xref: /netbsd-src/sys/dev/ieee1394/if_fwip.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1 /*	$NetBSD: if_fwip.c,v 1.30 2020/01/29 06:19:39 thorpej Exp $	*/
2 /*-
3  * Copyright (c) 2004
4  *	Doug Rabson
5  * Copyright (c) 2002-2003
6  * 	Hidetoshi Shimokawa. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *
19  *	This product includes software developed by Hidetoshi Shimokawa.
20  *
21  * 4. Neither the name of the author nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD: src/sys/dev/firewire/if_fwip.c,v 1.18 2009/02/09 16:58:18 fjoe Exp $
38  */
39 
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: if_fwip.c,v 1.30 2020/01/29 06:19:39 thorpej Exp $");
42 
43 #include <sys/param.h>
44 #include <sys/bus.h>
45 #include <sys/device.h>
46 #include <sys/errno.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/mutex.h>
50 #include <sys/sysctl.h>
51 
52 #include <net/bpf.h>
53 #include <net/if.h>
54 #include <net/if_ieee1394.h>
55 #include <net/if_types.h>
56 
57 #include <dev/ieee1394/firewire.h>
58 #include <dev/ieee1394/firewirereg.h>
59 #include <dev/ieee1394/iec13213.h>
60 #include <dev/ieee1394/if_fwipvar.h>
61 
62 /*
63  * We really need a mechanism for allocating regions in the FIFO
64  * address space. We pick a address in the OHCI controller's 'middle'
65  * address space. This means that the controller will automatically
66  * send responses for us, which is fine since we don't have any
67  * important information to put in the response anyway.
68  */
69 #define INET_FIFO	0xfffe00000000LL
70 
71 #define FWIPDEBUG	if (fwipdebug) aprint_debug_ifnet
72 #define TX_MAX_QUEUE	(FWMAXQUEUE - 1)
73 
74 
75 struct fw_hwaddr {
76 	uint32_t		sender_unique_ID_hi;
77 	uint32_t		sender_unique_ID_lo;
78 	uint8_t			sender_max_rec;
79 	uint8_t			sspd;
80 	uint16_t		sender_unicast_FIFO_hi;
81 	uint32_t		sender_unicast_FIFO_lo;
82 };
83 
84 
85 static int fwipmatch(device_t, cfdata_t, void *);
86 static void fwipattach(device_t, device_t, void *);
87 static int fwipdetach(device_t, int);
88 static int fwipactivate(device_t, enum devact);
89 
90 /* network interface */
91 static void fwip_start(struct ifnet *);
92 static int fwip_ioctl(struct ifnet *, u_long, void *);
93 static int fwip_init(struct ifnet *);
94 static void fwip_stop(struct ifnet *, int);
95 
96 static void fwip_post_busreset(void *);
97 static void fwip_output_callback(struct fw_xfer *);
98 static void fwip_async_output(struct fwip_softc *, struct ifnet *);
99 static void fwip_stream_input(struct fw_xferq *);
100 static void fwip_unicast_input(struct fw_xfer *);
101 
102 static int fwipdebug = 0;
103 static int broadcast_channel = 0xc0 | 0x1f; /*  tag | channel(XXX) */
104 static int tx_speed = 2;
105 static int rx_queue_len = FWMAXQUEUE;
106 
107 /*
108  * Setup sysctl(3) MIB, hw.fwip.*
109  *
110  * TBD condition CTLFLAG_PERMANENT on being a module or not
111  */
112 SYSCTL_SETUP(sysctl_fwip, "sysctl fwip(4) subtree setup")
113 {
114 	int rc, fwip_node_num;
115 	const struct sysctlnode *node;
116 
117 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
118 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "fwip",
119 	    SYSCTL_DESCR("fwip controls"),
120 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
121 		goto err;
122 	}
123 	fwip_node_num = node->sysctl_num;
124 
125 	/* fwip RX queue length */
126 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
127 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
128 	    "rx_queue_len", SYSCTL_DESCR("Length of the receive queue"),
129 	    NULL, 0, &rx_queue_len,
130 	    0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
131 		goto err;
132 	}
133 
134 	/* fwip RX queue length */
135 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
136 	    CTLFLAG_PERMANENT | CTLFLAG_READWRITE, CTLTYPE_INT,
137 	    "if_fwip_debug", SYSCTL_DESCR("fwip driver debug flag"),
138 	    NULL, 0, &fwipdebug,
139 	    0, CTL_HW, fwip_node_num, CTL_CREATE, CTL_EOL)) != 0) {
140 		goto err;
141 	}
142 
143 	return;
144 
145 err:
146 	aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
147 }
148 
149 
150 CFATTACH_DECL_NEW(fwip, sizeof(struct fwip_softc),
151     fwipmatch, fwipattach, fwipdetach, fwipactivate);
152 
153 
154 static int
155 fwipmatch(device_t parent, cfdata_t cf, void *aux)
156 {
157 	struct fw_attach_args *fwa = aux;
158 
159 	if (strcmp(fwa->name, "fwip") == 0)
160 		return 1;
161 	return 0;
162 }
163 
164 static void
165 fwipattach(device_t parent, device_t self, void *aux)
166 {
167 	struct fwip_softc *sc = device_private(self);
168 	struct fw_attach_args *fwa = (struct fw_attach_args *)aux;
169 	struct fw_hwaddr *hwaddr;
170 	struct ifnet *ifp;
171 
172 	aprint_naive("\n");
173 	aprint_normal(": IP over IEEE1394\n");
174 
175 	sc->sc_fd.dev = self;
176 	sc->sc_eth.fwip_ifp = &sc->sc_eth.fwcom.fc_if;
177 	hwaddr = (struct fw_hwaddr *)&sc->sc_eth.fwcom.ic_hwaddr;
178 
179 	ifp = sc->sc_eth.fwip_ifp;
180 
181 	mutex_init(&sc->sc_fwb.fwb_mtx, MUTEX_DEFAULT, IPL_NET);
182 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
183 
184 	/* XXX */
185 	sc->sc_dma_ch = -1;
186 
187 	sc->sc_fd.fc = fwa->fc;
188 	if (tx_speed < 0)
189 		tx_speed = sc->sc_fd.fc->speed;
190 
191 	sc->sc_fd.post_explore = NULL;
192 	sc->sc_fd.post_busreset = fwip_post_busreset;
193 	sc->sc_eth.fwip = sc;
194 
195 	/*
196 	 * Encode our hardware the way that arp likes it.
197 	 */
198 	hwaddr->sender_unique_ID_hi = htonl(sc->sc_fd.fc->eui.hi);
199 	hwaddr->sender_unique_ID_lo = htonl(sc->sc_fd.fc->eui.lo);
200 	hwaddr->sender_max_rec = sc->sc_fd.fc->maxrec;
201 	hwaddr->sspd = sc->sc_fd.fc->speed;
202 	hwaddr->sender_unicast_FIFO_hi = htons((uint16_t)(INET_FIFO >> 32));
203 	hwaddr->sender_unicast_FIFO_lo = htonl((uint32_t)INET_FIFO);
204 
205 	/* fill the rest and attach interface */
206 	ifp->if_softc = &sc->sc_eth;
207 
208 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
209 	ifp->if_start = fwip_start;
210 	ifp->if_ioctl = fwip_ioctl;
211 	ifp->if_init = fwip_init;
212 	ifp->if_stop = fwip_stop;
213 	ifp->if_flags = (IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST);
214 	IFQ_SET_READY(&ifp->if_snd);
215 	IFQ_SET_MAXLEN(&ifp->if_snd, TX_MAX_QUEUE);
216 
217 	if_attach(ifp);
218 	ieee1394_ifattach(ifp, (const struct ieee1394_hwaddr *)hwaddr);
219 
220 	if (!pmf_device_register(self, NULL, NULL))
221 		aprint_error_dev(self, "couldn't establish power handler\n");
222 	else
223 		pmf_class_network_register(self, ifp);
224 
225 	FWIPDEBUG(ifp, "interface created\n");
226 	return;
227 }
228 
229 static int
230 fwipdetach(device_t self, int flags)
231 {
232 	struct fwip_softc *sc = device_private(self);
233 	struct ifnet *ifp = sc->sc_eth.fwip_ifp;
234 
235 	fwip_stop(sc->sc_eth.fwip_ifp, 1);
236 	ieee1394_ifdetach(ifp);
237 	if_detach(ifp);
238 	mutex_destroy(&sc->sc_mtx);
239 	mutex_destroy(&sc->sc_fwb.fwb_mtx);
240 	return 0;
241 }
242 
243 static int
244 fwipactivate(device_t self, enum devact act)
245 {
246 	struct fwip_softc *sc = device_private(self);
247 
248 	switch (act) {
249 	case DVACT_DEACTIVATE:
250 		if_deactivate(sc->sc_eth.fwip_ifp);
251 		return 0;
252 	default:
253 		return EOPNOTSUPP;
254 	}
255 }
256 
257 static void
258 fwip_start(struct ifnet *ifp)
259 {
260 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
261 
262 	FWIPDEBUG(ifp, "starting\n");
263 
264 	if (sc->sc_dma_ch < 0) {
265 		struct mbuf *m = NULL;
266 
267 		FWIPDEBUG(ifp, "not ready\n");
268 
269 		do {
270 			IF_DEQUEUE(&ifp->if_snd, m);
271 			if (m != NULL)
272 				m_freem(m);
273 			if_statinc(ifp, if_oerrors);
274 		} while (m != NULL);
275 
276 		return;
277 	}
278 
279 	ifp->if_flags |= IFF_OACTIVE;
280 
281 	if (ifp->if_snd.ifq_len != 0)
282 		fwip_async_output(sc, ifp);
283 
284 	ifp->if_flags &= ~IFF_OACTIVE;
285 }
286 
287 static int
288 fwip_ioctl(struct ifnet *ifp, u_long cmd, void *data)
289 {
290 	int s, error = 0;
291 
292 	s = splnet();
293 
294 	switch (cmd) {
295 	case SIOCSIFFLAGS:
296 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
297 			break;
298 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
299 		case IFF_RUNNING:
300 			fwip_stop(ifp, 0);
301 			break;
302 		case IFF_UP:
303 			fwip_init(ifp);
304 			break;
305 		default:
306 			break;
307 		}
308 		break;
309 
310 	case SIOCADDMULTI:
311 	case SIOCDELMULTI:
312 		break;
313 
314 	default:
315 		error = ieee1394_ioctl(ifp, cmd, data);
316 		if (error == ENETRESET)
317 			error = 0;
318 		break;
319 	}
320 
321 	splx(s);
322 
323 	return error;
324 }
325 
326 static int
327 fwip_init(struct ifnet *ifp)
328 {
329 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
330 	struct firewire_comm *fc;
331 	struct fw_xferq *xferq;
332 	struct fw_xfer *xfer;
333 	struct mbuf *m;
334 	int i;
335 
336 	FWIPDEBUG(ifp, "initializing\n");
337 
338 	fc = sc->sc_fd.fc;
339 	if (sc->sc_dma_ch < 0) {
340 		sc->sc_dma_ch = fw_open_isodma(fc, /* tx */0);
341 		if (sc->sc_dma_ch < 0)
342 			return ENXIO;
343 		xferq = fc->ir[sc->sc_dma_ch];
344 		xferq->flag |=
345 		    FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_STREAM;
346 		xferq->flag &= ~0xff;
347 		xferq->flag |= broadcast_channel & 0xff;
348 		/* register fwip_input handler */
349 		xferq->sc = (void *) sc;
350 		xferq->hand = fwip_stream_input;
351 		xferq->bnchunk = rx_queue_len;
352 		xferq->bnpacket = 1;
353 		xferq->psize = MCLBYTES;
354 		xferq->queued = 0;
355 		xferq->buf = NULL;
356 		xferq->bulkxfer = (struct fw_bulkxfer *) malloc(
357 			sizeof(struct fw_bulkxfer) * xferq->bnchunk,
358 							M_FW, M_WAITOK);
359 		if (xferq->bulkxfer == NULL) {
360 			aprint_error_ifnet(ifp, "if_fwip: malloc failed\n");
361 			return ENOMEM;
362 		}
363 		STAILQ_INIT(&xferq->stvalid);
364 		STAILQ_INIT(&xferq->stfree);
365 		STAILQ_INIT(&xferq->stdma);
366 		xferq->stproc = NULL;
367 		for (i = 0; i < xferq->bnchunk; i++) {
368 			m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
369 			xferq->bulkxfer[i].mbuf = m;
370 			if (m != NULL) {
371 				m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
372 				STAILQ_INSERT_TAIL(&xferq->stfree,
373 						&xferq->bulkxfer[i], link);
374 			} else
375 				aprint_error_ifnet(ifp,
376 				    "fwip_as_input: m_getcl failed\n");
377 		}
378 
379 		sc->sc_fwb.start = INET_FIFO;
380 		sc->sc_fwb.end = INET_FIFO + 16384; /* S3200 packet size */
381 
382 		/* pre-allocate xfer */
383 		STAILQ_INIT(&sc->sc_fwb.xferlist);
384 		for (i = 0; i < rx_queue_len; i++) {
385 			xfer = fw_xfer_alloc(M_FW);
386 			if (xfer == NULL)
387 				break;
388 			m = m_getcl(M_WAITOK, MT_DATA, M_PKTHDR);
389 			xfer->recv.payload = mtod(m, uint32_t *);
390 			xfer->recv.pay_len = MCLBYTES;
391 			xfer->hand = fwip_unicast_input;
392 			xfer->fc = fc;
393 			xfer->sc = (void *) sc;
394 			xfer->mbuf = m;
395 			STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
396 		}
397 		fw_bindadd(fc, &sc->sc_fwb);
398 
399 		STAILQ_INIT(&sc->sc_xferlist);
400 		for (i = 0; i < TX_MAX_QUEUE; i++) {
401 			xfer = fw_xfer_alloc(M_FW);
402 			if (xfer == NULL)
403 				break;
404 			xfer->send.spd = tx_speed;
405 			xfer->fc = sc->sc_fd.fc;
406 			xfer->sc = (void *)sc;
407 			xfer->hand = fwip_output_callback;
408 			STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
409 		}
410 	} else
411 		xferq = fc->ir[sc->sc_dma_ch];
412 
413 	sc->sc_last_dest.hi = 0;
414 	sc->sc_last_dest.lo = 0;
415 
416 	/* start dma */
417 	if ((xferq->flag & FWXFERQ_RUNNING) == 0)
418 		fc->irx_enable(fc, sc->sc_dma_ch);
419 
420 	ifp->if_flags |= IFF_RUNNING;
421 	ifp->if_flags &= ~IFF_OACTIVE;
422 
423 #if 0
424 	/* attempt to start output */
425 	fwip_start(ifp);
426 #endif
427 	return 0;
428 }
429 
430 static void
431 fwip_stop(struct ifnet *ifp, int disable)
432 {
433 	struct fwip_softc *sc = ((struct fwip_eth_softc *)ifp->if_softc)->fwip;
434 	struct firewire_comm *fc = sc->sc_fd.fc;
435 	struct fw_xferq *xferq;
436 	struct fw_xfer *xfer, *next;
437 	int i;
438 
439 	if (sc->sc_dma_ch >= 0) {
440 		xferq = fc->ir[sc->sc_dma_ch];
441 
442 		if (xferq->flag & FWXFERQ_RUNNING)
443 			fc->irx_disable(fc, sc->sc_dma_ch);
444 		xferq->flag &=
445 			~(FWXFERQ_MODEMASK | FWXFERQ_OPEN | FWXFERQ_STREAM |
446 			FWXFERQ_EXTBUF | FWXFERQ_HANDLER | FWXFERQ_CHTAGMASK);
447 		xferq->hand = NULL;
448 
449 		for (i = 0; i < xferq->bnchunk; i++)
450 			m_freem(xferq->bulkxfer[i].mbuf);
451 		free(xferq->bulkxfer, M_FW);
452 
453 		fw_bindremove(fc, &sc->sc_fwb);
454 		for (xfer = STAILQ_FIRST(&sc->sc_fwb.xferlist); xfer != NULL;
455 		    xfer = next) {
456 			next = STAILQ_NEXT(xfer, link);
457 			fw_xfer_free(xfer);
458 		}
459 
460 		for (xfer = STAILQ_FIRST(&sc->sc_xferlist); xfer != NULL;
461 		    xfer = next) {
462 			next = STAILQ_NEXT(xfer, link);
463 			fw_xfer_free(xfer);
464 		}
465 
466 		xferq->bulkxfer = NULL;
467 		sc->sc_dma_ch = -1;
468 	}
469 
470 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
471 }
472 
473 static void
474 fwip_post_busreset(void *arg)
475 {
476 	struct fwip_softc *sc = arg;
477 	struct crom_src *src;
478 	struct crom_chunk *root;
479 
480 	src = sc->sc_fd.fc->crom_src;
481 	root = sc->sc_fd.fc->crom_root;
482 
483 	/* RFC2734 IPv4 over IEEE1394 */
484 	memset(&sc->sc_unit4, 0, sizeof(struct crom_chunk));
485 	crom_add_chunk(src, root, &sc->sc_unit4, CROM_UDIR);
486 	crom_add_entry(&sc->sc_unit4, CSRKEY_SPEC, CSRVAL_IETF);
487 	crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_spec4, "IANA");
488 	crom_add_entry(&sc->sc_unit4, CSRKEY_VER, 1);
489 	crom_add_simple_text(src, &sc->sc_unit4, &sc->sc_ver4, "IPv4");
490 
491 	/* RFC3146 IPv6 over IEEE1394 */
492 	memset(&sc->sc_unit6, 0, sizeof(struct crom_chunk));
493 	crom_add_chunk(src, root, &sc->sc_unit6, CROM_UDIR);
494 	crom_add_entry(&sc->sc_unit6, CSRKEY_SPEC, CSRVAL_IETF);
495 	crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_spec6, "IANA");
496 	crom_add_entry(&sc->sc_unit6, CSRKEY_VER, 2);
497 	crom_add_simple_text(src, &sc->sc_unit6, &sc->sc_ver6, "IPv6");
498 
499 	sc->sc_last_dest.hi = 0;
500 	sc->sc_last_dest.lo = 0;
501 	ieee1394_drain(sc->sc_eth.fwip_ifp);
502 }
503 
504 static void
505 fwip_output_callback(struct fw_xfer *xfer)
506 {
507 	struct fwip_softc *sc = (struct fwip_softc *)xfer->sc;
508 	struct ifnet *ifp;
509 
510 	ifp = sc->sc_eth.fwip_ifp;
511 	/* XXX error check */
512 	FWIPDEBUG(ifp, "resp = %d\n", xfer->resp);
513 	if (xfer->resp != 0)
514 		if_statinc(ifp, if_oerrors);
515 
516 	m_freem(xfer->mbuf);
517 	fw_xfer_unload(xfer);
518 
519 	mutex_enter(&sc->sc_mtx);
520 	STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
521 	mutex_exit(&sc->sc_mtx);
522 
523 	/* for queue full */
524 	if (ifp->if_snd.ifq_head != NULL)
525 		fwip_start(ifp);
526 }
527 
528 /* Async. stream output */
529 static void
530 fwip_async_output(struct fwip_softc *sc, struct ifnet *ifp)
531 {
532 	struct firewire_comm *fc = sc->sc_fd.fc;
533 	struct mbuf *m;
534 	struct m_tag *mtag;
535 	struct fw_hwaddr *destfw;
536 	struct fw_xfer *xfer;
537 	struct fw_xferq *xferq;
538 	struct fw_pkt *fp;
539 	uint16_t nodeid;
540 	int error;
541 	int i = 0;
542 
543 	xfer = NULL;
544 	xferq = fc->atq;
545 	while ((xferq->queued < xferq->maxq - 1) &&
546 	    (ifp->if_snd.ifq_head != NULL)) {
547 		mutex_enter(&sc->sc_mtx);
548 		if (STAILQ_EMPTY(&sc->sc_xferlist)) {
549 			mutex_exit(&sc->sc_mtx);
550 #if 0
551 			aprint_normal("if_fwip: lack of xfer\n");
552 #endif
553 			break;
554 		}
555 		IF_DEQUEUE(&ifp->if_snd, m);
556 		if (m == NULL) {
557 			mutex_exit(&sc->sc_mtx);
558 			break;
559 		}
560 		xfer = STAILQ_FIRST(&sc->sc_xferlist);
561 		STAILQ_REMOVE_HEAD(&sc->sc_xferlist, link);
562 		mutex_exit(&sc->sc_mtx);
563 
564 		/*
565 		 * Dig out the link-level address which
566 		 * firewire_output got via arp or neighbour
567 		 * discovery. If we don't have a link-level address,
568 		 * just stick the thing on the broadcast channel.
569 		 */
570 		mtag = m_tag_find(m, MTAG_FIREWIRE_HWADDR);
571 		if (mtag == NULL)
572 			destfw = 0;
573 		else
574 			destfw = (struct fw_hwaddr *) (mtag + 1);
575 
576 		/*
577 		 * Put the mbuf in the xfer early in case we hit an
578 		 * error case below - fwip_output_callback will free
579 		 * the mbuf.
580 		 */
581 		xfer->mbuf = m;
582 
583 		/*
584 		 * We use the arp result (if any) to add a suitable firewire
585 		 * packet header before handing off to the bus.
586 		 */
587 		fp = &xfer->send.hdr;
588 		nodeid = FWLOCALBUS | fc->nodeid;
589 		if ((m->m_flags & M_BCAST) || !destfw) {
590 			/*
591 			 * Broadcast packets are sent as GASP packets with
592 			 * specifier ID 0x00005e, version 1 on the broadcast
593 			 * channel. To be conservative, we send at the
594 			 * slowest possible speed.
595 			 */
596 			uint32_t *p;
597 
598 			M_PREPEND(m, 2 * sizeof(uint32_t), M_DONTWAIT);
599 			p = mtod(m, uint32_t *);
600 			fp->mode.stream.len = m->m_pkthdr.len;
601 			fp->mode.stream.chtag = broadcast_channel;
602 			fp->mode.stream.tcode = FWTCODE_STREAM;
603 			fp->mode.stream.sy = 0;
604 			xfer->send.spd = 0;
605 			p[0] = htonl(nodeid << 16);
606 			p[1] = htonl((0x5e << 24) | 1);
607 		} else {
608 			/*
609 			 * Unicast packets are sent as block writes to the
610 			 * target's unicast fifo address. If we can't
611 			 * find the node address, we just give up. We
612 			 * could broadcast it but that might overflow
613 			 * the packet size limitations due to the
614 			 * extra GASP header. Note: the hardware
615 			 * address is stored in network byte order to
616 			 * make life easier for ARP.
617 			 */
618 			struct fw_device *fd;
619 			struct fw_eui64 eui;
620 
621 			eui.hi = ntohl(destfw->sender_unique_ID_hi);
622 			eui.lo = ntohl(destfw->sender_unique_ID_lo);
623 			if (sc->sc_last_dest.hi != eui.hi ||
624 			    sc->sc_last_dest.lo != eui.lo) {
625 				fd = fw_noderesolve_eui64(fc, &eui);
626 				if (!fd) {
627 					/* error */
628 					if_statinc(ifp, if_oerrors);
629 					/* XXX set error code */
630 					fwip_output_callback(xfer);
631 					continue;
632 
633 				}
634 				sc->sc_last_hdr.mode.wreqb.dst =
635 				    FWLOCALBUS | fd->dst;
636 				sc->sc_last_hdr.mode.wreqb.tlrt = 0;
637 				sc->sc_last_hdr.mode.wreqb.tcode =
638 				    FWTCODE_WREQB;
639 				sc->sc_last_hdr.mode.wreqb.pri = 0;
640 				sc->sc_last_hdr.mode.wreqb.src = nodeid;
641 				sc->sc_last_hdr.mode.wreqb.dest_hi =
642 					ntohs(destfw->sender_unicast_FIFO_hi);
643 				sc->sc_last_hdr.mode.wreqb.dest_lo =
644 					ntohl(destfw->sender_unicast_FIFO_lo);
645 				sc->sc_last_hdr.mode.wreqb.extcode = 0;
646 				sc->sc_last_dest = eui;
647 			}
648 
649 			fp->mode.wreqb = sc->sc_last_hdr.mode.wreqb;
650 			fp->mode.wreqb.len = m->m_pkthdr.len;
651 			xfer->send.spd = uimin(destfw->sspd, fc->speed);
652 		}
653 
654 		xfer->send.pay_len = m->m_pkthdr.len;
655 
656 		error = fw_asyreq(fc, -1, xfer);
657 		if (error == EAGAIN) {
658 			/*
659 			 * We ran out of tlabels - requeue the packet
660 			 * for later transmission.
661 			 */
662 			xfer->mbuf = 0;
663 			mutex_enter(&sc->sc_mtx);
664 			STAILQ_INSERT_TAIL(&sc->sc_xferlist, xfer, link);
665 			mutex_exit(&sc->sc_mtx);
666 			IF_PREPEND(&ifp->if_snd, m);
667 			break;
668 		}
669 		if (error) {
670 			/* error */
671 			if_statinc(ifp, if_oerrors);
672 			/* XXX set error code */
673 			fwip_output_callback(xfer);
674 			continue;
675 		} else {
676 			if_statinc(ifp, if_opackets);
677 			i++;
678 		}
679 	}
680 #if 0
681 	if (i > 1)
682 		aprint_normal("%d queued\n", i);
683 #endif
684 	if (i > 0)
685 		xferq->start(fc);
686 }
687 
688 /* Async. stream output */
689 static void
690 fwip_stream_input(struct fw_xferq *xferq)
691 {
692 	struct mbuf *m, *m0;
693 	struct m_tag *mtag;
694 	struct ifnet *ifp;
695 	struct fwip_softc *sc;
696 	struct fw_bulkxfer *sxfer;
697 	struct fw_pkt *fp;
698 	uint16_t src;
699 	uint32_t *p;
700 
701 	sc = (struct fwip_softc *)xferq->sc;
702 	ifp = sc->sc_eth.fwip_ifp;
703 	while ((sxfer = STAILQ_FIRST(&xferq->stvalid)) != NULL) {
704 		STAILQ_REMOVE_HEAD(&xferq->stvalid, link);
705 		fp = mtod(sxfer->mbuf, struct fw_pkt *);
706 		if (sc->sc_fd.fc->irx_post != NULL)
707 			sc->sc_fd.fc->irx_post(sc->sc_fd.fc, fp->mode.ld);
708 		m = sxfer->mbuf;
709 
710 		/* insert new rbuf */
711 		sxfer->mbuf = m0 = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
712 		if (m0 != NULL) {
713 			m0->m_len = m0->m_pkthdr.len = m0->m_ext.ext_size;
714 			STAILQ_INSERT_TAIL(&xferq->stfree, sxfer, link);
715 		} else
716 			aprint_error_ifnet(ifp,
717 			    "fwip_as_input: m_getcl failed\n");
718 
719 		/*
720 		 * We must have a GASP header - leave the
721 		 * encapsulation sanity checks to the generic
722 		 * code. Remeber that we also have the firewire async
723 		 * stream header even though that isn't accounted for
724 		 * in mode.stream.len.
725 		 */
726 		if (sxfer->resp != 0 ||
727 		    fp->mode.stream.len < 2 * sizeof(uint32_t)) {
728 			m_freem(m);
729 			if_statinc(ifp, if_ierrors);
730 			continue;
731 		}
732 		m->m_len = m->m_pkthdr.len = fp->mode.stream.len
733 			+ sizeof(fp->mode.stream);
734 
735 		/*
736 		 * If we received the packet on the broadcast channel,
737 		 * mark it as broadcast, otherwise we assume it must
738 		 * be multicast.
739 		 */
740 		if (fp->mode.stream.chtag == broadcast_channel)
741 			m->m_flags |= M_BCAST;
742 		else
743 			m->m_flags |= M_MCAST;
744 
745 		/*
746 		 * Make sure we recognise the GASP specifier and
747 		 * version.
748 		 */
749 		p = mtod(m, uint32_t *);
750 		if ((((ntohl(p[1]) & 0xffff) << 8) | ntohl(p[2]) >> 24) !=
751 								0x00005e ||
752 		    (ntohl(p[2]) & 0xffffff) != 1) {
753 			FWIPDEBUG(ifp, "Unrecognised GASP header %#08x %#08x\n",
754 			    ntohl(p[1]), ntohl(p[2]));
755 			m_freem(m);
756 			if_statinc(ifp, if_ierrors);
757 			continue;
758 		}
759 
760 		/*
761 		 * Record the sender ID for possible BPF usage.
762 		 */
763 		src = ntohl(p[1]) >> 16;
764 		if (ifp->if_bpf) {
765 			mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
766 			    2 * sizeof(uint32_t), M_NOWAIT);
767 			if (mtag) {
768 				/* bpf wants it in network byte order */
769 				struct fw_device *fd;
770 				uint32_t *p2 = (uint32_t *) (mtag + 1);
771 
772 				fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
773 				    src & 0x3f);
774 				if (fd) {
775 					p2[0] = htonl(fd->eui.hi);
776 					p2[1] = htonl(fd->eui.lo);
777 				} else {
778 					p2[0] = 0;
779 					p2[1] = 0;
780 				}
781 				m_tag_prepend(m, mtag);
782 			}
783 		}
784 
785 		/*
786 		 * Trim off the GASP header
787 		 */
788 		m_adj(m, 3*sizeof(uint32_t));
789 		m_set_rcvif(m, ifp);
790 		ieee1394_input(ifp, m, src);
791 		if_statinc(ifp, if_ipackets);
792 	}
793 	if (STAILQ_FIRST(&xferq->stfree) != NULL)
794 		sc->sc_fd.fc->irx_enable(sc->sc_fd.fc, sc->sc_dma_ch);
795 }
796 
797 static inline void
798 fwip_unicast_input_recycle(struct fwip_softc *sc, struct fw_xfer *xfer)
799 {
800 	struct mbuf *m;
801 
802 	/*
803 	 * We have finished with a unicast xfer. Allocate a new
804 	 * cluster and stick it on the back of the input queue.
805 	 */
806 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
807 	if (m == NULL)
808 		aprint_error_dev(sc->sc_fd.dev,
809 		    "fwip_unicast_input_recycle: m_getcl failed\n");
810 	xfer->recv.payload = mtod(m, uint32_t *);
811 	xfer->recv.pay_len = MCLBYTES;
812 	xfer->mbuf = m;
813 	mutex_enter(&sc->sc_fwb.fwb_mtx);
814 	STAILQ_INSERT_TAIL(&sc->sc_fwb.xferlist, xfer, link);
815 	mutex_exit(&sc->sc_fwb.fwb_mtx);
816 }
817 
818 static void
819 fwip_unicast_input(struct fw_xfer *xfer)
820 {
821 	uint64_t address;
822 	struct mbuf *m;
823 	struct m_tag *mtag;
824 	struct ifnet *ifp;
825 	struct fwip_softc *sc;
826 	struct fw_pkt *fp;
827 	int rtcode;
828 
829 	sc = (struct fwip_softc *)xfer->sc;
830 	ifp = sc->sc_eth.fwip_ifp;
831 	m = xfer->mbuf;
832 	xfer->mbuf = 0;
833 	fp = &xfer->recv.hdr;
834 
835 	/*
836 	 * Check the fifo address - we only accept addresses of
837 	 * exactly INET_FIFO.
838 	 */
839 	address = ((uint64_t)fp->mode.wreqb.dest_hi << 32)
840 		| fp->mode.wreqb.dest_lo;
841 	if (fp->mode.wreqb.tcode != FWTCODE_WREQB) {
842 		rtcode = FWRCODE_ER_TYPE;
843 	} else if (address != INET_FIFO) {
844 		rtcode = FWRCODE_ER_ADDR;
845 	} else {
846 		rtcode = FWRCODE_COMPLETE;
847 	}
848 
849 	/*
850 	 * Pick up a new mbuf and stick it on the back of the receive
851 	 * queue.
852 	 */
853 	fwip_unicast_input_recycle(sc, xfer);
854 
855 	/*
856 	 * If we've already rejected the packet, give up now.
857 	 */
858 	if (rtcode != FWRCODE_COMPLETE) {
859 		m_freem(m);
860 		if_statinc(ifp, if_ierrors);
861 		return;
862 	}
863 
864 	if (ifp->if_bpf) {
865 		/*
866 		 * Record the sender ID for possible BPF usage.
867 		 */
868 		mtag = m_tag_get(MTAG_FIREWIRE_SENDER_EUID,
869 		    2 * sizeof(uint32_t), M_NOWAIT);
870 		if (mtag) {
871 			/* bpf wants it in network byte order */
872 			struct fw_device *fd;
873 			uint32_t *p = (uint32_t *) (mtag + 1);
874 
875 			fd = fw_noderesolve_nodeid(sc->sc_fd.fc,
876 			    fp->mode.wreqb.src & 0x3f);
877 			if (fd) {
878 				p[0] = htonl(fd->eui.hi);
879 				p[1] = htonl(fd->eui.lo);
880 			} else {
881 				p[0] = 0;
882 				p[1] = 0;
883 			}
884 			m_tag_prepend(m, mtag);
885 		}
886 	}
887 
888 	/*
889 	 * Hand off to the generic encapsulation code. We don't use
890 	 * ifp->if_input so that we can pass the source nodeid as an
891 	 * argument to facilitate link-level fragment reassembly.
892 	 */
893 	m->m_len = m->m_pkthdr.len = fp->mode.wreqb.len;
894 	m_set_rcvif(m, ifp);
895 	ieee1394_input(ifp, m, fp->mode.wreqb.src);
896 	if_statinc(ifp, if_ipackets);
897 }
898