		memcpy(res, buf, MIN(sizeof(*res), len));
2220 
2221 	return rc;
2222 }
2223 
2224 static int
2225 ipmi_watchdog_setmode(struct sysmon_wdog *smwdog)
2226 {
2227 	struct ipmi_softc	*sc = smwdog->smw_cookie;
2228 	struct ipmi_get_watchdog gwdog;
2229 	struct ipmi_set_watchdog swdog;
2230 	int			rc, len;
2231 
2232 	if (smwdog->smw_period < 10)
2233 		return EINVAL;
2234 	if (smwdog->smw_period == WDOG_PERIOD_DEFAULT)
2235 		sc->sc_wdog.smw_period = 10;
2236 	else
2237 		sc->sc_wdog.smw_period = smwdog->smw_period;
2238 
2239 	mutex_enter(&sc->sc_cmd_mtx);
2240 	/* see if we can properly task to the watchdog */
2241 	rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2242 	    APP_GET_WATCHDOG_TIMER, 0, NULL);
2243 	rc = ipmi_recvcmd(sc, sizeof(gwdog), &len, &gwdog);
2244 	mutex_exit(&sc->sc_cmd_mtx);
2245 	if (rc) {
2246 		aprint_error_dev(sc->sc_dev,
2247 		    "APP_GET_WATCHDOG_TIMER returned %#x\n", rc);
2248 		return EIO;
2249 	}
2250 
2251 	memset(&swdog, 0, sizeof(swdog));
2252 	/* Period is 10ths/sec */
2253 	swdog.wdog_timeout = htole16(sc->sc_wdog.smw_period * 10);
2254 	if ((smwdog->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED)
2255 		swdog.wdog_action = IPMI_WDOG_ACT_DISABLED;
2256 	else
2257 		swdog.wdog_action = IPMI_WDOG_ACT_RESET;
2258 	swdog.wdog_use = IPMI_WDOG_USE_USE_OS;
2259 
2260 	mutex_enter(&sc->sc_cmd_mtx);
2261 	if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2262 	    APP_SET_WATCHDOG_TIMER, sizeof(swdog), &swdog)) == 0)
2263 		rc = ipmi_recvcmd(sc, 0, &len, NULL);
2264 	mutex_exit(&sc->sc_cmd_mtx);
2265 	if (rc) {
2266 		aprint_error_dev(sc->sc_dev,
2267 		    "APP_SET_WATCHDOG_TIMER returned %#x\n", rc);
2268 		return EIO;
2269 	}
2270 
2271 	return 0;
2272 }
2273 
2274 static int
2275 ipmi_watchdog_tickle(struct sysmon_wdog *smwdog)
2276 {
2277 	struct ipmi_softc	*sc = smwdog->smw_cookie;
2278 
2279 	mutex_enter(&sc->sc_poll_mtx);
2280 	sc->sc_tickle_due = true;
2281 	cv_signal(&sc->sc_poll_cv);
2282 	mutex_exit(&sc->sc_poll_mtx);
2283 	return 0;
2284 }
2285 
2286 static void
2287 ipmi_dotickle(struct ipmi_softc *sc)
2288 {
2289 	int			rc, len;
2290 
2291 	mutex_enter(&sc->sc_cmd_mtx);
2292 	/* tickle the watchdog */
2293 	if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
2294 	    APP_RESET_WATCHDOG, 0, NULL)) == 0)
2295 		rc = ipmi_recvcmd(sc, 0, &len, NULL);
2296 	mutex_exit(&sc->sc_cmd_mtx);
2297 	if (rc != 0) {
2298 		aprint_error_dev(sc->sc_dev, "watchdog tickle returned %#x\n",
2299 		    rc);
2300 	}
2301 }
2302 
2303 static bool
2304 ipmi_suspend(device_t dev, const pmf_qual_t *qual)
2305 {
2306 	struct ipmi_softc *sc = device_private(dev);
2307 
2308 	/* Don't allow suspend if watchdog is armed */
2309 	if ((sc->sc_wdog.smw_mode & WDOG_MODE_MASK) != WDOG_MODE_DISARMED)
2310 		return false;
2311 	return true;
2312 }
2313 
2314 static int
2315 ipmi_open(dev_t dev, int flag, int fmt, lwp_t *l)
2316 {
2317 	return 0;
2318 }
2319 
2320 static int
2321 ipmi_close(dev_t dev, int flag, int fmt, lwp_t *l)
2322 {
2323 	struct ipmi_softc *sc;
2324 	int unit;
2325 
2326 	unit = IPMIUNIT(dev);
2327 	if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2328 		return (ENXIO);
2329 
2330 	mutex_enter(&sc->sc_poll_mtx);
2331 	if (sc->sc_mode == IPMI_MODE_COMMAND) {
2332 		sc->sc_mode = IPMI_MODE_IDLE;
2333 		cv_broadcast(&sc->sc_mode_cv);
2334 	}
2335 	mutex_exit(&sc->sc_poll_mtx);
2336 	return 0;
2337 }
2338 
2339 static int
2340 ipmi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
2341 {
2342 	struct ipmi_softc *sc;
2343 	int unit, error = 0, len;
2344 	struct ipmi_req *req;
2345 	struct ipmi_recv *recv;
2346 	struct ipmi_addr addr;
2347 	unsigned char ccode, *buf = NULL;
2348 
2349 	unit = IPMIUNIT(dev);
2350 	if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2351 		return (ENXIO);
2352 
2353 	switch (cmd) {
2354 	case IPMICTL_SEND_COMMAND:
2355 		mutex_enter(&sc->sc_poll_mtx);
2356 		while (sc->sc_mode == IPMI_MODE_ENVSYS) {
2357 			error = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx);
2358 			if (error == EINTR) {
2359 				mutex_exit(&sc->sc_poll_mtx);
2360 				return error;
2361 			}
2362 		}
2363 		sc->sc_mode = IPMI_MODE_COMMAND;
2364 		mutex_exit(&sc->sc_poll_mtx);
2365 		break;
2366 	}
2367 
2368 	mutex_enter(&sc->sc_cmd_mtx);
2369 
2370 	switch (cmd) {
2371 	case IPMICTL_SEND_COMMAND:
2372 		req = data;
2373 		buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);
2374 
2375 		len = req->msg.data_len;
2376 		if (len < 0 || len > IPMI_MAX_RX) {
2377 			error = EINVAL;
2378 			break;
2379 		}
2380 
2381 		/* clear pending result */
2382 		if (sc->sc_sent)
2383 			(void)ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
2384 
2385 		/* XXX */
2386 		error = copyin(req->addr, &addr, sizeof(addr));
2387 		if (error)
2388 			break;
2389 
2390 		error = copyin(req->msg.data, buf, len);
2391 		if (error)
2392 			break;
2393 
2394 		/* save for receive */
2395 		sc->sc_msgid = req->msgid;
2396 		sc->sc_netfn = req->msg.netfn;
2397 		sc->sc_cmd = req->msg.cmd;
2398 
2399 		if (ipmi_sendcmd(sc, BMC_SA, 0, req->msg.netfn,
2400 		    req->msg.cmd, len, buf)) {
2401 			error = EIO;
2402 			break;
2403 		}
2404 		sc->sc_sent = true;
2405 		break;
2406 	case IPMICTL_RECEIVE_MSG_TRUNC:
2407 	case IPMICTL_RECEIVE_MSG:
2408 		recv = data;
2409 		buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);
2410 
2411 		if (recv->msg.data_len < 1) {
2412 			error = EINVAL;
2413 			break;
2414 		}
2415 
2416 		/* XXX */
2417 		error = copyin(recv->addr, &addr, sizeof(addr));
2418 		if (error)
2419 			break;
2420 
2421 
2422 		if (!sc->sc_sent) {
2423 			error = EIO;
2424 			break;
2425 		}
2426 
2427 		len = 0;
2428 		error = ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
2429 		if (error < 0) {
2430 			error = EIO;
2431 			break;
2432 		}
2433 		ccode = (unsigned char)error;
2434 		sc->sc_sent = false;
2435 
2436 		if (len > recv->msg.data_len - 1) {
2437 			if (cmd == IPMICTL_RECEIVE_MSG) {
2438 				error = EMSGSIZE;
2439 				break;
2440 			}
2441 			len = recv->msg.data_len - 1;
2442 		}
2443 
2444 		addr.channel = IPMI_BMC_CHANNEL;
2445 
2446 		recv->recv_type = IPMI_RESPONSE_RECV_TYPE;
2447 		recv->msgid = sc->sc_msgid;
2448 		recv->msg.netfn = sc->sc_netfn;
2449 		recv->msg.cmd = sc->sc_cmd;
2450 		recv->msg.data_len = len+1;
2451 
2452 		error = copyout(&addr, recv->addr, sizeof(addr));
2453 		if (error == 0)
2454 			error = copyout(&ccode, recv->msg.data, 1);
2455 		if (error == 0)
2456 			error = copyout(buf, recv->msg.data+1, len);
2457 		break;
2458 	case IPMICTL_SET_MY_ADDRESS_CMD:
2459 		sc->sc_address = *(int *)data;
2460 		break;
2461 	case IPMICTL_GET_MY_ADDRESS_CMD:
2462 		*(int *)data = sc->sc_address;
2463 		break;
2464 	case IPMICTL_SET_MY_LUN_CMD:
2465 		sc->sc_lun = *(int *)data & 0x3;
2466 		break;
2467 	case IPMICTL_GET_MY_LUN_CMD:
2468 		*(int *)data = sc->sc_lun;
2469 		break;
2470 	case IPMICTL_SET_GETS_EVENTS_CMD:
2471 		break;
2472 	case IPMICTL_REGISTER_FOR_CMD:
2473 	case IPMICTL_UNREGISTER_FOR_CMD:
2474 		error = EOPNOTSUPP;
2475 		break;
2476 	default:
2477 		error = ENODEV;
2478 		break;
2479 	}
2480 
2481 	if (buf)
2482 		free(buf, M_DEVBUF);
2483 
2484 	mutex_exit(&sc->sc_cmd_mtx);
2485 
2486 	switch (cmd) {
2487 	case IPMICTL_RECEIVE_MSG:
2488 	case IPMICTL_RECEIVE_MSG_TRUNC:
2489 		mutex_enter(&sc->sc_poll_mtx);
2490 		sc->sc_mode = IPMI_MODE_IDLE;
2491 		cv_broadcast(&sc->sc_mode_cv);
2492 		mutex_exit(&sc->sc_poll_mtx);
2493 		break;
2494 	}
2495 
2496 	return error;
2497 }
2498 
2499 static int
2500 ipmi_poll(dev_t dev, int events, lwp_t *l)
2501 {
2502 	struct ipmi_softc *sc;
2503 	int unit, revents = 0;
2504 
2505 	unit = IPMIUNIT(dev);
2506 	if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
2507 		return (ENXIO);
2508 
2509 	mutex_enter(&sc->sc_cmd_mtx);
2510 	if (events & (POLLIN | POLLRDNORM)) {
2511 		if (sc->sc_sent)
2512 			revents |= events & (POLLIN | POLLRDNORM);
2513 	}
2514 	mutex_exit(&sc->sc_cmd_mtx);
2515 
2516 	return revents;
2517 }
2518