xref: /netbsd-src/sys/dev/ieee1394/if_fwip.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: if_fwip.c,v 1.25 2012/04/29 18:31:40 dsl Exp $	*/
2 /*-
3  * Copyright (c) 2004
4  *	Doug Rabson
5  * Copyright (c) 2002-2003
6  * 	Hidetoshi Shimokawa. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *
19  *	This product includes software developed by Hidetoshi Shimokawa.
20  *
21  * 4. Neither the name of the author nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD: src/sys/dev/firewire/if_fwip.c,v 1.18 2009/02/09 16:58:18 fjoe Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: if_fwip.c,v 1.25 2012/04/29 18:31:40 dsl Exp $");
42 
43 #include <sys/param.h>
44 #include <sys/bus.h>
45 #include <sys/device.h>
46 #include <sys/errno.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_ieee1394.h>
55 #include <net/if_types.h>
56 
57 #include <dev/ieee1394/firewire.h>
58 #include <dev/ieee1394/firewirereg.h>
59 #include <dev/ieee1394/iec13213.h>
60 #include <dev/ieee1394/if_fwipvar.h>
61 
62 /*
63  * We really need a mechanism for allocating regions in the FIFO
64  * address space. We pick a address in the OHCI controller's 'middle'
65  * address space. This means that the controller will automatically
66  * send responses for us, which is fine since we don't have any
67  * important information to put in the response anyway.
68  */
69 #define INET_FIFO	0xfffe00000000LL
70 
71 #define FWIPDEBUG	if (fwipdebug) aprint_debug_ifnet
72 #define TX_MAX_QUEUE	(FWMAXQUEUE - 1)
73 
74 
75 struct fw_hwaddr {
76 	uint32_t		sender_unique_ID_hi;
77 	uint32_t		sender_unique_ID_lo;
78 	uint8_t			sender_max_rec;
79 	uint8_t			sspd;
80 	uint16_t		sender_unicast_FIFO_hi;
81 	uint32_t		sender_unicast_FIFO_lo;
82 };
83 
84 
85 static int fwipmatch(device_t, cfdata_t, void *);
86 static void fwipattach(device_t, device_t, void *);
87 static int fwipdetach(device_t, int);
88 static int fwipactivate(device_t, enum devact);
89 
90 /* network interface */
91 static void fwip_start(struct ifnet *);
92 static int fwip_ioctl(struct ifnet *, u_long, void *);
93 static int fwip_init(struct ifnet *);
94 static void fwip_stop(struct ifnet *, int);
95 
96 static void fwip_post_busreset(void *);
97 static void fwip_output_callback(struct fw_xfer *);
98 static void fwip_async_output(struct fwip_softc *, struct ifnet *);
99 static void fwip_stream_input(struct fw_xferq *);
100 static void fwip_unicast_input(struct fw_xfer *);
101 
102 static int fwipdebug = 0;
103 static int broadcast_channel = 0xc0 | 0x1f; /*  tag | channel(XXX) */
104 static int tx_speed = 2;
105 static int rx_queue_len = FWMAXQUEUE;
106 
107 /*
108  * Setup sysctl(3) MIB, hw.fwip.*
109  *
110  * TBD condition CTLFLAG_PERMANENT on being a module or not
111  */
112 SYSCTL_SETUP(sysctl_fwip, "sysctl fwip(4) subtree setup")
113 {
114 	int rc, fwip_node_num;
115 	const struct sysctlnode *node;
116 
117 	if ((rc = sysctl_createv(clog, 0, NULL, NULL,
118 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
119 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
120 		goto err;
121 	}
122 
123 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
124 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwip",
125 	    SYSCTL_DESCR("fwip controls"),
126 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
127 		goto err;
128 	}
129 	fwip_node_num = node->sysctl_num;
130 
131 	/* fwip RX queue length */
132 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
133 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
134 	    "rx_queue_len", SYSCTL_DESCR("Length of the receive queue"),
135 	    NULL, 0, &rx_queue_len,
136 	    0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
137 		goto err;
138 	}
139 
140 	/* fwip RX queue length */
141 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
142 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
143 	    "if_fwip_debug", SYSCTL_DESCR("fwip driver debug flag"),
144 	    NULL, 0, &fwipdebug,
145 	    0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
146 		goto err;
147 	}
148 
149 	return;
150 
151 err:
152 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
153 }
154 
155 
156 CFATTACH_DECL_NEW(fwip, sizeof(struct fwip_softc),
157     fwipmatch, fwipattach, fwipdetach, fwipactivate);
158 
159 
160 static int
161 fwipmatch(device_t parent, cfdata_t cf, void *aux)
162 {
163 	struct fw_attach_args *fwa = aux;
164 
165 	if (strcmp(fwa->name, "fwip") == 0)
166 		return 1;
167 	return 0;
168 }
169 
170 static void
171 fwipattach(device_t parent, device_t self, void *aux)
172 {
173 	struct fwip_softc *sc = device_private(self);
174 	struct fw_attach_args *fwa = (struct fw_attach_args *)aux;
175 	struct fw_hwaddr *hwaddr;
176 	struct ifnet *ifp;
177 
178 	aprint_naive("\n");
179 	aprint_normal(": IP over IEEE1394\n");
180 
181 	sc->sc_fd.dev = self;
182 	sc->sc_eth.fwip_ifp = &sc->sc_eth.fwcom.fc_if;
183 	hwaddr = (struct fw_hwaddr *)&sc->sc_eth.fwcom.ic_hwaddr;
184 
185 	ifp = sc->sc_eth.fwip_ifp;
186 
187 	mutex_init(&sc->sc_fwb.fwb_mtx, MUTEX_DEFAULT, IPL_NET);
188 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
189 
190 	/* XXX */
191 	sc->sc_dma_ch = -1;
192 
193 	sc->sc_fd.fc = fwa->fc;
194 	if (tx_speed < 0)
195 		tx_speed = sc->sc_fd.fc->speed;
196 
197 	sc->sc_fd.post_explore = NULL;
198 	sc->sc_fd.post_busreset = fwip_post_busreset;
199 	sc->sc_eth.fwip = sc;
200 
201 	/*
202 	 * Encode our hardware the way that arp likes it.
203 	 */
204 	hwaddr->sender_unique_ID_hi = htonl(sc->sc_fd.fc->eui.hi);
205 	hwaddr->sender_unique_ID_lo = htonl(sc->sc_fd.fc->eui.lo);
206 	hwaddr->sender_max_rec = sc->sc_fd.fc->maxrec;
207 	hwaddr->sspd = sc->sc_fd.fc->speed;
208 	hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
209 	hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
210 
211 	/* fill the rest and attach interface */
212 	ifp->if_softc = &sc->sc_eth;
213 
214 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
215 	ifp->if_start = fwip_start;
216 	ifp->if_ioctl = fwip_ioctl;
217 	ifp->if_init = fwip_init;
218 	ifp->if_stop = fwip_stop;
219 	ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
220 	IFQ_SET_READY(&ifp->if_snd);
221 	IFQ_SET_MAXLEN(&ifp->if_snd, TX_MAX_QUEUE);
222 
223 	if_attach(ifp);
224 	ieee1394_ifattach(ifp, (const struct ieee1394_hwaddr *)hwaddr);
225 
226 	if (!pmf_device_register(self, NULL, NULL))
227 		aprint_error_dev(self, "couldn't establish power handler\n");
228 	else
229 		pmf_class_network_register(self, ifp);
230 
231 	FWIPDEBUG(ifp, "interface created\n");
232 	return;
233 }
234 
235 static int
236 fwipdetach(device_t self, int flags)
237 {
238 	struct fwip_softc *sc = device_private(self);
239 	struct ifnet *ifp = sc->sc_eth.fwip_ifp;
240 
241 	fwip_stop(sc->sc_eth.fwip_ifp, 1);
242 	ieee1394_ifdetach(ifp);
243 	if_detach(ifp);
244 	mutex_destroy(&sc->sc_mtx);
245 	mutex_destroy(&sc->sc_fwb.fwb_mtx);
246 	return 0;
247 }
248 
249 static int
250 fwipactivate(device_t self, enum devact act)
251 {
252 	struct fwip_softc *sc = device_private(self);
253 
254 	switch (act) {
255 	case DVACT_DEACTIVATE:
256 		if_deactivate(sc->sc_eth.fwip_ifp);
257 		return 0;
258 	default:
259 		return EOPNOTSUPP;
260 	}
261 }
262 
263 static void
264 fwip_start(struct ifnet *ifp)
265 {
266 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
267 
268 	FWIPDEBUG(ifp, "starting\n");
269 
270 	if (sc->sc_dma_ch < 0) {
271 		struct mbuf *m = NULL;
272 
273 		FWIPDEBUG(ifp, "not ready\n");
274 
275 		do {
276 			IF_DEQUEUE(&ifp->if_snd, m);
277 			if (m != NULL)
278 				m_freem(m);
279 			ifp->if_oerrors++;
280 		} while (m != NULL);
281 
282 		return;
283 	}
284 
285 	ifp->if_flags |= IFF_OACTIVE;
286 
287 	if (ifp->if_snd.ifq_len != 0)
288 		fwip_async_output(sc, ifp);
289 
290 	ifp->if_flags &= ~IFF_OACTIVE;
291 }
292 
293 static int
294 fwip_ioctl(struct ifnet *ifp, u_long cmd, void *data)
295 {
296 	int s, error = 0;
297 
298 	s = splnet();
299 
300 	switch (cmd) {
301 	case SIOCSIFFLAGS:
302 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
303 			break;
304 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
305 		case IFF_RUNNING:
306 			fwip_stop(ifp, 0);
307 			break;
308 		case IFF_UP:
309 			fwip_init(ifp);
310 			break;
311 		default:
312 			break;
313 		}
314 		break;
315 
316 	case SIOCADDMULTI:
317 	case SIOCDELMULTI:
318 		break;
319 
320 	default:
321 		error = ieee1394_ioctl(ifp, cmd, data);
322 		if (error == ENETRESET)
323 			error = 0;
324 		break;
325 	}
326 
327 	splx(s);
328 
329 	return error;
330 }
331 
332 static int
333 fwip_init(struct ifnet *ifp)
334 {
335 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
336 	struct firewire_comm *fc;
337 	struct fw_xferq *xferq;
338 	struct fw_xfer *xfer;
339 	struct mbuf *m;
340 	int i;
341 
342 	FWIPDEBUG(ifp, "initializing\n");
343 
344 	fc = sc->sc_fd.fc;
345 	if (sc->sc_dma_ch < 0) {
346 		sc->sc_dma_ch = fw_open_isodma(fc, /* tx */0);
347 		if (sc->sc_dma_ch < 0)
348 			return ENXIO;
349 		xferq = fc->ir[sc->sc_dma_ch];
350 		xferq->flag |=
351 		    FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM;
352 		xferq->flag &= ~0xff;
353 		xferq->flag |= broadcast_channel & 0xff;
354 		/* register fwip_input handler */
355 		xferq->sc = (void *) sc;
356 		xferq->hand = fwip_stream_input;
357 		xferq->bnchunk = rx_queue_len;
358 		xferq->bnpacket = 1;
359 		xferq->psize = MCLBYTES;
360 		xferq->queued = 0;
361 		xferq->buf = NULL;
362 		xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
363 			sizeof(struct fw_bulkxfer) * xferq->bnchunk,
364 							M_FW, M_WAITOK);
365 		if (xferq->bulkxfer == NULL) {
366 			aprint_error_ifnet(ifp, "if_fwip: malloc failed\n");
367 			return ENOMEM;
368 		}
369 		STAILQ_INIT(&xferq->stvalid);
370 		STAILQ_INIT(&xferq->stfree);
371 		STAILQ_INIT(&xferq->stdma);
372 		xferq->stproc = NULL;
373 		for (i = 0; i < xferq->bnchunk; i++) {
374 			m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
375 			xferq->bulkxfer[i].mbuf = m;
376 			if (m != NULL) {
377 				m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
378 				STAILQ_INSERT_TAIL(&xferq->stfree,
379 						&xferq->bulkxfer[i], link);
380 			} else
381 				aprint_error_ifnet(ifp,
382 				    "fwip_as_input: m_getcl failed\n");
383 		}
384 
385 		sc->sc_fwb.start = INET_FIFO;
386 		sc->sc_fwb.end = INET_FIFO + 16384; /* S3200 packet size */
387 
388 		/* pre-allocate xfer */
389 		STAILQ_INIT(&sc->sc_fwb.xferlist);
390 		for (i = 0; i < rx_queue_len; i++) {
391 			xfer = fw_xfer_alloc(M_FW);
392 			if (xfer == NULL)
393 				break;
394 			m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
395 			xfer->recv.payload = mtod(m, uint32_t *);
396 			xfer->recv.pay_len = MCLBYTES;
397 			xfer->hand = fwip_unicast_input;
398 			xfer->fc = fc;
399 			xfer->sc = (void *) sc;
400 			xfer->mbuf = m;
401 			STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
402 		}
403 		fw_bindadd(fc, &sc->sc_fwb);
404 
405 		STAILQ_INIT(&sc->sc_xferlist);
406 		for (i = 0; i < TX_MAX_QUEUE; i++) {
407 			xfer = fw_xfer_alloc(M_FW);
408 			if (xfer == NULL)
409 				break;
410 			xfer->send.spd = tx_speed;
411 			xfer->fc = sc->sc_fd.fc;
412 			xfer->sc = (void *)sc;
413 			xfer->hand = fwip_output_callback;
414 			STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
415 		}
416 	} else
417 		xferq = fc->ir[sc->sc_dma_ch];
418 
419 	sc->sc_last_dest.hi = 0;
420 	sc->sc_last_dest.lo = 0;
421 
422 	/* start dma */
423 	if ((xferq->flag & FWXFERQ_RUNNING) == 0)
424 		fc->irx_enable(fc, sc->sc_dma_ch);
425 
426 	ifp->if_flags |= IFF_RUNNING;
427 	ifp->if_flags &= ~IFF_OACTIVE;
428 
429 #if 0
430 	/* attempt to start output */
431 	fwip_start(ifp);
432 #endif
433 	return 0;
434 }
435 
436 static void
437 fwip_stop(struct ifnet *ifp, int disable)
438 {
439 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
440 	struct firewire_comm *fc = sc->sc_fd.fc;
441 	struct fw_xferq *xferq;
442 	struct fw_xfer *xfer, *next;
443 	int i;
444 
445 	if (sc->sc_dma_ch >= 0) {
446 		xferq = fc->ir[sc->sc_dma_ch];
447 
448 		if (xferq->flag & FWXFERQ_RUNNING)
449 			fc->irx_disable(fc, sc->sc_dma_ch);
450 		xferq->flag &=
451 			~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
452 			FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
453 		xferq->hand = NULL;
454 
455 		for (i = 0; i < xferq->bnchunk; i++)
456 			m_freem(xferq->bulkxfer[i].mbuf);
457 		free(xferq->bulkxfer, M_FW);
458 
459 		fw_bindremove(fc, &sc->sc_fwb);
460 		for (xfer = STAILQ_FIRST(&sc->sc_fwb.xferlist); xfer != NULL;
461 		    xfer = next) {
462 			next = STAILQ_NEXT(xfer, link);
463 			fw_xfer_free(xfer);
464 		}
465 
466 		for (xfer = STAILQ_FIRST(&sc->sc_xferlist); xfer != NULL;
467 		    xfer = next) {
468 			next = STAILQ_NEXT(xfer, link);
469 			fw_xfer_free(xfer);
470 		}
471 
472 		xferq->bulkxfer = NULL;
473 		sc->sc_dma_ch = -1;
474 	}
475 
476 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
477 }
478 
479 static void
480 fwip_post_busreset(void *arg)
481 {
482 	struct fwip_softc *sc = arg;
483 	struct crom_src *src;
484 	struct crom_chunk *root;
485 
486 	src = sc->sc_fd.fc->crom_src;
487 	root = sc->sc_fd.fc->crom_root;
488 
489 	/* RFC2734 IPv4 over IEEE1394 */
490 	memset(&sc->sc_unit4, 0, sizeof(struct crom_chunk));
491 	crom_add_chunk(src, root, &sc->sc_unit4, CROM_UDIR);
492 	crom_add_entry(&sc->sc_unit4, CSRKEY_SPEC, CSRVAL_IETF);
493 	crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_spec4, "IANA");
494 	crom_add_entry(&sc->sc_unit4, CSRKEY_VER, 1);
495 	crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_ver4, "IPv4");
496 
497 	/* RFC3146 IPv6 over IEEE1394 */
498 	memset(&sc->sc_unit6, 0, sizeof(struct crom_chunk));
499 	crom_add_chunk(src, root, &sc->sc_unit6, CROM_UDIR);
500 	crom_add_entry(&sc->sc_unit6, CSRKEY_SPEC, CSRVAL_IETF);
501 	crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_spec6, "IANA");
502 	crom_add_entry(&sc->sc_unit6, CSRKEY_VER, 2);
503 	crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_ver6, "IPv6");
504 
505 	sc->sc_last_dest.hi = 0;
506 	sc->sc_last_dest.lo = 0;
507 	ieee1394_drain(sc->sc_eth.fwip_ifp);
508 }
509 
510 static void
511 fwip_output_callback(struct fw_xfer *xfer)
512 {
513 	struct fwip_softc *sc = (struct fwip_softc *)xfer->sc;
514 	struct ifnet *ifp;
515 
516 	ifp = sc->sc_eth.fwip_ifp;
517 	/* XXX error check */
518 	FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
519 	if (xfer->resp != 0)
520 		ifp->if_oerrors++;
521 
522 	m_freem(xfer->mbuf);
523 	fw_xfer_unload(xfer);
524 
525 	mutex_enter(&sc->sc_mtx);
526 	STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
527 	mutex_exit(&sc->sc_mtx);
528 
529 	/* for queue full */
530 	if (ifp->if_snd.ifq_head != NULL)
531 		fwip_start(ifp);
532 }
533 
534 /* Async. stream output */
535 static void
536 fwip_async_output(struct fwip_softc *sc, struct ifnet *ifp)
537 {
538 	struct firewire_comm *fc = sc->sc_fd.fc;
539 	struct mbuf *m;
540 	struct m_tag *mtag;
541 	struct fw_hwaddr *destfw;
542 	struct fw_xfer *xfer;
543 	struct fw_xferq *xferq;
544 	struct fw_pkt *fp;
545 	uint16_t nodeid;
546 	int error;
547 	int i = 0;
548 
549 	xfer = NULL;
550 	xferq = fc->atq;
551 	while ((xferq->queued < xferq->maxq - 1) &&
552 	    (ifp->if_snd.ifq_head != NULL)) {
553 		mutex_enter(&sc->sc_mtx);
554 		if (STAILQ_EMPTY(&sc->sc_xferlist)) {
555 			mutex_exit(&sc->sc_mtx);
556 #if 0
557 			aprint_normal("if_fwip: lack of xfer\n");
558 #endif
559 			break;
560 		}
561 		IF_DEQUEUE(&ifp->if_snd, m);
562 		if (m == NULL) {
563 			mutex_exit(&sc->sc_mtx);
564 			break;
565 		}
566 		xfer = STAILQ_FIRST(&sc->sc_xferlist);
567 		STAILQ_REMOVE_HEAD(&sc->sc_xferlist, link);
568 		mutex_exit(&sc->sc_mtx);
569 
570 		/*
571 		 * Dig out the link-level address which
572 		 * firewire_output got via arp or neighbour
573 		 * discovery. If we don't have a link-level address,
574 		 * just stick the thing on the broadcast channel.
575 		 */
576 		mtag = m_tag_find(m, MTAG_FIREWIRE_HWADDR, 0);
577 		if (mtag == NULL)
578 			destfw = 0;
579 		else
580 			destfw = (struct fw_hwaddr *) (mtag + 1);
581 
582 		/*
583 		 * Put the mbuf in the xfer early in case we hit an
584 		 * error case below - fwip_output_callback will free
585 		 * the mbuf.
586 		 */
587 		xfer->mbuf = m;
588 
589 		/*
590 		 * We use the arp result (if any) to add a suitable firewire
591 		 * packet header before handing off to the bus.
592 		 */
593 		fp = &xfer->send.hdr;
594 		nodeid = FWLOCALBUS | fc->nodeid;
595 		if ((m->m_flags & M_BCAST) || !destfw) {
596 			/*
597 			 * Broadcast packets are sent as GASP packets with
598 			 * specifier ID 0x00005e, version 1 on the broadcast
599 			 * channel. To be conservative, we send at the
600 			 * slowest possible speed.
601 			 */
602 			uint32_t *p;
603 
604 			M_PREPEND(m, 2 * sizeof(uint32_t), M_DONTWAIT);
605 			p = mtod(m, uint32_t *);
606 			fp->mode.stream.len = m->m_pkthdr.len;
607 			fp->mode.stream.chtag = broadcast_channel;
608 			fp->mode.stream.tcode = FWTCODE_STREAM;
609 			fp->mode.stream.sy = 0;
610 			xfer->send.spd = 0;
611 			p[0] = htonl(nodeid << 16);
612 			p[1] = htonl((0x5e << 24) | 1);
613 		} else {
614 			/*
615 			 * Unicast packets are sent as block writes to the
616 			 * target's unicast fifo address. If we can't
617 			 * find the node address, we just give up. We
618 			 * could broadcast it but that might overflow
619 			 * the packet size limitations due to the
620 			 * extra GASP header. Note: the hardware
621 			 * address is stored in network byte order to
622 			 * make life easier for ARP.
623 			 */
624 			struct fw_device *fd;
625 			struct fw_eui64 eui;
626 
627 			eui.hi = ntohl(destfw->sender_unique_ID_hi);
628 			eui.lo = ntohl(destfw->sender_unique_ID_lo);
629 			if (sc->sc_last_dest.hi != eui.hi ||
630 			    sc->sc_last_dest.lo != eui.lo) {
631 				fd = fw_noderesolve_eui64(fc, &eui);
632 				if (!fd) {
633 					/* error */
634 					ifp->if_oerrors++;
635 					/* XXX set error code */
636 					fwip_output_callback(xfer);
637 					continue;
638 
639 				}
640 				sc->sc_last_hdr.mode.wreqb.dst =
641 				    FWLOCALBUS | fd->dst;
642 				sc->sc_last_hdr.mode.wreqb.tlrt = 0;
643 				sc->sc_last_hdr.mode.wreqb.tcode =
644 				    FWTCODE_WREQB;
645 				sc->sc_last_hdr.mode.wreqb.pri = 0;
646 				sc->sc_last_hdr.mode.wreqb.src = nodeid;
647 				sc->sc_last_hdr.mode.wreqb.dest_hi =
648 					ntohs(destfw->sender_unicast_FIFO_hi);
649 				sc->sc_last_hdr.mode.wreqb.dest_lo =
650 					ntohl(destfw->sender_unicast_FIFO_lo);
651 				sc->sc_last_hdr.mode.wreqb.extcode = 0;
652 				sc->sc_last_dest = eui;
653 			}
654 
655 			fp->mode.wreqb = sc->sc_last_hdr.mode.wreqb;
656 			fp->mode.wreqb.len = m->m_pkthdr.len;
657 			xfer->send.spd = min(destfw->sspd, fc->speed);
658 		}
659 
660 		xfer->send.pay_len = m->m_pkthdr.len;
661 
662 		error = fw_asyreq(fc, -1, xfer);
663 		if (error == EAGAIN) {
664 			/*
665 			 * We ran out of tlabels - requeue the packet
666 			 * for later transmission.
667 			 */
668 			xfer->mbuf = 0;
669 			mutex_enter(&sc->sc_mtx);
670 			STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
671 			mutex_exit(&sc->sc_mtx);
672 			IF_PREPEND(&ifp->if_snd, m);
673 			break;
674 		}
675 		if (error) {
676 			/* error */
677 			ifp->if_oerrors++;
678 			/* XXX set error code */
679 			fwip_output_callback(xfer);
680 			continue;
681 		} else {
682 			ifp->if_opackets++;
683 			i++;
684 		}
685 	}
686 #if 0
687 	if (i > 1)
688 		aprint_normal("%d queued\n", i);
689 #endif
690 	if (i > 0)
691 		xferq->start(fc);
692 }
693 
694 /* Async. stream output */
695 static void
696 fwip_stream_input(struct fw_xferq *xferq)
697 {
698 	struct mbuf *m, *m0;
699 	struct m_tag *mtag;
700 	struct ifnet *ifp;
701 	struct fwip_softc *sc;
702 	struct fw_bulkxfer *sxfer;
703 	struct fw_pkt *fp;
704 	uint16_t src;
705 	uint32_t *p;
706 
707 	sc = (struct fwip_softc *)xferq->sc;
708 	ifp = sc->sc_eth.fwip_ifp;
709 	while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
710 		STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
711 		fp = mtod(sxfer->mbuf, struct fw_pkt *);
712 		if (sc->sc_fd.fc->irx_post != NULL)
713 			sc->sc_fd.fc->irx_post(sc->sc_fd.fc, fp->mode.ld);
714 		m = sxfer->mbuf;
715 
716 		/* insert new rbuf */
717 		sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
718 		if (m0 != NULL) {
719 			m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
720 			STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
721 		} else
722 			aprint_error_ifnet(ifp,
723 			    "fwip_as_input: m_getcl failed\n");
724 
725 		/*
726 		 * We must have a GASP header - leave the
727 		 * encapsulation sanity checks to the generic
728 		 * code. Remeber that we also have the firewire async
729 		 * stream header even though that isn't accounted for
730 		 * in mode.stream.len.
731 		 */
732 		if (sxfer->resp != 0 ||
733 		    fp->mode.stream.len < 2 * sizeof(uint32_t)) {
734 			m_freem(m);
735 			ifp->if_ierrors++;
736 			continue;
737 		}
738 		m->m_len = m->m_pkthdr.len = fp->mode.stream.len
739 			+ sizeof(fp->mode.stream);
740 
741 		/*
742 		 * If we received the packet on the broadcast channel,
743 		 * mark it as broadcast, otherwise we assume it must
744 		 * be multicast.
745 		 */
746 		if (fp->mode.stream.chtag == broadcast_channel)
747 			m->m_flags |= M_BCAST;
748 		else
749 			m->m_flags |= M_MCAST;
750 
751 		/*
752 		 * Make sure we recognise the GASP specifier and
753 		 * version.
754 		 */
755 		p = mtod(m, uint32_t *);
756 		if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) !=
757 								0x00005e ||
758 		    (ntohl(p[2]) & 0xffffff) != 1) {
759 			FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
760 			    ntohl(p[1]), ntohl(p[2]));
761 			m_freem(m);
762 			ifp->if_ierrors++;
763 			continue;
764 		}
765 
766 		/*
767 		 * Record the sender ID for possible BPF usage.
768 		 */
769 		src = ntohl(p[1]) >> 16;
770 		if (ifp->if_bpf) {
771 			mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
772 			    2 * sizeof(uint32_t), M_NOWAIT);
773 			if (mtag) {
774 				/* bpf wants it in network byte order */
775 				struct fw_device *fd;
776 				uint32_t *p2 = (uint32_t *) (mtag + 1);
777 
778 				fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
779 				    src & 0x3f);
780 				if (fd) {
781 					p2[0] = htonl(fd->eui.hi);
782 					p2[1] = htonl(fd->eui.lo);
783 				} else {
784 					p2[0] = 0;
785 					p2[1] = 0;
786 				}
787 				m_tag_prepend(m, mtag);
788 			}
789 		}
790 
791 		/*
792 		 * Trim off the GASP header
793 		 */
794 		m_adj(m, 3*sizeof(uint32_t));
795 		m->m_pkthdr.rcvif = ifp;
796 		ieee1394_input(ifp, m, src);
797 		ifp->if_ipackets++;
798 	}
799 	if (STAILQ_FIRST(&xferq->stfree) != NULL)
800 		sc->sc_fd.fc->irx_enable(sc->sc_fd.fc, sc->sc_dma_ch);
801 }
802 
803 static inline void
804 fwip_unicast_input_recycle(struct fwip_softc *sc, struct fw_xfer *xfer)
805 {
806 	struct mbuf *m;
807 
808 	/*
809 	 * We have finished with a unicast xfer. Allocate a new
810 	 * cluster and stick it on the back of the input queue.
811 	 */
812 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
813 	if (m == NULL)
814 		aprint_error_dev(sc->sc_fd.dev,
815 		    "fwip_unicast_input_recycle: m_getcl failed\n");
816 	xfer->recv.payload = mtod(m, uint32_t *);
817 	xfer->recv.pay_len = MCLBYTES;
818 	xfer->mbuf = m;
819 	mutex_enter(&sc->sc_fwb.fwb_mtx);
820 	STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
821 	mutex_exit(&sc->sc_fwb.fwb_mtx);
822 }
823 
824 static void
825 fwip_unicast_input(struct fw_xfer *xfer)
826 {
827 	uint64_t address;
828 	struct mbuf *m;
829 	struct m_tag *mtag;
830 	struct ifnet *ifp;
831 	struct fwip_softc *sc;
832 	struct fw_pkt *fp;
833 	int rtcode;
834 
835 	sc = (struct fwip_softc *)xfer->sc;
836 	ifp = sc->sc_eth.fwip_ifp;
837 	m = xfer->mbuf;
838 	xfer->mbuf = 0;
839 	fp = &xfer->recv.hdr;
840 
841 	/*
842 	 * Check the fifo address - we only accept addresses of
843 	 * exactly INET_FIFO.
844 	 */
845 	address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
846 		| fp->mode.wreqb.dest_lo;
847 	if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
848 		rtcode = FWRCODE_ER_TYPE;
849 	} else if (address != INET_FIFO) {
850 		rtcode = FWRCODE_ER_ADDR;
851 	} else {
852 		rtcode = FWRCODE_COMPLETE;
853 	}
854 
855 	/*
856 	 * Pick up a new mbuf and stick it on the back of the receive
857 	 * queue.
858 	 */
859 	fwip_unicast_input_recycle(sc, xfer);
860 
861 	/*
862 	 * If we've already rejected the packet, give up now.
863 	 */
864 	if (rtcode != FWRCODE_COMPLETE) {
865 		m_freem(m);
866 		ifp->if_ierrors++;
867 		return;
868 	}
869 
870 	if (ifp->if_bpf) {
871 		/*
872 		 * Record the sender ID for possible BPF usage.
873 		 */
874 		mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
875 		    2 * sizeof(uint32_t), M_NOWAIT);
876 		if (mtag) {
877 			/* bpf wants it in network byte order */
878 			struct fw_device *fd;
879 			uint32_t *p = (uint32_t *) (mtag + 1);
880 
881 			fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
882 			    fp->mode.wreqb.src & 0x3f);
883 			if (fd) {
884 				p[0] = htonl(fd->eui.hi);
885 				p[1] = htonl(fd->eui.lo);
886 			} else {
887 				p[0] = 0;
888 				p[1] = 0;
889 			}
890 			m_tag_prepend(m, mtag);
891 		}
892 	}
893 
894 	/*
895 	 * Hand off to the generic encapsulation code. We don't use
896 	 * ifp->if_input so that we can pass the source nodeid as an
897 	 * argument to facilitate link-level fragment reassembly.
898 	 */
899 	m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
900 	m->m_pkthdr.rcvif = ifp;
901 	ieee1394_input(ifp, m, fp->mode.wreqb.src);
902 	ifp->if_ipackets++;
903 }
904