1 /* $NetBSD: z8530tty.c,v 1.117 2007/11/19 18:51:48 ad Exp $ */ 2 3 /*- 4 * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999 5 * Charles M. Hannum. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Charles M. Hannum. 18 * 4. The name of the author may not be used to endorse or promote products 19 * derived from this software without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 /* 34 * Copyright (c) 1992, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * This software was developed by the Computer Systems Engineering group 38 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 39 * contributed to Berkeley. 40 * 41 * All advertising materials mentioning features or use of this software 42 * must display the following acknowledgement: 43 * This product includes software developed by the University of 44 * California, Lawrence Berkeley Laboratory. 45 * 46 * Redistribution and use in source and binary forms, with or without 47 * modification, are permitted provided that the following conditions 48 * are met: 49 * 1. Redistributions of source code must retain the above copyright 50 * notice, this list of conditions and the following disclaimer. 51 * 2. Redistributions in binary form must reproduce the above copyright 52 * notice, this list of conditions and the following disclaimer in the 53 * documentation and/or other materials provided with the distribution. 54 * 3. Neither the name of the University nor the names of its contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 68 * SUCH DAMAGE. 69 * 70 * @(#)zs.c 8.1 (Berkeley) 7/19/93 71 */ 72 73 /* 74 * Copyright (c) 1994 Gordon W. Ross 75 * 76 * This software was developed by the Computer Systems Engineering group 77 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 78 * contributed to Berkeley. 79 * 80 * All advertising materials mentioning features or use of this software 81 * must display the following acknowledgement: 82 * This product includes software developed by the University of 83 * California, Lawrence Berkeley Laboratory. 84 * 85 * Redistribution and use in source and binary forms, with or without 86 * modification, are permitted provided that the following conditions 87 * are met: 88 * 1. Redistributions of source code must retain the above copyright 89 * notice, this list of conditions and the following disclaimer. 90 * 2. Redistributions in binary form must reproduce the above copyright 91 * notice, this list of conditions and the following disclaimer in the 92 * documentation and/or other materials provided with the distribution. 93 * 3. All advertising materials mentioning features or use of this software 94 * must display the following acknowledgement: 95 * This product includes software developed by the University of 96 * California, Berkeley and its contributors. 97 * 4. Neither the name of the University nor the names of its contributors 98 * may be used to endorse or promote products derived from this software 99 * without specific prior written permission. 100 * 101 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 102 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 103 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 104 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 105 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 106 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 107 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 108 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 109 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 110 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 111 * SUCH DAMAGE. 112 * 113 * @(#)zs.c 8.1 (Berkeley) 7/19/93 114 */ 115 116 /* 117 * Zilog Z8530 Dual UART driver (tty interface) 118 * 119 * This is the "slave" driver that will be attached to 120 * the "zsc" driver for plain "tty" async. serial lines. 121 * 122 * Credits, history: 123 * 124 * The original version of this code was the sparc/dev/zs.c driver 125 * as distributed with the Berkeley 4.4 Lite release. Since then, 126 * Gordon Ross reorganized the code into the current parent/child 127 * driver scheme, separating the Sun keyboard and mouse support 128 * into independent child drivers. 129 * 130 * RTS/CTS flow-control support was a collaboration of: 131 * Gordon Ross <gwr@NetBSD.org>, 132 * Bill Studenmund <wrstuden@loki.stanford.edu> 133 * Ian Dall <Ian.Dall@dsto.defence.gov.au> 134 * 135 * The driver was massively overhauled in November 1997 by Charles Hannum, 136 * fixing *many* bugs, and substantially improving performance. 137 */ 138 139 #include <sys/cdefs.h> 140 __KERNEL_RCSID(0, "$NetBSD: z8530tty.c,v 1.117 2007/11/19 18:51:48 ad Exp $"); 141 142 #include "opt_kgdb.h" 143 #include "opt_ntp.h" 144 145 #include <sys/param.h> 146 #include <sys/systm.h> 147 #include <sys/proc.h> 148 #include <sys/device.h> 149 #include <sys/conf.h> 150 #include <sys/file.h> 151 #include <sys/ioctl.h> 152 #include <sys/malloc.h> 153 #include <sys/timepps.h> 154 #include <sys/tty.h> 155 #include <sys/time.h> 156 #include <sys/kernel.h> 157 #include <sys/syslog.h> 158 #include <sys/kauth.h> 159 160 #include <dev/ic/z8530reg.h> 161 #include <machine/z8530var.h> 162 163 #include <dev/cons.h> 164 165 #include "locators.h" 166 167 /* 168 * How many input characters we can buffer. 169 * The port-specific var.h may override this. 170 * Note: must be a power of two! 171 */ 172 #ifndef ZSTTY_RING_SIZE 173 #define ZSTTY_RING_SIZE 2048 174 #endif 175 176 static struct cnm_state zstty_cnm_state; 177 /* 178 * Make this an option variable one can patch. 179 * But be warned: this must be a power of 2! 180 */ 181 u_int zstty_rbuf_size = ZSTTY_RING_SIZE; 182 183 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */ 184 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4; 185 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4; 186 187 #ifndef __HAVE_TIMECOUNTER 188 static int zsppscap = 189 PPS_TSFMT_TSPEC | 190 PPS_CAPTUREASSERT | 191 PPS_CAPTURECLEAR | 192 PPS_OFFSETASSERT | PPS_OFFSETCLEAR; 193 #endif /* __HAVE_TIMECOUNTER */ 194 195 struct zstty_softc { 196 struct device zst_dev; /* required first: base device */ 197 struct tty *zst_tty; 198 struct zs_chanstate *zst_cs; 199 200 struct callout zst_diag_ch; 201 202 u_int zst_overflows, 203 zst_floods, 204 zst_errors; 205 206 int zst_hwflags, /* see z8530var.h */ 207 zst_swflags; /* TIOCFLAG_SOFTCAR, ... <ttycom.h> */ 208 209 u_int zst_r_hiwat, 210 zst_r_lowat; 211 u_char *volatile zst_rbget, 212 *volatile zst_rbput; 213 volatile u_int zst_rbavail; 214 u_char *zst_rbuf, 215 *zst_ebuf; 216 217 /* 218 * The transmit byte count and address are used for pseudo-DMA 219 * output in the hardware interrupt code. PDMA can be suspended 220 * to get pending changes done; heldtbc is used for this. It can 221 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state. 222 */ 223 u_char *zst_tba; /* transmit buffer address */ 224 u_int zst_tbc, /* transmit byte count */ 225 zst_heldtbc; /* held tbc while xmission stopped */ 226 227 /* Flags to communicate with zstty_softint() */ 228 volatile u_char zst_rx_flags, /* receiver blocked */ 229 #define RX_TTY_BLOCKED 0x01 230 #define RX_TTY_OVERFLOWED 0x02 231 #define RX_IBUF_BLOCKED 0x04 232 #define RX_IBUF_OVERFLOWED 0x08 233 #define RX_ANY_BLOCK 0x0f 234 zst_tx_busy, /* working on an output chunk */ 235 zst_tx_done, /* done with one output chunk */ 236 zst_tx_stopped, /* H/W level stop (lost CTS) */ 237 zst_st_check, /* got a status interrupt */ 238 zst_rx_ready; 239 240 /* PPS signal on DCD, with or without inkernel clock disciplining */ 241 u_char zst_ppsmask; /* pps signal mask */ 242 #ifdef __HAVE_TIMECOUNTER 243 struct pps_state zst_pps_state; 244 #else /* !__HAVE_TIMECOUNTER */ 245 u_char zst_ppsassert; /* pps leading edge */ 246 u_char zst_ppsclear; /* pps trailing edge */ 247 pps_info_t ppsinfo; 248 pps_params_t ppsparam; 249 #endif /* !__HAVE_TIMECOUNTER */ 250 }; 251 252 /* Definition of the driver for autoconfig. */ 253 static int zstty_match(struct device *, struct cfdata *, void *); 254 static void zstty_attach(struct device *, struct device *, void *); 255 256 CFATTACH_DECL(zstty, sizeof(struct zstty_softc), 257 zstty_match, zstty_attach, NULL, NULL); 258 259 extern struct cfdriver zstty_cd; 260 261 dev_type_open(zsopen); 262 dev_type_close(zsclose); 263 dev_type_read(zsread); 264 dev_type_write(zswrite); 265 dev_type_ioctl(zsioctl); 266 dev_type_stop(zsstop); 267 dev_type_tty(zstty); 268 dev_type_poll(zspoll); 269 270 const struct cdevsw zstty_cdevsw = { 271 zsopen, zsclose, zsread, zswrite, zsioctl, 272 zsstop, zstty, zspoll, nommap, ttykqfilter, D_TTY 273 }; 274 275 struct zsops zsops_tty; 276 277 static void zs_shutdown(struct zstty_softc *); 278 static void zsstart(struct tty *); 279 static int zsparam(struct tty *, struct termios *); 280 static void zs_modem(struct zstty_softc *, int); 281 static void tiocm_to_zs(struct zstty_softc *, u_long, int); 282 static int zs_to_tiocm(struct zstty_softc *); 283 static int zshwiflow(struct tty *, int); 284 static void zs_hwiflow(struct zstty_softc *); 285 static void zs_maskintr(struct zstty_softc *); 286 287 /* Low-level routines. */ 288 static void zstty_rxint (struct zs_chanstate *); 289 static void zstty_stint (struct zs_chanstate *, int); 290 static void zstty_txint (struct zs_chanstate *); 291 static void zstty_softint(struct zs_chanstate *); 292 293 #define ZSUNIT(x) (minor(x) & 0x7ffff) 294 #define ZSDIALOUT(x) (minor(x) & 0x80000) 295 296 struct tty *zstty_get_tty_from_dev(struct device *); 297 298 /* 299 * XXX get the (struct tty *) out of a (struct device *) we trust to be a 300 * (struct zstty_softc *) - needed by sparc/dev/zs.c, sparc64/dev/zs.c, 301 * sun3/dev/zs.c and sun2/dev/zs.c will probably need it at some point 302 */ 303 304 struct tty * 305 zstty_get_tty_from_dev(struct device *dev) 306 { 307 struct zstty_softc *sc = (struct zstty_softc *)dev; 308 309 return sc->zst_tty; 310 } 311 312 /* 313 * zstty_match: how is this zs channel configured? 314 */ 315 int 316 zstty_match(parent, cf, aux) 317 struct device *parent; 318 struct cfdata *cf; 319 void *aux; 320 { 321 struct zsc_attach_args *args = aux; 322 323 /* Exact match is better than wildcard. */ 324 if (cf->zsccf_channel == args->channel) 325 return 2; 326 327 /* This driver accepts wildcard. */ 328 if (cf->zsccf_channel == ZSCCF_CHANNEL_DEFAULT) 329 return 1; 330 331 return 0; 332 } 333 334 void 335 zstty_attach(parent, self, aux) 336 struct device *parent, *self; 337 void *aux; 338 339 { 340 struct zsc_softc *zsc = (void *) parent; 341 struct zstty_softc *zst = (void *) self; 342 struct cfdata *cf = device_cfdata(self); 343 struct zsc_attach_args *args = aux; 344 struct zs_chanstate *cs; 345 struct tty *tp; 346 int channel, tty_unit; 347 dev_t dev; 348 const char *i, *o; 349 int dtr_on; 350 int resetbit; 351 352 callout_init(&zst->zst_diag_ch, 0); 353 cn_init_magic(&zstty_cnm_state); 354 355 tty_unit = device_unit(&zst->zst_dev); 356 channel = args->channel; 357 cs = zsc->zsc_cs[channel]; 358 cs->cs_private = zst; 359 cs->cs_ops = &zsops_tty; 360 361 zst->zst_cs = cs; 362 zst->zst_swflags = cf->cf_flags; /* softcar, etc. */ 363 zst->zst_hwflags = args->hwflags; 364 dev = makedev(cdevsw_lookup_major(&zstty_cdevsw), tty_unit); 365 366 if (zst->zst_swflags) 367 printf(" flags 0x%x", zst->zst_swflags); 368 369 /* 370 * Check whether we serve as a console device. 371 * XXX - split console input/output channels aren't 372 * supported yet on /dev/console 373 */ 374 i = o = NULL; 375 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) { 376 i = "input"; 377 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) { 378 args->consdev->cn_dev = dev; 379 cn_tab->cn_pollc = args->consdev->cn_pollc; 380 cn_tab->cn_getc = args->consdev->cn_getc; 381 } 382 cn_tab->cn_dev = dev; 383 /* Set console magic to BREAK */ 384 cn_set_magic("\047\001"); 385 } 386 if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) { 387 o = "output"; 388 if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) { 389 cn_tab->cn_putc = args->consdev->cn_putc; 390 } 391 cn_tab->cn_dev = dev; 392 } 393 if (i != NULL || o != NULL) 394 printf(" (console %s)", i ? (o ? "i/o" : i) : o); 395 396 #ifdef KGDB 397 if (zs_check_kgdb(cs, dev)) { 398 /* 399 * Allow kgdb to "take over" this port. Returns true 400 * if this serial port is in-use by kgdb. 401 */ 402 printf(" (kgdb)\n"); 403 /* 404 * This is the kgdb port (exclusive use) 405 * so skip the normal attach code. 406 */ 407 return; 408 } 409 #endif 410 printf("\n"); 411 412 tp = ttymalloc(); 413 tp->t_dev = dev; 414 tp->t_oproc = zsstart; 415 tp->t_param = zsparam; 416 tp->t_hwiflow = zshwiflow; 417 tty_attach(tp); 418 419 zst->zst_tty = tp; 420 zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_NOWAIT); 421 if (zst->zst_rbuf == NULL) { 422 aprint_error("%s: unable to allocate ring buffer\n", 423 zst->zst_dev.dv_xname); 424 return; 425 } 426 zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1); 427 /* Disable the high water mark. */ 428 zst->zst_r_hiwat = 0; 429 zst->zst_r_lowat = 0; 430 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf; 431 zst->zst_rbavail = zstty_rbuf_size; 432 433 /* if there are no enable/disable functions, assume the device 434 is always enabled */ 435 if (!cs->enable) 436 cs->enabled = 1; 437 438 /* 439 * Hardware init 440 */ 441 dtr_on = 0; 442 resetbit = 0; 443 if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { 444 /* Call zsparam similar to open. */ 445 struct termios t; 446 447 /* Wait a while for previous console output to complete */ 448 DELAY(10000); 449 450 /* Setup the "new" parameters in t. */ 451 t.c_ispeed = 0; 452 t.c_ospeed = cs->cs_defspeed; 453 t.c_cflag = cs->cs_defcflag; 454 455 /* 456 * Turn on receiver and status interrupts. 457 * We defer the actual write of the register to zsparam(), 458 * but we must make sure status interrupts are turned on by 459 * the time zsparam() reads the initial rr0 state. 460 */ 461 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); 462 463 /* Make sure zsparam will see changes. */ 464 tp->t_ospeed = 0; 465 (void) zsparam(tp, &t); 466 467 /* Make sure DTR is on now. */ 468 dtr_on = 1; 469 470 } else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) { 471 /* Not the console; may need reset. */ 472 resetbit = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET; 473 } 474 475 mutex_spin_enter(&cs->cs_lock); 476 if (resetbit) 477 zs_write_reg(cs, 9, resetbit); 478 zs_modem(zst, dtr_on); 479 mutex_spin_exit(&cs->cs_lock); 480 } 481 482 483 /* 484 * Return pointer to our tty. 485 */ 486 struct tty * 487 zstty(dev) 488 dev_t dev; 489 { 490 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 491 492 return (zst->zst_tty); 493 } 494 495 496 void 497 zs_shutdown(zst) 498 struct zstty_softc *zst; 499 { 500 struct zs_chanstate *cs = zst->zst_cs; 501 struct tty *tp = zst->zst_tty; 502 503 mutex_spin_enter(&cs->cs_lock); 504 505 /* If we were asserting flow control, then deassert it. */ 506 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED); 507 zs_hwiflow(zst); 508 509 /* Clear any break condition set with TIOCSBRK. */ 510 zs_break(cs, 0); 511 512 #ifndef __HAVE_TIMECOUNTER 513 /* Turn off PPS capture on last close. */ 514 zst->zst_ppsmask = 0; 515 zst->ppsparam.mode = 0; 516 #endif /* __HAVE_TIMECOUNTER */ 517 518 /* 519 * Hang up if necessary. Wait a bit, so the other side has time to 520 * notice even if we immediately open the port again. 521 */ 522 if (ISSET(tp->t_cflag, HUPCL)) { 523 zs_modem(zst, 0); 524 mutex_spin_exit(&cs->cs_lock); 525 /* 526 * XXX - another process is not prevented from opening 527 * the device during our sleep. 528 */ 529 (void) tsleep(cs, TTIPRI, ttclos, hz); 530 /* Re-check state in case we were opened during our sleep */ 531 if (ISSET(tp->t_state, TS_ISOPEN) || tp->t_wopen != 0) 532 return; 533 534 mutex_spin_enter(&cs->cs_lock); 535 } 536 537 /* Turn off interrupts if not the console. */ 538 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { 539 CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); 540 cs->cs_creg[1] = cs->cs_preg[1]; 541 zs_write_reg(cs, 1, cs->cs_creg[1]); 542 } 543 544 /* Call the power management hook. */ 545 if (cs->disable) { 546 #ifdef DIAGNOSTIC 547 if (!cs->enabled) 548 panic("zs_shutdown: not enabled?"); 549 #endif 550 (*cs->disable)(zst->zst_cs); 551 } 552 553 mutex_spin_exit(&cs->cs_lock); 554 } 555 556 /* 557 * Open a zs serial (tty) port. 558 */ 559 int 560 zsopen(dev, flags, mode, l) 561 dev_t dev; 562 int flags; 563 int mode; 564 struct lwp *l; 565 { 566 struct zstty_softc *zst; 567 struct zs_chanstate *cs; 568 struct tty *tp; 569 int error; 570 571 zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 572 if (zst == NULL) 573 return (ENXIO); 574 575 tp = zst->zst_tty; 576 cs = zst->zst_cs; 577 578 /* If KGDB took the line, then tp==NULL */ 579 if (tp == NULL) 580 return (EBUSY); 581 582 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp)) 583 return (EBUSY); 584 585 mutex_spin_enter(&tty_lock); 586 587 /* 588 * Do the following iff this is a first open. 589 */ 590 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 591 struct termios t; 592 593 tp->t_dev = dev; 594 595 /* Call the power management hook. */ 596 if (cs->enable) { 597 if ((*cs->enable)(cs)) { 598 mutex_spin_exit(&tty_lock); 599 printf("%s: device enable failed\n", 600 zst->zst_dev.dv_xname); 601 return (EIO); 602 } 603 } 604 605 /* 606 * Initialize the termios status to the defaults. Add in the 607 * sticky bits from TIOCSFLAGS. 608 */ 609 t.c_ispeed = 0; 610 t.c_ospeed = cs->cs_defspeed; 611 t.c_cflag = cs->cs_defcflag; 612 if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL)) 613 SET(t.c_cflag, CLOCAL); 614 if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS)) 615 SET(t.c_cflag, CRTSCTS); 616 if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS)) 617 SET(t.c_cflag, CDTRCTS); 618 if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF)) 619 SET(t.c_cflag, MDMBUF); 620 621 mutex_spin_enter(&cs->cs_lock); 622 623 /* 624 * Turn on receiver and status interrupts. 625 * We defer the actual write of the register to zsparam(), 626 * but we must make sure status interrupts are turned on by 627 * the time zsparam() reads the initial rr0 state. 628 */ 629 SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE); 630 631 /* Clear PPS capture state on first open. */ 632 zst->zst_ppsmask = 0; 633 #ifdef __HAVE_TIMECOUNTER 634 memset(&zst->zst_pps_state, 0, sizeof(zst->zst_pps_state)); 635 zst->zst_pps_state.ppscap = PPS_CAPTUREASSERT | PPS_CAPTURECLEAR; 636 pps_init(&zst->zst_pps_state); 637 #else /* !__HAVE_TIMECOUNTER */ 638 zst->ppsparam.mode = 0; 639 #endif /* !__HAVE_TIMECOUNTER */ 640 641 mutex_spin_exit(&cs->cs_lock); 642 643 /* Make sure zsparam will see changes. */ 644 tp->t_ospeed = 0; 645 (void) zsparam(tp, &t); 646 647 /* 648 * Note: zsparam has done: cflag, ispeed, ospeed 649 * so we just need to do: iflag, oflag, lflag, cc 650 * For "raw" mode, just leave all zeros. 651 */ 652 if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) { 653 tp->t_iflag = TTYDEF_IFLAG; 654 tp->t_oflag = TTYDEF_OFLAG; 655 tp->t_lflag = TTYDEF_LFLAG; 656 } else { 657 tp->t_iflag = 0; 658 tp->t_oflag = 0; 659 tp->t_lflag = 0; 660 } 661 ttychars(tp); 662 ttsetwater(tp); 663 664 mutex_spin_enter(&cs->cs_lock); 665 666 /* 667 * Turn on DTR. We must always do this, even if carrier is not 668 * present, because otherwise we'd have to use TIOCSDTR 669 * immediately after setting CLOCAL, which applications do not 670 * expect. We always assert DTR while the device is open 671 * unless explicitly requested to deassert it. 672 */ 673 zs_modem(zst, 1); 674 675 /* Clear the input ring, and unblock. */ 676 zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf; 677 zst->zst_rbavail = zstty_rbuf_size; 678 zs_iflush(cs); 679 CLR(zst->zst_rx_flags, RX_ANY_BLOCK); 680 zs_hwiflow(zst); 681 682 mutex_spin_exit(&cs->cs_lock); 683 } 684 685 mutex_spin_exit(&tty_lock); 686 687 error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK)); 688 if (error) 689 goto bad; 690 691 error = (*tp->t_linesw->l_open)(dev, tp); 692 if (error) 693 goto bad; 694 695 return (0); 696 697 bad: 698 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 699 /* 700 * We failed to open the device, and nobody else had it opened. 701 * Clean up the state as appropriate. 702 */ 703 zs_shutdown(zst); 704 } 705 706 return (error); 707 } 708 709 /* 710 * Close a zs serial port. 711 */ 712 int 713 zsclose(dev, flags, mode, l) 714 dev_t dev; 715 int flags; 716 int mode; 717 struct lwp *l; 718 { 719 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 720 struct tty *tp = zst->zst_tty; 721 722 /* XXX This is for cons.c. */ 723 if (!ISSET(tp->t_state, TS_ISOPEN)) 724 return 0; 725 726 (*tp->t_linesw->l_close)(tp, flags); 727 ttyclose(tp); 728 729 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) { 730 /* 731 * Although we got a last close, the device may still be in 732 * use; e.g. if this was the dialout node, and there are still 733 * processes waiting for carrier on the non-dialout node. 734 */ 735 zs_shutdown(zst); 736 } 737 738 return (0); 739 } 740 741 /* 742 * Read/write zs serial port. 743 */ 744 int 745 zsread(dev, uio, flags) 746 dev_t dev; 747 struct uio *uio; 748 int flags; 749 { 750 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 751 struct tty *tp = zst->zst_tty; 752 753 return ((*tp->t_linesw->l_read)(tp, uio, flags)); 754 } 755 756 int 757 zswrite(dev, uio, flags) 758 dev_t dev; 759 struct uio *uio; 760 int flags; 761 { 762 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 763 struct tty *tp = zst->zst_tty; 764 765 return ((*tp->t_linesw->l_write)(tp, uio, flags)); 766 } 767 768 int 769 zspoll(dev, events, l) 770 dev_t dev; 771 int events; 772 struct lwp *l; 773 { 774 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 775 struct tty *tp = zst->zst_tty; 776 777 return ((*tp->t_linesw->l_poll)(tp, events, l)); 778 } 779 780 int 781 zsioctl(dev, cmd, data, flag, l) 782 dev_t dev; 783 u_long cmd; 784 void *data; 785 int flag; 786 struct lwp *l; 787 { 788 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev)); 789 struct zs_chanstate *cs = zst->zst_cs; 790 struct tty *tp = zst->zst_tty; 791 int error; 792 793 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l); 794 if (error != EPASSTHROUGH) 795 return (error); 796 797 error = ttioctl(tp, cmd, data, flag, l); 798 if (error != EPASSTHROUGH) 799 return (error); 800 801 #ifdef ZS_MD_IOCTL 802 error = ZS_MD_IOCTL(cs, cmd, data); 803 if (error != EPASSTHROUGH) 804 return (error); 805 #endif /* ZS_MD_IOCTL */ 806 807 error = 0; 808 809 mutex_spin_enter(&cs->cs_lock); 810 811 switch (cmd) { 812 case TIOCSBRK: 813 zs_break(cs, 1); 814 break; 815 816 case TIOCCBRK: 817 zs_break(cs, 0); 818 break; 819 820 case TIOCGFLAGS: 821 *(int *)data = zst->zst_swflags; 822 break; 823 824 case TIOCSFLAGS: 825 error = kauth_authorize_device_tty(l->l_cred, 826 KAUTH_DEVICE_TTY_PRIVSET, tp); 827 if (error) 828 break; 829 zst->zst_swflags = *(int *)data; 830 break; 831 832 case TIOCSDTR: 833 zs_modem(zst, 1); 834 break; 835 836 case TIOCCDTR: 837 zs_modem(zst, 0); 838 break; 839 840 case TIOCMSET: 841 case TIOCMBIS: 842 case TIOCMBIC: 843 tiocm_to_zs(zst, cmd, *(int *)data); 844 break; 845 846 case TIOCMGET: 847 *(int *)data = zs_to_tiocm(zst); 848 break; 849 850 #ifdef __HAVE_TIMECOUNTER 851 case PPS_IOC_CREATE: 852 case PPS_IOC_DESTROY: 853 case PPS_IOC_GETPARAMS: 854 case PPS_IOC_SETPARAMS: 855 case PPS_IOC_GETCAP: 856 case PPS_IOC_FETCH: 857 #ifdef PPS_SYNC 858 case PPS_IOC_KCBIND: 859 #endif 860 error = pps_ioctl(cmd, data, &zst->zst_pps_state); 861 if (zst->zst_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) 862 zst->zst_ppsmask = ZSRR0_DCD; 863 else 864 zst->zst_ppsmask = 0; 865 break; 866 #else /* !__HAVE_TIMECOUNTER */ 867 case PPS_IOC_CREATE: 868 break; 869 870 case PPS_IOC_DESTROY: 871 break; 872 873 case PPS_IOC_GETPARAMS: { 874 pps_params_t *pp; 875 pp = (pps_params_t *)data; 876 *pp = zst->ppsparam; 877 break; 878 } 879 880 case PPS_IOC_SETPARAMS: { 881 pps_params_t *pp; 882 int mode; 883 if (cs->cs_rr0_pps == 0) { 884 error = EINVAL; 885 break; 886 } 887 pp = (pps_params_t *)data; 888 if (pp->mode & ~zsppscap) { 889 error = EINVAL; 890 break; 891 } 892 zst->ppsparam = *pp; 893 /* 894 * compute masks from user-specified timestamp state. 895 */ 896 mode = zst->ppsparam.mode; 897 switch (mode & PPS_CAPTUREBOTH) { 898 case 0: 899 zst->zst_ppsmask = 0; 900 break; 901 902 case PPS_CAPTUREASSERT: 903 zst->zst_ppsmask = ZSRR0_DCD; 904 zst->zst_ppsassert = ZSRR0_DCD; 905 zst->zst_ppsclear = -1; 906 break; 907 908 case PPS_CAPTURECLEAR: 909 zst->zst_ppsmask = ZSRR0_DCD; 910 zst->zst_ppsassert = -1; 911 zst->zst_ppsclear = 0; 912 break; 913 914 case PPS_CAPTUREBOTH: 915 zst->zst_ppsmask = ZSRR0_DCD; 916 zst->zst_ppsassert = ZSRR0_DCD; 917 zst->zst_ppsclear = 0; 918 break; 919 920 default: 921 error = EINVAL; 922 break; 923 } 924 925 /* 926 * Now update interrupts. 927 */ 928 zs_maskintr(zst); 929 /* 930 * If nothing is being transmitted, set up new current values, 931 * else mark them as pending. 932 */ 933 if (!cs->cs_heldchange) { 934 if (zst->zst_tx_busy) { 935 zst->zst_heldtbc = zst->zst_tbc; 936 zst->zst_tbc = 0; 937 cs->cs_heldchange = 1; 938 } else 939 zs_loadchannelregs(cs); 940 } 941 942 break; 943 } 944 945 case PPS_IOC_GETCAP: 946 *(int *)data = zsppscap; 947 break; 948 949 case PPS_IOC_FETCH: { 950 pps_info_t *pi; 951 pi = (pps_info_t *)data; 952 *pi = zst->ppsinfo; 953 break; 954 } 955 956 #ifdef PPS_SYNC 957 case PPS_IOC_KCBIND: { 958 int edge = (*(int *)data) & PPS_CAPTUREBOTH; 959 960 if (edge == 0) { 961 /* 962 * remove binding for this source; ignore 963 * the request if this is not the current 964 * hardpps source 965 */ 966 if (pps_kc_hardpps_source == zst) { 967 pps_kc_hardpps_source = NULL; 968 pps_kc_hardpps_mode = 0; 969 } 970 } else { 971 /* 972 * bind hardpps to this source, replacing any 973 * previously specified source or edges 974 */ 975 pps_kc_hardpps_source = zst; 976 pps_kc_hardpps_mode = edge; 977 } 978 break; 979 } 980 #endif /* PPS_SYNC */ 981 #endif /* !__HAVE_TIMECOUNTER */ 982 983 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */ 984 if (cs->cs_rr0_pps == 0) { 985 error = EINVAL; 986 break; 987 } 988 #ifdef __HAVE_TIMECOUNTER 989 #ifndef PPS_TRAILING_EDGE 990 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 991 &zst->zst_pps_state.ppsinfo.assert_timestamp); 992 #else 993 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 994 &zst->zst_pps_state.ppsinfo.clear_timestamp); 995 #endif 996 #else /* !__HAVE_TIMECOUNTER */ 997 zst->zst_ppsmask = ZSRR0_DCD; 998 #ifndef PPS_TRAILING_EDGE 999 zst->zst_ppsassert = ZSRR0_DCD; 1000 zst->zst_ppsclear = -1; 1001 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 1002 &zst->ppsinfo.assert_timestamp); 1003 #else 1004 zst->zst_ppsassert = -1; 1005 zst->zst_ppsclear = 01; 1006 TIMESPEC_TO_TIMEVAL((struct timeval *)data, 1007 &zst->ppsinfo.clear_timestamp); 1008 #endif 1009 #endif /* !__HAVE_TIMECOUNTER */ 1010 /* 1011 * Now update interrupts. 1012 */ 1013 zs_maskintr(zst); 1014 /* 1015 * If nothing is being transmitted, set up new current values, 1016 * else mark them as pending. 1017 */ 1018 if (!cs->cs_heldchange) { 1019 if (zst->zst_tx_busy) { 1020 zst->zst_heldtbc = zst->zst_tbc; 1021 zst->zst_tbc = 0; 1022 cs->cs_heldchange = 1; 1023 } else 1024 zs_loadchannelregs(cs); 1025 } 1026 1027 break; 1028 1029 default: 1030 error = EPASSTHROUGH; 1031 break; 1032 } 1033 1034 mutex_spin_exit(&cs->cs_lock); 1035 1036 return (error); 1037 } 1038 1039 /* 1040 * Start or restart transmission. 1041 */ 1042 static void 1043 zsstart(tp) 1044 struct tty *tp; 1045 { 1046 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev)); 1047 struct zs_chanstate *cs = zst->zst_cs; 1048 u_char *tba; 1049 int tbc; 1050 1051 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) 1052 return; 1053 if (zst->zst_tx_stopped) 1054 return; 1055 if (!ttypull(tp)) 1056 return; 1057 1058 /* Grab the first contiguous region of buffer space. */ 1059 tba = tp->t_outq.c_cf; 1060 tbc = ndqb(&tp->t_outq, 0); 1061 1062 mutex_spin_enter(&cs->cs_lock); 1063 1064 zst->zst_tba = tba; 1065 zst->zst_tbc = tbc; 1066 SET(tp->t_state, TS_BUSY); 1067 zst->zst_tx_busy = 1; 1068 1069 #ifdef ZS_TXDMA 1070 if (zst->zst_tbc > 1) { 1071 zs_dma_setup(cs, zst->zst_tba, zst->zst_tbc); 1072 mutex_spin_exit(&cs->cs_lock); 1073 return; 1074 } 1075 #endif 1076 1077 /* Enable transmit completion interrupts if necessary. */ 1078 if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) { 1079 SET(cs->cs_preg[1], ZSWR1_TIE); 1080 cs->cs_creg[1] = cs->cs_preg[1]; 1081 zs_write_reg(cs, 1, cs->cs_creg[1]); 1082 } 1083 1084 /* Output the first character of the contiguous buffer. */ 1085 zs_write_data(cs, *zst->zst_tba); 1086 zst->zst_tbc--; 1087 zst->zst_tba++; 1088 1089 mutex_spin_exit(&cs->cs_lock); 1090 } 1091 1092 /* 1093 * Stop output, e.g., for ^S or output flush. 1094 */ 1095 void 1096 zsstop(tp, flag) 1097 struct tty *tp; 1098 int flag; 1099 { 1100 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev)); 1101 int s; 1102 1103 s = splzs(); 1104 if (ISSET(tp->t_state, TS_BUSY)) { 1105 /* Stop transmitting at the next chunk. */ 1106 zst->zst_tbc = 0; 1107 zst->zst_heldtbc = 0; 1108 if (!ISSET(tp->t_state, TS_TTSTOP)) 1109 SET(tp->t_state, TS_FLUSH); 1110 } 1111 splx(s); 1112 } 1113 1114 /* 1115 * Set ZS tty parameters from termios. 1116 * XXX - Should just copy the whole termios after 1117 * making sure all the changes could be done. 1118 */ 1119 static int 1120 zsparam(tp, t) 1121 struct tty *tp; 1122 struct termios *t; 1123 { 1124 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev)); 1125 struct zs_chanstate *cs = zst->zst_cs; 1126 int ospeed; 1127 tcflag_t cflag; 1128 u_char tmp3, tmp4, tmp5; 1129 int error; 1130 1131 ospeed = t->c_ospeed; 1132 cflag = t->c_cflag; 1133 1134 /* Check requested parameters. */ 1135 if (ospeed < 0) 1136 return (EINVAL); 1137 if (t->c_ispeed && t->c_ispeed != ospeed) 1138 return (EINVAL); 1139 1140 /* 1141 * For the console, always force CLOCAL and !HUPCL, so that the port 1142 * is always active. 1143 */ 1144 if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) || 1145 ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) { 1146 SET(cflag, CLOCAL); 1147 CLR(cflag, HUPCL); 1148 } 1149 1150 /* 1151 * Only whack the UART when params change. 1152 * Some callers need to clear tp->t_ospeed 1153 * to make sure initialization gets done. 1154 */ 1155 if (tp->t_ospeed == ospeed && 1156 tp->t_cflag == cflag) 1157 return (0); 1158 1159 /* 1160 * Call MD functions to deal with changed 1161 * clock modes or H/W flow control modes. 1162 * The BRG divisor is set now. (reg 12,13) 1163 */ 1164 error = zs_set_speed(cs, ospeed); 1165 if (error) 1166 return (error); 1167 error = zs_set_modes(cs, cflag); 1168 if (error) 1169 return (error); 1170 1171 /* 1172 * Block interrupts so that state will not 1173 * be altered until we are done setting it up. 1174 * 1175 * Initial values in cs_preg are set before 1176 * our attach routine is called. The master 1177 * interrupt enable is handled by zsc.c 1178 * 1179 */ 1180 mutex_spin_enter(&cs->cs_lock); 1181 1182 /* 1183 * Recalculate which status ints to enable. 1184 */ 1185 zs_maskintr(zst); 1186 1187 /* Recompute character size bits. */ 1188 tmp3 = cs->cs_preg[3]; 1189 tmp5 = cs->cs_preg[5]; 1190 CLR(tmp3, ZSWR3_RXSIZE); 1191 CLR(tmp5, ZSWR5_TXSIZE); 1192 switch (ISSET(cflag, CSIZE)) { 1193 case CS5: 1194 SET(tmp3, ZSWR3_RX_5); 1195 SET(tmp5, ZSWR5_TX_5); 1196 break; 1197 case CS6: 1198 SET(tmp3, ZSWR3_RX_6); 1199 SET(tmp5, ZSWR5_TX_6); 1200 break; 1201 case CS7: 1202 SET(tmp3, ZSWR3_RX_7); 1203 SET(tmp5, ZSWR5_TX_7); 1204 break; 1205 case CS8: 1206 SET(tmp3, ZSWR3_RX_8); 1207 SET(tmp5, ZSWR5_TX_8); 1208 break; 1209 } 1210 cs->cs_preg[3] = tmp3; 1211 cs->cs_preg[5] = tmp5; 1212 1213 /* 1214 * Recompute the stop bits and parity bits. Note that 1215 * zs_set_speed() may have set clock selection bits etc. 1216 * in wr4, so those must preserved. 1217 */ 1218 tmp4 = cs->cs_preg[4]; 1219 CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK); 1220 if (ISSET(cflag, CSTOPB)) 1221 SET(tmp4, ZSWR4_TWOSB); 1222 else 1223 SET(tmp4, ZSWR4_ONESB); 1224 if (!ISSET(cflag, PARODD)) 1225 SET(tmp4, ZSWR4_EVENP); 1226 if (ISSET(cflag, PARENB)) 1227 SET(tmp4, ZSWR4_PARENB); 1228 cs->cs_preg[4] = tmp4; 1229 1230 /* And copy to tty. */ 1231 tp->t_ispeed = 0; 1232 tp->t_ospeed = ospeed; 1233 tp->t_cflag = cflag; 1234 1235 /* 1236 * If nothing is being transmitted, set up new current values, 1237 * else mark them as pending. 1238 */ 1239 if (!cs->cs_heldchange) { 1240 if (zst->zst_tx_busy) { 1241 zst->zst_heldtbc = zst->zst_tbc; 1242 zst->zst_tbc = 0; 1243 cs->cs_heldchange = 1; 1244 } else 1245 zs_loadchannelregs(cs); 1246 } 1247 1248 /* 1249 * If hardware flow control is disabled, turn off the buffer water 1250 * marks and unblock any soft flow control state. Otherwise, enable 1251 * the water marks. 1252 */ 1253 if (!ISSET(cflag, CHWFLOW)) { 1254 zst->zst_r_hiwat = 0; 1255 zst->zst_r_lowat = 0; 1256 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { 1257 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED); 1258 zst->zst_rx_ready = 1; 1259 cs->cs_softreq = 1; 1260 } 1261 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) { 1262 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED); 1263 zs_hwiflow(zst); 1264 } 1265 } else { 1266 zst->zst_r_hiwat = zstty_rbuf_hiwat; 1267 zst->zst_r_lowat = zstty_rbuf_lowat; 1268 } 1269 1270 /* 1271 * Force a recheck of the hardware carrier and flow control status, 1272 * since we may have changed which bits we're looking at. 1273 */ 1274 zstty_stint(cs, 1); 1275 1276 mutex_spin_exit(&cs->cs_lock); 1277 1278 /* 1279 * If hardware flow control is disabled, unblock any hard flow control 1280 * state. 1281 */ 1282 if (!ISSET(cflag, CHWFLOW)) { 1283 if (zst->zst_tx_stopped) { 1284 zst->zst_tx_stopped = 0; 1285 zsstart(tp); 1286 } 1287 } 1288 1289 zstty_softint(cs); 1290 1291 return (0); 1292 } 1293 1294 /* 1295 * Compute interrupt enable bits and set in the pending bits. Called both 1296 * in zsparam() and when PPS (pulse per second timing) state changes. 1297 * Must be called at splzs(). 1298 */ 1299 static void 1300 zs_maskintr(zst) 1301 struct zstty_softc *zst; 1302 { 1303 struct zs_chanstate *cs = zst->zst_cs; 1304 int tmp15; 1305 1306 cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd; 1307 if (zst->zst_ppsmask != 0) 1308 cs->cs_rr0_mask |= cs->cs_rr0_pps; 1309 tmp15 = cs->cs_preg[15]; 1310 if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD)) 1311 SET(tmp15, ZSWR15_DCD_IE); 1312 else 1313 CLR(tmp15, ZSWR15_DCD_IE); 1314 if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS)) 1315 SET(tmp15, ZSWR15_CTS_IE); 1316 else 1317 CLR(tmp15, ZSWR15_CTS_IE); 1318 cs->cs_preg[15] = tmp15; 1319 } 1320 1321 1322 /* 1323 * Raise or lower modem control (DTR/RTS) signals. If a character is 1324 * in transmission, the change is deferred. 1325 * Called at splzs() and with the channel lock held. 1326 */ 1327 static void 1328 zs_modem(zst, onoff) 1329 struct zstty_softc *zst; 1330 int onoff; 1331 { 1332 struct zs_chanstate *cs = zst->zst_cs, *ccs; 1333 1334 if (cs->cs_wr5_dtr == 0) 1335 return; 1336 1337 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs); 1338 1339 if (onoff) 1340 SET(ccs->cs_preg[5], cs->cs_wr5_dtr); 1341 else 1342 CLR(ccs->cs_preg[5], cs->cs_wr5_dtr); 1343 1344 if (!cs->cs_heldchange) { 1345 if (zst->zst_tx_busy) { 1346 zst->zst_heldtbc = zst->zst_tbc; 1347 zst->zst_tbc = 0; 1348 cs->cs_heldchange = 1; 1349 } else 1350 zs_loadchannelregs(cs); 1351 } 1352 } 1353 1354 /* 1355 * Set modem bits. 1356 * Called at splzs() and with the channel lock held. 1357 */ 1358 static void 1359 tiocm_to_zs(zst, how, ttybits) 1360 struct zstty_softc *zst; 1361 u_long how; 1362 int ttybits; 1363 { 1364 struct zs_chanstate *cs = zst->zst_cs, *ccs; 1365 u_char zsbits; 1366 1367 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs); 1368 1369 zsbits = 0; 1370 if (ISSET(ttybits, TIOCM_DTR)) 1371 SET(zsbits, ZSWR5_DTR); 1372 if (ISSET(ttybits, TIOCM_RTS)) 1373 SET(zsbits, ZSWR5_RTS); 1374 1375 switch (how) { 1376 case TIOCMBIC: 1377 CLR(ccs->cs_preg[5], zsbits); 1378 break; 1379 1380 case TIOCMBIS: 1381 SET(ccs->cs_preg[5], zsbits); 1382 break; 1383 1384 case TIOCMSET: 1385 CLR(ccs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR); 1386 SET(ccs->cs_preg[5], zsbits); 1387 break; 1388 } 1389 1390 if (!cs->cs_heldchange) { 1391 if (zst->zst_tx_busy) { 1392 zst->zst_heldtbc = zst->zst_tbc; 1393 zst->zst_tbc = 0; 1394 cs->cs_heldchange = 1; 1395 } else 1396 zs_loadchannelregs(cs); 1397 } 1398 } 1399 1400 /* 1401 * Get modem bits. 1402 * Called at splzs() and with the channel lock held. 1403 */ 1404 static int 1405 zs_to_tiocm(zst) 1406 struct zstty_softc *zst; 1407 { 1408 struct zs_chanstate *cs = zst->zst_cs, *ccs; 1409 u_char zsbits; 1410 int ttybits = 0; 1411 1412 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs); 1413 1414 zsbits = ccs->cs_preg[5]; 1415 if (ISSET(zsbits, ZSWR5_DTR)) 1416 SET(ttybits, TIOCM_DTR); 1417 if (ISSET(zsbits, ZSWR5_RTS)) 1418 SET(ttybits, TIOCM_RTS); 1419 1420 zsbits = cs->cs_rr0; 1421 if (ISSET(zsbits, ZSRR0_DCD)) 1422 SET(ttybits, TIOCM_CD); 1423 if (ISSET(zsbits, ZSRR0_CTS)) 1424 SET(ttybits, TIOCM_CTS); 1425 1426 return (ttybits); 1427 } 1428 1429 /* 1430 * Try to block or unblock input using hardware flow-control. 1431 * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and 1432 * if this function returns non-zero, the TS_TBLOCK flag will 1433 * be set or cleared according to the "block" arg passed. 1434 */ 1435 int 1436 zshwiflow(tp, block) 1437 struct tty *tp; 1438 int block; 1439 { 1440 struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev)); 1441 struct zs_chanstate *cs = zst->zst_cs; 1442 1443 if (cs->cs_wr5_rts == 0) 1444 return (0); 1445 1446 mutex_spin_enter(&cs->cs_lock); 1447 if (block) { 1448 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { 1449 SET(zst->zst_rx_flags, RX_TTY_BLOCKED); 1450 zs_hwiflow(zst); 1451 } 1452 } else { 1453 if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { 1454 CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED); 1455 zst->zst_rx_ready = 1; 1456 cs->cs_softreq = 1; 1457 } 1458 if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { 1459 CLR(zst->zst_rx_flags, RX_TTY_BLOCKED); 1460 zs_hwiflow(zst); 1461 } 1462 } 1463 mutex_spin_exit(&cs->cs_lock); 1464 return (1); 1465 } 1466 1467 /* 1468 * Internal version of zshwiflow 1469 * Called at splzs() and with the channel lock held. 1470 */ 1471 static void 1472 zs_hwiflow(zst) 1473 struct zstty_softc *zst; 1474 { 1475 struct zs_chanstate *cs = zst->zst_cs, *ccs; 1476 1477 if (cs->cs_wr5_rts == 0) 1478 return; 1479 1480 ccs = (cs->cs_ctl_chan != NULL ? cs->cs_ctl_chan : cs); 1481 1482 if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) { 1483 CLR(ccs->cs_preg[5], cs->cs_wr5_rts); 1484 CLR(ccs->cs_creg[5], cs->cs_wr5_rts); 1485 } else { 1486 SET(ccs->cs_preg[5], cs->cs_wr5_rts); 1487 SET(ccs->cs_creg[5], cs->cs_wr5_rts); 1488 } 1489 zs_write_reg(ccs, 5, ccs->cs_creg[5]); 1490 } 1491 1492 1493 /**************************************************************** 1494 * Interface to the lower layer (zscc) 1495 ****************************************************************/ 1496 1497 #define integrate static inline 1498 integrate void zstty_rxsoft(struct zstty_softc *, struct tty *); 1499 integrate void zstty_txsoft(struct zstty_softc *, struct tty *); 1500 integrate void zstty_stsoft(struct zstty_softc *, struct tty *); 1501 static void zstty_diag(void *); 1502 1503 /* 1504 * Receiver Ready interrupt. 1505 * Called at splzs() and with the channel lock held. 1506 */ 1507 static void 1508 zstty_rxint(cs) 1509 struct zs_chanstate *cs; 1510 { 1511 struct zstty_softc *zst = cs->cs_private; 1512 u_char *put, *end; 1513 u_int cc; 1514 u_char rr0, rr1, c; 1515 1516 end = zst->zst_ebuf; 1517 put = zst->zst_rbput; 1518 cc = zst->zst_rbavail; 1519 1520 while (cc > 0) { 1521 /* 1522 * First read the status, because reading the received char 1523 * destroys the status of this char. 1524 */ 1525 rr1 = zs_read_reg(cs, 1); 1526 c = zs_read_data(cs); 1527 1528 if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) { 1529 /* Clear the receive error. */ 1530 zs_write_csr(cs, ZSWR0_RESET_ERRORS); 1531 } 1532 1533 cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state); 1534 put[0] = c; 1535 put[1] = rr1; 1536 put += 2; 1537 if (put >= end) 1538 put = zst->zst_rbuf; 1539 cc--; 1540 1541 rr0 = zs_read_csr(cs); 1542 if (!ISSET(rr0, ZSRR0_RX_READY)) 1543 break; 1544 } 1545 1546 /* 1547 * Current string of incoming characters ended because 1548 * no more data was available or we ran out of space. 1549 * Schedule a receive event if any data was received. 1550 * If we're out of space, turn off receive interrupts. 1551 */ 1552 zst->zst_rbput = put; 1553 zst->zst_rbavail = cc; 1554 if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) { 1555 zst->zst_rx_ready = 1; 1556 cs->cs_softreq = 1; 1557 } 1558 1559 /* 1560 * See if we are in danger of overflowing a buffer. If 1561 * so, use hardware flow control to ease the pressure. 1562 */ 1563 if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) && 1564 cc < zst->zst_r_hiwat) { 1565 SET(zst->zst_rx_flags, RX_IBUF_BLOCKED); 1566 zs_hwiflow(zst); 1567 } 1568 1569 /* 1570 * If we're out of space, disable receive interrupts 1571 * until the queue has drained a bit. 1572 */ 1573 if (!cc) { 1574 SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED); 1575 CLR(cs->cs_preg[1], ZSWR1_RIE); 1576 cs->cs_creg[1] = cs->cs_preg[1]; 1577 zs_write_reg(cs, 1, cs->cs_creg[1]); 1578 } 1579 1580 #if 0 1581 printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail); 1582 #endif 1583 } 1584 1585 /* 1586 * Transmitter Ready interrupt. 1587 * Called at splzs() and with the channel lock held. 1588 */ 1589 static void 1590 zstty_txint(cs) 1591 struct zs_chanstate *cs; 1592 { 1593 struct zstty_softc *zst = cs->cs_private; 1594 1595 /* 1596 * If we've delayed a parameter change, do it now, and restart 1597 * output. 1598 */ 1599 if (cs->cs_heldchange) { 1600 zs_loadchannelregs(cs); 1601 cs->cs_heldchange = 0; 1602 zst->zst_tbc = zst->zst_heldtbc; 1603 zst->zst_heldtbc = 0; 1604 } 1605 1606 /* Output the next character in the buffer, if any. */ 1607 if (zst->zst_tbc > 0) { 1608 zs_write_data(cs, *zst->zst_tba); 1609 zst->zst_tbc--; 1610 zst->zst_tba++; 1611 } else { 1612 /* Disable transmit completion interrupts if necessary. */ 1613 if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) { 1614 CLR(cs->cs_preg[1], ZSWR1_TIE); 1615 cs->cs_creg[1] = cs->cs_preg[1]; 1616 zs_write_reg(cs, 1, cs->cs_creg[1]); 1617 } 1618 if (zst->zst_tx_busy) { 1619 zst->zst_tx_busy = 0; 1620 zst->zst_tx_done = 1; 1621 cs->cs_softreq = 1; 1622 } 1623 } 1624 } 1625 1626 /* 1627 * Status Change interrupt. 1628 * Called at splzs() and with the channel lock held. 1629 */ 1630 static void 1631 zstty_stint(cs, force) 1632 struct zs_chanstate *cs; 1633 int force; 1634 { 1635 struct zstty_softc *zst = cs->cs_private; 1636 u_char rr0, delta; 1637 1638 rr0 = zs_read_csr(cs); 1639 zs_write_csr(cs, ZSWR0_RESET_STATUS); 1640 1641 /* 1642 * Check here for console break, so that we can abort 1643 * even when interrupts are locking up the machine. 1644 */ 1645 if (ISSET(rr0, ZSRR0_BREAK)) 1646 cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state); 1647 1648 if (!force) 1649 delta = rr0 ^ cs->cs_rr0; 1650 else 1651 delta = cs->cs_rr0_mask; 1652 cs->cs_rr0 = rr0; 1653 1654 if (ISSET(delta, cs->cs_rr0_mask)) { 1655 SET(cs->cs_rr0_delta, delta); 1656 1657 /* 1658 * Pulse-per-second clock signal on edge of DCD? 1659 */ 1660 if (ISSET(delta, zst->zst_ppsmask)) { 1661 #ifdef __HAVE_TIMECOUNTER 1662 if (zst->zst_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) { 1663 pps_capture(&zst->zst_pps_state); 1664 pps_event(&zst->zst_pps_state, 1665 (ISSET(cs->cs_rr0, zst->zst_ppsmask)) 1666 ? PPS_CAPTUREASSERT 1667 : PPS_CAPTURECLEAR); 1668 } 1669 #else /* !__HAVE_TIMECOUNTER */ 1670 struct timeval tv; 1671 if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) { 1672 /* XXX nanotime() */ 1673 microtime(&tv); 1674 TIMEVAL_TO_TIMESPEC(&tv, 1675 &zst->ppsinfo.assert_timestamp); 1676 if (zst->ppsparam.mode & PPS_OFFSETASSERT) { 1677 timespecadd(&zst->ppsinfo.assert_timestamp, 1678 &zst->ppsparam.assert_offset, 1679 &zst->ppsinfo.assert_timestamp); 1680 } 1681 1682 #ifdef PPS_SYNC 1683 if (pps_kc_hardpps_source == zst && 1684 pps_kc_hardpps_mode & PPS_CAPTUREASSERT) { 1685 hardpps(&tv, tv.tv_usec); 1686 } 1687 #endif 1688 zst->ppsinfo.assert_sequence++; 1689 zst->ppsinfo.current_mode = zst->ppsparam.mode; 1690 } else if (ISSET(rr0, zst->zst_ppsmask) == 1691 zst->zst_ppsclear) { 1692 /* XXX nanotime() */ 1693 microtime(&tv); 1694 TIMEVAL_TO_TIMESPEC(&tv, 1695 &zst->ppsinfo.clear_timestamp); 1696 if (zst->ppsparam.mode & PPS_OFFSETCLEAR) { 1697 timespecadd(&zst->ppsinfo.clear_timestamp, 1698 &zst->ppsparam.clear_offset, 1699 &zst->ppsinfo.clear_timestamp); 1700 } 1701 1702 #ifdef PPS_SYNC 1703 if (pps_kc_hardpps_source == zst && 1704 pps_kc_hardpps_mode & PPS_CAPTURECLEAR) { 1705 hardpps(&tv, tv.tv_usec); 1706 } 1707 #endif 1708 zst->ppsinfo.clear_sequence++; 1709 zst->ppsinfo.current_mode = zst->ppsparam.mode; 1710 } 1711 #endif /* !__HAVE_TIMECOUNTER */ 1712 } 1713 1714 /* 1715 * Stop output immediately if we lose the output 1716 * flow control signal or carrier detect. 1717 */ 1718 if (ISSET(~rr0, cs->cs_rr0_mask)) { 1719 zst->zst_tbc = 0; 1720 zst->zst_heldtbc = 0; 1721 } 1722 1723 zst->zst_st_check = 1; 1724 cs->cs_softreq = 1; 1725 } 1726 } 1727 1728 void 1729 zstty_diag(arg) 1730 void *arg; 1731 { 1732 struct zstty_softc *zst = arg; 1733 int overflows, floods; 1734 int s; 1735 1736 s = splzs(); 1737 overflows = zst->zst_overflows; 1738 zst->zst_overflows = 0; 1739 floods = zst->zst_floods; 1740 zst->zst_floods = 0; 1741 zst->zst_errors = 0; 1742 splx(s); 1743 1744 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n", 1745 zst->zst_dev.dv_xname, 1746 overflows, overflows == 1 ? "" : "s", 1747 floods, floods == 1 ? "" : "s"); 1748 } 1749 1750 integrate void 1751 zstty_rxsoft(zst, tp) 1752 struct zstty_softc *zst; 1753 struct tty *tp; 1754 { 1755 struct zs_chanstate *cs = zst->zst_cs; 1756 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint; 1757 u_char *get, *end; 1758 u_int cc, scc; 1759 u_char rr1; 1760 int code; 1761 1762 end = zst->zst_ebuf; 1763 get = zst->zst_rbget; 1764 scc = cc = zstty_rbuf_size - zst->zst_rbavail; 1765 1766 if (cc == zstty_rbuf_size) { 1767 zst->zst_floods++; 1768 if (zst->zst_errors++ == 0) 1769 callout_reset(&zst->zst_diag_ch, 60 * hz, 1770 zstty_diag, zst); 1771 } 1772 1773 /* If not yet open, drop the entire buffer content here */ 1774 if (!ISSET(tp->t_state, TS_ISOPEN)) { 1775 get += cc << 1; 1776 if (get >= end) 1777 get -= zstty_rbuf_size << 1; 1778 cc = 0; 1779 } 1780 while (cc) { 1781 code = get[0]; 1782 rr1 = get[1]; 1783 if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) { 1784 if (ISSET(rr1, ZSRR1_DO)) { 1785 zst->zst_overflows++; 1786 if (zst->zst_errors++ == 0) 1787 callout_reset(&zst->zst_diag_ch, 1788 60 * hz, zstty_diag, zst); 1789 } 1790 if (ISSET(rr1, ZSRR1_FE)) 1791 SET(code, TTY_FE); 1792 if (ISSET(rr1, ZSRR1_PE)) 1793 SET(code, TTY_PE); 1794 } 1795 if ((*rint)(code, tp) == -1) { 1796 /* 1797 * The line discipline's buffer is out of space. 1798 */ 1799 if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) { 1800 /* 1801 * We're either not using flow control, or the 1802 * line discipline didn't tell us to block for 1803 * some reason. Either way, we have no way to 1804 * know when there's more space available, so 1805 * just drop the rest of the data. 1806 */ 1807 get += cc << 1; 1808 if (get >= end) 1809 get -= zstty_rbuf_size << 1; 1810 cc = 0; 1811 } else { 1812 /* 1813 * Don't schedule any more receive processing 1814 * until the line discipline tells us there's 1815 * space available (through comhwiflow()). 1816 * Leave the rest of the data in the input 1817 * buffer. 1818 */ 1819 SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED); 1820 } 1821 break; 1822 } 1823 get += 2; 1824 if (get >= end) 1825 get = zst->zst_rbuf; 1826 cc--; 1827 } 1828 1829 if (cc != scc) { 1830 zst->zst_rbget = get; 1831 mutex_spin_enter(&cs->cs_lock); 1832 cc = zst->zst_rbavail += scc - cc; 1833 /* Buffers should be ok again, release possible block. */ 1834 if (cc >= zst->zst_r_lowat) { 1835 if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) { 1836 CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED); 1837 SET(cs->cs_preg[1], ZSWR1_RIE); 1838 cs->cs_creg[1] = cs->cs_preg[1]; 1839 zs_write_reg(cs, 1, cs->cs_creg[1]); 1840 } 1841 if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) { 1842 CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED); 1843 zs_hwiflow(zst); 1844 } 1845 } 1846 mutex_spin_exit(&cs->cs_lock); 1847 } 1848 1849 #if 0 1850 printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail); 1851 #endif 1852 } 1853 1854 integrate void 1855 zstty_txsoft(zst, tp) 1856 struct zstty_softc *zst; 1857 struct tty *tp; 1858 { 1859 struct zs_chanstate *cs = zst->zst_cs; 1860 1861 mutex_spin_enter(&cs->cs_lock); 1862 CLR(tp->t_state, TS_BUSY); 1863 if (ISSET(tp->t_state, TS_FLUSH)) 1864 CLR(tp->t_state, TS_FLUSH); 1865 else 1866 ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf)); 1867 mutex_spin_exit(&cs->cs_lock); 1868 (*tp->t_linesw->l_start)(tp); 1869 } 1870 1871 integrate void 1872 zstty_stsoft(zst, tp) 1873 struct zstty_softc *zst; 1874 struct tty *tp; 1875 { 1876 struct zs_chanstate *cs = zst->zst_cs; 1877 u_char rr0, delta; 1878 1879 mutex_spin_enter(&cs->cs_lock); 1880 rr0 = cs->cs_rr0; 1881 delta = cs->cs_rr0_delta; 1882 cs->cs_rr0_delta = 0; 1883 mutex_spin_exit(&cs->cs_lock); 1884 1885 if (ISSET(delta, cs->cs_rr0_dcd)) { 1886 /* 1887 * Inform the tty layer that carrier detect changed. 1888 */ 1889 (void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD)); 1890 } 1891 1892 if (ISSET(delta, cs->cs_rr0_cts)) { 1893 /* Block or unblock output according to flow control. */ 1894 if (ISSET(rr0, cs->cs_rr0_cts)) { 1895 zst->zst_tx_stopped = 0; 1896 (*tp->t_linesw->l_start)(tp); 1897 } else { 1898 zst->zst_tx_stopped = 1; 1899 } 1900 } 1901 } 1902 1903 /* 1904 * Software interrupt. Called at zssoft 1905 * 1906 * The main job to be done here is to empty the input ring 1907 * by passing its contents up to the tty layer. The ring is 1908 * always emptied during this operation, therefore the ring 1909 * must not be larger than the space after "high water" in 1910 * the tty layer, or the tty layer might drop our input. 1911 * 1912 * Note: an "input blockage" condition is assumed to exist if 1913 * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set. 1914 */ 1915 static void 1916 zstty_softint(cs) 1917 struct zs_chanstate *cs; 1918 { 1919 struct zstty_softc *zst = cs->cs_private; 1920 struct tty *tp = zst->zst_tty; 1921 1922 mutex_spin_enter(&tty_lock); 1923 1924 if (zst->zst_rx_ready) { 1925 zst->zst_rx_ready = 0; 1926 zstty_rxsoft(zst, tp); 1927 } 1928 1929 if (zst->zst_st_check) { 1930 zst->zst_st_check = 0; 1931 zstty_stsoft(zst, tp); 1932 } 1933 1934 if (zst->zst_tx_done) { 1935 zst->zst_tx_done = 0; 1936 zstty_txsoft(zst, tp); 1937 } 1938 1939 mutex_spin_exit(&tty_lock); 1940 } 1941 1942 struct zsops zsops_tty = { 1943 zstty_rxint, /* receive char available */ 1944 zstty_stint, /* external/status */ 1945 zstty_txint, /* xmit buffer empty */ 1946 zstty_softint, /* process software interrupt */ 1947 }; 1948 1949 #ifdef ZS_TXDMA 1950 void 1951 zstty_txdma_int(arg) 1952 void *arg; 1953 { 1954 struct zs_chanstate *cs = arg; 1955 struct zstty_softc *zst = cs->cs_private; 1956 1957 zst->zst_tba += zst->zst_tbc; 1958 zst->zst_tbc = 0; 1959 1960 if (zst->zst_tx_busy) { 1961 zst->zst_tx_busy = 0; 1962 zst->zst_tx_done = 1; 1963 cs->cs_softreq = 1; 1964 } 1965 } 1966 #endif 1967