1 /* $NetBSD: if_fwip.c,v 1.24 2010/05/23 18:56:59 christos Exp $ */ 2 /*- 3 * Copyright (c) 2004 4 * Doug Rabson 5 * Copyright (c) 2002-2003 6 * Hidetoshi Shimokawa. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * 19 * This product includes software developed by Hidetoshi Shimokawa. 20 * 21 * 4. Neither the name of the author nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD: src/sys/dev/firewire/if_fwip.c,v 1.18 2009/02/09 16:58:18 fjoe Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __KERNEL_RCSID(0, "$NetBSD: if_fwip.c,v 1.24 2010/05/23 18:56:59 christos Exp $"); 42 43 #include <sys/param.h> 44 #include <sys/bus.h> 45 #include <sys/device.h> 46 #include <sys/errno.h> 47 #include <sys/malloc.h> 48 #include <sys/mbuf.h> 49 #include <sys/mutex.h> 50 #include <sys/sysctl.h> 51 52 #include <net/bpf.h> 53 #include <net/if.h> 54 #include <net/if_ieee1394.h> 55 #include <net/if_types.h> 56 57 #include <dev/ieee1394/firewire.h> 58 #include <dev/ieee1394/firewirereg.h> 59 #include <dev/ieee1394/iec13213.h> 60 #include <dev/ieee1394/if_fwipvar.h> 61 62 /* 63 * We really need a mechanism for allocating regions in the FIFO 64 * address space. We pick a address in the OHCI controller's 'middle' 65 * address space. This means that the controller will automatically 66 * send responses for us, which is fine since we don't have any 67 * important information to put in the response anyway. 68 */ 69 #define INET_FIFO 0xfffe00000000LL 70 71 #define FWIPDEBUG if (fwipdebug) aprint_debug_ifnet 72 #define TX_MAX_QUEUE (FWMAXQUEUE - 1) 73 74 75 struct fw_hwaddr { 76 uint32_t sender_unique_ID_hi; 77 uint32_t sender_unique_ID_lo; 78 uint8_t sender_max_rec; 79 uint8_t sspd; 80 uint16_t sender_unicast_FIFO_hi; 81 uint32_t sender_unicast_FIFO_lo; 82 }; 83 84 85 static int fwipmatch(device_t, cfdata_t, void *); 86 static void fwipattach(device_t, device_t, void *); 87 static int fwipdetach(device_t, int); 88 static int fwipactivate(device_t, enum devact); 89 90 /* network interface */ 91 static void fwip_start(struct ifnet *); 92 static int fwip_ioctl(struct ifnet *, u_long, void *); 93 static int fwip_init(struct ifnet *); 94 static void fwip_stop(struct ifnet *, int); 95 96 static void fwip_post_busreset(void *); 97 static void fwip_output_callback(struct fw_xfer *); 98 static void fwip_async_output(struct fwip_softc *, struct ifnet *); 99 static void fwip_stream_input(struct fw_xferq *); 100 static void fwip_unicast_input(struct fw_xfer *); 101 102 static int fwipdebug = 0; 103 static int broadcast_channel = 0xc0 | 0x1f; /* tag | channel(XXX) */ 104 static int tx_speed = 2; 105 static int rx_queue_len = FWMAXQUEUE; 106 107 MALLOC_DEFINE(M_FWIP, "if_fwip", "IP over IEEE1394 interface"); 108 /* 109 * Setup sysctl(3) MIB, hw.fwip.* 110 * 111 * TBD condition CTLFLAG_PERMANENT on being a module or not 112 */ 113 SYSCTL_SETUP(sysctl_fwip, "sysctl fwip(4) subtree setup") 114 { 115 int rc, fwip_node_num; 116 const struct sysctlnode *node; 117 118 if ((rc = sysctl_createv(clog, 0, NULL, NULL, 119 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 120 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) { 121 goto err; 122 } 123 124 if ((rc = sysctl_createv(clog, 0, NULL, &node, 125 CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwip", 126 SYSCTL_DESCR("fwip controls"), 127 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) { 128 goto err; 129 } 130 fwip_node_num = node->sysctl_num; 131 132 /* fwip RX queue length */ 133 if ((rc = sysctl_createv(clog, 0, NULL, &node, 134 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, 135 "rx_queue_len", SYSCTL_DESCR("Length of the receive queue"), 136 NULL, 0, &rx_queue_len, 137 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) { 138 goto err; 139 } 140 141 /* fwip RX queue length */ 142 if ((rc = sysctl_createv(clog, 0, NULL, &node, 143 CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT, 144 "if_fwip_debug", SYSCTL_DESCR("fwip driver debug flag"), 145 NULL, 0, &fwipdebug, 146 0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) { 147 goto err; 148 } 149 150 return; 151 152 err: 153 aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 154 } 155 156 157 CFATTACH_DECL_NEW(fwip, sizeof(struct fwip_softc), 158 fwipmatch, fwipattach, fwipdetach, fwipactivate); 159 160 161 static int 162 fwipmatch(device_t parent, cfdata_t cf, void *aux) 163 { 164 struct fw_attach_args *fwa = aux; 165 166 if (strcmp(fwa->name, "fwip") == 0) 167 return 1; 168 return 0; 169 } 170 171 static void 172 fwipattach(device_t parent, device_t self, void *aux) 173 { 174 struct fwip_softc *sc = device_private(self); 175 struct fw_attach_args *fwa = (struct fw_attach_args *)aux; 176 struct fw_hwaddr *hwaddr; 177 struct ifnet *ifp; 178 179 aprint_naive("\n"); 180 aprint_normal(": IP over IEEE1394\n"); 181 182 sc->sc_fd.dev = self; 183 sc->sc_eth.fwip_ifp = &sc->sc_eth.fwcom.fc_if; 184 hwaddr = (struct fw_hwaddr *)&sc->sc_eth.fwcom.ic_hwaddr; 185 186 ifp = sc->sc_eth.fwip_ifp; 187 188 mutex_init(&sc->sc_fwb.fwb_mtx, MUTEX_DEFAULT, IPL_NET); 189 mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET); 190 191 /* XXX */ 192 sc->sc_dma_ch = -1; 193 194 sc->sc_fd.fc = fwa->fc; 195 if (tx_speed < 0) 196 tx_speed = sc->sc_fd.fc->speed; 197 198 sc->sc_fd.post_explore = NULL; 199 sc->sc_fd.post_busreset = fwip_post_busreset; 200 sc->sc_eth.fwip = sc; 201 202 /* 203 * Encode our hardware the way that arp likes it. 204 */ 205 hwaddr->sender_unique_ID_hi = htonl(sc->sc_fd.fc->eui.hi); 206 hwaddr->sender_unique_ID_lo = htonl(sc->sc_fd.fc->eui.lo); 207 hwaddr->sender_max_rec = sc->sc_fd.fc->maxrec; 208 hwaddr->sspd = sc->sc_fd.fc->speed; 209 hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32)); 210 hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO); 211 212 /* fill the rest and attach interface */ 213 ifp->if_softc = &sc->sc_eth; 214 215 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ); 216 ifp->if_start = fwip_start; 217 ifp->if_ioctl = fwip_ioctl; 218 ifp->if_init = fwip_init; 219 ifp->if_stop = fwip_stop; 220 ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST); 221 IFQ_SET_READY(&ifp->if_snd); 222 IFQ_SET_MAXLEN(&ifp->if_snd, TX_MAX_QUEUE); 223 224 if_attach(ifp); 225 ieee1394_ifattach(ifp, (const struct ieee1394_hwaddr *)hwaddr); 226 227 if (!pmf_device_register(self, NULL, NULL)) 228 aprint_error_dev(self, "couldn't establish power handler\n"); 229 else 230 pmf_class_network_register(self, ifp); 231 232 FWIPDEBUG(ifp, "interface created\n"); 233 return; 234 } 235 236 static int 237 fwipdetach(device_t self, int flags) 238 { 239 struct fwip_softc *sc = device_private(self); 240 struct ifnet *ifp = sc->sc_eth.fwip_ifp; 241 242 fwip_stop(sc->sc_eth.fwip_ifp, 1); 243 ieee1394_ifdetach(ifp); 244 if_detach(ifp); 245 mutex_destroy(&sc->sc_mtx); 246 mutex_destroy(&sc->sc_fwb.fwb_mtx); 247 return 0; 248 } 249 250 static int 251 fwipactivate(device_t self, enum devact act) 252 { 253 struct fwip_softc *sc = device_private(self); 254 255 switch (act) { 256 case DVACT_DEACTIVATE: 257 if_deactivate(sc->sc_eth.fwip_ifp); 258 return 0; 259 default: 260 return EOPNOTSUPP; 261 } 262 } 263 264 static void 265 fwip_start(struct ifnet *ifp) 266 { 267 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; 268 269 FWIPDEBUG(ifp, "starting\n"); 270 271 if (sc->sc_dma_ch < 0) { 272 struct mbuf *m = NULL; 273 274 FWIPDEBUG(ifp, "not ready\n"); 275 276 do { 277 IF_DEQUEUE(&ifp->if_snd, m); 278 if (m != NULL) 279 m_freem(m); 280 ifp->if_oerrors++; 281 } while (m != NULL); 282 283 return; 284 } 285 286 ifp->if_flags |= IFF_OACTIVE; 287 288 if (ifp->if_snd.ifq_len != 0) 289 fwip_async_output(sc, ifp); 290 291 ifp->if_flags &= ~IFF_OACTIVE; 292 } 293 294 static int 295 fwip_ioctl(struct ifnet *ifp, u_long cmd, void *data) 296 { 297 int s, error = 0; 298 299 s = splnet(); 300 301 switch (cmd) { 302 case SIOCSIFFLAGS: 303 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 304 break; 305 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) { 306 case IFF_RUNNING: 307 fwip_stop(ifp, 0); 308 break; 309 case IFF_UP: 310 fwip_init(ifp); 311 break; 312 default: 313 break; 314 } 315 break; 316 317 case SIOCADDMULTI: 318 case SIOCDELMULTI: 319 break; 320 321 default: 322 error = ieee1394_ioctl(ifp, cmd, data); 323 if (error == ENETRESET) 324 error = 0; 325 break; 326 } 327 328 splx(s); 329 330 return error; 331 } 332 333 static int 334 fwip_init(struct ifnet *ifp) 335 { 336 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; 337 struct firewire_comm *fc; 338 struct fw_xferq *xferq; 339 struct fw_xfer *xfer; 340 struct mbuf *m; 341 int i; 342 343 FWIPDEBUG(ifp, "initializing\n"); 344 345 fc = sc->sc_fd.fc; 346 if (sc->sc_dma_ch < 0) { 347 sc->sc_dma_ch = fw_open_isodma(fc, /* tx */0); 348 if (sc->sc_dma_ch < 0) 349 return ENXIO; 350 xferq = fc->ir[sc->sc_dma_ch]; 351 xferq->flag |= 352 FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM; 353 xferq->flag &= ~0xff; 354 xferq->flag |= broadcast_channel & 0xff; 355 /* register fwip_input handler */ 356 xferq->sc = (void *) sc; 357 xferq->hand = fwip_stream_input; 358 xferq->bnchunk = rx_queue_len; 359 xferq->bnpacket = 1; 360 xferq->psize = MCLBYTES; 361 xferq->queued = 0; 362 xferq->buf = NULL; 363 xferq->bulkxfer = (struct fw_bulkxfer *) malloc( 364 sizeof(struct fw_bulkxfer) * xferq->bnchunk, 365 M_FWIP, M_WAITOK); 366 if (xferq->bulkxfer == NULL) { 367 aprint_error_ifnet(ifp, "if_fwip: malloc failed\n"); 368 return ENOMEM; 369 } 370 STAILQ_INIT(&xferq->stvalid); 371 STAILQ_INIT(&xferq->stfree); 372 STAILQ_INIT(&xferq->stdma); 373 xferq->stproc = NULL; 374 for (i = 0; i < xferq->bnchunk; i++) { 375 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); 376 xferq->bulkxfer[i].mbuf = m; 377 if (m != NULL) { 378 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 379 STAILQ_INSERT_TAIL(&xferq->stfree, 380 &xferq->bulkxfer[i], link); 381 } else 382 aprint_error_ifnet(ifp, 383 "fwip_as_input: m_getcl failed\n"); 384 } 385 386 sc->sc_fwb.start = INET_FIFO; 387 sc->sc_fwb.end = INET_FIFO + 16384; /* S3200 packet size */ 388 389 /* pre-allocate xfer */ 390 STAILQ_INIT(&sc->sc_fwb.xferlist); 391 for (i = 0; i < rx_queue_len; i++) { 392 xfer = fw_xfer_alloc(M_FWIP); 393 if (xfer == NULL) 394 break; 395 m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR); 396 xfer->recv.payload = mtod(m, uint32_t *); 397 xfer->recv.pay_len = MCLBYTES; 398 xfer->hand = fwip_unicast_input; 399 xfer->fc = fc; 400 xfer->sc = (void *) sc; 401 xfer->mbuf = m; 402 STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link); 403 } 404 fw_bindadd(fc, &sc->sc_fwb); 405 406 STAILQ_INIT(&sc->sc_xferlist); 407 for (i = 0; i < TX_MAX_QUEUE; i++) { 408 xfer = fw_xfer_alloc(M_FWIP); 409 if (xfer == NULL) 410 break; 411 xfer->send.spd = tx_speed; 412 xfer->fc = sc->sc_fd.fc; 413 xfer->sc = (void *)sc; 414 xfer->hand = fwip_output_callback; 415 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); 416 } 417 } else 418 xferq = fc->ir[sc->sc_dma_ch]; 419 420 sc->sc_last_dest.hi = 0; 421 sc->sc_last_dest.lo = 0; 422 423 /* start dma */ 424 if ((xferq->flag & FWXFERQ_RUNNING) == 0) 425 fc->irx_enable(fc, sc->sc_dma_ch); 426 427 ifp->if_flags |= IFF_RUNNING; 428 ifp->if_flags &= ~IFF_OACTIVE; 429 430 #if 0 431 /* attempt to start output */ 432 fwip_start(ifp); 433 #endif 434 return 0; 435 } 436 437 static void 438 fwip_stop(struct ifnet *ifp, int disable) 439 { 440 struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip; 441 struct firewire_comm *fc = sc->sc_fd.fc; 442 struct fw_xferq *xferq; 443 struct fw_xfer *xfer, *next; 444 int i; 445 446 if (sc->sc_dma_ch >= 0) { 447 xferq = fc->ir[sc->sc_dma_ch]; 448 449 if (xferq->flag & FWXFERQ_RUNNING) 450 fc->irx_disable(fc, sc->sc_dma_ch); 451 xferq->flag &= 452 ~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM | 453 FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK); 454 xferq->hand = NULL; 455 456 for (i = 0; i < xferq->bnchunk; i++) 457 m_freem(xferq->bulkxfer[i].mbuf); 458 free(xferq->bulkxfer, M_FWIP); 459 460 fw_bindremove(fc, &sc->sc_fwb); 461 for (xfer = STAILQ_FIRST(&sc->sc_fwb.xferlist); xfer != NULL; 462 xfer = next) { 463 next = STAILQ_NEXT(xfer, link); 464 fw_xfer_free(xfer); 465 } 466 467 for (xfer = STAILQ_FIRST(&sc->sc_xferlist); xfer != NULL; 468 xfer = next) { 469 next = STAILQ_NEXT(xfer, link); 470 fw_xfer_free(xfer); 471 } 472 473 xferq->bulkxfer = NULL; 474 sc->sc_dma_ch = -1; 475 } 476 477 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 478 } 479 480 static void 481 fwip_post_busreset(void *arg) 482 { 483 struct fwip_softc *sc = arg; 484 struct crom_src *src; 485 struct crom_chunk *root; 486 487 src = sc->sc_fd.fc->crom_src; 488 root = sc->sc_fd.fc->crom_root; 489 490 /* RFC2734 IPv4 over IEEE1394 */ 491 memset(&sc->sc_unit4, 0, sizeof(struct crom_chunk)); 492 crom_add_chunk(src, root, &sc->sc_unit4, CROM_UDIR); 493 crom_add_entry(&sc->sc_unit4, CSRKEY_SPEC, CSRVAL_IETF); 494 crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_spec4, "IANA"); 495 crom_add_entry(&sc->sc_unit4, CSRKEY_VER, 1); 496 crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_ver4, "IPv4"); 497 498 /* RFC3146 IPv6 over IEEE1394 */ 499 memset(&sc->sc_unit6, 0, sizeof(struct crom_chunk)); 500 crom_add_chunk(src, root, &sc->sc_unit6, CROM_UDIR); 501 crom_add_entry(&sc->sc_unit6, CSRKEY_SPEC, CSRVAL_IETF); 502 crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_spec6, "IANA"); 503 crom_add_entry(&sc->sc_unit6, CSRKEY_VER, 2); 504 crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_ver6, "IPv6"); 505 506 sc->sc_last_dest.hi = 0; 507 sc->sc_last_dest.lo = 0; 508 ieee1394_drain(sc->sc_eth.fwip_ifp); 509 } 510 511 static void 512 fwip_output_callback(struct fw_xfer *xfer) 513 { 514 struct fwip_softc *sc = (struct fwip_softc *)xfer->sc; 515 struct ifnet *ifp; 516 517 ifp = sc->sc_eth.fwip_ifp; 518 /* XXX error check */ 519 FWIPDEBUG(ifp, "resp = %d\n", xfer->resp); 520 if (xfer->resp != 0) 521 ifp->if_oerrors++; 522 523 m_freem(xfer->mbuf); 524 fw_xfer_unload(xfer); 525 526 mutex_enter(&sc->sc_mtx); 527 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); 528 mutex_exit(&sc->sc_mtx); 529 530 /* for queue full */ 531 if (ifp->if_snd.ifq_head != NULL) 532 fwip_start(ifp); 533 } 534 535 /* Async. stream output */ 536 static void 537 fwip_async_output(struct fwip_softc *sc, struct ifnet *ifp) 538 { 539 struct firewire_comm *fc = sc->sc_fd.fc; 540 struct mbuf *m; 541 struct m_tag *mtag; 542 struct fw_hwaddr *destfw; 543 struct fw_xfer *xfer; 544 struct fw_xferq *xferq; 545 struct fw_pkt *fp; 546 uint16_t nodeid; 547 int error; 548 int i = 0; 549 550 xfer = NULL; 551 xferq = fc->atq; 552 while ((xferq->queued < xferq->maxq - 1) && 553 (ifp->if_snd.ifq_head != NULL)) { 554 mutex_enter(&sc->sc_mtx); 555 if (STAILQ_EMPTY(&sc->sc_xferlist)) { 556 mutex_exit(&sc->sc_mtx); 557 #if 0 558 aprint_normal("if_fwip: lack of xfer\n"); 559 #endif 560 break; 561 } 562 IF_DEQUEUE(&ifp->if_snd, m); 563 if (m == NULL) { 564 mutex_exit(&sc->sc_mtx); 565 break; 566 } 567 xfer = STAILQ_FIRST(&sc->sc_xferlist); 568 STAILQ_REMOVE_HEAD(&sc->sc_xferlist, link); 569 mutex_exit(&sc->sc_mtx); 570 571 /* 572 * Dig out the link-level address which 573 * firewire_output got via arp or neighbour 574 * discovery. If we don't have a link-level address, 575 * just stick the thing on the broadcast channel. 576 */ 577 mtag = m_tag_find(m, MTAG_FIREWIRE_HWADDR, 0); 578 if (mtag == NULL) 579 destfw = 0; 580 else 581 destfw = (struct fw_hwaddr *) (mtag + 1); 582 583 /* 584 * Put the mbuf in the xfer early in case we hit an 585 * error case below - fwip_output_callback will free 586 * the mbuf. 587 */ 588 xfer->mbuf = m; 589 590 /* 591 * We use the arp result (if any) to add a suitable firewire 592 * packet header before handing off to the bus. 593 */ 594 fp = &xfer->send.hdr; 595 nodeid = FWLOCALBUS | fc->nodeid; 596 if ((m->m_flags & M_BCAST) || !destfw) { 597 /* 598 * Broadcast packets are sent as GASP packets with 599 * specifier ID 0x00005e, version 1 on the broadcast 600 * channel. To be conservative, we send at the 601 * slowest possible speed. 602 */ 603 uint32_t *p; 604 605 M_PREPEND(m, 2 * sizeof(uint32_t), M_DONTWAIT); 606 p = mtod(m, uint32_t *); 607 fp->mode.stream.len = m->m_pkthdr.len; 608 fp->mode.stream.chtag = broadcast_channel; 609 fp->mode.stream.tcode = FWTCODE_STREAM; 610 fp->mode.stream.sy = 0; 611 xfer->send.spd = 0; 612 p[0] = htonl(nodeid << 16); 613 p[1] = htonl((0x5e << 24) | 1); 614 } else { 615 /* 616 * Unicast packets are sent as block writes to the 617 * target's unicast fifo address. If we can't 618 * find the node address, we just give up. We 619 * could broadcast it but that might overflow 620 * the packet size limitations due to the 621 * extra GASP header. Note: the hardware 622 * address is stored in network byte order to 623 * make life easier for ARP. 624 */ 625 struct fw_device *fd; 626 struct fw_eui64 eui; 627 628 eui.hi = ntohl(destfw->sender_unique_ID_hi); 629 eui.lo = ntohl(destfw->sender_unique_ID_lo); 630 if (sc->sc_last_dest.hi != eui.hi || 631 sc->sc_last_dest.lo != eui.lo) { 632 fd = fw_noderesolve_eui64(fc, &eui); 633 if (!fd) { 634 /* error */ 635 ifp->if_oerrors++; 636 /* XXX set error code */ 637 fwip_output_callback(xfer); 638 continue; 639 640 } 641 sc->sc_last_hdr.mode.wreqb.dst = 642 FWLOCALBUS | fd->dst; 643 sc->sc_last_hdr.mode.wreqb.tlrt = 0; 644 sc->sc_last_hdr.mode.wreqb.tcode = 645 FWTCODE_WREQB; 646 sc->sc_last_hdr.mode.wreqb.pri = 0; 647 sc->sc_last_hdr.mode.wreqb.src = nodeid; 648 sc->sc_last_hdr.mode.wreqb.dest_hi = 649 ntohs(destfw->sender_unicast_FIFO_hi); 650 sc->sc_last_hdr.mode.wreqb.dest_lo = 651 ntohl(destfw->sender_unicast_FIFO_lo); 652 sc->sc_last_hdr.mode.wreqb.extcode = 0; 653 sc->sc_last_dest = eui; 654 } 655 656 fp->mode.wreqb = sc->sc_last_hdr.mode.wreqb; 657 fp->mode.wreqb.len = m->m_pkthdr.len; 658 xfer->send.spd = min(destfw->sspd, fc->speed); 659 } 660 661 xfer->send.pay_len = m->m_pkthdr.len; 662 663 error = fw_asyreq(fc, -1, xfer); 664 if (error == EAGAIN) { 665 /* 666 * We ran out of tlabels - requeue the packet 667 * for later transmission. 668 */ 669 xfer->mbuf = 0; 670 mutex_enter(&sc->sc_mtx); 671 STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link); 672 mutex_exit(&sc->sc_mtx); 673 IF_PREPEND(&ifp->if_snd, m); 674 break; 675 } 676 if (error) { 677 /* error */ 678 ifp->if_oerrors++; 679 /* XXX set error code */ 680 fwip_output_callback(xfer); 681 continue; 682 } else { 683 ifp->if_opackets++; 684 i++; 685 } 686 } 687 #if 0 688 if (i > 1) 689 aprint_normal("%d queued\n", i); 690 #endif 691 if (i > 0) 692 xferq->start(fc); 693 } 694 695 /* Async. stream output */ 696 static void 697 fwip_stream_input(struct fw_xferq *xferq) 698 { 699 struct mbuf *m, *m0; 700 struct m_tag *mtag; 701 struct ifnet *ifp; 702 struct fwip_softc *sc; 703 struct fw_bulkxfer *sxfer; 704 struct fw_pkt *fp; 705 uint16_t src; 706 uint32_t *p; 707 708 sc = (struct fwip_softc *)xferq->sc; 709 ifp = sc->sc_eth.fwip_ifp; 710 while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) { 711 STAILQ_REMOVE_HEAD(&xferq->stvalid, link); 712 fp = mtod(sxfer->mbuf, struct fw_pkt *); 713 if (sc->sc_fd.fc->irx_post != NULL) 714 sc->sc_fd.fc->irx_post(sc->sc_fd.fc, fp->mode.ld); 715 m = sxfer->mbuf; 716 717 /* insert new rbuf */ 718 sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 719 if (m0 != NULL) { 720 m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size; 721 STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link); 722 } else 723 aprint_error_ifnet(ifp, 724 "fwip_as_input: m_getcl failed\n"); 725 726 /* 727 * We must have a GASP header - leave the 728 * encapsulation sanity checks to the generic 729 * code. Remeber that we also have the firewire async 730 * stream header even though that isn't accounted for 731 * in mode.stream.len. 732 */ 733 if (sxfer->resp != 0 || 734 fp->mode.stream.len < 2 * sizeof(uint32_t)) { 735 m_freem(m); 736 ifp->if_ierrors++; 737 continue; 738 } 739 m->m_len = m->m_pkthdr.len = fp->mode.stream.len 740 + sizeof(fp->mode.stream); 741 742 /* 743 * If we received the packet on the broadcast channel, 744 * mark it as broadcast, otherwise we assume it must 745 * be multicast. 746 */ 747 if (fp->mode.stream.chtag == broadcast_channel) 748 m->m_flags |= M_BCAST; 749 else 750 m->m_flags |= M_MCAST; 751 752 /* 753 * Make sure we recognise the GASP specifier and 754 * version. 755 */ 756 p = mtod(m, uint32_t *); 757 if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) != 758 0x00005e || 759 (ntohl(p[2]) & 0xffffff) != 1) { 760 FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n", 761 ntohl(p[1]), ntohl(p[2])); 762 m_freem(m); 763 ifp->if_ierrors++; 764 continue; 765 } 766 767 /* 768 * Record the sender ID for possible BPF usage. 769 */ 770 src = ntohl(p[1]) >> 16; 771 if (ifp->if_bpf) { 772 mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID, 773 2 * sizeof(uint32_t), M_NOWAIT); 774 if (mtag) { 775 /* bpf wants it in network byte order */ 776 struct fw_device *fd; 777 uint32_t *p2 = (uint32_t *) (mtag + 1); 778 779 fd = fw_noderesolve_nodeid(sc->sc_fd.fc, 780 src & 0x3f); 781 if (fd) { 782 p2[0] = htonl(fd->eui.hi); 783 p2[1] = htonl(fd->eui.lo); 784 } else { 785 p2[0] = 0; 786 p2[1] = 0; 787 } 788 m_tag_prepend(m, mtag); 789 } 790 } 791 792 /* 793 * Trim off the GASP header 794 */ 795 m_adj(m, 3*sizeof(uint32_t)); 796 m->m_pkthdr.rcvif = ifp; 797 ieee1394_input(ifp, m, src); 798 ifp->if_ipackets++; 799 } 800 if (STAILQ_FIRST(&xferq->stfree) != NULL) 801 sc->sc_fd.fc->irx_enable(sc->sc_fd.fc, sc->sc_dma_ch); 802 } 803 804 static inline void 805 fwip_unicast_input_recycle(struct fwip_softc *sc, struct fw_xfer *xfer) 806 { 807 struct mbuf *m; 808 809 /* 810 * We have finished with a unicast xfer. Allocate a new 811 * cluster and stick it on the back of the input queue. 812 */ 813 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 814 if (m == NULL) 815 aprint_error_dev(sc->sc_fd.dev, 816 "fwip_unicast_input_recycle: m_getcl failed\n"); 817 xfer->recv.payload = mtod(m, uint32_t *); 818 xfer->recv.pay_len = MCLBYTES; 819 xfer->mbuf = m; 820 mutex_enter(&sc->sc_fwb.fwb_mtx); 821 STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link); 822 mutex_exit(&sc->sc_fwb.fwb_mtx); 823 } 824 825 static void 826 fwip_unicast_input(struct fw_xfer *xfer) 827 { 828 uint64_t address; 829 struct mbuf *m; 830 struct m_tag *mtag; 831 struct ifnet *ifp; 832 struct fwip_softc *sc; 833 struct fw_pkt *fp; 834 int rtcode; 835 836 sc = (struct fwip_softc *)xfer->sc; 837 ifp = sc->sc_eth.fwip_ifp; 838 m = xfer->mbuf; 839 xfer->mbuf = 0; 840 fp = &xfer->recv.hdr; 841 842 /* 843 * Check the fifo address - we only accept addresses of 844 * exactly INET_FIFO. 845 */ 846 address = ((uint64_t)fp->mode.wreqb.dest_hi << 32) 847 | fp->mode.wreqb.dest_lo; 848 if (fp->mode.wreqb.tcode != FWTCODE_WREQB) { 849 rtcode = FWRCODE_ER_TYPE; 850 } else if (address != INET_FIFO) { 851 rtcode = FWRCODE_ER_ADDR; 852 } else { 853 rtcode = FWRCODE_COMPLETE; 854 } 855 856 /* 857 * Pick up a new mbuf and stick it on the back of the receive 858 * queue. 859 */ 860 fwip_unicast_input_recycle(sc, xfer); 861 862 /* 863 * If we've already rejected the packet, give up now. 864 */ 865 if (rtcode != FWRCODE_COMPLETE) { 866 m_freem(m); 867 ifp->if_ierrors++; 868 return; 869 } 870 871 if (ifp->if_bpf) { 872 /* 873 * Record the sender ID for possible BPF usage. 874 */ 875 mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID, 876 2 * sizeof(uint32_t), M_NOWAIT); 877 if (mtag) { 878 /* bpf wants it in network byte order */ 879 struct fw_device *fd; 880 uint32_t *p = (uint32_t *) (mtag + 1); 881 882 fd = fw_noderesolve_nodeid(sc->sc_fd.fc, 883 fp->mode.wreqb.src & 0x3f); 884 if (fd) { 885 p[0] = htonl(fd->eui.hi); 886 p[1] = htonl(fd->eui.lo); 887 } else { 888 p[0] = 0; 889 p[1] = 0; 890 } 891 m_tag_prepend(m, mtag); 892 } 893 } 894 895 /* 896 * Hand off to the generic encapsulation code. We don't use 897 * ifp->if_input so that we can pass the source nodeid as an 898 * argument to facilitate link-level fragment reassembly. 899 */ 900 m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len; 901 m->m_pkthdr.rcvif = ifp; 902 ieee1394_input(ifp, m, fp->mode.wreqb.src); 903 ifp->if_ipackets++; 904 } 905