1 /* $NetBSD: z8530tty.c,v 1.95 2004/06/20 18:07:35 thorpej Exp $ */ 2 3 /*- 4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999 5 * Charles M. Hannum. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Charles M. Hannum. 18 * 4. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1992, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * This software was developed by the Computer Systems Engineering group 38 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 39 * contributed to Berkeley. 40 * 41 * All advertising materials mentioning features or use of this software 42 * must display the following acknowledgement: 43 * This product includes software developed by the University of 44 * California, Lawrence Berkeley Laboratory. 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)zs.c 8.1 (Berkeley) 7/19/93 71 */ 72 73 /* 74 * Copyright (c) 1994 Gordon W. Ross 75 * 76 * This software was developed by the Computer Systems Engineering group 77 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 78 * contributed to Berkeley. 79 * 80 * All advertising materials mentioning features or use of this software 81 * must display the following acknowledgement: 82 * This product includes software developed by the University of 83 * California, Lawrence Berkeley Laboratory. 84 * 85 * Redistribution and use in source and binary forms, with or without 86 * modification, are permitted provided that the following conditions 87 * are met: 88 * 1. Redistributions of source code must retain the above copyright 89 * notice, this list of conditions and the following disclaimer. 90 * 2. Redistributions in binary form must reproduce the above copyright 91 * notice, this list of conditions and the following disclaimer in the 92 * documentation and/or other materials provided with the distribution. 93 * 3. All advertising materials mentioning features or use of this software 94 * must display the following acknowledgement: 95 * This product includes software developed by the University of 96 * California, Berkeley and its contributors. 97 * 4. Neither the name of the University nor the names of its contributors 98 * may be used to endorse or promote products derived from this software 99 * without specific prior written permission. 100 * 101 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 102 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 103 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 104 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 105 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 106 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 107 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 108 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 109 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 110 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 111 * SUCH DAMAGE. 112 * 113 * @(#)zs.c 8.1 (Berkeley) 7/19/93 114 */ 115 116 /* 117 * Zilog Z8530 Dual UART driver (tty interface) 118 * 119 * This is the "slave" driver that will be attached to 120 * the "zsc" driver for plain "tty" async. serial lines. 121 * 122 * Credits, history: 123 * 124 * The original version of this code was the sparc/dev/zs.c driver 125 * as distributed with the Berkeley 4.4 Lite release. Since then, 126 * Gordon Ross reorganized the code into the current parent/child 127 * driver scheme, separating the Sun keyboard and mouse support 128 * into independent child drivers. 129 * 130 * RTS/CTS flow-control support was a collaboration of: 131 * Gordon Ross <gwr@NetBSD.org>, 132 * Bill Studenmund <wrstuden@loki.stanford.edu> 133 * Ian Dall <Ian.Dall@dsto.defence.gov.au> 134 * 135 * The driver was massively overhauled in November 1997 by Charles Hannum, 136 * fixing *many* bugs, and substantially improving performance. 137 */ 138 139 #include <sys/cdefs.h> 140 __KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.95 2004/06/20 18:07:35 thorpej Exp $"); 141 142 #include "opt_kgdb.h" 143 #include "opt_ntp.h" 144 145 #include <sys/param.h> 146 #include <sys/systm.h> 147 #include <sys/proc.h> 148 #include <sys/device.h> 149 #include <sys/conf.h> 150 #include <sys/file.h> 151 #include <sys/ioctl.h> 152 #include <sys/malloc.h> 153 #include <sys/timepps.h> 154 #include <sys/tty.h> 155 #include <sys/time.h> 156 #include <sys/kernel.h> 157 #include <sys/syslog.h> 158 159 #include <dev/ic/z8530reg.h> 160 #include <machine/z8530var.h> 161 162 #include <dev/cons.h> 163 164 #include "locators.h" 165 166 /* 167 * How many input characters we can buffer. 168 * The port-specific var.h may override this. 169 * Note: must be a power of two! 170 */ 171 #ifndef ZSTTY_RING_SIZE 172 #define ZSTTY_RING_SIZE 2048 173 #endif 174 175 static struct cnm_state zstty_cnm_state; 176 /* 177 * Make this an option variable one can patch. 178 * But be warned: this must be a power of 2! 179 */ 180 u_int zstty_rbuf_size = ZSTTY_RING_SIZE; 181 182 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ 183 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4; 184 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4; 185 186 static int zsppscap = 187 PPS_TSFMT_TSPEC | 188 PPS_CAPTUREASSERT | 189 PPS_CAPTURECLEAR | 190 PPS_OFFSETASSERT | PPS_OFFSETCLEAR; 191 192 struct zstty_softc { 193 struct device zst_dev; /* required first: base device */ 194 struct tty *zst_tty; 195 struct zs_chanstate *zst_cs; 196 197 struct callout zst_diag_ch; 198 199 u_int zst_overflows, 200 zst_floods, 201 zst_errors; 202 203 int zst_hwflags, /* see z8530var.h */ 204 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */ 205 206 u_int zst_r_hiwat, 207 zst_r_lowat; 208 u_char *volatile zst_rbget, 209 *volatile zst_rbput; 210 volatile u_int zst_rbavail; 211 u_char *zst_rbuf, 212 *zst_ebuf; 213 214 /* 215 * The transmit byte count and address are used for pseudo-DMA 216 * output in the hardware interrupt code. PDMA can be suspended 217 * to get pending changes done; heldtbc is used for this. It can 218 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state. 219 */ 220 u_char *zst_tba; /* transmit buffer address */ 221 u_int zst_tbc, /* transmit byte count */ 222 zst_heldtbc; /* held tbc while xmission stopped */ 223 224 /* Flags to communicate with zstty_softint() */ 225 volatile u_char zst_rx_flags, /* receiver blocked */ 226 #define RX_TTY_BLOCKED 0x01 227 #define RX_TTY_OVERFLOWED 0x02 228 #define RX_IBUF_BLOCKED 0x04 229 #define RX_IBUF_OVERFLOWED 0x08 230 #define RX_ANY_BLOCK 0x0f 231 zst_tx_busy, /* working on an output chunk */ 232 zst_tx_done, /* done with one output chunk */ 233 zst_tx_stopped, /* H/W level stop (lost CTS) */ 234 zst_st_check, /* got a status interrupt */ 235 zst_rx_ready; 236 237 /* PPS signal on DCD, with or without inkernel clock disciplining */ 238 u_char zst_ppsmask; /* pps signal mask */ 239 u_char zst_ppsassert; /* pps leading edge */ 240 u_char zst_ppsclear; /* pps trailing edge */ 241 pps_info_t ppsinfo; 242 pps_params_t ppsparam; 243 }; 244 245 /* Macros to clear/set/test flags. */ 246 #define SET(t, f) (t) |= (f) 247 #define CLR(t, f) (t) &= ~(f) 248 #define ISSET(t, f) ((t) & (f)) 249 250 /* Definition of the driver for autoconfig. */ 251 static int zstty_match(struct device *, struct cfdata *, void *); 252 static void zstty_attach(struct device *, struct device *, void *); 253 254 CFATTACH_DECL(zstty, sizeof(struct zstty_softc), 255 zstty_match, zstty_attach, NULL, NULL); 256 257 extern struct cfdriver zstty_cd; 258 259 dev_type_open(zsopen); 260 dev_type_close(zsclose); 261 dev_type_read(zsread); 262 dev_type_write(zswrite); 263 dev_type_ioctl(zsioctl); 264 dev_type_stop(zsstop); 265 dev_type_tty(zstty); 266 dev_type_poll(zspoll); 267 268 const struct cdevsw zstty_cdevsw = { 269 zsopen, zsclose, zsread, zswrite, zsioctl, 270 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY 271 }; 272 273 struct zsops zsops_tty; 274 275 static void zs_shutdown __P((struct zstty_softc *)); 276 static void zsstart __P((struct tty *)); 277 static int zsparam __P((struct tty *, struct termios *)); 278 static void zs_modem __P((struct zstty_softc *, int)); 279 static void tiocm_to_zs __P((struct zstty_softc *, u_long, int)); 280 static int zs_to_tiocm __P((struct zstty_softc *)); 281 static int zshwiflow __P((struct tty *, int)); 282 static void zs_hwiflow __P((struct zstty_softc *)); 283 static void zs_maskintr __P((struct zstty_softc *)); 284 285 /* Low-level routines. */ 286 static void zstty_rxint __P((struct zs_chanstate *)); 287 static void zstty_stint __P((struct zs_chanstate *, int)); 288 static void zstty_txint __P((struct zs_chanstate *)); 289 static void zstty_softint __P((struct zs_chanstate *)); 290 291 #define ZSUNIT(x) (minor(x) & 0x7ffff) 292 #define ZSDIALOUT(x) (minor(x) & 0x80000) 293 294 /* 295 * zstty_match: how is this zs channel configured? 296 */ 297 int 298 zstty_match(parent, cf, aux) 299 struct device *parent; 300 struct cfdata *cf; 301 void *aux; 302 { 303 struct zsc_attach_args *args = aux; 304 305 /* Exact match is better than wildcard. */ 306 if (cf->zsccf_channel == args->channel) 307 return 2; 308 309 /* This driver accepts wildcard. */ 310 if (cf->zsccf_channel == ZSCCF_CHANNEL_DEFAULT) 311 return 1; 312 313 return 0; 314 } 315 316 void 317 zstty_attach(parent, self, aux) 318 struct device *parent, *self; 319 void *aux; 320 321 { 322 struct zsc_softc *zsc = (void *) parent; 323 struct zstty_softc *zst = (void *) self; 324 struct cfdata *cf = self->dv_cfdata; 325 struct zsc_attach_args *args = aux; 326 struct zs_chanstate *cs; 327 struct tty *tp; 328 int channel, s, tty_unit; 329 dev_t dev; 330 char *i, *o; 331 int dtr_on; 332 int resetbit; 333 334 callout_init(&zst->zst_diag_ch); 335 cn_init_magic(&zstty_cnm_state); 336 337 tty_unit = zst->zst_dev.dv_unit; 338 channel = args->channel; 339 cs = zsc->zsc_cs[channel]; 340 cs->cs_private = zst; 341 cs->cs_ops = &zsops_tty; 342 343 zst->zst_cs = cs; 344 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */ 345 zst->zst_hwflags = args->hwflags; 346 dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit); 347 348 if (zst->zst_swflags) 349 printf(" flags 0x%x", zst->zst_swflags); 350 351 /* 352 * Check whether we serve as a console device. 353 * XXX - split console input/output channels aren't 354 * supported yet on /dev/console 355 */ 356 i = o = NULL; 357 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) { 358 i = "input"; 359 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) { 360 args->consdev->cn_dev = dev; 361 cn_tab->cn_pollc = args->consdev->cn_pollc; 362 cn_tab->cn_getc = args->consdev->cn_getc; 363 } 364 cn_tab->cn_dev = dev; 365 /* Set console magic to BREAK */ 366 cn_set_magic("\047\001"); 367 } 368 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) { 369 o = "output"; 370 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) { 371 cn_tab->cn_putc = args->consdev->cn_putc; 372 } 373 cn_tab->cn_dev = dev; 374 } 375 if (i != NULL || o != NULL) 376 printf(" (console %s)", i ? (o ? "i/o" : i) : o); 377 378 #ifdef KGDB 379 if (zs_check_kgdb(cs, dev)) { 380 /* 381 * Allow kgdb to "take over" this port. Returns true 382 * if this serial port is in-use by kgdb. 383 */ 384 printf(" (kgdb)\n"); 385 /* 386 * This is the kgdb port (exclusive use) 387 * so skip the normal attach code. 388 */ 389 return; 390 } 391 #endif 392 printf("\n"); 393 394 tp = ttymalloc(); 395 tp->t_dev = dev; 396 tp->t_oproc = zsstart; 397 tp->t_param = zsparam; 398 tp->t_hwiflow = zshwiflow; 399 tty_attach(tp); 400 401 zst->zst_tty = tp; 402 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK); 403 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1); 404 /* Disable the high water mark. */ 405 zst->zst_r_hiwat = 0; 406 zst->zst_r_lowat = 0; 407 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf; 408 zst->zst_rbavail = zstty_rbuf_size; 409 410 /* if there are no enable/disable functions, assume the device 411 is always enabled */ 412 if (!cs->enable) 413 cs->enabled = 1; 414 415 /* 416 * Hardware init 417 */ 418 dtr_on = 0; 419 resetbit = 0; 420 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { 421 /* Call zsparam similar to open. */ 422 struct termios t; 423 424 /* Wait a while for previous console output to complete */ 425 DELAY(10000); 426 427 /* Setup the "new" parameters in t. */ 428 t.c_ispeed = 0; 429 t.c_ospeed = cs->cs_defspeed; 430 t.c_cflag = cs->cs_defcflag; 431 432 /* 433 * Turn on receiver and status interrupts. 434 * We defer the actual write of the register to zsparam(), 435 * but we must make sure status interrupts are turned on by 436 * the time zsparam() reads the initial rr0 state. 437 */ 438 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); 439 440 /* Make sure zsparam will see changes. */ 441 tp->t_ospeed = 0; 442 (void) zsparam(tp, &t); 443 444 /* Make sure DTR is on now. */ 445 dtr_on = 1; 446 447 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) { 448 /* Not the console; may need reset. */ 449 resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; 450 } 451 452 s = splzs(); 453 simple_lock(&cs->cs_lock); 454 if (resetbit) 455 zs_write_reg(cs, 9, resetbit); 456 zs_modem(zst, dtr_on); 457 simple_unlock(&cs->cs_lock); 458 splx(s); 459 } 460 461 462 /* 463 * Return pointer to our tty. 464 */ 465 struct tty * 466 zstty(dev) 467 dev_t dev; 468 { 469 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 470 471 return (zst->zst_tty); 472 } 473 474 475 void 476 zs_shutdown(zst) 477 struct zstty_softc *zst; 478 { 479 struct zs_chanstate *cs = zst->zst_cs; 480 struct tty *tp = zst->zst_tty; 481 int s; 482 483 s = splzs(); 484 simple_lock(&cs->cs_lock); 485 486 /* If we were asserting flow control, then deassert it. */ 487 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED); 488 zs_hwiflow(zst); 489 490 /* Clear any break condition set with TIOCSBRK. */ 491 zs_break(cs, 0); 492 493 /* Turn off PPS capture on last close. */ 494 zst->zst_ppsmask = 0; 495 zst->ppsparam.mode = 0; 496 497 /* 498 * Hang up if necessary. Wait a bit, so the other side has time to 499 * notice even if we immediately open the port again. 500 */ 501 if (ISSET(tp->t_cflag, HUPCL)) { 502 zs_modem(zst, 0); 503 simple_unlock(&cs->cs_lock); 504 splx(s); 505 /* 506 * XXX - another process is not prevented from opening 507 * the device during our sleep. 508 */ 509 (void) tsleep(cs, TTIPRI, ttclos, hz); 510 /* Re-check state in case we were opened during our sleep */ 511 if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0) 512 return; 513 514 s = splzs(); 515 simple_lock(&cs->cs_lock); 516 } 517 518 /* Turn off interrupts if not the console. */ 519 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { 520 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); 521 cs->cs_creg[1] = cs->cs_preg[1]; 522 zs_write_reg(cs, 1, cs->cs_creg[1]); 523 } 524 525 /* Call the power management hook. */ 526 if (cs->disable) { 527 #ifdef DIAGNOSTIC 528 if (!cs->enabled) 529 panic("zs_shutdown: not enabled?"); 530 #endif 531 (*cs->disable)(zst->zst_cs); 532 } 533 534 simple_unlock(&cs->cs_lock); 535 splx(s); 536 } 537 538 /* 539 * Open a zs serial (tty) port. 540 */ 541 int 542 zsopen(dev, flags, mode, p) 543 dev_t dev; 544 int flags; 545 int mode; 546 struct proc *p; 547 { 548 struct zstty_softc *zst; 549 struct zs_chanstate *cs; 550 struct tty *tp; 551 int s, s2; 552 int error; 553 554 zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 555 if (zst == NULL) 556 return (ENXIO); 557 558 tp = zst->zst_tty; 559 cs = zst->zst_cs; 560 561 /* If KGDB took the line, then tp==NULL */ 562 if (tp == NULL) 563 return (EBUSY); 564 565 if (ISSET(tp->t_state, TS_ISOPEN) && 566 ISSET(tp->t_state, TS_XCLUDE) && 567 p->p_ucred->cr_uid != 0) 568 return (EBUSY); 569 570 s = spltty(); 571 572 /* 573 * Do the following iff this is a first open. 574 */ 575 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 576 struct termios t; 577 578 tp->t_dev = dev; 579 580 /* Call the power management hook. */ 581 if (cs->enable) { 582 if ((*cs->enable)(cs)) { 583 splx(s); 584 printf("%s: device enable failed\n", 585 zst->zst_dev.dv_xname); 586 return (EIO); 587 } 588 } 589 590 /* 591 * Initialize the termios status to the defaults. Add in the 592 * sticky bits from TIOCSFLAGS. 593 */ 594 t.c_ispeed = 0; 595 t.c_ospeed = cs->cs_defspeed; 596 t.c_cflag = cs->cs_defcflag; 597 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL)) 598 SET(t.c_cflag, CLOCAL); 599 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS)) 600 SET(t.c_cflag, CRTSCTS); 601 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS)) 602 SET(t.c_cflag, CDTRCTS); 603 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF)) 604 SET(t.c_cflag, MDMBUF); 605 606 s2 = splzs(); 607 simple_lock(&cs->cs_lock); 608 609 /* 610 * Turn on receiver and status interrupts. 611 * We defer the actual write of the register to zsparam(), 612 * but we must make sure status interrupts are turned on by 613 * the time zsparam() reads the initial rr0 state. 614 */ 615 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); 616 617 /* Clear PPS capture state on first open. */ 618 zst->zst_ppsmask = 0; 619 zst->ppsparam.mode = 0; 620 621 simple_unlock(&cs->cs_lock); 622 splx(s2); 623 624 /* Make sure zsparam will see changes. */ 625 tp->t_ospeed = 0; 626 (void) zsparam(tp, &t); 627 628 /* 629 * Note: zsparam has done: cflag, ispeed, ospeed 630 * so we just need to do: iflag, oflag, lflag, cc 631 * For "raw" mode, just leave all zeros. 632 */ 633 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) { 634 tp->t_iflag = TTYDEF_IFLAG; 635 tp->t_oflag = TTYDEF_OFLAG; 636 tp->t_lflag = TTYDEF_LFLAG; 637 } else { 638 tp->t_iflag = 0; 639 tp->t_oflag = 0; 640 tp->t_lflag = 0; 641 } 642 ttychars(tp); 643 ttsetwater(tp); 644 645 s2 = splzs(); 646 simple_lock(&cs->cs_lock); 647 648 /* 649 * Turn on DTR. We must always do this, even if carrier is not 650 * present, because otherwise we'd have to use TIOCSDTR 651 * immediately after setting CLOCAL, which applications do not 652 * expect. We always assert DTR while the device is open 653 * unless explicitly requested to deassert it. 654 */ 655 zs_modem(zst, 1); 656 657 /* Clear the input ring, and unblock. */ 658 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf; 659 zst->zst_rbavail = zstty_rbuf_size; 660 zs_iflush(cs); 661 CLR(zst->zst_rx_flags, RX_ANY_BLOCK); 662 zs_hwiflow(zst); 663 664 simple_unlock(&cs->cs_lock); 665 splx(s2); 666 } 667 668 splx(s); 669 670 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK)); 671 if (error) 672 goto bad; 673 674 error = (*tp->t_linesw->l_open)(dev, tp); 675 if (error) 676 goto bad; 677 678 return (0); 679 680 bad: 681 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 682 /* 683 * We failed to open the device, and nobody else had it opened. 684 * Clean up the state as appropriate. 685 */ 686 zs_shutdown(zst); 687 } 688 689 return (error); 690 } 691 692 /* 693 * Close a zs serial port. 694 */ 695 int 696 zsclose(dev, flags, mode, p) 697 dev_t dev; 698 int flags; 699 int mode; 700 struct proc *p; 701 { 702 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 703 struct tty *tp = zst->zst_tty; 704 705 /* XXX This is for cons.c. */ 706 if (!ISSET(tp->t_state, TS_ISOPEN)) 707 return 0; 708 709 (*tp->t_linesw->l_close)(tp, flags); 710 ttyclose(tp); 711 712 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 713 /* 714 * Although we got a last close, the device may still be in 715 * use; e.g. if this was the dialout node, and there are still 716 * processes waiting for carrier on the non-dialout node. 717 */ 718 zs_shutdown(zst); 719 } 720 721 return (0); 722 } 723 724 /* 725 * Read/write zs serial port. 726 */ 727 int 728 zsread(dev, uio, flags) 729 dev_t dev; 730 struct uio *uio; 731 int flags; 732 { 733 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 734 struct tty *tp = zst->zst_tty; 735 736 return ((*tp->t_linesw->l_read)(tp, uio, flags)); 737 } 738 739 int 740 zswrite(dev, uio, flags) 741 dev_t dev; 742 struct uio *uio; 743 int flags; 744 { 745 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 746 struct tty *tp = zst->zst_tty; 747 748 return ((*tp->t_linesw->l_write)(tp, uio, flags)); 749 } 750 751 int 752 zspoll(dev, events, p) 753 dev_t dev; 754 int events; 755 struct proc *p; 756 { 757 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 758 struct tty *tp = zst->zst_tty; 759 760 return ((*tp->t_linesw->l_poll)(tp, events, p)); 761 } 762 763 int 764 zsioctl(dev, cmd, data, flag, p) 765 dev_t dev; 766 u_long cmd; 767 caddr_t data; 768 int flag; 769 struct proc *p; 770 { 771 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 772 struct zs_chanstate *cs = zst->zst_cs; 773 struct tty *tp = zst->zst_tty; 774 int error; 775 int s; 776 777 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p); 778 if (error != EPASSTHROUGH) 779 return (error); 780 781 error = ttioctl(tp, cmd, data, flag, p); 782 if (error != EPASSTHROUGH) 783 return (error); 784 785 #ifdef ZS_MD_IOCTL 786 error = ZS_MD_IOCTL(cs, cmd, data); 787 if (error != EPASSTHROUGH) 788 return (error); 789 #endif /* ZS_MD_IOCTL */ 790 791 error = 0; 792 793 s = splzs(); 794 simple_lock(&cs->cs_lock); 795 796 switch (cmd) { 797 case TIOCSBRK: 798 zs_break(cs, 1); 799 break; 800 801 case TIOCCBRK: 802 zs_break(cs, 0); 803 break; 804 805 case TIOCGFLAGS: 806 *(int *)data = zst->zst_swflags; 807 break; 808 809 case TIOCSFLAGS: 810 error = suser(p->p_ucred, &p->p_acflag); 811 if (error) 812 break; 813 zst->zst_swflags = *(int *)data; 814 break; 815 816 case TIOCSDTR: 817 zs_modem(zst, 1); 818 break; 819 820 case TIOCCDTR: 821 zs_modem(zst, 0); 822 break; 823 824 case TIOCMSET: 825 case TIOCMBIS: 826 case TIOCMBIC: 827 tiocm_to_zs(zst, cmd, *(int *)data); 828 break; 829 830 case TIOCMGET: 831 *(int *)data = zs_to_tiocm(zst); 832 break; 833 834 case PPS_IOC_CREATE: 835 break; 836 837 case PPS_IOC_DESTROY: 838 break; 839 840 case PPS_IOC_GETPARAMS: { 841 pps_params_t *pp; 842 pp = (pps_params_t *)data; 843 *pp = zst->ppsparam; 844 break; 845 } 846 847 case PPS_IOC_SETPARAMS: { 848 pps_params_t *pp; 849 int mode; 850 if (cs->cs_rr0_pps == 0) { 851 error = EINVAL; 852 break; 853 } 854 pp = (pps_params_t *)data; 855 if (pp->mode & ~zsppscap) { 856 error = EINVAL; 857 break; 858 } 859 zst->ppsparam = *pp; 860 /* 861 * compute masks from user-specified timestamp state. 862 */ 863 mode = zst->ppsparam.mode; 864 switch (mode & PPS_CAPTUREBOTH) { 865 case 0: 866 zst->zst_ppsmask = 0; 867 break; 868 869 case PPS_CAPTUREASSERT: 870 zst->zst_ppsmask = ZSRR0_DCD; 871 zst->zst_ppsassert = ZSRR0_DCD; 872 zst->zst_ppsclear = -1; 873 break; 874 875 case PPS_CAPTURECLEAR: 876 zst->zst_ppsmask = ZSRR0_DCD; 877 zst->zst_ppsassert = -1; 878 zst->zst_ppsclear = 0; 879 break; 880 881 case PPS_CAPTUREBOTH: 882 zst->zst_ppsmask = ZSRR0_DCD; 883 zst->zst_ppsassert = ZSRR0_DCD; 884 zst->zst_ppsclear = 0; 885 break; 886 887 default: 888 error = EINVAL; 889 break; 890 } 891 892 /* 893 * Now update interrupts. 894 */ 895 zs_maskintr(zst); 896 /* 897 * If nothing is being transmitted, set up new current values, 898 * else mark them as pending. 899 */ 900 if (!cs->cs_heldchange) { 901 if (zst->zst_tx_busy) { 902 zst->zst_heldtbc = zst->zst_tbc; 903 zst->zst_tbc = 0; 904 cs->cs_heldchange = 1; 905 } else 906 zs_loadchannelregs(cs); 907 } 908 909 break; 910 } 911 912 case PPS_IOC_GETCAP: 913 *(int *)data = zsppscap; 914 break; 915 916 case PPS_IOC_FETCH: { 917 pps_info_t *pi; 918 pi = (pps_info_t *)data; 919 *pi = zst->ppsinfo; 920 break; 921 } 922 923 #ifdef PPS_SYNC 924 case PPS_IOC_KCBIND: { 925 int edge = (*(int *)data) & PPS_CAPTUREBOTH; 926 927 if (edge == 0) { 928 /* 929 * remove binding for this source; ignore 930 * the request if this is not the current 931 * hardpps source 932 */ 933 if (pps_kc_hardpps_source == zst) { 934 pps_kc_hardpps_source = NULL; 935 pps_kc_hardpps_mode = 0; 936 } 937 } else { 938 /* 939 * bind hardpps to this source, replacing any 940 * previously specified source or edges 941 */ 942 pps_kc_hardpps_source = zst; 943 pps_kc_hardpps_mode = edge; 944 } 945 break; 946 } 947 #endif /* PPS_SYNC */ 948 949 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */ 950 if (cs->cs_rr0_pps == 0) { 951 error = EINVAL; 952 break; 953 } 954 /* 955 * Some GPS clocks models use the falling rather than 956 * rising edge as the on-the-second signal. 957 * The old API has no way to specify PPS polarity. 958 */ 959 zst->zst_ppsmask = ZSRR0_DCD; 960 #ifndef PPS_TRAILING_EDGE 961 zst->zst_ppsassert = ZSRR0_DCD; 962 zst->zst_ppsclear = -1; 963 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 964 &zst->ppsinfo.assert_timestamp); 965 #else 966 zst->zst_ppsassert = -1; 967 zst->zst_ppsclear = 01; 968 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 969 &zst->ppsinfo.clear_timestamp); 970 #endif 971 /* 972 * Now update interrupts. 973 */ 974 zs_maskintr(zst); 975 /* 976 * If nothing is being transmitted, set up new current values, 977 * else mark them as pending. 978 */ 979 if (!cs->cs_heldchange) { 980 if (zst->zst_tx_busy) { 981 zst->zst_heldtbc = zst->zst_tbc; 982 zst->zst_tbc = 0; 983 cs->cs_heldchange = 1; 984 } else 985 zs_loadchannelregs(cs); 986 } 987 988 break; 989 990 default: 991 error = EPASSTHROUGH; 992 break; 993 } 994 995 simple_unlock(&cs->cs_lock); 996 splx(s); 997 998 return (error); 999 } 1000 1001 /* 1002 * Start or restart transmission. 1003 */ 1004 static void 1005 zsstart(tp) 1006 struct tty *tp; 1007 { 1008 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev)); 1009 struct zs_chanstate *cs = zst->zst_cs; 1010 int s; 1011 1012 s = spltty(); 1013 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) 1014 goto out; 1015 if (zst->zst_tx_stopped) 1016 goto out; 1017 1018 if (tp->t_outq.c_cc <= tp->t_lowat) { 1019 if (ISSET(tp->t_state, TS_ASLEEP)) { 1020 CLR(tp->t_state, TS_ASLEEP); 1021 wakeup((caddr_t)&tp->t_outq); 1022 } 1023 selwakeup(&tp->t_wsel); 1024 if (tp->t_outq.c_cc == 0) 1025 goto out; 1026 } 1027 1028 /* Grab the first contiguous region of buffer space. */ 1029 { 1030 u_char *tba; 1031 int tbc; 1032 1033 tba = tp->t_outq.c_cf; 1034 tbc = ndqb(&tp->t_outq, 0); 1035 1036 (void) splzs(); 1037 simple_lock(&cs->cs_lock); 1038 1039 zst->zst_tba = tba; 1040 zst->zst_tbc = tbc; 1041 } 1042 1043 SET(tp->t_state, TS_BUSY); 1044 zst->zst_tx_busy = 1; 1045 1046 /* Enable transmit completion interrupts if necessary. */ 1047 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) { 1048 SET(cs->cs_preg[1], ZSWR1_TIE); 1049 cs->cs_creg[1] = cs->cs_preg[1]; 1050 zs_write_reg(cs, 1, cs->cs_creg[1]); 1051 } 1052 1053 /* Output the first character of the contiguous buffer. */ 1054 { 1055 zs_write_data(cs, *zst->zst_tba); 1056 zst->zst_tbc--; 1057 zst->zst_tba++; 1058 } 1059 simple_unlock(&cs->cs_lock); 1060 out: 1061 splx(s); 1062 return; 1063 } 1064 1065 /* 1066 * Stop output, e.g., for ^S or output flush. 1067 */ 1068 void 1069 zsstop(tp, flag) 1070 struct tty *tp; 1071 int flag; 1072 { 1073 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev)); 1074 int s; 1075 1076 s = splzs(); 1077 if (ISSET(tp->t_state, TS_BUSY)) { 1078 /* Stop transmitting at the next chunk. */ 1079 zst->zst_tbc = 0; 1080 zst->zst_heldtbc = 0; 1081 if (!ISSET(tp->t_state, TS_TTSTOP)) 1082 SET(tp->t_state, TS_FLUSH); 1083 } 1084 splx(s); 1085 } 1086 1087 /* 1088 * Set ZS tty parameters from termios. 1089 * XXX - Should just copy the whole termios after 1090 * making sure all the changes could be done. 1091 */ 1092 static int 1093 zsparam(tp, t) 1094 struct tty *tp; 1095 struct termios *t; 1096 { 1097 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev)); 1098 struct zs_chanstate *cs = zst->zst_cs; 1099 int ospeed; 1100 tcflag_t cflag; 1101 u_char tmp3, tmp4, tmp5; 1102 int s, error; 1103 1104 ospeed = t->c_ospeed; 1105 cflag = t->c_cflag; 1106 1107 /* Check requested parameters. */ 1108 if (ospeed < 0) 1109 return (EINVAL); 1110 if (t->c_ispeed && t->c_ispeed != ospeed) 1111 return (EINVAL); 1112 1113 /* 1114 * For the console, always force CLOCAL and !HUPCL, so that the port 1115 * is always active. 1116 */ 1117 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) || 1118 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { 1119 SET(cflag, CLOCAL); 1120 CLR(cflag, HUPCL); 1121 } 1122 1123 /* 1124 * Only whack the UART when params change. 1125 * Some callers need to clear tp->t_ospeed 1126 * to make sure initialization gets done. 1127 */ 1128 if (tp->t_ospeed == ospeed && 1129 tp->t_cflag == cflag) 1130 return (0); 1131 1132 /* 1133 * Call MD functions to deal with changed 1134 * clock modes or H/W flow control modes. 1135 * The BRG divisor is set now. (reg 12,13) 1136 */ 1137 error = zs_set_speed(cs, ospeed); 1138 if (error) 1139 return (error); 1140 error = zs_set_modes(cs, cflag); 1141 if (error) 1142 return (error); 1143 1144 /* 1145 * Block interrupts so that state will not 1146 * be altered until we are done setting it up. 1147 * 1148 * Initial values in cs_preg are set before 1149 * our attach routine is called. The master 1150 * interrupt enable is handled by zsc.c 1151 * 1152 */ 1153 s = splzs(); 1154 simple_lock(&cs->cs_lock); 1155 1156 /* 1157 * Recalculate which status ints to enable. 1158 */ 1159 zs_maskintr(zst); 1160 1161 /* Recompute character size bits. */ 1162 tmp3 = cs->cs_preg[3]; 1163 tmp5 = cs->cs_preg[5]; 1164 CLR(tmp3, ZSWR3_RXSIZE); 1165 CLR(tmp5, ZSWR5_TXSIZE); 1166 switch (ISSET(cflag, CSIZE)) { 1167 case CS5: 1168 SET(tmp3, ZSWR3_RX_5); 1169 SET(tmp5, ZSWR5_TX_5); 1170 break; 1171 case CS6: 1172 SET(tmp3, ZSWR3_RX_6); 1173 SET(tmp5, ZSWR5_TX_6); 1174 break; 1175 case CS7: 1176 SET(tmp3, ZSWR3_RX_7); 1177 SET(tmp5, ZSWR5_TX_7); 1178 break; 1179 case CS8: 1180 SET(tmp3, ZSWR3_RX_8); 1181 SET(tmp5, ZSWR5_TX_8); 1182 break; 1183 } 1184 cs->cs_preg[3] = tmp3; 1185 cs->cs_preg[5] = tmp5; 1186 1187 /* 1188 * Recompute the stop bits and parity bits. Note that 1189 * zs_set_speed() may have set clock selection bits etc. 1190 * in wr4, so those must preserved. 1191 */ 1192 tmp4 = cs->cs_preg[4]; 1193 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK); 1194 if (ISSET(cflag, CSTOPB)) 1195 SET(tmp4, ZSWR4_TWOSB); 1196 else 1197 SET(tmp4, ZSWR4_ONESB); 1198 if (!ISSET(cflag, PARODD)) 1199 SET(tmp4, ZSWR4_EVENP); 1200 if (ISSET(cflag, PARENB)) 1201 SET(tmp4, ZSWR4_PARENB); 1202 cs->cs_preg[4] = tmp4; 1203 1204 /* And copy to tty. */ 1205 tp->t_ispeed = 0; 1206 tp->t_ospeed = ospeed; 1207 tp->t_cflag = cflag; 1208 1209 /* 1210 * If nothing is being transmitted, set up new current values, 1211 * else mark them as pending. 1212 */ 1213 if (!cs->cs_heldchange) { 1214 if (zst->zst_tx_busy) { 1215 zst->zst_heldtbc = zst->zst_tbc; 1216 zst->zst_tbc = 0; 1217 cs->cs_heldchange = 1; 1218 } else 1219 zs_loadchannelregs(cs); 1220 } 1221 1222 /* 1223 * If hardware flow control is disabled, turn off the buffer water 1224 * marks and unblock any soft flow control state. Otherwise, enable 1225 * the water marks. 1226 */ 1227 if (!ISSET(cflag, CHWFLOW)) { 1228 zst->zst_r_hiwat = 0; 1229 zst->zst_r_lowat = 0; 1230 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { 1231 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED); 1232 zst->zst_rx_ready = 1; 1233 cs->cs_softreq = 1; 1234 } 1235 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) { 1236 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED); 1237 zs_hwiflow(zst); 1238 } 1239 } else { 1240 zst->zst_r_hiwat = zstty_rbuf_hiwat; 1241 zst->zst_r_lowat = zstty_rbuf_lowat; 1242 } 1243 1244 /* 1245 * Force a recheck of the hardware carrier and flow control status, 1246 * since we may have changed which bits we're looking at. 1247 */ 1248 zstty_stint(cs, 1); 1249 1250 simple_unlock(&cs->cs_lock); 1251 splx(s); 1252 1253 /* 1254 * If hardware flow control is disabled, unblock any hard flow control 1255 * state. 1256 */ 1257 if (!ISSET(cflag, CHWFLOW)) { 1258 if (zst->zst_tx_stopped) { 1259 zst->zst_tx_stopped = 0; 1260 zsstart(tp); 1261 } 1262 } 1263 1264 zstty_softint(cs); 1265 1266 return (0); 1267 } 1268 1269 /* 1270 * Compute interrupt enable bits and set in the pending bits. Called both 1271 * in zsparam() and when PPS (pulse per second timing) state changes. 1272 * Must be called at splzs(). 1273 */ 1274 static void 1275 zs_maskintr(zst) 1276 struct zstty_softc *zst; 1277 { 1278 struct zs_chanstate *cs = zst->zst_cs; 1279 int tmp15; 1280 1281 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd; 1282 if (zst->zst_ppsmask != 0) 1283 cs->cs_rr0_mask |= cs->cs_rr0_pps; 1284 tmp15 = cs->cs_preg[15]; 1285 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD)) 1286 SET(tmp15, ZSWR15_DCD_IE); 1287 else 1288 CLR(tmp15, ZSWR15_DCD_IE); 1289 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS)) 1290 SET(tmp15, ZSWR15_CTS_IE); 1291 else 1292 CLR(tmp15, ZSWR15_CTS_IE); 1293 cs->cs_preg[15] = tmp15; 1294 } 1295 1296 1297 /* 1298 * Raise or lower modem control (DTR/RTS) signals. If a character is 1299 * in transmission, the change is deferred. 1300 * Called at splzs() and with the channel lock held. 1301 */ 1302 static void 1303 zs_modem(zst, onoff) 1304 struct zstty_softc *zst; 1305 int onoff; 1306 { 1307 struct zs_chanstate *cs = zst->zst_cs, *ccs; 1308 1309 if (cs->cs_wr5_dtr == 0) 1310 return; 1311 1312 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs); 1313 1314 if (onoff) 1315 SET(ccs->cs_preg[5], cs->cs_wr5_dtr); 1316 else 1317 CLR(ccs->cs_preg[5], cs->cs_wr5_dtr); 1318 1319 if (!cs->cs_heldchange) { 1320 if (zst->zst_tx_busy) { 1321 zst->zst_heldtbc = zst->zst_tbc; 1322 zst->zst_tbc = 0; 1323 cs->cs_heldchange = 1; 1324 } else 1325 zs_loadchannelregs(cs); 1326 } 1327 } 1328 1329 /* 1330 * Set modem bits. 1331 * Called at splzs() and with the channel lock held. 1332 */ 1333 static void 1334 tiocm_to_zs(zst, how, ttybits) 1335 struct zstty_softc *zst; 1336 u_long how; 1337 int ttybits; 1338 { 1339 struct zs_chanstate *cs = zst->zst_cs, *ccs; 1340 u_char zsbits; 1341 1342 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs); 1343 1344 zsbits = 0; 1345 if (ISSET(ttybits, TIOCM_DTR)) 1346 SET(zsbits, ZSWR5_DTR); 1347 if (ISSET(ttybits, TIOCM_RTS)) 1348 SET(zsbits, ZSWR5_RTS); 1349 1350 switch (how) { 1351 case TIOCMBIC: 1352 CLR(ccs->cs_preg[5], zsbits); 1353 break; 1354 1355 case TIOCMBIS: 1356 SET(ccs->cs_preg[5], zsbits); 1357 break; 1358 1359 case TIOCMSET: 1360 CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR); 1361 SET(ccs->cs_preg[5], zsbits); 1362 break; 1363 } 1364 1365 if (!cs->cs_heldchange) { 1366 if (zst->zst_tx_busy) { 1367 zst->zst_heldtbc = zst->zst_tbc; 1368 zst->zst_tbc = 0; 1369 cs->cs_heldchange = 1; 1370 } else 1371 zs_loadchannelregs(cs); 1372 } 1373 } 1374 1375 /* 1376 * Get modem bits. 1377 * Called at splzs() and with the channel lock held. 1378 */ 1379 static int 1380 zs_to_tiocm(zst) 1381 struct zstty_softc *zst; 1382 { 1383 struct zs_chanstate *cs = zst->zst_cs, *ccs; 1384 u_char zsbits; 1385 int ttybits = 0; 1386 1387 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs); 1388 1389 zsbits = ccs->cs_preg[5]; 1390 if (ISSET(zsbits, ZSWR5_DTR)) 1391 SET(ttybits, TIOCM_DTR); 1392 if (ISSET(zsbits, ZSWR5_RTS)) 1393 SET(ttybits, TIOCM_RTS); 1394 1395 zsbits = cs->cs_rr0; 1396 if (ISSET(zsbits, ZSRR0_DCD)) 1397 SET(ttybits, TIOCM_CD); 1398 if (ISSET(zsbits, ZSRR0_CTS)) 1399 SET(ttybits, TIOCM_CTS); 1400 1401 return (ttybits); 1402 } 1403 1404 /* 1405 * Try to block or unblock input using hardware flow-control. 1406 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and 1407 * if this function returns non-zero, the TS_TBLOCK flag will 1408 * be set or cleared according to the "block" arg passed. 1409 */ 1410 int 1411 zshwiflow(tp, block) 1412 struct tty *tp; 1413 int block; 1414 { 1415 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev)); 1416 struct zs_chanstate *cs = zst->zst_cs; 1417 int s; 1418 1419 if (cs->cs_wr5_rts == 0) 1420 return (0); 1421 1422 s = splzs(); 1423 simple_lock(&cs->cs_lock); 1424 if (block) { 1425 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { 1426 SET(zst->zst_rx_flags, RX_TTY_BLOCKED); 1427 zs_hwiflow(zst); 1428 } 1429 } else { 1430 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { 1431 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED); 1432 zst->zst_rx_ready = 1; 1433 cs->cs_softreq = 1; 1434 } 1435 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { 1436 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED); 1437 zs_hwiflow(zst); 1438 } 1439 } 1440 simple_unlock(&cs->cs_lock); 1441 splx(s); 1442 return (1); 1443 } 1444 1445 /* 1446 * Internal version of zshwiflow 1447 * Called at splzs() and with the channel lock held. 1448 */ 1449 static void 1450 zs_hwiflow(zst) 1451 struct zstty_softc *zst; 1452 { 1453 struct zs_chanstate *cs = zst->zst_cs, *ccs; 1454 1455 if (cs->cs_wr5_rts == 0) 1456 return; 1457 1458 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs); 1459 1460 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) { 1461 CLR(ccs->cs_preg[5], cs->cs_wr5_rts); 1462 CLR(ccs->cs_creg[5], cs->cs_wr5_rts); 1463 } else { 1464 SET(ccs->cs_preg[5], cs->cs_wr5_rts); 1465 SET(ccs->cs_creg[5], cs->cs_wr5_rts); 1466 } 1467 zs_write_reg(ccs, 5, ccs->cs_creg[5]); 1468 } 1469 1470 1471 /**************************************************************** 1472 * Interface to the lower layer (zscc) 1473 ****************************************************************/ 1474 1475 #define integrate static inline 1476 integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *)); 1477 integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *)); 1478 integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *)); 1479 static void zstty_diag __P((void *)); 1480 1481 /* 1482 * Receiver Ready interrupt. 1483 * Called at splzs() and with the channel lock held. 1484 */ 1485 static void 1486 zstty_rxint(cs) 1487 struct zs_chanstate *cs; 1488 { 1489 struct zstty_softc *zst = cs->cs_private; 1490 u_char *put, *end; 1491 u_int cc; 1492 u_char rr0, rr1, c; 1493 1494 end = zst->zst_ebuf; 1495 put = zst->zst_rbput; 1496 cc = zst->zst_rbavail; 1497 1498 while (cc > 0) { 1499 /* 1500 * First read the status, because reading the received char 1501 * destroys the status of this char. 1502 */ 1503 rr1 = zs_read_reg(cs, 1); 1504 c = zs_read_data(cs); 1505 1506 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) { 1507 /* Clear the receive error. */ 1508 zs_write_csr(cs, ZSWR0_RESET_ERRORS); 1509 } 1510 1511 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state); 1512 put[0] = c; 1513 put[1] = rr1; 1514 put += 2; 1515 if (put >= end) 1516 put = zst->zst_rbuf; 1517 cc--; 1518 1519 rr0 = zs_read_csr(cs); 1520 if (!ISSET(rr0, ZSRR0_RX_READY)) 1521 break; 1522 } 1523 1524 /* 1525 * Current string of incoming characters ended because 1526 * no more data was available or we ran out of space. 1527 * Schedule a receive event if any data was received. 1528 * If we're out of space, turn off receive interrupts. 1529 */ 1530 zst->zst_rbput = put; 1531 zst->zst_rbavail = cc; 1532 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { 1533 zst->zst_rx_ready = 1; 1534 cs->cs_softreq = 1; 1535 } 1536 1537 /* 1538 * See if we are in danger of overflowing a buffer. If 1539 * so, use hardware flow control to ease the pressure. 1540 */ 1541 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) && 1542 cc < zst->zst_r_hiwat) { 1543 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED); 1544 zs_hwiflow(zst); 1545 } 1546 1547 /* 1548 * If we're out of space, disable receive interrupts 1549 * until the queue has drained a bit. 1550 */ 1551 if (!cc) { 1552 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED); 1553 CLR(cs->cs_preg[1], ZSWR1_RIE); 1554 cs->cs_creg[1] = cs->cs_preg[1]; 1555 zs_write_reg(cs, 1, cs->cs_creg[1]); 1556 } 1557 1558 #if 0 1559 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail); 1560 #endif 1561 } 1562 1563 /* 1564 * Transmitter Ready interrupt. 1565 * Called at splzs() and with the channel lock held. 1566 */ 1567 static void 1568 zstty_txint(cs) 1569 struct zs_chanstate *cs; 1570 { 1571 struct zstty_softc *zst = cs->cs_private; 1572 1573 /* 1574 * If we've delayed a parameter change, do it now, and restart 1575 * output. 1576 */ 1577 if (cs->cs_heldchange) { 1578 zs_loadchannelregs(cs); 1579 cs->cs_heldchange = 0; 1580 zst->zst_tbc = zst->zst_heldtbc; 1581 zst->zst_heldtbc = 0; 1582 } 1583 1584 /* Output the next character in the buffer, if any. */ 1585 if (zst->zst_tbc > 0) { 1586 zs_write_data(cs, *zst->zst_tba); 1587 zst->zst_tbc--; 1588 zst->zst_tba++; 1589 } else { 1590 /* Disable transmit completion interrupts if necessary. */ 1591 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) { 1592 CLR(cs->cs_preg[1], ZSWR1_TIE); 1593 cs->cs_creg[1] = cs->cs_preg[1]; 1594 zs_write_reg(cs, 1, cs->cs_creg[1]); 1595 } 1596 if (zst->zst_tx_busy) { 1597 zst->zst_tx_busy = 0; 1598 zst->zst_tx_done = 1; 1599 cs->cs_softreq = 1; 1600 } 1601 } 1602 } 1603 1604 /* 1605 * Status Change interrupt. 1606 * Called at splzs() and with the channel lock held. 1607 */ 1608 static void 1609 zstty_stint(cs, force) 1610 struct zs_chanstate *cs; 1611 int force; 1612 { 1613 struct zstty_softc *zst = cs->cs_private; 1614 u_char rr0, delta; 1615 1616 rr0 = zs_read_csr(cs); 1617 zs_write_csr(cs, ZSWR0_RESET_STATUS); 1618 1619 /* 1620 * Check here for console break, so that we can abort 1621 * even when interrupts are locking up the machine. 1622 */ 1623 if (ISSET(rr0, ZSRR0_BREAK)) 1624 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state); 1625 1626 if (!force) 1627 delta = rr0 ^ cs->cs_rr0; 1628 else 1629 delta = cs->cs_rr0_mask; 1630 cs->cs_rr0 = rr0; 1631 1632 if (ISSET(delta, cs->cs_rr0_mask)) { 1633 SET(cs->cs_rr0_delta, delta); 1634 1635 /* 1636 * Pulse-per-second clock signal on edge of DCD? 1637 */ 1638 if (ISSET(delta, zst->zst_ppsmask)) { 1639 struct timeval tv; 1640 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) { 1641 /* XXX nanotime() */ 1642 microtime(&tv); 1643 TIMEVAL_TO_TIMESPEC(&tv, 1644 &zst->ppsinfo.assert_timestamp); 1645 if (zst->ppsparam.mode & PPS_OFFSETASSERT) { 1646 timespecadd(&zst->ppsinfo.assert_timestamp, 1647 &zst->ppsparam.assert_offset, 1648 &zst->ppsinfo.assert_timestamp); 1649 } 1650 1651 #ifdef PPS_SYNC 1652 if (pps_kc_hardpps_source == zst && 1653 pps_kc_hardpps_mode & PPS_CAPTUREASSERT) { 1654 hardpps(&tv, tv.tv_usec); 1655 } 1656 #endif 1657 zst->ppsinfo.assert_sequence++; 1658 zst->ppsinfo.current_mode = zst->ppsparam.mode; 1659 } else if (ISSET(rr0, zst->zst_ppsmask) == 1660 zst->zst_ppsclear) { 1661 /* XXX nanotime() */ 1662 microtime(&tv); 1663 TIMEVAL_TO_TIMESPEC(&tv, 1664 &zst->ppsinfo.clear_timestamp); 1665 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) { 1666 timespecadd(&zst->ppsinfo.clear_timestamp, 1667 &zst->ppsparam.clear_offset, 1668 &zst->ppsinfo.clear_timestamp); 1669 } 1670 1671 #ifdef PPS_SYNC 1672 if (pps_kc_hardpps_source == zst && 1673 pps_kc_hardpps_mode & PPS_CAPTURECLEAR) { 1674 hardpps(&tv, tv.tv_usec); 1675 } 1676 #endif 1677 zst->ppsinfo.clear_sequence++; 1678 zst->ppsinfo.current_mode = zst->ppsparam.mode; 1679 } 1680 } 1681 1682 /* 1683 * Stop output immediately if we lose the output 1684 * flow control signal or carrier detect. 1685 */ 1686 if (ISSET(~rr0, cs->cs_rr0_mask)) { 1687 zst->zst_tbc = 0; 1688 zst->zst_heldtbc = 0; 1689 } 1690 1691 zst->zst_st_check = 1; 1692 cs->cs_softreq = 1; 1693 } 1694 } 1695 1696 void 1697 zstty_diag(arg) 1698 void *arg; 1699 { 1700 struct zstty_softc *zst = arg; 1701 int overflows, floods; 1702 int s; 1703 1704 s = splzs(); 1705 overflows = zst->zst_overflows; 1706 zst->zst_overflows = 0; 1707 floods = zst->zst_floods; 1708 zst->zst_floods = 0; 1709 zst->zst_errors = 0; 1710 splx(s); 1711 1712 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", 1713 zst->zst_dev.dv_xname, 1714 overflows, overflows == 1 ? "" : "s", 1715 floods, floods == 1 ? "" : "s"); 1716 } 1717 1718 integrate void 1719 zstty_rxsoft(zst, tp) 1720 struct zstty_softc *zst; 1721 struct tty *tp; 1722 { 1723 struct zs_chanstate *cs = zst->zst_cs; 1724 int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint; 1725 u_char *get, *end; 1726 u_int cc, scc; 1727 u_char rr1; 1728 int code; 1729 int s; 1730 1731 end = zst->zst_ebuf; 1732 get = zst->zst_rbget; 1733 scc = cc = zstty_rbuf_size - zst->zst_rbavail; 1734 1735 if (cc == zstty_rbuf_size) { 1736 zst->zst_floods++; 1737 if (zst->zst_errors++ == 0) 1738 callout_reset(&zst->zst_diag_ch, 60 * hz, 1739 zstty_diag, zst); 1740 } 1741 1742 /* If not yet open, drop the entire buffer content here */ 1743 if (!ISSET(tp->t_state, TS_ISOPEN)) { 1744 get += cc << 1; 1745 if (get >= end) 1746 get -= zstty_rbuf_size << 1; 1747 cc = 0; 1748 } 1749 while (cc) { 1750 code = get[0]; 1751 rr1 = get[1]; 1752 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) { 1753 if (ISSET(rr1, ZSRR1_DO)) { 1754 zst->zst_overflows++; 1755 if (zst->zst_errors++ == 0) 1756 callout_reset(&zst->zst_diag_ch, 1757 60 * hz, zstty_diag, zst); 1758 } 1759 if (ISSET(rr1, ZSRR1_FE)) 1760 SET(code, TTY_FE); 1761 if (ISSET(rr1, ZSRR1_PE)) 1762 SET(code, TTY_PE); 1763 } 1764 if ((*rint)(code, tp) == -1) { 1765 /* 1766 * The line discipline's buffer is out of space. 1767 */ 1768 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { 1769 /* 1770 * We're either not using flow control, or the 1771 * line discipline didn't tell us to block for 1772 * some reason. Either way, we have no way to 1773 * know when there's more space available, so 1774 * just drop the rest of the data. 1775 */ 1776 get += cc << 1; 1777 if (get >= end) 1778 get -= zstty_rbuf_size << 1; 1779 cc = 0; 1780 } else { 1781 /* 1782 * Don't schedule any more receive processing 1783 * until the line discipline tells us there's 1784 * space available (through comhwiflow()). 1785 * Leave the rest of the data in the input 1786 * buffer. 1787 */ 1788 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED); 1789 } 1790 break; 1791 } 1792 get += 2; 1793 if (get >= end) 1794 get = zst->zst_rbuf; 1795 cc--; 1796 } 1797 1798 if (cc != scc) { 1799 zst->zst_rbget = get; 1800 s = splzs(); 1801 simple_lock(&cs->cs_lock); 1802 cc = zst->zst_rbavail += scc - cc; 1803 /* Buffers should be ok again, release possible block. */ 1804 if (cc >= zst->zst_r_lowat) { 1805 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) { 1806 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED); 1807 SET(cs->cs_preg[1], ZSWR1_RIE); 1808 cs->cs_creg[1] = cs->cs_preg[1]; 1809 zs_write_reg(cs, 1, cs->cs_creg[1]); 1810 } 1811 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) { 1812 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED); 1813 zs_hwiflow(zst); 1814 } 1815 } 1816 simple_unlock(&cs->cs_lock); 1817 splx(s); 1818 } 1819 1820 #if 0 1821 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail); 1822 #endif 1823 } 1824 1825 integrate void 1826 zstty_txsoft(zst, tp) 1827 struct zstty_softc *zst; 1828 struct tty *tp; 1829 { 1830 struct zs_chanstate *cs = zst->zst_cs; 1831 int s; 1832 1833 s = splzs(); 1834 simple_lock(&cs->cs_lock); 1835 CLR(tp->t_state, TS_BUSY); 1836 if (ISSET(tp->t_state, TS_FLUSH)) 1837 CLR(tp->t_state, TS_FLUSH); 1838 else 1839 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf)); 1840 simple_unlock(&cs->cs_lock); 1841 splx(s); 1842 (*tp->t_linesw->l_start)(tp); 1843 } 1844 1845 integrate void 1846 zstty_stsoft(zst, tp) 1847 struct zstty_softc *zst; 1848 struct tty *tp; 1849 { 1850 struct zs_chanstate *cs = zst->zst_cs; 1851 u_char rr0, delta; 1852 int s; 1853 1854 s = splzs(); 1855 simple_lock(&cs->cs_lock); 1856 rr0 = cs->cs_rr0; 1857 delta = cs->cs_rr0_delta; 1858 cs->cs_rr0_delta = 0; 1859 simple_unlock(&cs->cs_lock); 1860 splx(s); 1861 1862 if (ISSET(delta, cs->cs_rr0_dcd)) { 1863 /* 1864 * Inform the tty layer that carrier detect changed. 1865 */ 1866 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD)); 1867 } 1868 1869 if (ISSET(delta, cs->cs_rr0_cts)) { 1870 /* Block or unblock output according to flow control. */ 1871 if (ISSET(rr0, cs->cs_rr0_cts)) { 1872 zst->zst_tx_stopped = 0; 1873 (*tp->t_linesw->l_start)(tp); 1874 } else { 1875 zst->zst_tx_stopped = 1; 1876 } 1877 } 1878 } 1879 1880 /* 1881 * Software interrupt. Called at zssoft 1882 * 1883 * The main job to be done here is to empty the input ring 1884 * by passing its contents up to the tty layer. The ring is 1885 * always emptied during this operation, therefore the ring 1886 * must not be larger than the space after "high water" in 1887 * the tty layer, or the tty layer might drop our input. 1888 * 1889 * Note: an "input blockage" condition is assumed to exist if 1890 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set. 1891 */ 1892 static void 1893 zstty_softint(cs) 1894 struct zs_chanstate *cs; 1895 { 1896 struct zstty_softc *zst = cs->cs_private; 1897 struct tty *tp = zst->zst_tty; 1898 int s; 1899 1900 s = spltty(); 1901 1902 if (zst->zst_rx_ready) { 1903 zst->zst_rx_ready = 0; 1904 zstty_rxsoft(zst, tp); 1905 } 1906 1907 if (zst->zst_st_check) { 1908 zst->zst_st_check = 0; 1909 zstty_stsoft(zst, tp); 1910 } 1911 1912 if (zst->zst_tx_done) { 1913 zst->zst_tx_done = 0; 1914 zstty_txsoft(zst, tp); 1915 } 1916 1917 splx(s); 1918 } 1919 1920 struct zsops zsops_tty = { 1921 zstty_rxint, /* receive char available */ 1922 zstty_stint, /* external/status */ 1923 zstty_txint, /* xmit buffer empty */ 1924 zstty_softint, /* process software interrupt */ 1925 }; 1926