1 /* $NetBSD: ipmi.c,v 1.5 2020/08/17 08:34:36 nonaka Exp $ */ 2 3 /* 4 * Copyright (c) 2019 Michael van Elst 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 */ 27 /* 28 * Copyright (c) 2006 Manuel Bouyer. 29 * 30 * Redistribution and use in source and binary forms, with or without 31 * modification, are permitted provided that the following conditions 32 * are met: 33 * 1. Redistributions of source code must retain the above copyright 34 * notice, this list of conditions and the following disclaimer. 35 * 2. Redistributions in binary form must reproduce the above copyright 36 * notice, this list of conditions and the following disclaimer in the 37 * documentation and/or other materials provided with the distribution. 38 * 39 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 40 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 41 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 42 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 43 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 45 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 46 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 47 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 48 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 49 * 50 */ 51 52 /* 53 * Copyright (c) 2005 Jordan Hargrave 54 * All rights reserved. 55 * 56 * Redistribution and use in source and binary forms, with or without 57 * modification, are permitted provided that the following conditions 58 * are met: 59 * 1. Redistributions of source code must retain the above copyright 60 * notice, this list of conditions and the following disclaimer. 61 * 2. Redistributions in binary form must reproduce the above copyright 62 * notice, this list of conditions and the following disclaimer in the 63 * documentation and/or other materials provided with the distribution. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 66 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR 69 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 73 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 74 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 75 * SUCH DAMAGE. 76 */ 77 78 #include <sys/cdefs.h> 79 __KERNEL_RCSID(0, "$NetBSD: ipmi.c,v 1.5 2020/08/17 08:34:36 nonaka Exp $"); 80 81 #include <sys/types.h> 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/device.h> 86 #include <sys/extent.h> 87 #include <sys/callout.h> 88 #include <sys/envsys.h> 89 #include <sys/malloc.h> 90 #include <sys/kthread.h> 91 #include <sys/bus.h> 92 #include <sys/intr.h> 93 #include <sys/ioctl.h> 94 #include <sys/poll.h> 95 #include <sys/conf.h> 96 97 #include <dev/isa/isareg.h> 98 #include <dev/isa/isavar.h> 99 100 #include <sys/ipmi.h> 101 #include <dev/ipmivar.h> 102 103 #include <uvm/uvm_extern.h> 104 105 #include "ioconf.h" 106 107 static dev_type_open(ipmi_open); 108 static dev_type_close(ipmi_close); 109 static dev_type_ioctl(ipmi_ioctl); 110 static dev_type_poll(ipmi_poll); 111 112 const struct cdevsw ipmi_cdevsw = { 113 .d_open = ipmi_open, 114 .d_close = ipmi_close, 115 .d_read = noread, 116 .d_write = nowrite, 117 .d_ioctl = ipmi_ioctl, 118 .d_stop = nostop, 119 .d_tty = notty, 120 .d_poll = ipmi_poll, 121 .d_mmap = nommap, 122 .d_kqfilter = nokqfilter, 123 .d_discard = nodiscard, 124 .d_flag = D_OTHER 125 }; 126 127 #define IPMIUNIT(n) (minor(n)) 128 129 struct ipmi_sensor { 130 uint8_t *i_sdr; 131 int i_num; 132 int i_stype; 133 int i_etype; 134 char i_envdesc[64]; 135 int i_envtype; /* envsys compatible type */ 136 int i_envnum; /* envsys index */ 137 sysmon_envsys_lim_t i_limits, i_deflims; 138 uint32_t i_props, i_defprops; 139 SLIST_ENTRY(ipmi_sensor) i_list; 140 int32_t i_prevval; /* feed rnd source on change */ 141 }; 142 143 #if 0 144 static int ipmi_nintr; 145 #endif 146 static int ipmi_dbg = 0; 147 static int ipmi_enabled = 0; 148 149 #define SENSOR_REFRESH_RATE (hz / 2) 150 151 #define IPMI_BTMSG_LEN 0 152 #define IPMI_BTMSG_NFLN 1 153 #define IPMI_BTMSG_SEQ 2 154 #define IPMI_BTMSG_CMD 3 155 #define IPMI_BTMSG_CCODE 4 156 #define IPMI_BTMSG_DATASND 4 157 #define IPMI_BTMSG_DATARCV 5 158 159 #define IPMI_MSG_NFLN 0 160 #define IPMI_MSG_CMD 1 161 #define IPMI_MSG_CCODE 2 162 #define IPMI_MSG_DATASND 2 163 #define IPMI_MSG_DATARCV 3 164 165 #define IPMI_SENSOR_TYPE_TEMP 0x0101 166 #define IPMI_SENSOR_TYPE_VOLT 0x0102 167 #define IPMI_SENSOR_TYPE_FAN 0x0104 168 #define IPMI_SENSOR_TYPE_INTRUSION 0x6F05 169 #define IPMI_SENSOR_TYPE_PWRSUPPLY 0x6F08 170 171 #define IPMI_NAME_UNICODE 0x00 172 #define IPMI_NAME_BCDPLUS 0x01 173 #define IPMI_NAME_ASCII6BIT 0x02 174 #define IPMI_NAME_ASCII8BIT 0x03 175 176 #define IPMI_ENTITY_PWRSUPPLY 0x0A 177 178 #define IPMI_SENSOR_SCANNING_ENABLED (1L << 6) 179 #define IPMI_SENSOR_UNAVAILABLE (1L << 5) 180 #define IPMI_INVALID_SENSOR_P(x) \ 181 (((x) & (IPMI_SENSOR_SCANNING_ENABLED|IPMI_SENSOR_UNAVAILABLE)) \ 182 != IPMI_SENSOR_SCANNING_ENABLED) 183 184 #define IPMI_SDR_TYPEFULL 1 185 #define IPMI_SDR_TYPECOMPACT 2 186 187 #define byteof(x) ((x) >> 3) 188 #define bitof(x) (1L << ((x) & 0x7)) 189 #define TB(b,m) (data[2+byteof(b)] & bitof(b)) 190 191 #define dbg_printf(lvl, fmt...) \ 192 if (ipmi_dbg >= lvl) \ 193 printf(fmt); 194 #define dbg_dump(lvl, msg, len, buf) \ 195 if (len && ipmi_dbg >= lvl) \ 196 dumpb(msg, len, (const uint8_t *)(buf)); 197 198 static long signextend(unsigned long, int); 199 200 SLIST_HEAD(ipmi_sensors_head, ipmi_sensor); 201 static struct ipmi_sensors_head ipmi_sensor_list = 202 SLIST_HEAD_INITIALIZER(&ipmi_sensor_list); 203 204 static void dumpb(const char *, int, const uint8_t *); 205 206 static int read_sensor(struct ipmi_softc *, struct ipmi_sensor *); 207 static int add_sdr_sensor(struct ipmi_softc *, uint8_t *); 208 static int get_sdr_partial(struct ipmi_softc *, uint16_t, uint16_t, 209 uint8_t, uint8_t, void *, uint16_t *); 210 static int get_sdr(struct ipmi_softc *, uint16_t, uint16_t *); 211 212 static char *ipmi_buf_acquire(struct ipmi_softc *, size_t); 213 static void ipmi_buf_release(struct ipmi_softc *, char *); 214 static int ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*); 215 static int ipmi_recvcmd(struct ipmi_softc *, int, int *, void *); 216 static void ipmi_delay(struct ipmi_softc *, int); 217 218 static int ipmi_get_device_id(struct ipmi_softc *, struct ipmi_device_id *); 219 static int ipmi_watchdog_setmode(struct sysmon_wdog *); 220 static int ipmi_watchdog_tickle(struct sysmon_wdog *); 221 static void ipmi_dotickle(struct ipmi_softc *); 222 223 #if 0 224 static int ipmi_intr(void *); 225 #endif 226 227 static int ipmi_match(device_t, cfdata_t, void *); 228 static void ipmi_attach(device_t, device_t, void *); 229 static int ipmi_detach(device_t, int); 230 231 static long ipmi_convert(uint8_t, struct sdrtype1 *, long); 232 static void ipmi_sensor_name(char *, int, uint8_t, uint8_t *); 233 234 /* BMC Helper Functions */ 235 static uint8_t bmc_read(struct ipmi_softc *, int); 236 static void bmc_write(struct ipmi_softc *, int, uint8_t); 237 static int bmc_io_wait(struct ipmi_softc *, int, uint8_t, uint8_t, const char *); 238 static int bmc_io_wait_spin(struct ipmi_softc *, int, uint8_t, uint8_t); 239 static int bmc_io_wait_sleep(struct ipmi_softc *, int, uint8_t, uint8_t); 240 241 static void *bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *); 242 static void *cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *); 243 244 static int getbits(uint8_t *, int, int); 245 static int ipmi_sensor_type(int, int, int); 246 247 static void ipmi_refresh_sensors(struct ipmi_softc *); 248 static int ipmi_map_regs(struct ipmi_softc *, struct ipmi_attach_args *); 249 static void ipmi_unmap_regs(struct ipmi_softc *); 250 251 static int32_t ipmi_convert_sensor(uint8_t *, struct ipmi_sensor *); 252 static void ipmi_set_limits(struct sysmon_envsys *, envsys_data_t *, 253 sysmon_envsys_lim_t *, uint32_t *); 254 static void ipmi_get_limits(struct sysmon_envsys *, envsys_data_t *, 255 sysmon_envsys_lim_t *, uint32_t *); 256 static void ipmi_get_sensor_limits(struct ipmi_softc *, struct ipmi_sensor *, 257 sysmon_envsys_lim_t *, uint32_t *); 258 static int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *, 259 envsys_data_t *, uint8_t *); 260 261 static int add_child_sensors(struct ipmi_softc *, uint8_t *, int, int, int, 262 int, int, int, const char *); 263 264 static bool ipmi_suspend(device_t, const pmf_qual_t *); 265 266 static int kcs_probe(struct ipmi_softc *); 267 static int kcs_reset(struct ipmi_softc *); 268 static int kcs_sendmsg(struct ipmi_softc *, int, const uint8_t *); 269 static int kcs_recvmsg(struct ipmi_softc *, int, int *len, uint8_t *); 270 271 static int bt_probe(struct ipmi_softc *); 272 static int bt_reset(struct ipmi_softc *); 273 static int bt_sendmsg(struct ipmi_softc *, int, const uint8_t *); 274 static int bt_recvmsg(struct ipmi_softc *, int, int *, uint8_t *); 275 276 static int smic_probe(struct ipmi_softc *); 277 static int smic_reset(struct ipmi_softc *); 278 static int smic_sendmsg(struct ipmi_softc *, int, const uint8_t *); 279 static int smic_recvmsg(struct ipmi_softc *, int, int *, uint8_t *); 280 281 static struct ipmi_if kcs_if = { 282 "KCS", 283 IPMI_IF_KCS_NREGS, 284 cmn_buildmsg, 285 kcs_sendmsg, 286 kcs_recvmsg, 287 kcs_reset, 288 kcs_probe, 289 }; 290 291 static struct ipmi_if smic_if = { 292 "SMIC", 293 IPMI_IF_SMIC_NREGS, 294 cmn_buildmsg, 295 smic_sendmsg, 296 smic_recvmsg, 297 smic_reset, 298 smic_probe, 299 }; 300 301 static struct ipmi_if bt_if = { 302 "BT", 303 IPMI_IF_BT_NREGS, 304 bt_buildmsg, 305 bt_sendmsg, 306 bt_recvmsg, 307 bt_reset, 308 bt_probe, 309 }; 310 311 static struct ipmi_if *ipmi_get_if(int); 312 313 static struct ipmi_if * 314 ipmi_get_if(int iftype) 315 { 316 switch (iftype) { 317 case IPMI_IF_KCS: 318 return &kcs_if; 319 case IPMI_IF_SMIC: 320 return &smic_if; 321 case IPMI_IF_BT: 322 return &bt_if; 323 default: 324 return NULL; 325 } 326 } 327 328 /* 329 * BMC Helper Functions 330 */ 331 static uint8_t 332 bmc_read(struct ipmi_softc *sc, int offset) 333 { 334 return bus_space_read_1(sc->sc_iot, sc->sc_ioh, 335 offset * sc->sc_if_iospacing); 336 } 337 338 static void 339 bmc_write(struct ipmi_softc *sc, int offset, uint8_t val) 340 { 341 bus_space_write_1(sc->sc_iot, sc->sc_ioh, 342 offset * sc->sc_if_iospacing, val); 343 } 344 345 static int 346 bmc_io_wait_sleep(struct ipmi_softc *sc, int offset, uint8_t mask, 347 uint8_t value) 348 { 349 int retries; 350 uint8_t v; 351 352 KASSERT(mutex_owned(&sc->sc_cmd_mtx)); 353 354 for (retries = 0; retries < sc->sc_max_retries; retries++) { 355 v = bmc_read(sc, offset); 356 if ((v & mask) == value) 357 return v; 358 mutex_enter(&sc->sc_sleep_mtx); 359 cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, 1); 360 mutex_exit(&sc->sc_sleep_mtx); 361 } 362 return -1; 363 } 364 365 static int 366 bmc_io_wait(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value, 367 const char *lbl) 368 { 369 int v; 370 371 v = bmc_io_wait_spin(sc, offset, mask, value); 372 if (cold || v != -1) 373 return v; 374 375 return bmc_io_wait_sleep(sc, offset, mask, value); 376 } 377 378 static int 379 bmc_io_wait_spin(struct ipmi_softc *sc, int offset, uint8_t mask, 380 uint8_t value) 381 { 382 uint8_t v; 383 int count = cold ? 15000 : 500; 384 /* ~us */ 385 386 while (count--) { 387 v = bmc_read(sc, offset); 388 if ((v & mask) == value) 389 return v; 390 391 delay(1); 392 } 393 394 return -1; 395 396 } 397 398 #define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3)) 399 #define GET_NETFN(m) (((m) >> 2) 400 #define GET_LUN(m) ((m) & 0x03) 401 402 /* 403 * BT interface 404 */ 405 #define _BT_CTRL_REG 0 406 #define BT_CLR_WR_PTR (1L << 0) 407 #define BT_CLR_RD_PTR (1L << 1) 408 #define BT_HOST2BMC_ATN (1L << 2) 409 #define BT_BMC2HOST_ATN (1L << 3) 410 #define BT_EVT_ATN (1L << 4) 411 #define BT_HOST_BUSY (1L << 6) 412 #define BT_BMC_BUSY (1L << 7) 413 414 #define BT_READY (BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN) 415 416 #define _BT_DATAIN_REG 1 417 #define _BT_DATAOUT_REG 1 418 419 #define _BT_INTMASK_REG 2 420 #define BT_IM_HIRQ_PEND (1L << 1) 421 #define BT_IM_SCI_EN (1L << 2) 422 #define BT_IM_SMI_EN (1L << 3) 423 #define BT_IM_NMI2SMI (1L << 4) 424 425 static int bt_read(struct ipmi_softc *, int); 426 static int bt_write(struct ipmi_softc *, int, uint8_t); 427 428 static int 429 bt_read(struct ipmi_softc *sc, int reg) 430 { 431 return bmc_read(sc, reg); 432 } 433 434 static int 435 bt_write(struct ipmi_softc *sc, int reg, uint8_t data) 436 { 437 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC_BUSY, 0, __func__) < 0) 438 return -1; 439 440 bmc_write(sc, reg, data); 441 return 0; 442 } 443 444 static int 445 bt_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data) 446 { 447 int i; 448 449 bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR); 450 for (i = 0; i < len; i++) 451 bt_write(sc, _BT_DATAOUT_REG, data[i]); 452 453 bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN); 454 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN | BT_BMC_BUSY, 0, 455 __func__) < 0) 456 return -1; 457 458 return 0; 459 } 460 461 static int 462 bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t *data) 463 { 464 uint8_t len, v, i; 465 466 if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN, 467 __func__) < 0) 468 return -1; 469 470 bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY); 471 bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN); 472 bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR); 473 len = bt_read(sc, _BT_DATAIN_REG); 474 for (i = IPMI_BTMSG_NFLN; i <= len; i++) { 475 v = bt_read(sc, _BT_DATAIN_REG); 476 if (i != IPMI_BTMSG_SEQ) 477 *(data++) = v; 478 } 479 bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY); 480 *rxlen = len - 1; 481 482 return 0; 483 } 484 485 static int 486 bt_reset(struct ipmi_softc *sc) 487 { 488 return -1; 489 } 490 491 static int 492 bt_probe(struct ipmi_softc *sc) 493 { 494 uint8_t rv; 495 496 rv = bmc_read(sc, _BT_CTRL_REG); 497 rv &= BT_HOST_BUSY; 498 rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN; 499 bmc_write(sc, _BT_CTRL_REG, rv); 500 501 rv = bmc_read(sc, _BT_INTMASK_REG); 502 rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI; 503 rv |= BT_IM_HIRQ_PEND; 504 bmc_write(sc, _BT_INTMASK_REG, rv); 505 506 #if 0 507 printf("%s: %2x\n", __func__, v); 508 printf(" WR : %2x\n", v & BT_CLR_WR_PTR); 509 printf(" RD : %2x\n", v & BT_CLR_RD_PTR); 510 printf(" H2B : %2x\n", v & BT_HOST2BMC_ATN); 511 printf(" B2H : %2x\n", v & BT_BMC2HOST_ATN); 512 printf(" EVT : %2x\n", v & BT_EVT_ATN); 513 printf(" HBSY : %2x\n", v & BT_HOST_BUSY); 514 printf(" BBSY : %2x\n", v & BT_BMC_BUSY); 515 #endif 516 return 0; 517 } 518 519 /* 520 * SMIC interface 521 */ 522 #define _SMIC_DATAIN_REG 0 523 #define _SMIC_DATAOUT_REG 0 524 525 #define _SMIC_CTRL_REG 1 526 #define SMS_CC_GET_STATUS 0x40 527 #define SMS_CC_START_TRANSFER 0x41 528 #define SMS_CC_NEXT_TRANSFER 0x42 529 #define SMS_CC_END_TRANSFER 0x43 530 #define SMS_CC_START_RECEIVE 0x44 531 #define SMS_CC_NEXT_RECEIVE 0x45 532 #define SMS_CC_END_RECEIVE 0x46 533 #define SMS_CC_TRANSFER_ABORT 0x47 534 535 #define SMS_SC_READY 0xc0 536 #define SMS_SC_WRITE_START 0xc1 537 #define SMS_SC_WRITE_NEXT 0xc2 538 #define SMS_SC_WRITE_END 0xc3 539 #define SMS_SC_READ_START 0xc4 540 #define SMS_SC_READ_NEXT 0xc5 541 #define SMS_SC_READ_END 0xc6 542 543 #define _SMIC_FLAG_REG 2 544 #define SMIC_BUSY (1L << 0) 545 #define SMIC_SMS_ATN (1L << 2) 546 #define SMIC_EVT_ATN (1L << 3) 547 #define SMIC_SMI (1L << 4) 548 #define SMIC_TX_DATA_RDY (1L << 6) 549 #define SMIC_RX_DATA_RDY (1L << 7) 550 551 static int smic_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *); 552 static int smic_write_cmd_data(struct ipmi_softc *, uint8_t, const uint8_t *); 553 static int smic_read_data(struct ipmi_softc *, uint8_t *); 554 555 static int 556 smic_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t val, const char *lbl) 557 { 558 int v; 559 560 /* Wait for expected flag bits */ 561 v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, __func__); 562 if (v < 0) 563 return -1; 564 565 /* Return current status */ 566 v = bmc_read(sc, _SMIC_CTRL_REG); 567 dbg_printf(99, "%s(%s) = %#.2x\n", __func__, lbl, v); 568 return v; 569 } 570 571 static int 572 smic_write_cmd_data(struct ipmi_softc *sc, uint8_t cmd, const uint8_t *data) 573 { 574 int sts, v; 575 576 dbg_printf(50, "%s: %#.2x %#.2x\n", __func__, cmd, data ? *data : -1); 577 sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY, 578 "smic_write_cmd_data ready"); 579 if (sts < 0) 580 return sts; 581 582 bmc_write(sc, _SMIC_CTRL_REG, cmd); 583 if (data) 584 bmc_write(sc, _SMIC_DATAOUT_REG, *data); 585 586 /* Toggle BUSY bit, then wait for busy bit to clear */ 587 v = bmc_read(sc, _SMIC_FLAG_REG); 588 bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY); 589 590 return smic_wait(sc, SMIC_BUSY, 0, __func__); 591 } 592 593 static int 594 smic_read_data(struct ipmi_softc *sc, uint8_t *data) 595 { 596 int sts; 597 598 sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY, 599 __func__); 600 if (sts >= 0) { 601 *data = bmc_read(sc, _SMIC_DATAIN_REG); 602 dbg_printf(50, "%s: %#.2x\n", __func__, *data); 603 } 604 return sts; 605 } 606 607 #define ErrStat(a, ...) if (a) printf(__VA_ARGS__); 608 609 static int 610 smic_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data) 611 { 612 int sts, idx; 613 614 sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]); 615 ErrStat(sts != SMS_SC_WRITE_START, "%s: wstart", __func__); 616 for (idx = 1; idx < len - 1; idx++) { 617 sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER, 618 &data[idx]); 619 ErrStat(sts != SMS_SC_WRITE_NEXT, "%s: write", __func__); 620 } 621 sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]); 622 if (sts != SMS_SC_WRITE_END) { 623 dbg_printf(50, "%s: %d/%d = %#.2x\n", __func__, idx, len, sts); 624 return -1; 625 } 626 627 return 0; 628 } 629 630 static int 631 smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, uint8_t *data) 632 { 633 int sts, idx; 634 635 *len = 0; 636 sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, __func__); 637 if (sts < 0) 638 return -1; 639 640 sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL); 641 ErrStat(sts != SMS_SC_READ_START, "%s: rstart", __func__); 642 for (idx = 0;; ) { 643 sts = smic_read_data(sc, &data[idx++]); 644 if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT) 645 break; 646 smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL); 647 } 648 ErrStat(sts != SMS_SC_READ_END, "%s: rend", __func__); 649 650 *len = idx; 651 652 sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL); 653 if (sts != SMS_SC_READY) { 654 dbg_printf(50, "%s: %d/%d = %#.2x\n", 655 __func__, idx, maxlen, sts); 656 return -1; 657 } 658 659 return 0; 660 } 661 662 static int 663 smic_reset(struct ipmi_softc *sc) 664 { 665 return -1; 666 } 667 668 static int 669 smic_probe(struct ipmi_softc *sc) 670 { 671 /* Flag register should not be 0xFF on a good system */ 672 if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF) 673 return -1; 674 675 return 0; 676 } 677 678 /* 679 * KCS interface 680 */ 681 #define _KCS_DATAIN_REGISTER 0 682 #define _KCS_DATAOUT_REGISTER 0 683 #define KCS_READ_NEXT 0x68 684 685 #define _KCS_COMMAND_REGISTER 1 686 #define KCS_GET_STATUS 0x60 687 #define KCS_WRITE_START 0x61 688 #define KCS_WRITE_END 0x62 689 690 #define _KCS_STATUS_REGISTER 1 691 #define KCS_OBF (1L << 0) 692 #define KCS_IBF (1L << 1) 693 #define KCS_SMS_ATN (1L << 2) 694 #define KCS_CD (1L << 3) 695 #define KCS_OEM1 (1L << 4) 696 #define KCS_OEM2 (1L << 5) 697 #define KCS_STATE_MASK 0xc0 698 #define KCS_IDLE_STATE 0x00 699 #define KCS_READ_STATE 0x40 700 #define KCS_WRITE_STATE 0x80 701 #define KCS_ERROR_STATE 0xC0 702 703 static int kcs_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *); 704 static int kcs_write_cmd(struct ipmi_softc *, uint8_t); 705 static int kcs_write_data(struct ipmi_softc *, uint8_t); 706 static int kcs_read_data(struct ipmi_softc *, uint8_t *); 707 708 static int 709 kcs_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t value, const char *lbl) 710 { 711 int v; 712 713 v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl); 714 if (v < 0) 715 return v; 716 717 /* Check if output buffer full, read dummy byte */ 718 if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE)) 719 bmc_read(sc, _KCS_DATAIN_REGISTER); 720 721 /* Check for error state */ 722 if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) { 723 bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS); 724 while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF) 725 ; 726 aprint_error_dev(sc->sc_dev, "error code: %#x\n", 727 bmc_read(sc, _KCS_DATAIN_REGISTER)); 728 } 729 730 return v & KCS_STATE_MASK; 731 } 732 733 static int 734 kcs_write_cmd(struct ipmi_softc *sc, uint8_t cmd) 735 { 736 /* ASSERT: IBF and OBF are clear */ 737 dbg_printf(50, "%s: %#.2x\n", __func__, cmd); 738 bmc_write(sc, _KCS_COMMAND_REGISTER, cmd); 739 740 return kcs_wait(sc, KCS_IBF, 0, "write_cmd"); 741 } 742 743 static int 744 kcs_write_data(struct ipmi_softc *sc, uint8_t data) 745 { 746 /* ASSERT: IBF and OBF are clear */ 747 dbg_printf(50, "%s: %#.2x\n", __func__, data); 748 bmc_write(sc, _KCS_DATAOUT_REGISTER, data); 749 750 return kcs_wait(sc, KCS_IBF, 0, "write_data"); 751 } 752 753 static int 754 kcs_read_data(struct ipmi_softc *sc, uint8_t * data) 755 { 756 int sts; 757 758 sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, __func__); 759 if (sts != KCS_READ_STATE) 760 return sts; 761 762 /* ASSERT: OBF is set read data, request next byte */ 763 *data = bmc_read(sc, _KCS_DATAIN_REGISTER); 764 bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT); 765 766 dbg_printf(50, "%s: %#.2x\n", __func__, *data); 767 768 return sts; 769 } 770 771 /* Exported KCS functions */ 772 static int 773 kcs_sendmsg(struct ipmi_softc *sc, int len, const uint8_t * data) 774 { 775 int idx, sts; 776 777 /* ASSERT: IBF is clear */ 778 dbg_dump(50, __func__, len, data); 779 sts = kcs_write_cmd(sc, KCS_WRITE_START); 780 for (idx = 0; idx < len; idx++) { 781 if (idx == len - 1) 782 sts = kcs_write_cmd(sc, KCS_WRITE_END); 783 784 if (sts != KCS_WRITE_STATE) 785 break; 786 787 sts = kcs_write_data(sc, data[idx]); 788 } 789 if (sts != KCS_READ_STATE) { 790 dbg_printf(1, "%s: %d/%d <%#.2x>\n", __func__, idx, len, sts); 791 dbg_dump(1, __func__, len, data); 792 return -1; 793 } 794 795 return 0; 796 } 797 798 static int 799 kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t * data) 800 { 801 int idx, sts; 802 803 for (idx = 0; idx < maxlen; idx++) { 804 sts = kcs_read_data(sc, &data[idx]); 805 if (sts != KCS_READ_STATE) 806 break; 807 } 808 sts = kcs_wait(sc, KCS_IBF, 0, __func__); 809 *rxlen = idx; 810 if (sts != KCS_IDLE_STATE) { 811 dbg_printf(1, "%s: %d/%d <%#.2x>\n", 812 __func__, idx, maxlen, sts); 813 return -1; 814 } 815 816 dbg_dump(50, __func__, idx, data); 817 818 return 0; 819 } 820 821 static int 822 kcs_reset(struct ipmi_softc *sc) 823 { 824 return -1; 825 } 826 827 static int 828 kcs_probe(struct ipmi_softc *sc) 829 { 830 uint8_t v; 831 832 v = bmc_read(sc, _KCS_STATUS_REGISTER); 833 #if 0 834 printf("%s: %2x\n", __func__, v); 835 printf(" STS: %2x\n", v & KCS_STATE_MASK); 836 printf(" ATN: %2x\n", v & KCS_SMS_ATN); 837 printf(" C/D: %2x\n", v & KCS_CD); 838 printf(" IBF: %2x\n", v & KCS_IBF); 839 printf(" OBF: %2x\n", v & KCS_OBF); 840 #else 841 __USE(v); 842 #endif 843 return 0; 844 } 845 846 /* 847 * IPMI code 848 */ 849 #define READ_SMS_BUFFER 0x37 850 #define WRITE_I2C 0x50 851 852 #define GET_MESSAGE_CMD 0x33 853 #define SEND_MESSAGE_CMD 0x34 854 855 #define IPMB_CHANNEL_NUMBER 0 856 857 #define PUBLIC_BUS 0 858 859 #define MIN_I2C_PACKET_SIZE 3 860 #define MIN_IMB_PACKET_SIZE 7 /* one byte for cksum */ 861 862 #define MIN_BTBMC_REQ_SIZE 4 863 #define MIN_BTBMC_RSP_SIZE 5 864 #define MIN_BMC_REQ_SIZE 2 865 #define MIN_BMC_RSP_SIZE 3 866 867 #define BMC_SA 0x20 /* BMC/ESM3 */ 868 #define FPC_SA 0x22 /* front panel */ 869 #define BP_SA 0xC0 /* Primary Backplane */ 870 #define BP2_SA 0xC2 /* Secondary Backplane */ 871 #define PBP_SA 0xC4 /* Peripheral Backplane */ 872 #define DRAC_SA 0x28 /* DRAC-III */ 873 #define DRAC3_SA 0x30 /* DRAC-III */ 874 #define BMC_LUN 0 875 #define SMS_LUN 2 876 877 struct ipmi_request { 878 uint8_t rsSa; 879 uint8_t rsLun; 880 uint8_t netFn; 881 uint8_t cmd; 882 uint8_t data_len; 883 uint8_t *data; 884 }; 885 886 struct ipmi_response { 887 uint8_t cCode; 888 uint8_t data_len; 889 uint8_t *data; 890 }; 891 892 struct ipmi_bmc_request { 893 uint8_t bmc_nfLn; 894 uint8_t bmc_cmd; 895 uint8_t bmc_data_len; 896 uint8_t bmc_data[1]; 897 }; 898 899 struct ipmi_bmc_response { 900 uint8_t bmc_nfLn; 901 uint8_t bmc_cmd; 902 uint8_t bmc_cCode; 903 uint8_t bmc_data_len; 904 uint8_t bmc_data[1]; 905 }; 906 907 908 CFATTACH_DECL2_NEW(ipmi, sizeof(struct ipmi_softc), 909 ipmi_match, ipmi_attach, ipmi_detach, NULL, NULL, NULL); 910 911 static void 912 dumpb(const char *lbl, int len, const uint8_t *data) 913 { 914 int idx; 915 916 printf("%s: ", lbl); 917 for (idx = 0; idx < len; idx++) 918 printf("%.2x ", data[idx]); 919 920 printf("\n"); 921 } 922 923 /* 924 * bt_buildmsg builds an IPMI message from a nfLun, cmd, and data 925 * This is used by BT protocol 926 * 927 * Returns a buffer to an allocated message, txlen contains length 928 * of allocated message 929 */ 930 static void * 931 bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len, 932 const void *data, int *txlen) 933 { 934 uint8_t *buf; 935 936 /* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */ 937 *txlen = len + 4; 938 buf = ipmi_buf_acquire(sc, *txlen); 939 if (buf == NULL) 940 return NULL; 941 942 buf[IPMI_BTMSG_LEN] = len + 3; 943 buf[IPMI_BTMSG_NFLN] = nfLun; 944 buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++; 945 buf[IPMI_BTMSG_CMD] = cmd; 946 if (len && data) 947 memcpy(buf + IPMI_BTMSG_DATASND, data, len); 948 949 return buf; 950 } 951 952 /* 953 * cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data 954 * This is used by both SMIC and KCS protocols 955 * 956 * Returns a buffer to an allocated message, txlen contains length 957 * of allocated message 958 */ 959 static void * 960 cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len, 961 const void *data, int *txlen) 962 { 963 uint8_t *buf; 964 965 /* Common needs two extra bytes: nfLun/cmd + data */ 966 *txlen = len + 2; 967 buf = ipmi_buf_acquire(sc, *txlen); 968 if (buf == NULL) 969 return NULL; 970 971 buf[IPMI_MSG_NFLN] = nfLun; 972 buf[IPMI_MSG_CMD] = cmd; 973 if (len && data) 974 memcpy(buf + IPMI_MSG_DATASND, data, len); 975 976 return buf; 977 } 978 979 /* 980 * ipmi_sendcmd: caller must hold sc_cmd_mtx. 981 * 982 * Send an IPMI command 983 */ 984 static int 985 ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd, 986 int txlen, const void *data) 987 { 988 uint8_t *buf; 989 int rc = -1; 990 991 dbg_printf(50, "%s: rssa=%#.2x nfln=%#.2x cmd=%#.2x len=%#.2x\n", 992 __func__, rssa, NETFN_LUN(netfn, rslun), cmd, txlen); 993 dbg_dump(10, __func__, txlen, data); 994 if (rssa != BMC_SA) { 995 #if 0 996 buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN), 997 APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen); 998 pI2C->bus = (sc->if_ver == 0x09) ? 999 PUBLIC_BUS : 1000 IPMB_CHANNEL_NUMBER; 1001 1002 imbreq->rsSa = rssa; 1003 imbreq->nfLn = NETFN_LUN(netfn, rslun); 1004 imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn); 1005 imbreq->rqSa = BMC_SA; 1006 imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN); 1007 imbreq->cmd = cmd; 1008 if (txlen) 1009 memcpy(imbreq->data, data, txlen); 1010 /* Set message checksum */ 1011 imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3); 1012 #endif 1013 goto done; 1014 } else 1015 buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd, 1016 txlen, data, &txlen); 1017 1018 if (buf == NULL) { 1019 aprint_error_dev(sc->sc_dev, "sendcmd buffer busy\n"); 1020 goto done; 1021 } 1022 rc = sc->sc_if->sendmsg(sc, txlen, buf); 1023 ipmi_buf_release(sc, buf); 1024 1025 ipmi_delay(sc, 50); /* give bmc chance to digest command */ 1026 1027 done: 1028 return rc; 1029 } 1030 1031 static void 1032 ipmi_buf_release(struct ipmi_softc *sc, char *buf) 1033 { 1034 KASSERT(sc->sc_buf_rsvd); 1035 KASSERT(sc->sc_buf == buf); 1036 sc->sc_buf_rsvd = false; 1037 } 1038 1039 static char * 1040 ipmi_buf_acquire(struct ipmi_softc *sc, size_t len) 1041 { 1042 KASSERT(len <= sizeof(sc->sc_buf)); 1043 1044 if (sc->sc_buf_rsvd || len > sizeof(sc->sc_buf)) 1045 return NULL; 1046 sc->sc_buf_rsvd = true; 1047 return sc->sc_buf; 1048 } 1049 1050 /* 1051 * ipmi_recvcmd: caller must hold sc_cmd_mtx. 1052 */ 1053 static int 1054 ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data) 1055 { 1056 uint8_t *buf, rc = 0; 1057 int rawlen; 1058 1059 /* Need three extra bytes: netfn/cmd/ccode + data */ 1060 buf = ipmi_buf_acquire(sc, maxlen + 3); 1061 if (buf == NULL) { 1062 aprint_error_dev(sc->sc_dev, "%s: malloc fails\n", __func__); 1063 return -1; 1064 } 1065 /* Receive message from interface, copy out result data */ 1066 if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) { 1067 ipmi_buf_release(sc, buf); 1068 return -1; 1069 } 1070 1071 *rxlen = rawlen >= IPMI_MSG_DATARCV ? rawlen - IPMI_MSG_DATARCV : 0; 1072 if (*rxlen > 0 && data) 1073 memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen); 1074 1075 if ((rc = buf[IPMI_MSG_CCODE]) != 0) 1076 dbg_printf(1, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x\n", __func__, 1077 buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]); 1078 1079 dbg_printf(50, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x len=%#.2x\n", 1080 __func__, buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], 1081 buf[IPMI_MSG_CCODE], *rxlen); 1082 dbg_dump(10, __func__, *rxlen, data); 1083 1084 ipmi_buf_release(sc, buf); 1085 1086 return rc; 1087 } 1088 1089 /* 1090 * ipmi_delay: caller must hold sc_cmd_mtx. 1091 */ 1092 static void 1093 ipmi_delay(struct ipmi_softc *sc, int ms) 1094 { 1095 if (cold) { 1096 delay(ms * 1000); 1097 return; 1098 } 1099 mutex_enter(&sc->sc_sleep_mtx); 1100 cv_timedwait(&sc->sc_cmd_sleep, &sc->sc_sleep_mtx, mstohz(ms)); 1101 mutex_exit(&sc->sc_sleep_mtx); 1102 } 1103 1104 /* Read a partial SDR entry */ 1105 static int 1106 get_sdr_partial(struct ipmi_softc *sc, uint16_t recordId, uint16_t reserveId, 1107 uint8_t offset, uint8_t length, void *buffer, uint16_t *nxtRecordId) 1108 { 1109 uint8_t cmd[256 + 8]; 1110 int len; 1111 1112 ((uint16_t *) cmd)[0] = reserveId; 1113 ((uint16_t *) cmd)[1] = recordId; 1114 cmd[4] = offset; 1115 cmd[5] = length; 1116 mutex_enter(&sc->sc_cmd_mtx); 1117 if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR, 6, 1118 cmd)) { 1119 mutex_exit(&sc->sc_cmd_mtx); 1120 aprint_error_dev(sc->sc_dev, "%s: sendcmd fails\n", __func__); 1121 return -1; 1122 } 1123 if (ipmi_recvcmd(sc, 8 + length, &len, cmd)) { 1124 mutex_exit(&sc->sc_cmd_mtx); 1125 aprint_error_dev(sc->sc_dev, "%s: recvcmd fails\n", __func__); 1126 return -1; 1127 } 1128 mutex_exit(&sc->sc_cmd_mtx); 1129 if (nxtRecordId) 1130 *nxtRecordId = *(uint16_t *) cmd; 1131 memcpy(buffer, cmd + 2, len - 2); 1132 1133 return 0; 1134 } 1135 1136 static int maxsdrlen = 0x10; 1137 1138 /* Read an entire SDR; pass to add sensor */ 1139 static int 1140 get_sdr(struct ipmi_softc *sc, uint16_t recid, uint16_t *nxtrec) 1141 { 1142 uint16_t resid = 0; 1143 int len, sdrlen, offset; 1144 uint8_t *psdr; 1145 struct sdrhdr shdr; 1146 1147 mutex_enter(&sc->sc_cmd_mtx); 1148 /* Reserve SDR */ 1149 if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR, 1150 0, NULL)) { 1151 mutex_exit(&sc->sc_cmd_mtx); 1152 aprint_error_dev(sc->sc_dev, "reserve send fails\n"); 1153 return -1; 1154 } 1155 if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) { 1156 mutex_exit(&sc->sc_cmd_mtx); 1157 aprint_error_dev(sc->sc_dev, "reserve recv fails\n"); 1158 return -1; 1159 } 1160 mutex_exit(&sc->sc_cmd_mtx); 1161 /* Get SDR Header */ 1162 if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) { 1163 aprint_error_dev(sc->sc_dev, "get header fails\n"); 1164 return -1; 1165 } 1166 /* Allocate space for entire SDR Length of SDR in header does not 1167 * include header length */ 1168 sdrlen = sizeof(shdr) + shdr.record_length; 1169 psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK); 1170 if (psdr == NULL) 1171 return -1; 1172 1173 memcpy(psdr, &shdr, sizeof(shdr)); 1174 1175 /* Read SDR Data maxsdrlen bytes at a time */ 1176 for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) { 1177 len = sdrlen - offset; 1178 if (len > maxsdrlen) 1179 len = maxsdrlen; 1180 1181 if (get_sdr_partial(sc, recid, resid, offset, len, 1182 psdr + offset, NULL)) { 1183 aprint_error_dev(sc->sc_dev, 1184 "get chunk : %d,%d fails\n", offset, len); 1185 free(psdr, M_DEVBUF); 1186 return -1; 1187 } 1188 } 1189 1190 /* Add SDR to sensor list, if not wanted, free buffer */ 1191 if (add_sdr_sensor(sc, psdr) == 0) 1192 free(psdr, M_DEVBUF); 1193 1194 return 0; 1195 } 1196 1197 static int 1198 getbits(uint8_t *bytes, int bitpos, int bitlen) 1199 { 1200 int v; 1201 int mask; 1202 1203 bitpos += bitlen - 1; 1204 for (v = 0; bitlen--;) { 1205 v <<= 1; 1206 mask = 1L << (bitpos & 7); 1207 if (bytes[bitpos >> 3] & mask) 1208 v |= 1; 1209 bitpos--; 1210 } 1211 1212 return v; 1213 } 1214 1215 /* Decode IPMI sensor name */ 1216 static void 1217 ipmi_sensor_name(char *name, int len, uint8_t typelen, uint8_t *bits) 1218 { 1219 int i, slen; 1220 char bcdplus[] = "0123456789 -.:,_"; 1221 1222 slen = typelen & 0x1F; 1223 switch (typelen >> 6) { 1224 case IPMI_NAME_UNICODE: 1225 //unicode 1226 break; 1227 1228 case IPMI_NAME_BCDPLUS: 1229 /* Characters are encoded in 4-bit BCDPLUS */ 1230 if (len < slen * 2 + 1) 1231 slen = (len >> 1) - 1; 1232 for (i = 0; i < slen; i++) { 1233 *(name++) = bcdplus[bits[i] >> 4]; 1234 *(name++) = bcdplus[bits[i] & 0xF]; 1235 } 1236 break; 1237 1238 case IPMI_NAME_ASCII6BIT: 1239 /* Characters are encoded in 6-bit ASCII 1240 * 0x00 - 0x3F maps to 0x20 - 0x5F */ 1241 /* XXX: need to calculate max len: slen = 3/4 * len */ 1242 if (len < slen + 1) 1243 slen = len - 1; 1244 for (i = 0; i < slen * 8; i += 6) 1245 *(name++) = getbits(bits, i, 6) + ' '; 1246 break; 1247 1248 case IPMI_NAME_ASCII8BIT: 1249 /* Characters are 8-bit ascii */ 1250 if (len < slen + 1) 1251 slen = len - 1; 1252 while (slen--) 1253 *(name++) = *(bits++); 1254 break; 1255 } 1256 *name = 0; 1257 } 1258 1259 /* Sign extend a n-bit value */ 1260 static long 1261 signextend(unsigned long val, int bits) 1262 { 1263 long msk = (1L << (bits-1))-1; 1264 1265 return -(val & ~msk) | val; 1266 } 1267 1268 1269 /* fixpoint arithmetic */ 1270 #define FIX2INT(x) ((int64_t)((x) >> 32)) 1271 #define INT2FIX(x) ((int64_t)((uint64_t)(x) << 32)) 1272 1273 #define FIX2 0x0000000200000000ll /* 2.0 */ 1274 #define FIX3 0x0000000300000000ll /* 3.0 */ 1275 #define FIXE 0x00000002b7e15163ll /* 2.71828182845904523536 */ 1276 #define FIX10 0x0000000a00000000ll /* 10.0 */ 1277 #define FIXMONE 0xffffffff00000000ll /* -1.0 */ 1278 #define FIXHALF 0x0000000080000000ll /* 0.5 */ 1279 #define FIXTHIRD 0x0000000055555555ll /* 0.33333333333333333333 */ 1280 1281 #define FIX1LOG2 0x0000000171547653ll /* 1.0/log(2) */ 1282 #define FIX1LOGE 0x0000000100000000ll /* 1.0/log(2.71828182845904523536) */ 1283 #define FIX1LOG10 0x000000006F2DEC55ll /* 1.0/log(10) */ 1284 1285 #define FIX1E 0x000000005E2D58D9ll /* 1.0/2.71828182845904523536 */ 1286 1287 static int64_t fixlog_a[] = { 1288 0x0000000100000000ll /* 1.0/1.0 */, 1289 0xffffffff80000000ll /* -1.0/2.0 */, 1290 0x0000000055555555ll /* 1.0/3.0 */, 1291 0xffffffffc0000000ll /* -1.0/4.0 */, 1292 0x0000000033333333ll /* 1.0/5.0 */, 1293 0x000000002aaaaaabll /* -1.0/6.0 */, 1294 0x0000000024924925ll /* 1.0/7.0 */, 1295 0x0000000020000000ll /* -1.0/8.0 */, 1296 0x000000001c71c71cll /* 1.0/9.0 */ 1297 }; 1298 1299 static int64_t fixexp_a[] = { 1300 0x0000000100000000ll /* 1.0/1.0 */, 1301 0x0000000100000000ll /* 1.0/1.0 */, 1302 0x0000000080000000ll /* 1.0/2.0 */, 1303 0x000000002aaaaaabll /* 1.0/6.0 */, 1304 0x000000000aaaaaabll /* 1.0/24.0 */, 1305 0x0000000002222222ll /* 1.0/120.0 */, 1306 0x00000000005b05b0ll /* 1.0/720.0 */, 1307 0x00000000000d00d0ll /* 1.0/5040.0 */, 1308 0x000000000001a01all /* 1.0/40320.0 */ 1309 }; 1310 1311 static int64_t 1312 fixmul(int64_t x, int64_t y) 1313 { 1314 int64_t z; 1315 int64_t a,b,c,d; 1316 int neg; 1317 1318 neg = 0; 1319 if (x < 0) { 1320 x = -x; 1321 neg = !neg; 1322 } 1323 if (y < 0) { 1324 y = -y; 1325 neg = !neg; 1326 } 1327 1328 a = FIX2INT(x); 1329 b = x - INT2FIX(a); 1330 c = FIX2INT(y); 1331 d = y - INT2FIX(c); 1332 1333 z = INT2FIX(a*c) + a * d + b * c + (b/2 * d/2 >> 30); 1334 1335 return neg ? -z : z; 1336 } 1337 1338 static int64_t 1339 poly(int64_t x0, int64_t x, int64_t a[], int n) 1340 { 1341 int64_t z; 1342 int i; 1343 1344 z = fixmul(x0, a[0]); 1345 for (i=1; i<n; ++i) { 1346 x0 = fixmul(x0, x); 1347 z = fixmul(x0, a[i]) + z; 1348 } 1349 return z; 1350 } 1351 1352 static int64_t 1353 logx(int64_t x, int64_t y) 1354 { 1355 int64_t z; 1356 1357 if (x <= INT2FIX(0)) { 1358 z = INT2FIX(-99999); 1359 goto done; 1360 } 1361 1362 z = INT2FIX(0); 1363 while (x >= FIXE) { 1364 x = fixmul(x, FIX1E); 1365 z += INT2FIX(1); 1366 } 1367 while (x < INT2FIX(1)) { 1368 x = fixmul(x, FIXE); 1369 z -= INT2FIX(1); 1370 } 1371 1372 x -= INT2FIX(1); 1373 z += poly(x, x, fixlog_a, sizeof(fixlog_a)/sizeof(fixlog_a[0])); 1374 z = fixmul(z, y); 1375 1376 done: 1377 return z; 1378 } 1379 1380 static int64_t 1381 powx(int64_t x, int64_t y) 1382 { 1383 int64_t k; 1384 1385 if (x == INT2FIX(0)) 1386 goto done; 1387 1388 x = logx(x,y); 1389 1390 if (x < INT2FIX(0)) { 1391 x = INT2FIX(0) - x; 1392 k = -FIX2INT(x); 1393 x = INT2FIX(-k) - x; 1394 } else { 1395 k = FIX2INT(x); 1396 x = x - INT2FIX(k); 1397 } 1398 1399 x = poly(INT2FIX(1), x, fixexp_a, sizeof(fixexp_a)/sizeof(fixexp_a[0])); 1400 1401 while (k < 0) { 1402 x = fixmul(x, FIX1E); 1403 ++k; 1404 } 1405 while (k > 0) { 1406 x = fixmul(x, FIXE); 1407 --k; 1408 } 1409 1410 done: 1411 return x; 1412 } 1413 1414 /* Convert IPMI reading from sensor factors */ 1415 static long 1416 ipmi_convert(uint8_t v, struct sdrtype1 *s1, long adj) 1417 { 1418 int64_t M, B; 1419 char K1, K2; 1420 int64_t val, v1, v2, vs; 1421 int sign = (s1->units1 >> 6) & 0x3; 1422 1423 vs = (sign == 0x1 || sign == 0x2) ? (int8_t)v : v; 1424 if ((vs < 0) && (sign == 0x1)) 1425 vs++; 1426 1427 /* Calculate linear reading variables */ 1428 M = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10); 1429 B = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10); 1430 K1 = signextend(s1->rbexp & 0xF, 4); 1431 K2 = signextend(s1->rbexp >> 4, 4); 1432 1433 /* Calculate sensor reading: 1434 * y = L((M * v + (B * 10^K1)) * 10^(K2+adj) 1435 * 1436 * This commutes out to: 1437 * y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */ 1438 v1 = powx(FIX10, INT2FIX(K2 + adj)); 1439 v2 = powx(FIX10, INT2FIX(K1 + K2 + adj)); 1440 val = M * vs * v1 + B * v2; 1441 1442 /* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y = 1443 * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y 1444 * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube 1445 * root(x) */ 1446 switch (s1->linear & 0x7f) { 1447 case 0: break; 1448 case 1: val = logx(val,FIX1LOGE); break; 1449 case 2: val = logx(val,FIX1LOG10); break; 1450 case 3: val = logx(val,FIX1LOG2); break; 1451 case 4: val = powx(FIXE,val); break; 1452 case 5: val = powx(FIX10,val); break; 1453 case 6: val = powx(FIX2,val); break; 1454 case 7: val = powx(val,FIXMONE); break; 1455 case 8: val = powx(val,FIX2); break; 1456 case 9: val = powx(val,FIX3); break; 1457 case 10: val = powx(val,FIXHALF); break; 1458 case 11: val = powx(val,FIXTHIRD); break; 1459 } 1460 1461 return FIX2INT(val); 1462 } 1463 1464 static int32_t 1465 ipmi_convert_sensor(uint8_t *reading, struct ipmi_sensor *psensor) 1466 { 1467 struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr; 1468 int32_t val; 1469 1470 switch (psensor->i_envtype) { 1471 case ENVSYS_STEMP: 1472 val = ipmi_convert(reading[0], s1, 6) + 273150000; 1473 break; 1474 1475 case ENVSYS_SVOLTS_DC: 1476 val = ipmi_convert(reading[0], s1, 6); 1477 break; 1478 1479 case ENVSYS_SFANRPM: 1480 val = ipmi_convert(reading[0], s1, 0); 1481 if (((s1->units1>>3)&0x7) == 0x3) 1482 val *= 60; /* RPS -> RPM */ 1483 break; 1484 default: 1485 val = 0; 1486 break; 1487 } 1488 return val; 1489 } 1490 1491 static void 1492 ipmi_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata, 1493 sysmon_envsys_lim_t *limits, uint32_t *props) 1494 { 1495 struct ipmi_sensor *ipmi_s; 1496 1497 /* Find the ipmi_sensor corresponding to this edata */ 1498 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) { 1499 if (ipmi_s->i_envnum == edata->sensor) { 1500 if (limits == NULL) { 1501 limits = &ipmi_s->i_deflims; 1502 props = &ipmi_s->i_defprops; 1503 } 1504 *props |= PROP_DRIVER_LIMITS; 1505 ipmi_s->i_limits = *limits; 1506 ipmi_s->i_props = *props; 1507 return; 1508 } 1509 } 1510 return; 1511 } 1512 1513 static void 1514 ipmi_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata, 1515 sysmon_envsys_lim_t *limits, uint32_t *props) 1516 { 1517 struct ipmi_sensor *ipmi_s; 1518 struct ipmi_softc *sc = sme->sme_cookie; 1519 1520 /* Find the ipmi_sensor corresponding to this edata */ 1521 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) { 1522 if (ipmi_s->i_envnum == edata->sensor) { 1523 ipmi_get_sensor_limits(sc, ipmi_s, limits, props); 1524 ipmi_s->i_limits = *limits; 1525 ipmi_s->i_props = *props; 1526 if (ipmi_s->i_defprops == 0) { 1527 ipmi_s->i_defprops = *props; 1528 ipmi_s->i_deflims = *limits; 1529 } 1530 return; 1531 } 1532 } 1533 return; 1534 } 1535 1536 static void 1537 ipmi_get_sensor_limits(struct ipmi_softc *sc, struct ipmi_sensor *psensor, 1538 sysmon_envsys_lim_t *limits, uint32_t *props) 1539 { 1540 struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr; 1541 bool failure; 1542 int rxlen; 1543 uint8_t data[32]; 1544 uint32_t prop_critmax, prop_warnmax, prop_critmin, prop_warnmin; 1545 int32_t *pcritmax, *pwarnmax, *pcritmin, *pwarnmin; 1546 1547 *props &= ~(PROP_CRITMIN | PROP_CRITMAX | PROP_WARNMIN | PROP_WARNMAX); 1548 data[0] = psensor->i_num; 1549 mutex_enter(&sc->sc_cmd_mtx); 1550 failure = 1551 ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, 1552 SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data) || 1553 ipmi_recvcmd(sc, sizeof(data), &rxlen, data); 1554 mutex_exit(&sc->sc_cmd_mtx); 1555 if (failure) 1556 return; 1557 1558 dbg_printf(25, "%s: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n", 1559 __func__, data[0], data[1], data[2], data[3], data[4], data[5], 1560 data[6]); 1561 1562 switch (s1->linear & 0x7f) { 1563 case 7: /* 1/x sensor, exchange upper and lower limits */ 1564 prop_critmax = PROP_CRITMIN; 1565 prop_warnmax = PROP_WARNMIN; 1566 prop_critmin = PROP_CRITMAX; 1567 prop_warnmin = PROP_WARNMAX; 1568 pcritmax = &limits->sel_critmin; 1569 pwarnmax = &limits->sel_warnmin; 1570 pcritmin = &limits->sel_critmax; 1571 pwarnmin = &limits->sel_warnmax; 1572 break; 1573 default: 1574 prop_critmax = PROP_CRITMAX; 1575 prop_warnmax = PROP_WARNMAX; 1576 prop_critmin = PROP_CRITMIN; 1577 prop_warnmin = PROP_WARNMIN; 1578 pcritmax = &limits->sel_critmax; 1579 pwarnmax = &limits->sel_warnmax; 1580 pcritmin = &limits->sel_critmin; 1581 pwarnmin = &limits->sel_warnmin; 1582 break; 1583 } 1584 1585 if (data[0] & 0x20 && data[6] != 0xff) { 1586 *pcritmax = ipmi_convert_sensor(&data[6], psensor); 1587 *props |= prop_critmax; 1588 } 1589 if (data[0] & 0x10 && data[5] != 0xff) { 1590 *pcritmax = ipmi_convert_sensor(&data[5], psensor); 1591 *props |= prop_critmax; 1592 } 1593 if (data[0] & 0x08 && data[4] != 0xff) { 1594 *pwarnmax = ipmi_convert_sensor(&data[4], psensor); 1595 *props |= prop_warnmax; 1596 } 1597 if (data[0] & 0x04 && data[3] != 0x00) { 1598 *pcritmin = ipmi_convert_sensor(&data[3], psensor); 1599 *props |= prop_critmin; 1600 } 1601 if (data[0] & 0x02 && data[2] != 0x00) { 1602 *pcritmin = ipmi_convert_sensor(&data[2], psensor); 1603 *props |= prop_critmin; 1604 } 1605 if (data[0] & 0x01 && data[1] != 0x00) { 1606 *pwarnmin = ipmi_convert_sensor(&data[1], psensor); 1607 *props |= prop_warnmin; 1608 } 1609 return; 1610 } 1611 1612 static int 1613 ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor, 1614 envsys_data_t *edata, uint8_t *reading) 1615 { 1616 int etype; 1617 1618 /* Get reading of sensor */ 1619 edata->value_cur = ipmi_convert_sensor(reading, psensor); 1620 1621 /* Return Sensor Status */ 1622 etype = (psensor->i_etype << 8) + psensor->i_stype; 1623 switch (etype) { 1624 case IPMI_SENSOR_TYPE_TEMP: 1625 case IPMI_SENSOR_TYPE_VOLT: 1626 case IPMI_SENSOR_TYPE_FAN: 1627 if (psensor->i_props & PROP_CRITMAX && 1628 edata->value_cur > psensor->i_limits.sel_critmax) 1629 return ENVSYS_SCRITOVER; 1630 1631 if (psensor->i_props & PROP_WARNMAX && 1632 edata->value_cur > psensor->i_limits.sel_warnmax) 1633 return ENVSYS_SWARNOVER; 1634 1635 if (psensor->i_props & PROP_CRITMIN && 1636 edata->value_cur < psensor->i_limits.sel_critmin) 1637 return ENVSYS_SCRITUNDER; 1638 1639 if (psensor->i_props & PROP_WARNMIN && 1640 edata->value_cur < psensor->i_limits.sel_warnmin) 1641 return ENVSYS_SWARNUNDER; 1642 1643 break; 1644 1645 case IPMI_SENSOR_TYPE_INTRUSION: 1646 edata->value_cur = (reading[2] & 1) ? 0 : 1; 1647 if (reading[2] & 0x1) 1648 return ENVSYS_SCRITICAL; 1649 break; 1650 1651 case IPMI_SENSOR_TYPE_PWRSUPPLY: 1652 /* Reading: 1 = present+powered, 0 = otherwise */ 1653 edata->value_cur = (reading[2] & 1) ? 0 : 1; 1654 if (reading[2] & 0x10) { 1655 /* XXX: Need envsys type for Power Supply types 1656 * ok: power supply installed && powered 1657 * warn: power supply installed && !powered 1658 * crit: power supply !installed 1659 */ 1660 return ENVSYS_SCRITICAL; 1661 } 1662 if (reading[2] & 0x08) { 1663 /* Power supply AC lost */ 1664 return ENVSYS_SWARNOVER; 1665 } 1666 break; 1667 } 1668 1669 return ENVSYS_SVALID; 1670 } 1671 1672 static int 1673 read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor) 1674 { 1675 struct sdrtype1 *s1 = (struct sdrtype1 *) psensor->i_sdr; 1676 uint8_t data[8]; 1677 int rxlen; 1678 envsys_data_t *edata = &sc->sc_sensor[psensor->i_envnum]; 1679 1680 memset(data, 0, sizeof(data)); 1681 data[0] = psensor->i_num; 1682 1683 mutex_enter(&sc->sc_cmd_mtx); 1684 if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN, 1685 SE_GET_SENSOR_READING, 1, data)) 1686 goto err; 1687 1688 if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data)) 1689 goto err; 1690 mutex_exit(&sc->sc_cmd_mtx); 1691 1692 dbg_printf(10, "m=%u, m_tolerance=%u, b=%u, b_accuracy=%u, " 1693 "rbexp=%u, linear=%d\n", s1->m, s1->m_tolerance, s1->b, 1694 s1->b_accuracy, s1->rbexp, s1->linear); 1695 dbg_printf(10, "values=%#.2x %#.2x %#.2x %#.2x %s\n", 1696 data[0],data[1],data[2],data[3], edata->desc); 1697 if (IPMI_INVALID_SENSOR_P(data[1])) { 1698 /* Check if sensor is valid */ 1699 edata->state = ENVSYS_SINVALID; 1700 } else { 1701 edata->state = ipmi_sensor_status(sc, psensor, edata, data); 1702 } 1703 return 0; 1704 err: 1705 mutex_exit(&sc->sc_cmd_mtx); 1706 return -1; 1707 } 1708 1709 static int 1710 ipmi_sensor_type(int type, int ext_type, int entity) 1711 { 1712 switch (ext_type << 8L | type) { 1713 case IPMI_SENSOR_TYPE_TEMP: 1714 return ENVSYS_STEMP; 1715 1716 case IPMI_SENSOR_TYPE_VOLT: 1717 return ENVSYS_SVOLTS_DC; 1718 1719 case IPMI_SENSOR_TYPE_FAN: 1720 return ENVSYS_SFANRPM; 1721 1722 case IPMI_SENSOR_TYPE_PWRSUPPLY: 1723 if (entity == IPMI_ENTITY_PWRSUPPLY) 1724 return ENVSYS_INDICATOR; 1725 break; 1726 1727 case IPMI_SENSOR_TYPE_INTRUSION: 1728 return ENVSYS_INDICATOR; 1729 } 1730 1731 return -1; 1732 } 1733 1734 /* Add Sensor to BSD Sysctl interface */ 1735 static int 1736 add_sdr_sensor(struct ipmi_softc *sc, uint8_t *psdr) 1737 { 1738 int rc; 1739 struct sdrtype1 *s1 = (struct sdrtype1 *)psdr; 1740 struct sdrtype2 *s2 = (struct sdrtype2 *)psdr; 1741 char name[64]; 1742 1743 switch (s1->sdrhdr.record_type) { 1744 case IPMI_SDR_TYPEFULL: 1745 ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name); 1746 rc = add_child_sensors(sc, psdr, 1, s1->sensor_num, 1747 s1->sensor_type, s1->event_code, 0, s1->entity_id, name); 1748 break; 1749 1750 case IPMI_SDR_TYPECOMPACT: 1751 ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name); 1752 rc = add_child_sensors(sc, psdr, s2->share1 & 0xF, 1753 s2->sensor_num, s2->sensor_type, s2->event_code, 1754 s2->share2 & 0x7F, s2->entity_id, name); 1755 break; 1756 1757 default: 1758 return 0; 1759 } 1760 1761 return rc; 1762 } 1763 1764 static int 1765 ipmi_is_dupname(char *name) 1766 { 1767 struct ipmi_sensor *ipmi_s; 1768 1769 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) { 1770 if (strcmp(ipmi_s->i_envdesc, name) == 0) { 1771 return 1; 1772 } 1773 } 1774 return 0; 1775 } 1776 1777 static int 1778 add_child_sensors(struct ipmi_softc *sc, uint8_t *psdr, int count, 1779 int sensor_num, int sensor_type, int ext_type, int sensor_base, 1780 int entity, const char *name) 1781 { 1782 int typ, idx, dupcnt, c; 1783 char *e; 1784 struct ipmi_sensor *psensor; 1785 struct sdrtype1 *s1 = (struct sdrtype1 *)psdr; 1786 1787 typ = ipmi_sensor_type(sensor_type, ext_type, entity); 1788 if (typ == -1) { 1789 dbg_printf(5, "Unknown sensor type:%#.2x et:%#.2x sn:%#.2x " 1790 "name:%s\n", sensor_type, ext_type, sensor_num, name); 1791 return 0; 1792 } 1793 dupcnt = 0; 1794 sc->sc_nsensors += count; 1795 for (idx = 0; idx < count; idx++) { 1796 psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF, 1797 M_WAITOK); 1798 if (psensor == NULL) 1799 break; 1800 1801 memset(psensor, 0, sizeof(struct ipmi_sensor)); 1802 1803 /* Initialize BSD Sensor info */ 1804 psensor->i_sdr = psdr; 1805 psensor->i_num = sensor_num + idx; 1806 psensor->i_stype = sensor_type; 1807 psensor->i_etype = ext_type; 1808 psensor->i_envtype = typ; 1809 if (count > 1) 1810 snprintf(psensor->i_envdesc, 1811 sizeof(psensor->i_envdesc), 1812 "%s - %d", name, sensor_base + idx); 1813 else 1814 strlcpy(psensor->i_envdesc, name, 1815 sizeof(psensor->i_envdesc)); 1816 1817 /* 1818 * Check for duplicates. If there are duplicates, 1819 * make sure there is space in the name (if not, 1820 * truncate to make space) for a count (1-99) to 1821 * add to make the name unique. If we run the 1822 * counter out, just accept the duplicate (@name99) 1823 * for now. 1824 */ 1825 if (ipmi_is_dupname(psensor->i_envdesc)) { 1826 if (strlen(psensor->i_envdesc) >= 1827 sizeof(psensor->i_envdesc) - 3) { 1828 e = psensor->i_envdesc + 1829 sizeof(psensor->i_envdesc) - 3; 1830 } else { 1831 e = psensor->i_envdesc + 1832 strlen(psensor->i_envdesc); 1833 } 1834 c = psensor->i_envdesc + 1835 sizeof(psensor->i_envdesc) - e; 1836 do { 1837 dupcnt++; 1838 snprintf(e, c, "%d", dupcnt); 1839 } while (dupcnt < 100 && 1840 ipmi_is_dupname(psensor->i_envdesc)); 1841 } 1842 1843 dbg_printf(5, "%s: %#.4x %#.2x:%d ent:%#.2x:%#.2x %s\n", 1844 __func__, 1845 s1->sdrhdr.record_id, s1->sensor_type, 1846 typ, s1->entity_id, s1->entity_instance, 1847 psensor->i_envdesc); 1848 SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, i_list); 1849 } 1850 1851 return 1; 1852 } 1853 1854 #if 0 1855 /* Interrupt handler */ 1856 static int 1857 ipmi_intr(void *arg) 1858 { 1859 struct ipmi_softc *sc = (struct ipmi_softc *)arg; 1860 int v; 1861 1862 v = bmc_read(sc, _KCS_STATUS_REGISTER); 1863 if (v & KCS_OBF) 1864 ++ipmi_nintr; 1865 1866 return 0; 1867 } 1868 #endif 1869 1870 /* Handle IPMI Timer - reread sensor values */ 1871 static void 1872 ipmi_refresh_sensors(struct ipmi_softc *sc) 1873 { 1874 1875 if (SLIST_EMPTY(&ipmi_sensor_list)) 1876 return; 1877 1878 sc->current_sensor = SLIST_NEXT(sc->current_sensor, i_list); 1879 if (sc->current_sensor == NULL) 1880 sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list); 1881 1882 if (read_sensor(sc, sc->current_sensor)) { 1883 dbg_printf(1, "%s: error reading\n", __func__); 1884 } 1885 } 1886 1887 static int 1888 ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia) 1889 { 1890 int error; 1891 1892 sc->sc_if = ipmi_get_if(ia->iaa_if_type); 1893 if (sc->sc_if == NULL) 1894 return -1; 1895 1896 if (ia->iaa_if_iotype == 'i') 1897 sc->sc_iot = ia->iaa_iot; 1898 else 1899 sc->sc_iot = ia->iaa_memt; 1900 1901 sc->sc_if_rev = ia->iaa_if_rev; 1902 sc->sc_if_iospacing = ia->iaa_if_iospacing; 1903 if ((error = bus_space_map(sc->sc_iot, ia->iaa_if_iobase, 1904 sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) != 0) { 1905 const char *xname = sc->sc_dev ? device_xname(sc->sc_dev) : 1906 "ipmi0"; 1907 aprint_error("%s: %s:bus_space_map(..., %" PRIx64 ", %x" 1908 ", 0, %p) type %c failed %d\n", 1909 xname, __func__, (uint64_t)ia->iaa_if_iobase, 1910 sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh, 1911 ia->iaa_if_iotype, error); 1912 return -1; 1913 } 1914 #if 0 1915 if (iaa->if_if_irq != -1) 1916 sc->ih = isa_intr_establish(-1, iaa->if_if_irq, 1917 iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc, 1918 device_xname(sc->sc_dev); 1919 #endif 1920 return 0; 1921 } 1922 1923 static void 1924 ipmi_unmap_regs(struct ipmi_softc *sc) 1925 { 1926 bus_space_unmap(sc->sc_iot, sc->sc_ioh, 1927 sc->sc_if->nregs * sc->sc_if_iospacing); 1928 } 1929 1930 static int 1931 ipmi_match(device_t parent, cfdata_t cf, void *aux) 1932 { 1933 struct ipmi_softc sc; 1934 struct ipmi_attach_args *ia = aux; 1935 int rv = 0; 1936 1937 memset(&sc, 0, sizeof(sc)); 1938 1939 /* Map registers */ 1940 if (ipmi_map_regs(&sc, ia) != 0) 1941 return 0; 1942 1943 sc.sc_if->probe(&sc); 1944 1945 mutex_init(&sc.sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK); 1946 cv_init(&sc.sc_cmd_sleep, "ipmimtch"); 1947 1948 if (ipmi_get_device_id(&sc, NULL) == 0) 1949 rv = 1; 1950 1951 cv_destroy(&sc.sc_cmd_sleep); 1952 mutex_destroy(&sc.sc_cmd_mtx); 1953 ipmi_unmap_regs(&sc); 1954 1955 return rv; 1956 } 1957 1958 static void 1959 ipmi_thread(void *cookie) 1960 { 1961 device_t self = cookie; 1962 struct ipmi_softc *sc = device_private(self); 1963 struct ipmi_attach_args *ia = &sc->sc_ia; 1964 uint16_t rec; 1965 struct ipmi_sensor *ipmi_s; 1966 struct ipmi_device_id id; 1967 int i; 1968 1969 sc->sc_thread_running = true; 1970 1971 /* setup ticker */ 1972 sc->sc_max_retries = hz * 90; /* 90 seconds max */ 1973 1974 /* Map registers */ 1975 ipmi_map_regs(sc, ia); 1976 1977 memset(&id, 0, sizeof(id)); 1978 if (ipmi_get_device_id(sc, &id)) 1979 aprint_error_dev(self, "Failed to re-query device ID\n"); 1980 1981 /* Scan SDRs, add sensors to list */ 1982 for (rec = 0; rec != 0xFFFF;) 1983 if (get_sdr(sc, rec, &rec)) 1984 break; 1985 1986 /* allocate and fill sensor arrays */ 1987 sc->sc_sensor = 1988 malloc(sizeof(envsys_data_t) * sc->sc_nsensors, 1989 M_DEVBUF, M_WAITOK | M_ZERO); 1990 if (sc->sc_sensor == NULL) { 1991 aprint_error_dev(self, "can't allocate envsys_data_t\n"); 1992 kthread_exit(0); 1993 } 1994 1995 sc->sc_envsys = sysmon_envsys_create(); 1996 sc->sc_envsys->sme_cookie = sc; 1997 sc->sc_envsys->sme_get_limits = ipmi_get_limits; 1998 sc->sc_envsys->sme_set_limits = ipmi_set_limits; 1999 2000 i = 0; 2001 SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) { 2002 ipmi_s->i_props = 0; 2003 ipmi_s->i_envnum = -1; 2004 sc->sc_sensor[i].units = ipmi_s->i_envtype; 2005 sc->sc_sensor[i].state = ENVSYS_SINVALID; 2006 sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY; 2007 /* 2008 * Monitor threshold limits in the sensors. 2009 */ 2010 switch (sc->sc_sensor[i].units) { 2011 case ENVSYS_STEMP: 2012 case ENVSYS_SVOLTS_DC: 2013 case ENVSYS_SFANRPM: 2014 sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS; 2015 break; 2016 default: 2017 sc->sc_sensor[i].flags |= ENVSYS_FMONCRITICAL; 2018 } 2019 (void)strlcpy(sc->sc_sensor[i].desc, ipmi_s->i_envdesc, 2020 sizeof(sc->sc_sensor[i].desc)); 2021 ++i; 2022 2023 if (sysmon_envsys_sensor_attach(sc->sc_envsys, 2024 &sc->sc_sensor[i-1])) 2025 continue; 2026 2027 /* get reference number from envsys */ 2028 ipmi_s->i_envnum = sc->sc_sensor[i-1].sensor; 2029 } 2030 2031 sc->sc_envsys->sme_name = device_xname(sc->sc_dev); 2032 sc->sc_envsys->sme_flags = SME_DISABLE_REFRESH; 2033 2034 if (sysmon_envsys_register(sc->sc_envsys)) { 2035 aprint_error_dev(self, "unable to register with sysmon\n"); 2036 sysmon_envsys_destroy(sc->sc_envsys); 2037 } 2038 2039 /* initialize sensor list for thread */ 2040 if (!SLIST_EMPTY(&ipmi_sensor_list)) 2041 sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list); 2042 2043 aprint_verbose_dev(self, "version %d.%d interface %s %sbase " 2044 "0x%" PRIx64 "/%#x spacing %d\n", 2045 ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name, 2046 ia->iaa_if_iotype == 'i' ? "io" : "mem", 2047 (uint64_t)ia->iaa_if_iobase, 2048 ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing); 2049 if (ia->iaa_if_irq != -1) 2050 aprint_verbose_dev(self, " irq %d\n", ia->iaa_if_irq); 2051 2052 if (id.deviceid != 0) { 2053 aprint_normal_dev(self, "ID %u.%u IPMI %x.%x%s%s\n", 2054 id.deviceid, (id.revision & 0xf), 2055 (id.version & 0xf), (id.version >> 4) & 0xf, 2056 (id.fwrev1 & 0x80) ? " Initializing" : " Available", 2057 (id.revision & 0x80) ? " +SDRs" : ""); 2058 if (id.additional != 0) 2059 aprint_verbose_dev(self, "Additional%s%s%s%s%s%s%s%s\n", 2060 (id.additional & 0x80) ? " Chassis" : "", 2061 (id.additional & 0x40) ? " Bridge" : "", 2062 (id.additional & 0x20) ? " IPMBGen" : "", 2063 (id.additional & 0x10) ? " IPMBRcv" : "", 2064 (id.additional & 0x08) ? " FRU" : "", 2065 (id.additional & 0x04) ? " SEL" : "", 2066 (id.additional & 0x02) ? " SDR" : "", 2067 (id.additional & 0x01) ? " Sensor" : ""); 2068 aprint_verbose_dev(self, "Manufacturer %05x Product %04x\n", 2069 (id.manufacturer[2] & 0xf) << 16 2070 | id.manufacturer[1] << 8 2071 | id.manufacturer[0], 2072 id.product[1] << 8 2073 | id.manufacturer[0]); 2074 aprint_verbose_dev(self, "Firmware %u.%x\n", 2075 (id.fwrev1 & 0x7f), id.fwrev2); 2076 } 2077 2078 /* setup flag to exclude iic */ 2079 ipmi_enabled = 1; 2080 2081 /* Setup Watchdog timer */ 2082 sc->sc_wdog.smw_name = device_xname(sc->sc_dev); 2083 sc->sc_wdog.smw_cookie = sc; 2084 sc->sc_wdog.smw_setmode = ipmi_watchdog_setmode; 2085 sc->sc_wdog.smw_tickle = ipmi_watchdog_tickle; 2086 sysmon_wdog_register(&sc->sc_wdog); 2087 2088 /* Set up a power handler so we can possibly sleep */ 2089 if (!pmf_device_register(self, ipmi_suspend, NULL)) 2090 aprint_error_dev(self, "couldn't establish a power handler\n"); 2091 2092 mutex_enter(&sc->sc_poll_mtx); 2093 while (sc->sc_thread_running) { 2094 while (sc->sc_mode == IPMI_MODE_COMMAND) 2095 cv_wait(&sc->sc_mode_cv, &sc->sc_poll_mtx); 2096 sc->sc_mode = IPMI_MODE_ENVSYS; 2097 2098 if (sc->sc_tickle_due) { 2099 ipmi_dotickle(sc); 2100 sc->sc_tickle_due = false; 2101 } 2102 ipmi_refresh_sensors(sc); 2103 2104 sc->sc_mode = IPMI_MODE_IDLE; 2105 cv_broadcast(&sc->sc_mode_cv); 2106 cv_timedwait(&sc->sc_poll_cv, &sc->sc_poll_mtx, 2107 SENSOR_REFRESH_RATE); 2108 } 2109 mutex_exit(&sc->sc_poll_mtx); 2110 self->dv_flags &= ~DVF_ATTACH_INPROGRESS; 2111 kthread_exit(0); 2112 } 2113 2114 static void 2115 ipmi_attach(device_t parent, device_t self, void *aux) 2116 { 2117 struct ipmi_softc *sc = device_private(self); 2118 2119 sc->sc_ia = *(struct ipmi_attach_args *)aux; 2120 sc->sc_dev = self; 2121 aprint_naive("\n"); 2122 aprint_normal("\n"); 2123 2124 /* lock around read_sensor so that no one messes with the bmc regs */ 2125 mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK); 2126 mutex_init(&sc->sc_sleep_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK); 2127 cv_init(&sc->sc_cmd_sleep, "ipmicmd"); 2128 2129 mutex_init(&sc->sc_poll_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK); 2130 cv_init(&sc->sc_poll_cv, "ipmipoll"); 2131 cv_init(&sc->sc_mode_cv, "ipmimode"); 2132 2133 if (kthread_create(PRI_NONE, 0, NULL, ipmi_thread, self, 2134 &sc->sc_kthread, "%s", device_xname(self)) != 0) { 2135 aprint_error_dev(self, "unable to create thread, disabled\n"); 2136 } else 2137 self->dv_flags |= DVF_ATTACH_INPROGRESS; 2138 } 2139 2140 static int 2141 ipmi_detach(device_t self, int flags) 2142 { 2143 struct ipmi_sensor *i; 2144 int rc; 2145 struct ipmi_softc *sc = device_private(self); 2146 2147 mutex_enter(&sc->sc_poll_mtx); 2148 sc->sc_thread_running = false; 2149 cv_signal(&sc->sc_poll_cv); 2150 mutex_exit(&sc->sc_poll_mtx); 2151 2152 if ((rc = sysmon_wdog_unregister(&sc->sc_wdog)) != 0) { 2153 if (rc == ERESTART) 2154 rc = EINTR; 2155 return rc; 2156 } 2157 2158 /* cancel any pending countdown */ 2159 sc->sc_wdog.smw_mode &= ~WDOG_MODE_MASK; 2160 sc->sc_wdog.smw_mode |= WDOG_MODE_DISARMED; 2161 sc->sc_wdog.smw_period = WDOG_PERIOD_DEFAULT; 2162 2163 if ((rc = ipmi_watchdog_setmode(&sc->sc_wdog)) != 0) 2164 return rc; 2165 2166 ipmi_enabled = 0; 2167 2168 if (sc->sc_envsys != NULL) { 2169 /* _unregister also destroys */ 2170 sysmon_envsys_unregister(sc->sc_envsys); 2171 sc->sc_envsys = NULL; 2172 } 2173 2174 while ((i = SLIST_FIRST(&ipmi_sensor_list)) != NULL) { 2175 SLIST_REMOVE_HEAD(&ipmi_sensor_list, i_list); 2176 free(i, M_DEVBUF); 2177 } 2178 2179 if (sc->sc_sensor != NULL) { 2180 free(sc->sc_sensor, M_DEVBUF); 2181 sc->sc_sensor = NULL; 2182 } 2183 2184 ipmi_unmap_regs(sc); 2185 2186 cv_destroy(&sc->sc_mode_cv); 2187 cv_destroy(&sc->sc_poll_cv); 2188 mutex_destroy(&sc->sc_poll_mtx); 2189 cv_destroy(&sc->sc_cmd_sleep); 2190 mutex_destroy(&sc->sc_sleep_mtx); 2191 mutex_destroy(&sc->sc_cmd_mtx); 2192 2193 return 0; 2194 } 2195 2196 static int 2197 ipmi_get_device_id(struct ipmi_softc *sc, struct ipmi_device_id *res) 2198 { 2199 uint8_t buf[32]; 2200 int len; 2201 int rc; 2202 2203 mutex_enter(&sc->sc_cmd_mtx); 2204 /* Identify BMC device early to detect lying bios */ 2205 rc = ipmi_sendcmd(sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID, 0, NULL); 2206 if (rc) { 2207 dbg_printf(1, ": unable to send get device id " 2208 "command\n"); 2209 goto done; 2210 } 2211 rc = ipmi_recvcmd(sc, sizeof(buf), &len, buf); 2212 if (rc) { 2213 dbg_printf(1, ": unable to retrieve device id\n"); 2214 } 2215 done: 2216 mutex_exit(&sc->sc_cmd_mtx); 2217 2218 if (rc == 0 && res != NULL) 2219 memcpy(res, buf, MIN(sizeof(*res), len)); 2220 2221 return rc; 2222 } 2223 2224 static int 2225 ipmi_watchdog_setmode(struct sysmon_wdog *smwdog) 2226 { 2227 struct ipmi_softc *sc = smwdog->smw_cookie; 2228 struct ipmi_get_watchdog gwdog; 2229 struct ipmi_set_watchdog swdog; 2230 int rc, len; 2231 2232 if (smwdog->smw_period < 10) 2233 return EINVAL; 2234 if (smwdog->smw_period == WDOG_PERIOD_DEFAULT) 2235 sc->sc_wdog.smw_period = 10; 2236 else 2237 sc->sc_wdog.smw_period = smwdog->smw_period; 2238 2239 mutex_enter(&sc->sc_cmd_mtx); 2240 /* see if we can properly task to the watchdog */ 2241 rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, 2242 APP_GET_WATCHDOG_TIMER, 0, NULL); 2243 rc = ipmi_recvcmd(sc, sizeof(gwdog), &len, &gwdog); 2244 mutex_exit(&sc->sc_cmd_mtx); 2245 if (rc) { 2246 aprint_error_dev(sc->sc_dev, 2247 "APP_GET_WATCHDOG_TIMER returned %#x\n", rc); 2248 return EIO; 2249 } 2250 2251 memset(&swdog, 0, sizeof(swdog)); 2252 /* Period is 10ths/sec */ 2253 swdog.wdog_timeout = htole16(sc->sc_wdog.smw_period * 10); 2254 if ((smwdog->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED) 2255 swdog.wdog_action = IPMI_WDOG_ACT_DISABLED; 2256 else 2257 swdog.wdog_action = IPMI_WDOG_ACT_RESET; 2258 swdog.wdog_use = IPMI_WDOG_USE_USE_OS; 2259 2260 mutex_enter(&sc->sc_cmd_mtx); 2261 if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, 2262 APP_SET_WATCHDOG_TIMER, sizeof(swdog), &swdog)) == 0) 2263 rc = ipmi_recvcmd(sc, 0, &len, NULL); 2264 mutex_exit(&sc->sc_cmd_mtx); 2265 if (rc) { 2266 aprint_error_dev(sc->sc_dev, 2267 "APP_SET_WATCHDOG_TIMER returned %#x\n", rc); 2268 return EIO; 2269 } 2270 2271 return 0; 2272 } 2273 2274 static int 2275 ipmi_watchdog_tickle(struct sysmon_wdog *smwdog) 2276 { 2277 struct ipmi_softc *sc = smwdog->smw_cookie; 2278 2279 mutex_enter(&sc->sc_poll_mtx); 2280 sc->sc_tickle_due = true; 2281 cv_signal(&sc->sc_poll_cv); 2282 mutex_exit(&sc->sc_poll_mtx); 2283 return 0; 2284 } 2285 2286 static void 2287 ipmi_dotickle(struct ipmi_softc *sc) 2288 { 2289 int rc, len; 2290 2291 mutex_enter(&sc->sc_cmd_mtx); 2292 /* tickle the watchdog */ 2293 if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN, 2294 APP_RESET_WATCHDOG, 0, NULL)) == 0) 2295 rc = ipmi_recvcmd(sc, 0, &len, NULL); 2296 mutex_exit(&sc->sc_cmd_mtx); 2297 if (rc != 0) { 2298 aprint_error_dev(sc->sc_dev, "watchdog tickle returned %#x\n", 2299 rc); 2300 } 2301 } 2302 2303 static bool 2304 ipmi_suspend(device_t dev, const pmf_qual_t *qual) 2305 { 2306 struct ipmi_softc *sc = device_private(dev); 2307 2308 /* Don't allow suspend if watchdog is armed */ 2309 if ((sc->sc_wdog.smw_mode & WDOG_MODE_MASK) != WDOG_MODE_DISARMED) 2310 return false; 2311 return true; 2312 } 2313 2314 static int 2315 ipmi_open(dev_t dev, int flag, int fmt, lwp_t *l) 2316 { 2317 return 0; 2318 } 2319 2320 static int 2321 ipmi_close(dev_t dev, int flag, int fmt, lwp_t *l) 2322 { 2323 struct ipmi_softc *sc; 2324 int unit; 2325 2326 unit = IPMIUNIT(dev); 2327 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL) 2328 return (ENXIO); 2329 2330 mutex_enter(&sc->sc_poll_mtx); 2331 if (sc->sc_mode == IPMI_MODE_COMMAND) { 2332 sc->sc_mode = IPMI_MODE_IDLE; 2333 cv_broadcast(&sc->sc_mode_cv); 2334 } 2335 mutex_exit(&sc->sc_poll_mtx); 2336 return 0; 2337 } 2338 2339 static int 2340 ipmi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l) 2341 { 2342 struct ipmi_softc *sc; 2343 int unit, error = 0, len; 2344 struct ipmi_req *req; 2345 struct ipmi_recv *recv; 2346 struct ipmi_addr addr; 2347 unsigned char ccode, *buf = NULL; 2348 2349 unit = IPMIUNIT(dev); 2350 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL) 2351 return (ENXIO); 2352 2353 switch (cmd) { 2354 case IPMICTL_SEND_COMMAND: 2355 mutex_enter(&sc->sc_poll_mtx); 2356 while (sc->sc_mode == IPMI_MODE_ENVSYS) { 2357 error = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx); 2358 if (error == EINTR) { 2359 mutex_exit(&sc->sc_poll_mtx); 2360 return error; 2361 } 2362 } 2363 sc->sc_mode = IPMI_MODE_COMMAND; 2364 mutex_exit(&sc->sc_poll_mtx); 2365 break; 2366 } 2367 2368 mutex_enter(&sc->sc_cmd_mtx); 2369 2370 switch (cmd) { 2371 case IPMICTL_SEND_COMMAND: 2372 req = data; 2373 buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK); 2374 2375 len = req->msg.data_len; 2376 if (len < 0 || len > IPMI_MAX_RX) { 2377 error = EINVAL; 2378 break; 2379 } 2380 2381 /* clear pending result */ 2382 if (sc->sc_sent) 2383 (void)ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf); 2384 2385 /* XXX */ 2386 error = copyin(req->addr, &addr, sizeof(addr)); 2387 if (error) 2388 break; 2389 2390 error = copyin(req->msg.data, buf, len); 2391 if (error) 2392 break; 2393 2394 /* save for receive */ 2395 sc->sc_msgid = req->msgid; 2396 sc->sc_netfn = req->msg.netfn; 2397 sc->sc_cmd = req->msg.cmd; 2398 2399 if (ipmi_sendcmd(sc, BMC_SA, 0, req->msg.netfn, 2400 req->msg.cmd, len, buf)) { 2401 error = EIO; 2402 break; 2403 } 2404 sc->sc_sent = true; 2405 break; 2406 case IPMICTL_RECEIVE_MSG_TRUNC: 2407 case IPMICTL_RECEIVE_MSG: 2408 recv = data; 2409 buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK); 2410 2411 if (recv->msg.data_len < 1) { 2412 error = EINVAL; 2413 break; 2414 } 2415 2416 /* XXX */ 2417 error = copyin(recv->addr, &addr, sizeof(addr)); 2418 if (error) 2419 break; 2420 2421 2422 if (!sc->sc_sent) { 2423 error = EIO; 2424 break; 2425 } 2426 2427 len = 0; 2428 error = ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf); 2429 if (error < 0) { 2430 error = EIO; 2431 break; 2432 } 2433 ccode = (unsigned char)error; 2434 sc->sc_sent = false; 2435 2436 if (len > recv->msg.data_len - 1) { 2437 if (cmd == IPMICTL_RECEIVE_MSG) { 2438 error = EMSGSIZE; 2439 break; 2440 } 2441 len = recv->msg.data_len - 1; 2442 } 2443 2444 addr.channel = IPMI_BMC_CHANNEL; 2445 2446 recv->recv_type = IPMI_RESPONSE_RECV_TYPE; 2447 recv->msgid = sc->sc_msgid; 2448 recv->msg.netfn = sc->sc_netfn; 2449 recv->msg.cmd = sc->sc_cmd; 2450 recv->msg.data_len = len+1; 2451 2452 error = copyout(&addr, recv->addr, sizeof(addr)); 2453 if (error == 0) 2454 error = copyout(&ccode, recv->msg.data, 1); 2455 if (error == 0) 2456 error = copyout(buf, recv->msg.data+1, len); 2457 break; 2458 case IPMICTL_SET_MY_ADDRESS_CMD: 2459 sc->sc_address = *(int *)data; 2460 break; 2461 case IPMICTL_GET_MY_ADDRESS_CMD: 2462 *(int *)data = sc->sc_address; 2463 break; 2464 case IPMICTL_SET_MY_LUN_CMD: 2465 sc->sc_lun = *(int *)data & 0x3; 2466 break; 2467 case IPMICTL_GET_MY_LUN_CMD: 2468 *(int *)data = sc->sc_lun; 2469 break; 2470 case IPMICTL_SET_GETS_EVENTS_CMD: 2471 break; 2472 case IPMICTL_REGISTER_FOR_CMD: 2473 case IPMICTL_UNREGISTER_FOR_CMD: 2474 error = EOPNOTSUPP; 2475 break; 2476 default: 2477 error = ENODEV; 2478 break; 2479 } 2480 2481 if (buf) 2482 free(buf, M_DEVBUF); 2483 2484 mutex_exit(&sc->sc_cmd_mtx); 2485 2486 switch (cmd) { 2487 case IPMICTL_RECEIVE_MSG: 2488 case IPMICTL_RECEIVE_MSG_TRUNC: 2489 mutex_enter(&sc->sc_poll_mtx); 2490 sc->sc_mode = IPMI_MODE_IDLE; 2491 cv_broadcast(&sc->sc_mode_cv); 2492 mutex_exit(&sc->sc_poll_mtx); 2493 break; 2494 } 2495 2496 return error; 2497 } 2498 2499 static int 2500 ipmi_poll(dev_t dev, int events, lwp_t *l) 2501 { 2502 struct ipmi_softc *sc; 2503 int unit, revents = 0; 2504 2505 unit = IPMIUNIT(dev); 2506 if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL) 2507 return (ENXIO); 2508 2509 mutex_enter(&sc->sc_cmd_mtx); 2510 if (events & (POLLIN | POLLRDNORM)) { 2511 if (sc->sc_sent) 2512 revents |= events & (POLLIN | POLLRDNORM); 2513 } 2514 mutex_exit(&sc->sc_cmd_mtx); 2515 2516 return revents; 2517 } 2518