xref: /netbsd-src/sys/dev/ic/z8530tty.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: z8530tty.c,v 1.77 2001/05/30 15:24:24 lukem Exp $	*/
2 
3 /*-
4  * Copyright (c) 1993, 1994, 1995, 1996, 1997, 1998, 1999
5  *	Charles M. Hannum.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by Charles M. Hannum.
18  * 4. The name of the author may not be used to endorse or promote products
19  *    derived from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * Copyright (c) 1994 Gordon W. Ross
35  * Copyright (c) 1992, 1993
36  *	The Regents of the University of California.  All rights reserved.
37  *
38  * This software was developed by the Computer Systems Engineering group
39  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
40  * contributed to Berkeley.
41  *
42  * All advertising materials mentioning features or use of this software
43  * must display the following acknowledgement:
44  *	This product includes software developed by the University of
45  *	California, Lawrence Berkeley Laboratory.
46  *
47  * Redistribution and use in source and binary forms, with or without
48  * modification, are permitted provided that the following conditions
49  * are met:
50  * 1. Redistributions of source code must retain the above copyright
51  *    notice, this list of conditions and the following disclaimer.
52  * 2. Redistributions in binary form must reproduce the above copyright
53  *    notice, this list of conditions and the following disclaimer in the
54  *    documentation and/or other materials provided with the distribution.
55  * 3. All advertising materials mentioning features or use of this software
56  *    must display the following acknowledgement:
57  *	This product includes software developed by the University of
58  *	California, Berkeley and its contributors.
59  * 4. Neither the name of the University nor the names of its contributors
60  *    may be used to endorse or promote products derived from this software
61  *    without specific prior written permission.
62  *
63  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
64  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
65  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
66  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
67  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
68  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
69  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
70  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
71  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
72  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
73  * SUCH DAMAGE.
74  *
75  *	@(#)zs.c	8.1 (Berkeley) 7/19/93
76  */
77 
78 /*
79  * Zilog Z8530 Dual UART driver (tty interface)
80  *
81  * This is the "slave" driver that will be attached to
82  * the "zsc" driver for plain "tty" async. serial lines.
83  *
84  * Credits, history:
85  *
86  * The original version of this code was the sparc/dev/zs.c driver
87  * as distributed with the Berkeley 4.4 Lite release.  Since then,
88  * Gordon Ross reorganized the code into the current parent/child
89  * driver scheme, separating the Sun keyboard and mouse support
90  * into independent child drivers.
91  *
92  * RTS/CTS flow-control support was a collaboration of:
93  *	Gordon Ross <gwr@netbsd.org>,
94  *	Bill Studenmund <wrstuden@loki.stanford.edu>
95  *	Ian Dall <Ian.Dall@dsto.defence.gov.au>
96  *
97  * The driver was massively overhauled in November 1997 by Charles Hannum,
98  * fixing *many* bugs, and substantially improving performance.
99  */
100 
101 #include "opt_kgdb.h"
102 
103 #include <sys/param.h>
104 #include <sys/systm.h>
105 #include <sys/proc.h>
106 #include <sys/device.h>
107 #include <sys/conf.h>
108 #include <sys/file.h>
109 #include <sys/ioctl.h>
110 #include <sys/malloc.h>
111 #include <sys/timepps.h>
112 #include <sys/tty.h>
113 #include <sys/time.h>
114 #include <sys/kernel.h>
115 #include <sys/syslog.h>
116 
117 #include <dev/ic/z8530reg.h>
118 #include <machine/z8530var.h>
119 
120 #include <dev/cons.h>
121 
122 #include "locators.h"
123 
124 /*
125  * How many input characters we can buffer.
126  * The port-specific var.h may override this.
127  * Note: must be a power of two!
128  */
129 #ifndef	ZSTTY_RING_SIZE
130 #define	ZSTTY_RING_SIZE	2048
131 #endif
132 
133 static struct cnm_state zstty_cnm_state;
134 /*
135  * Make this an option variable one can patch.
136  * But be warned:  this must be a power of 2!
137  */
138 u_int zstty_rbuf_size = ZSTTY_RING_SIZE;
139 
140 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
141 u_int zstty_rbuf_hiwat = (ZSTTY_RING_SIZE * 1) / 4;
142 u_int zstty_rbuf_lowat = (ZSTTY_RING_SIZE * 3) / 4;
143 
144 static int zsppscap =
145 	PPS_TSFMT_TSPEC |
146 	PPS_CAPTUREASSERT |
147 	PPS_CAPTURECLEAR |
148 #ifdef  PPS_SYNC
149 	PPS_HARDPPSONASSERT | PPS_HARDPPSONCLEAR |
150 #endif	/* PPS_SYNC */
151 	PPS_OFFSETASSERT | PPS_OFFSETCLEAR;
152 
153 struct zstty_softc {
154 	struct	device zst_dev;		/* required first: base device */
155 	struct  tty *zst_tty;
156 	struct	zs_chanstate *zst_cs;
157 
158 	struct callout zst_diag_ch;
159 
160 	u_int zst_overflows,
161 	      zst_floods,
162 	      zst_errors;
163 
164 	int zst_hwflags,	/* see z8530var.h */
165 	    zst_swflags;	/* TIOCFLAG_SOFTCAR, ... <ttycom.h> */
166 
167 	u_int zst_r_hiwat,
168 	      zst_r_lowat;
169 	u_char *volatile zst_rbget,
170 	       *volatile zst_rbput;
171 	volatile u_int zst_rbavail;
172 	u_char *zst_rbuf,
173 	       *zst_ebuf;
174 
175 	/*
176 	 * The transmit byte count and address are used for pseudo-DMA
177 	 * output in the hardware interrupt code.  PDMA can be suspended
178 	 * to get pending changes done; heldtbc is used for this.  It can
179 	 * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
180 	 */
181 	u_char *zst_tba;		/* transmit buffer address */
182 	u_int zst_tbc,			/* transmit byte count */
183 	      zst_heldtbc;		/* held tbc while xmission stopped */
184 
185 	/* Flags to communicate with zstty_softint() */
186 	volatile u_char zst_rx_flags,	/* receiver blocked */
187 #define	RX_TTY_BLOCKED		0x01
188 #define	RX_TTY_OVERFLOWED	0x02
189 #define	RX_IBUF_BLOCKED		0x04
190 #define	RX_IBUF_OVERFLOWED	0x08
191 #define	RX_ANY_BLOCK		0x0f
192 			zst_tx_busy,	/* working on an output chunk */
193 			zst_tx_done,	/* done with one output chunk */
194 			zst_tx_stopped,	/* H/W level stop (lost CTS) */
195 			zst_st_check,	/* got a status interrupt */
196 			zst_rx_ready;
197 
198 	/* PPS signal on DCD, with or without inkernel clock disciplining */
199 	u_char  zst_ppsmask;			/* pps signal mask */
200 	u_char  zst_ppsassert;			/* pps leading edge */
201 	u_char  zst_ppsclear;			/* pps trailing edge */
202 	pps_info_t ppsinfo;
203 	pps_params_t ppsparam;
204 };
205 
206 /* Macros to clear/set/test flags. */
207 #define SET(t, f)	(t) |= (f)
208 #define CLR(t, f)	(t) &= ~(f)
209 #define ISSET(t, f)	((t) & (f))
210 
211 /* Definition of the driver for autoconfig. */
212 static int	zstty_match(struct device *, struct cfdata *, void *);
213 static void	zstty_attach(struct device *, struct device *, void *);
214 
215 struct cfattach zstty_ca = {
216 	sizeof(struct zstty_softc), zstty_match, zstty_attach
217 };
218 
219 extern struct cfdriver zstty_cd;
220 
221 struct zsops zsops_tty;
222 
223 /* Routines called from other code. */
224 cdev_decl(zs);	/* open, close, read, write, ioctl, stop, ... */
225 
226 static void zs_shutdown __P((struct zstty_softc *));
227 static void	zsstart __P((struct tty *));
228 static int	zsparam __P((struct tty *, struct termios *));
229 static void zs_modem __P((struct zstty_softc *, int));
230 static void tiocm_to_zs __P((struct zstty_softc *, u_long, int));
231 static int  zs_to_tiocm __P((struct zstty_softc *));
232 static int    zshwiflow __P((struct tty *, int));
233 static void  zs_hwiflow __P((struct zstty_softc *));
234 static void zs_maskintr __P((struct zstty_softc *));
235 
236 /* Low-level routines. */
237 static void zstty_rxint   __P((struct zs_chanstate *));
238 static void zstty_stint   __P((struct zs_chanstate *, int));
239 static void zstty_txint   __P((struct zs_chanstate *));
240 static void zstty_softint __P((struct zs_chanstate *));
241 
242 #define	ZSUNIT(x)	(minor(x) & 0x7ffff)
243 #define	ZSDIALOUT(x)	(minor(x) & 0x80000)
244 
245 /*
246  * zstty_match: how is this zs channel configured?
247  */
248 int
249 zstty_match(parent, cf, aux)
250 	struct device *parent;
251 	struct cfdata *cf;
252 	void   *aux;
253 {
254 	struct zsc_attach_args *args = aux;
255 
256 	/* Exact match is better than wildcard. */
257 	if (cf->cf_loc[ZSCCF_CHANNEL] == args->channel)
258 		return 2;
259 
260 	/* This driver accepts wildcard. */
261 	if (cf->cf_loc[ZSCCF_CHANNEL] == ZSCCF_CHANNEL_DEFAULT)
262 		return 1;
263 
264 	return 0;
265 }
266 
267 void
268 zstty_attach(parent, self, aux)
269 	struct device *parent, *self;
270 	void   *aux;
271 
272 {
273 	struct zsc_softc *zsc = (void *) parent;
274 	struct zstty_softc *zst = (void *) self;
275 	struct cfdata *cf = self->dv_cfdata;
276 	struct zsc_attach_args *args = aux;
277 	struct zs_chanstate *cs;
278 	struct tty *tp;
279 	int channel, s, tty_unit;
280 	dev_t dev;
281 	char *i, *o;
282 
283 	callout_init(&zst->zst_diag_ch);
284 	cn_init_magic(&zstty_cnm_state);
285 
286 	tty_unit = zst->zst_dev.dv_unit;
287 	channel = args->channel;
288 	cs = zsc->zsc_cs[channel];
289 	cs->cs_private = zst;
290 	cs->cs_ops = &zsops_tty;
291 
292 	zst->zst_cs = cs;
293 	zst->zst_swflags = cf->cf_flags;	/* softcar, etc. */
294 	zst->zst_hwflags = args->hwflags;
295 	dev = makedev(zs_major, tty_unit);
296 
297 	if (zst->zst_swflags)
298 		printf(" flags 0x%x", zst->zst_swflags);
299 
300 	/*
301 	 * Check whether we serve as a console device.
302 	 * XXX - split console input/output channels aren't
303 	 *	 supported yet on /dev/console
304 	 */
305 	i = o = NULL;
306 	if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_INPUT) != 0) {
307 		i = "input";
308 		if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
309 			args->consdev->cn_dev = dev;
310 			cn_tab->cn_pollc = args->consdev->cn_pollc;
311 			cn_tab->cn_getc = args->consdev->cn_getc;
312 		}
313 		cn_tab->cn_dev = dev;
314 		/* Set console magic to BREAK */
315 		cn_set_magic("\047\001");
316 	}
317 	if ((zst->zst_hwflags & ZS_HWFLAG_CONSOLE_OUTPUT) != 0) {
318 		o = "output";
319 		if ((args->hwflags & ZS_HWFLAG_USE_CONSDEV) != 0) {
320 			cn_tab->cn_putc = args->consdev->cn_putc;
321 		}
322 		cn_tab->cn_dev = dev;
323 	}
324 	if (i != NULL || o != NULL)
325 		printf(" (console %s)", i ? (o ? "i/o" : i) : o);
326 
327 #ifdef KGDB
328 	if (zs_check_kgdb(cs, dev)) {
329 		/*
330 		 * Allow kgdb to "take over" this port.  Returns true
331 		 * if this serial port is in-use by kgdb.
332 		 */
333 		printf(" (kgdb)\n");
334 		/*
335 		 * This is the kgdb port (exclusive use)
336 		 * so skip the normal attach code.
337 		 */
338 		return;
339 	}
340 #endif
341 	printf("\n");
342 
343 	tp = ttymalloc();
344 	tp->t_dev = dev;
345 	tp->t_oproc = zsstart;
346 	tp->t_param = zsparam;
347 	tp->t_hwiflow = zshwiflow;
348 	tty_attach(tp);
349 
350 	zst->zst_tty = tp;
351 	zst->zst_rbuf = malloc(zstty_rbuf_size << 1, M_DEVBUF, M_WAITOK);
352 	zst->zst_ebuf = zst->zst_rbuf + (zstty_rbuf_size << 1);
353 	/* Disable the high water mark. */
354 	zst->zst_r_hiwat = 0;
355 	zst->zst_r_lowat = 0;
356 	zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
357 	zst->zst_rbavail = zstty_rbuf_size;
358 
359 	/* if there are no enable/disable functions, assume the device
360 	   is always enabled */
361 	if (!cs->enable)
362 		cs->enabled = 1;
363 
364 	/*
365 	 * Hardware init
366 	 */
367 	if (ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
368 		/* Call zsparam similar to open. */
369 		struct termios t;
370 
371 		/* Wait a while for previous console output to complete */
372 		DELAY(10000);
373 
374 		/* Setup the "new" parameters in t. */
375 		t.c_ispeed = 0;
376 		t.c_ospeed = cs->cs_defspeed;
377 		t.c_cflag = cs->cs_defcflag;
378 
379 		s = splzs();
380 
381 		/*
382 		 * Turn on receiver and status interrupts.
383 		 * We defer the actual write of the register to zsparam(),
384 		 * but we must make sure status interrupts are turned on by
385 		 * the time zsparam() reads the initial rr0 state.
386 		 */
387 		SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
388 
389 		splx(s);
390 
391 		/* Make sure zsparam will see changes. */
392 		tp->t_ospeed = 0;
393 		(void) zsparam(tp, &t);
394 
395 		s = splzs();
396 
397 		/* Make sure DTR is on now. */
398 		zs_modem(zst, 1);
399 
400 		splx(s);
401 	} else if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_NORESET)) {
402 		/* Not the console; may need reset. */
403 		int reset;
404 
405 		reset = (channel == 0) ? ZSWR9_A_RESET : ZSWR9_B_RESET;
406 
407 		s = splzs();
408 
409 		zs_write_reg(cs, 9, reset);
410 
411 		/* Will raise DTR in open. */
412 		zs_modem(zst, 0);
413 
414 		splx(s);
415 	}
416 }
417 
418 
419 /*
420  * Return pointer to our tty.
421  */
422 struct tty *
423 zstty(dev)
424 	dev_t dev;
425 {
426 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
427 
428 	return (zst->zst_tty);
429 }
430 
431 
432 void
433 zs_shutdown(zst)
434 	struct zstty_softc *zst;
435 {
436 	struct zs_chanstate *cs = zst->zst_cs;
437 	struct tty *tp = zst->zst_tty;
438 	int s;
439 
440 	s = splzs();
441 
442 	/* If we were asserting flow control, then deassert it. */
443 	SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
444 	zs_hwiflow(zst);
445 
446 	/* Clear any break condition set with TIOCSBRK. */
447 	zs_break(cs, 0);
448 
449 	/* Turn off PPS capture on last close. */
450 	zst->zst_ppsmask = 0;
451 	zst->ppsparam.mode = 0;
452 
453 	/*
454 	 * Hang up if necessary.  Wait a bit, so the other side has time to
455 	 * notice even if we immediately open the port again.
456 	 */
457 	if (ISSET(tp->t_cflag, HUPCL)) {
458 		zs_modem(zst, 0);
459 		(void) tsleep(cs, TTIPRI, ttclos, hz);
460 	}
461 
462 	/* Turn off interrupts if not the console. */
463 	if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
464 		CLR(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
465 		cs->cs_creg[1] = cs->cs_preg[1];
466 		zs_write_reg(cs, 1, cs->cs_creg[1]);
467 	}
468 
469 	/* Call the power management hook. */
470 	if (cs->disable) {
471 #ifdef DIAGNOSTIC
472 		if (!cs->enabled)
473 			panic("zs_shutdown: not enabled?");
474 #endif
475 		(*cs->disable)(zst->zst_cs);
476 	}
477 
478 	splx(s);
479 }
480 
481 /*
482  * Open a zs serial (tty) port.
483  */
484 int
485 zsopen(dev, flags, mode, p)
486 	dev_t dev;
487 	int flags;
488 	int mode;
489 	struct proc *p;
490 {
491 	struct zstty_softc *zst;
492 	struct zs_chanstate *cs;
493 	struct tty *tp;
494 	int s, s2;
495 	int error;
496 
497 	zst = device_lookup(&zstty_cd, ZSUNIT(dev));
498 	if (zst == NULL)
499 		return (ENXIO);
500 
501 	tp = zst->zst_tty;
502 	cs = zst->zst_cs;
503 
504 	/* If KGDB took the line, then tp==NULL */
505 	if (tp == NULL)
506 		return (EBUSY);
507 
508 	if (ISSET(tp->t_state, TS_ISOPEN) &&
509 	    ISSET(tp->t_state, TS_XCLUDE) &&
510 	    p->p_ucred->cr_uid != 0)
511 		return (EBUSY);
512 
513 	s = spltty();
514 
515 	/*
516 	 * Do the following iff this is a first open.
517 	 */
518 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
519 		struct termios t;
520 
521 		tp->t_dev = dev;
522 
523 		/* Call the power management hook. */
524 		if (cs->enable) {
525 			if ((*cs->enable)(cs)) {
526 				splx(s);
527 				printf("%s: device enable failed\n",
528 			       	zst->zst_dev.dv_xname);
529 				return (EIO);
530 			}
531 		}
532 
533 		/*
534 		 * Initialize the termios status to the defaults.  Add in the
535 		 * sticky bits from TIOCSFLAGS.
536 		 */
537 		t.c_ispeed = 0;
538 		t.c_ospeed = cs->cs_defspeed;
539 		t.c_cflag = cs->cs_defcflag;
540 		if (ISSET(zst->zst_swflags, TIOCFLAG_CLOCAL))
541 			SET(t.c_cflag, CLOCAL);
542 		if (ISSET(zst->zst_swflags, TIOCFLAG_CRTSCTS))
543 			SET(t.c_cflag, CRTSCTS);
544 		if (ISSET(zst->zst_swflags, TIOCFLAG_CDTRCTS))
545 			SET(t.c_cflag, CDTRCTS);
546 		if (ISSET(zst->zst_swflags, TIOCFLAG_MDMBUF))
547 			SET(t.c_cflag, MDMBUF);
548 
549 		s2 = splzs();
550 
551 		/*
552 		 * Turn on receiver and status interrupts.
553 		 * We defer the actual write of the register to zsparam(),
554 		 * but we must make sure status interrupts are turned on by
555 		 * the time zsparam() reads the initial rr0 state.
556 		 */
557 		SET(cs->cs_preg[1], ZSWR1_RIE | ZSWR1_SIE);
558 
559 		/* Clear PPS capture state on first open. */
560 		zst->zst_ppsmask = 0;
561 		zst->ppsparam.mode = 0;
562 
563 		splx(s2);
564 
565 		/* Make sure zsparam will see changes. */
566 		tp->t_ospeed = 0;
567 		(void) zsparam(tp, &t);
568 
569 		/*
570 		 * Note: zsparam has done: cflag, ispeed, ospeed
571 		 * so we just need to do: iflag, oflag, lflag, cc
572 		 * For "raw" mode, just leave all zeros.
573 		 */
574 		if (!ISSET(zst->zst_hwflags, ZS_HWFLAG_RAW)) {
575 			tp->t_iflag = TTYDEF_IFLAG;
576 			tp->t_oflag = TTYDEF_OFLAG;
577 			tp->t_lflag = TTYDEF_LFLAG;
578 		} else {
579 			tp->t_iflag = 0;
580 			tp->t_oflag = 0;
581 			tp->t_lflag = 0;
582 		}
583 		ttychars(tp);
584 		ttsetwater(tp);
585 
586 		s2 = splzs();
587 
588 		/*
589 		 * Turn on DTR.  We must always do this, even if carrier is not
590 		 * present, because otherwise we'd have to use TIOCSDTR
591 		 * immediately after setting CLOCAL, which applications do not
592 		 * expect.  We always assert DTR while the device is open
593 		 * unless explicitly requested to deassert it.
594 		 */
595 		zs_modem(zst, 1);
596 
597 		/* Clear the input ring, and unblock. */
598 		zst->zst_rbget = zst->zst_rbput = zst->zst_rbuf;
599 		zst->zst_rbavail = zstty_rbuf_size;
600 		zs_iflush(cs);
601 		CLR(zst->zst_rx_flags, RX_ANY_BLOCK);
602 		zs_hwiflow(zst);
603 
604 		splx(s2);
605 	}
606 
607 	splx(s);
608 
609 	error = ttyopen(tp, ZSDIALOUT(dev), ISSET(flags, O_NONBLOCK));
610 	if (error)
611 		goto bad;
612 
613 	error = (*tp->t_linesw->l_open)(dev, tp);
614 	if (error)
615 		goto bad;
616 
617 	return (0);
618 
619 bad:
620 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
621 		/*
622 		 * We failed to open the device, and nobody else had it opened.
623 		 * Clean up the state as appropriate.
624 		 */
625 		zs_shutdown(zst);
626 	}
627 
628 	return (error);
629 }
630 
631 /*
632  * Close a zs serial port.
633  */
634 int
635 zsclose(dev, flags, mode, p)
636 	dev_t dev;
637 	int flags;
638 	int mode;
639 	struct proc *p;
640 {
641 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
642 	struct tty *tp = zst->zst_tty;
643 
644 	/* XXX This is for cons.c. */
645 	if (!ISSET(tp->t_state, TS_ISOPEN))
646 		return 0;
647 
648 	(*tp->t_linesw->l_close)(tp, flags);
649 	ttyclose(tp);
650 
651 	if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
652 		/*
653 		 * Although we got a last close, the device may still be in
654 		 * use; e.g. if this was the dialout node, and there are still
655 		 * processes waiting for carrier on the non-dialout node.
656 		 */
657 		zs_shutdown(zst);
658 	}
659 
660 	return (0);
661 }
662 
663 /*
664  * Read/write zs serial port.
665  */
666 int
667 zsread(dev, uio, flags)
668 	dev_t dev;
669 	struct uio *uio;
670 	int flags;
671 {
672 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
673 	struct tty *tp = zst->zst_tty;
674 
675 	return ((*tp->t_linesw->l_read)(tp, uio, flags));
676 }
677 
678 int
679 zswrite(dev, uio, flags)
680 	dev_t dev;
681 	struct uio *uio;
682 	int flags;
683 {
684 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
685 	struct tty *tp = zst->zst_tty;
686 
687 	return ((*tp->t_linesw->l_write)(tp, uio, flags));
688 }
689 
690 int
691 zspoll(dev, events, p)
692 	dev_t dev;
693 	int events;
694 	struct proc *p;
695 {
696 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
697 	struct tty *tp = zst->zst_tty;
698 
699 	return ((*tp->t_linesw->l_poll)(tp, events, p));
700 }
701 
702 int
703 zsioctl(dev, cmd, data, flag, p)
704 	dev_t dev;
705 	u_long cmd;
706 	caddr_t data;
707 	int flag;
708 	struct proc *p;
709 {
710 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(dev));
711 	struct zs_chanstate *cs = zst->zst_cs;
712 	struct tty *tp = zst->zst_tty;
713 	int error;
714 	int s;
715 
716 	error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, p);
717 	if (error >= 0)
718 		return (error);
719 
720 	error = ttioctl(tp, cmd, data, flag, p);
721 	if (error >= 0)
722 		return (error);
723 
724 #ifdef	ZS_MD_IOCTL
725 	error = ZS_MD_IOCTL;
726 	if (error >= 0)
727 		return (error);
728 #endif	/* ZS_MD_IOCTL */
729 
730 	error = 0;
731 
732 	s = splzs();
733 
734 	switch (cmd) {
735 	case TIOCSBRK:
736 		zs_break(cs, 1);
737 		break;
738 
739 	case TIOCCBRK:
740 		zs_break(cs, 0);
741 		break;
742 
743 	case TIOCGFLAGS:
744 		*(int *)data = zst->zst_swflags;
745 		break;
746 
747 	case TIOCSFLAGS:
748 		error = suser(p->p_ucred, &p->p_acflag);
749 		if (error)
750 			break;
751 		zst->zst_swflags = *(int *)data;
752 		break;
753 
754 	case TIOCSDTR:
755 		zs_modem(zst, 1);
756 		break;
757 
758 	case TIOCCDTR:
759 		zs_modem(zst, 0);
760 		break;
761 
762 	case TIOCMSET:
763 	case TIOCMBIS:
764 	case TIOCMBIC:
765 		tiocm_to_zs(zst, cmd, *(int *)data);
766 		break;
767 
768 	case TIOCMGET:
769 		*(int *)data = zs_to_tiocm(zst);
770 		break;
771 
772 	case PPS_IOC_CREATE:
773 		break;
774 
775 	case PPS_IOC_DESTROY:
776 		break;
777 
778 	case PPS_IOC_GETPARAMS: {
779 		pps_params_t *pp;
780 		pp = (pps_params_t *)data;
781 		*pp = zst->ppsparam;
782 		break;
783 	}
784 
785 	case PPS_IOC_SETPARAMS: {
786 		pps_params_t *pp;
787 		int mode;
788 		if (cs->cs_rr0_pps == 0) {
789 			error = EINVAL;
790 			break;
791 		}
792 		pp = (pps_params_t *)data;
793 		if (pp->mode & ~zsppscap) {
794 			error = EINVAL;
795 			break;
796 		}
797 		zst->ppsparam = *pp;
798 		/*
799 		 * compute masks from user-specified timestamp state.
800 		 */
801 		mode = zst->ppsparam.mode;
802 #ifdef	PPS_SYNC
803 		if (mode & PPS_HARDPPSONASSERT) {
804 			mode |= PPS_CAPTUREASSERT;
805 			/* XXX revoke any previous HARDPPS source */
806 		}
807 		if (mode & PPS_HARDPPSONCLEAR) {
808 			mode |= PPS_CAPTURECLEAR;
809 			/* XXX revoke any previous HARDPPS source */
810 		}
811 #endif	/* PPS_SYNC */
812 		switch (mode & PPS_CAPTUREBOTH) {
813 		case 0:
814 			zst->zst_ppsmask = 0;
815 			break;
816 
817 		case PPS_CAPTUREASSERT:
818 			zst->zst_ppsmask = ZSRR0_DCD;
819 			zst->zst_ppsassert = ZSRR0_DCD;
820 			zst->zst_ppsclear = -1;
821 			break;
822 
823 		case PPS_CAPTURECLEAR:
824 			zst->zst_ppsmask = ZSRR0_DCD;
825 			zst->zst_ppsassert = -1;
826 			zst->zst_ppsclear = 0;
827 			break;
828 
829 		case PPS_CAPTUREBOTH:
830 			zst->zst_ppsmask = ZSRR0_DCD;
831 			zst->zst_ppsassert = ZSRR0_DCD;
832 			zst->zst_ppsclear = 0;
833 			break;
834 
835 		default:
836 			error = EINVAL;
837 			break;
838 		}
839 
840 		/*
841 		 * Now update interrupts.
842 		 */
843 		zs_maskintr(zst);
844 		/*
845 		 * If nothing is being transmitted, set up new current values,
846 		 * else mark them as pending.
847 		 */
848 		if (!cs->cs_heldchange) {
849 			if (zst->zst_tx_busy) {
850 				zst->zst_heldtbc = zst->zst_tbc;
851 				zst->zst_tbc = 0;
852 				cs->cs_heldchange = 1;
853 			} else
854 				zs_loadchannelregs(cs);
855 		}
856 
857 		break;
858 	}
859 
860 	case PPS_IOC_GETCAP:
861 		*(int *)data = zsppscap;
862 		break;
863 
864 	case PPS_IOC_FETCH: {
865 		pps_info_t *pi;
866 		pi = (pps_info_t *)data;
867 		*pi = zst->ppsinfo;
868 		break;
869 	}
870 
871 	case TIOCDCDTIMESTAMP:	/* XXX old, overloaded  API used by xntpd v3 */
872 		if (cs->cs_rr0_pps == 0) {
873 			error = EINVAL;
874 			break;
875 		}
876 		/*
877 		 * Some GPS clocks models use the falling rather than
878 		 * rising edge as the on-the-second signal.
879 		 * The old API has no way to specify PPS polarity.
880 		 */
881 		zst->zst_ppsmask = ZSRR0_DCD;
882 #ifndef	PPS_TRAILING_EDGE
883 		zst->zst_ppsassert = ZSRR0_DCD;
884 		zst->zst_ppsclear = -1;
885 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
886 			&zst->ppsinfo.assert_timestamp);
887 #else
888 		zst->zst_ppsassert = -1;
889 		zst->zst_ppsclear = 01;
890 		TIMESPEC_TO_TIMEVAL((struct timeval *)data,
891 			&zst->ppsinfo.clear_timestamp);
892 #endif
893 		/*
894 		 * Now update interrupts.
895 		 */
896 		zs_maskintr(zst);
897 		/*
898 		 * If nothing is being transmitted, set up new current values,
899 		 * else mark them as pending.
900 		 */
901 		if (!cs->cs_heldchange) {
902 			if (zst->zst_tx_busy) {
903 				zst->zst_heldtbc = zst->zst_tbc;
904 				zst->zst_tbc = 0;
905 				cs->cs_heldchange = 1;
906 			} else
907 				zs_loadchannelregs(cs);
908 		}
909 
910 		break;
911 
912 	default:
913 		error = ENOTTY;
914 		break;
915 	}
916 
917 	splx(s);
918 
919 	return (error);
920 }
921 
922 /*
923  * Start or restart transmission.
924  */
925 static void
926 zsstart(tp)
927 	struct tty *tp;
928 {
929 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
930 	struct zs_chanstate *cs = zst->zst_cs;
931 	int s;
932 
933 	s = spltty();
934 	if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
935 		goto out;
936 	if (zst->zst_tx_stopped)
937 		goto out;
938 
939 	if (tp->t_outq.c_cc <= tp->t_lowat) {
940 		if (ISSET(tp->t_state, TS_ASLEEP)) {
941 			CLR(tp->t_state, TS_ASLEEP);
942 			wakeup((caddr_t)&tp->t_outq);
943 		}
944 		selwakeup(&tp->t_wsel);
945 		if (tp->t_outq.c_cc == 0)
946 			goto out;
947 	}
948 
949 	/* Grab the first contiguous region of buffer space. */
950 	{
951 		u_char *tba;
952 		int tbc;
953 
954 		tba = tp->t_outq.c_cf;
955 		tbc = ndqb(&tp->t_outq, 0);
956 
957 		(void) splzs();
958 
959 		zst->zst_tba = tba;
960 		zst->zst_tbc = tbc;
961 	}
962 
963 	SET(tp->t_state, TS_BUSY);
964 	zst->zst_tx_busy = 1;
965 
966 	/* Enable transmit completion interrupts if necessary. */
967 	if (!ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
968 		SET(cs->cs_preg[1], ZSWR1_TIE);
969 		cs->cs_creg[1] = cs->cs_preg[1];
970 		zs_write_reg(cs, 1, cs->cs_creg[1]);
971 	}
972 
973 	/* Output the first character of the contiguous buffer. */
974 	{
975 		zs_write_data(cs, *zst->zst_tba);
976 		zst->zst_tbc--;
977 		zst->zst_tba++;
978 	}
979 out:
980 	splx(s);
981 	return;
982 }
983 
984 /*
985  * Stop output, e.g., for ^S or output flush.
986  */
987 void
988 zsstop(tp, flag)
989 	struct tty *tp;
990 	int flag;
991 {
992 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
993 	int s;
994 
995 	s = splzs();
996 	if (ISSET(tp->t_state, TS_BUSY)) {
997 		/* Stop transmitting at the next chunk. */
998 		zst->zst_tbc = 0;
999 		zst->zst_heldtbc = 0;
1000 		if (!ISSET(tp->t_state, TS_TTSTOP))
1001 			SET(tp->t_state, TS_FLUSH);
1002 	}
1003 	splx(s);
1004 }
1005 
1006 /*
1007  * Set ZS tty parameters from termios.
1008  * XXX - Should just copy the whole termios after
1009  * making sure all the changes could be done.
1010  */
1011 static int
1012 zsparam(tp, t)
1013 	struct tty *tp;
1014 	struct termios *t;
1015 {
1016 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1017 	struct zs_chanstate *cs = zst->zst_cs;
1018 	int ospeed, cflag;
1019 	u_char tmp3, tmp4, tmp5;
1020 	int s, error;
1021 
1022 	ospeed = t->c_ospeed;
1023 	cflag = t->c_cflag;
1024 
1025 	/* Check requested parameters. */
1026 	if (ospeed < 0)
1027 		return (EINVAL);
1028 	if (t->c_ispeed && t->c_ispeed != ospeed)
1029 		return (EINVAL);
1030 
1031 	/*
1032 	 * For the console, always force CLOCAL and !HUPCL, so that the port
1033 	 * is always active.
1034 	 */
1035 	if (ISSET(zst->zst_swflags, TIOCFLAG_SOFTCAR) ||
1036 	    ISSET(zst->zst_hwflags, ZS_HWFLAG_CONSOLE)) {
1037 		SET(cflag, CLOCAL);
1038 		CLR(cflag, HUPCL);
1039 	}
1040 
1041 	/*
1042 	 * Only whack the UART when params change.
1043 	 * Some callers need to clear tp->t_ospeed
1044 	 * to make sure initialization gets done.
1045 	 */
1046 	if (tp->t_ospeed == ospeed &&
1047 	    tp->t_cflag == cflag)
1048 		return (0);
1049 
1050 	/*
1051 	 * Call MD functions to deal with changed
1052 	 * clock modes or H/W flow control modes.
1053 	 * The BRG divisor is set now. (reg 12,13)
1054 	 */
1055 	error = zs_set_speed(cs, ospeed);
1056 	if (error)
1057 		return (error);
1058 	error = zs_set_modes(cs, cflag);
1059 	if (error)
1060 		return (error);
1061 
1062 	/*
1063 	 * Block interrupts so that state will not
1064 	 * be altered until we are done setting it up.
1065 	 *
1066 	 * Initial values in cs_preg are set before
1067 	 * our attach routine is called.  The master
1068 	 * interrupt enable is handled by zsc.c
1069 	 *
1070 	 */
1071 	s = splzs();
1072 
1073 	/*
1074 	 * Recalculate which status ints to enable.
1075 	 */
1076 	zs_maskintr(zst);
1077 
1078 	/* Recompute character size bits. */
1079 	tmp3 = cs->cs_preg[3];
1080 	tmp5 = cs->cs_preg[5];
1081 	CLR(tmp3, ZSWR3_RXSIZE);
1082 	CLR(tmp5, ZSWR5_TXSIZE);
1083 	switch (ISSET(cflag, CSIZE)) {
1084 	case CS5:
1085 		SET(tmp3, ZSWR3_RX_5);
1086 		SET(tmp5, ZSWR5_TX_5);
1087 		break;
1088 	case CS6:
1089 		SET(tmp3, ZSWR3_RX_6);
1090 		SET(tmp5, ZSWR5_TX_6);
1091 		break;
1092 	case CS7:
1093 		SET(tmp3, ZSWR3_RX_7);
1094 		SET(tmp5, ZSWR5_TX_7);
1095 		break;
1096 	case CS8:
1097 		SET(tmp3, ZSWR3_RX_8);
1098 		SET(tmp5, ZSWR5_TX_8);
1099 		break;
1100 	}
1101 	cs->cs_preg[3] = tmp3;
1102 	cs->cs_preg[5] = tmp5;
1103 
1104 	/*
1105 	 * Recompute the stop bits and parity bits.  Note that
1106 	 * zs_set_speed() may have set clock selection bits etc.
1107 	 * in wr4, so those must preserved.
1108 	 */
1109 	tmp4 = cs->cs_preg[4];
1110 	CLR(tmp4, ZSWR4_SBMASK | ZSWR4_PARMASK);
1111 	if (ISSET(cflag, CSTOPB))
1112 		SET(tmp4, ZSWR4_TWOSB);
1113 	else
1114 		SET(tmp4, ZSWR4_ONESB);
1115 	if (!ISSET(cflag, PARODD))
1116 		SET(tmp4, ZSWR4_EVENP);
1117 	if (ISSET(cflag, PARENB))
1118 		SET(tmp4, ZSWR4_PARENB);
1119 	cs->cs_preg[4] = tmp4;
1120 
1121 	/* And copy to tty. */
1122 	tp->t_ispeed = 0;
1123 	tp->t_ospeed = ospeed;
1124 	tp->t_cflag = cflag;
1125 
1126 	/*
1127 	 * If nothing is being transmitted, set up new current values,
1128 	 * else mark them as pending.
1129 	 */
1130 	if (!cs->cs_heldchange) {
1131 		if (zst->zst_tx_busy) {
1132 			zst->zst_heldtbc = zst->zst_tbc;
1133 			zst->zst_tbc = 0;
1134 			cs->cs_heldchange = 1;
1135 		} else
1136 			zs_loadchannelregs(cs);
1137 	}
1138 
1139 	/*
1140 	 * If hardware flow control is disabled, turn off the buffer water
1141 	 * marks and unblock any soft flow control state.  Otherwise, enable
1142 	 * the water marks.
1143 	 */
1144 	if (!ISSET(cflag, CHWFLOW)) {
1145 		zst->zst_r_hiwat = 0;
1146 		zst->zst_r_lowat = 0;
1147 		if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1148 			CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1149 			zst->zst_rx_ready = 1;
1150 			cs->cs_softreq = 1;
1151 		}
1152 		if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
1153 			CLR(zst->zst_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
1154 			zs_hwiflow(zst);
1155 		}
1156 	} else {
1157 		zst->zst_r_hiwat = zstty_rbuf_hiwat;
1158 		zst->zst_r_lowat = zstty_rbuf_lowat;
1159 	}
1160 
1161 	/*
1162 	 * Force a recheck of the hardware carrier and flow control status,
1163 	 * since we may have changed which bits we're looking at.
1164 	 */
1165 	zstty_stint(cs, 1);
1166 
1167 	splx(s);
1168 
1169 	/*
1170 	 * If hardware flow control is disabled, unblock any hard flow control
1171 	 * state.
1172 	 */
1173 	if (!ISSET(cflag, CHWFLOW)) {
1174 		if (zst->zst_tx_stopped) {
1175 			zst->zst_tx_stopped = 0;
1176 			zsstart(tp);
1177 		}
1178 	}
1179 
1180 	zstty_softint(cs);
1181 
1182 	return (0);
1183 }
1184 
1185 /*
1186  * Compute interupt enable bits and set in the pending bits. Called both
1187  * in zsparam() and when PPS (pulse per second timing) state changes.
1188  * Must be called at splzs().
1189  */
1190 static void
1191 zs_maskintr(zst)
1192 	struct zstty_softc *zst;
1193 {
1194 	struct zs_chanstate *cs = zst->zst_cs;
1195 	int tmp15;
1196 
1197 	cs->cs_rr0_mask = cs->cs_rr0_cts | cs->cs_rr0_dcd;
1198 	if (zst->zst_ppsmask != 0)
1199 		cs->cs_rr0_mask |= cs->cs_rr0_pps;
1200 	tmp15 = cs->cs_preg[15];
1201 	if (ISSET(cs->cs_rr0_mask, ZSRR0_DCD))
1202 		SET(tmp15, ZSWR15_DCD_IE);
1203 	else
1204 		CLR(tmp15, ZSWR15_DCD_IE);
1205 	if (ISSET(cs->cs_rr0_mask, ZSRR0_CTS))
1206 		SET(tmp15, ZSWR15_CTS_IE);
1207 	else
1208 		CLR(tmp15, ZSWR15_CTS_IE);
1209 	cs->cs_preg[15] = tmp15;
1210 }
1211 
1212 
1213 /*
1214  * Raise or lower modem control (DTR/RTS) signals.  If a character is
1215  * in transmission, the change is deferred.
1216  */
1217 static void
1218 zs_modem(zst, onoff)
1219 	struct zstty_softc *zst;
1220 	int onoff;
1221 {
1222 	struct zs_chanstate *cs = zst->zst_cs;
1223 
1224 	if (cs->cs_wr5_dtr == 0)
1225 		return;
1226 
1227 	if (onoff)
1228 		SET(cs->cs_preg[5], cs->cs_wr5_dtr);
1229 	else
1230 		CLR(cs->cs_preg[5], cs->cs_wr5_dtr);
1231 
1232 	if (!cs->cs_heldchange) {
1233 		if (zst->zst_tx_busy) {
1234 			zst->zst_heldtbc = zst->zst_tbc;
1235 			zst->zst_tbc = 0;
1236 			cs->cs_heldchange = 1;
1237 		} else
1238 			zs_loadchannelregs(cs);
1239 	}
1240 }
1241 
1242 static void
1243 tiocm_to_zs(zst, how, ttybits)
1244 	struct zstty_softc *zst;
1245 	u_long how;
1246 	int ttybits;
1247 {
1248 	struct zs_chanstate *cs = zst->zst_cs;
1249 	u_char zsbits;
1250 
1251 	zsbits = 0;
1252 	if (ISSET(ttybits, TIOCM_DTR))
1253 		SET(zsbits, ZSWR5_DTR);
1254 	if (ISSET(ttybits, TIOCM_RTS))
1255 		SET(zsbits, ZSWR5_RTS);
1256 
1257 	switch (how) {
1258 	case TIOCMBIC:
1259 		CLR(cs->cs_preg[5], zsbits);
1260 		break;
1261 
1262 	case TIOCMBIS:
1263 		SET(cs->cs_preg[5], zsbits);
1264 		break;
1265 
1266 	case TIOCMSET:
1267 		CLR(cs->cs_preg[5], ZSWR5_RTS | ZSWR5_DTR);
1268 		SET(cs->cs_preg[5], zsbits);
1269 		break;
1270 	}
1271 
1272 	if (!cs->cs_heldchange) {
1273 		if (zst->zst_tx_busy) {
1274 			zst->zst_heldtbc = zst->zst_tbc;
1275 			zst->zst_tbc = 0;
1276 			cs->cs_heldchange = 1;
1277 		} else
1278 			zs_loadchannelregs(cs);
1279 	}
1280 }
1281 
1282 static int
1283 zs_to_tiocm(zst)
1284 	struct zstty_softc *zst;
1285 {
1286 	struct zs_chanstate *cs = zst->zst_cs;
1287 	u_char zsbits;
1288 	int ttybits = 0;
1289 
1290 	zsbits = cs->cs_preg[5];
1291 	if (ISSET(zsbits, ZSWR5_DTR))
1292 		SET(ttybits, TIOCM_DTR);
1293 	if (ISSET(zsbits, ZSWR5_RTS))
1294 		SET(ttybits, TIOCM_RTS);
1295 
1296 	zsbits = cs->cs_rr0;
1297 	if (ISSET(zsbits, ZSRR0_DCD))
1298 		SET(ttybits, TIOCM_CD);
1299 	if (ISSET(zsbits, ZSRR0_CTS))
1300 		SET(ttybits, TIOCM_CTS);
1301 
1302 	return (ttybits);
1303 }
1304 
1305 /*
1306  * Try to block or unblock input using hardware flow-control.
1307  * This is called by kern/tty.c if MDMBUF|CRTSCTS is set, and
1308  * if this function returns non-zero, the TS_TBLOCK flag will
1309  * be set or cleared according to the "block" arg passed.
1310  */
1311 int
1312 zshwiflow(tp, block)
1313 	struct tty *tp;
1314 	int block;
1315 {
1316 	struct zstty_softc *zst = device_lookup(&zstty_cd, ZSUNIT(tp->t_dev));
1317 	struct zs_chanstate *cs = zst->zst_cs;
1318 	int s;
1319 
1320 	if (cs->cs_wr5_rts == 0)
1321 		return (0);
1322 
1323 	s = splzs();
1324 	if (block) {
1325 		if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1326 			SET(zst->zst_rx_flags, RX_TTY_BLOCKED);
1327 			zs_hwiflow(zst);
1328 		}
1329 	} else {
1330 		if (ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1331 			CLR(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1332 			zst->zst_rx_ready = 1;
1333 			cs->cs_softreq = 1;
1334 		}
1335 		if (ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1336 			CLR(zst->zst_rx_flags, RX_TTY_BLOCKED);
1337 			zs_hwiflow(zst);
1338 		}
1339 	}
1340 	splx(s);
1341 	return (1);
1342 }
1343 
1344 /*
1345  * Internal version of zshwiflow
1346  * called at splzs
1347  */
1348 static void
1349 zs_hwiflow(zst)
1350 	struct zstty_softc *zst;
1351 {
1352 	struct zs_chanstate *cs = zst->zst_cs;
1353 
1354 	if (cs->cs_wr5_rts == 0)
1355 		return;
1356 
1357 	if (ISSET(zst->zst_rx_flags, RX_ANY_BLOCK)) {
1358 		CLR(cs->cs_preg[5], cs->cs_wr5_rts);
1359 		CLR(cs->cs_creg[5], cs->cs_wr5_rts);
1360 	} else {
1361 		SET(cs->cs_preg[5], cs->cs_wr5_rts);
1362 		SET(cs->cs_creg[5], cs->cs_wr5_rts);
1363 	}
1364 	zs_write_reg(cs, 5, cs->cs_creg[5]);
1365 }
1366 
1367 
1368 /****************************************************************
1369  * Interface to the lower layer (zscc)
1370  ****************************************************************/
1371 
1372 #define	integrate	static inline
1373 integrate void zstty_rxsoft __P((struct zstty_softc *, struct tty *));
1374 integrate void zstty_txsoft __P((struct zstty_softc *, struct tty *));
1375 integrate void zstty_stsoft __P((struct zstty_softc *, struct tty *));
1376 static void zstty_diag __P((void *));
1377 
1378 /*
1379  * receiver ready interrupt.
1380  * called at splzs
1381  */
1382 static void
1383 zstty_rxint(cs)
1384 	struct zs_chanstate *cs;
1385 {
1386 	struct zstty_softc *zst = cs->cs_private;
1387 	u_char *put, *end;
1388 	u_int cc;
1389 	u_char rr0, rr1, c;
1390 
1391 	end = zst->zst_ebuf;
1392 	put = zst->zst_rbput;
1393 	cc = zst->zst_rbavail;
1394 
1395 	while (cc > 0) {
1396 		/*
1397 		 * First read the status, because reading the received char
1398 		 * destroys the status of this char.
1399 		 */
1400 		rr1 = zs_read_reg(cs, 1);
1401 		c = zs_read_data(cs);
1402 
1403 		if (ISSET(rr1, ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
1404 			/* Clear the receive error. */
1405 			zs_write_csr(cs, ZSWR0_RESET_ERRORS);
1406 		}
1407 
1408 		cn_check_magic(zst->zst_tty->t_dev, c, zstty_cnm_state);
1409 		put[0] = c;
1410 		put[1] = rr1;
1411 		put += 2;
1412 		if (put >= end)
1413 			put = zst->zst_rbuf;
1414 		cc--;
1415 
1416 		rr0 = zs_read_csr(cs);
1417 		if (!ISSET(rr0, ZSRR0_RX_READY))
1418 			break;
1419 	}
1420 
1421 	/*
1422 	 * Current string of incoming characters ended because
1423 	 * no more data was available or we ran out of space.
1424 	 * Schedule a receive event if any data was received.
1425 	 * If we're out of space, turn off receive interrupts.
1426 	 */
1427 	zst->zst_rbput = put;
1428 	zst->zst_rbavail = cc;
1429 	if (!ISSET(zst->zst_rx_flags, RX_TTY_OVERFLOWED)) {
1430 		zst->zst_rx_ready = 1;
1431 		cs->cs_softreq = 1;
1432 	}
1433 
1434 	/*
1435 	 * See if we are in danger of overflowing a buffer. If
1436 	 * so, use hardware flow control to ease the pressure.
1437 	 */
1438 	if (!ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED) &&
1439 	    cc < zst->zst_r_hiwat) {
1440 		SET(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1441 		zs_hwiflow(zst);
1442 	}
1443 
1444 	/*
1445 	 * If we're out of space, disable receive interrupts
1446 	 * until the queue has drained a bit.
1447 	 */
1448 	if (!cc) {
1449 		SET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1450 		CLR(cs->cs_preg[1], ZSWR1_RIE);
1451 		cs->cs_creg[1] = cs->cs_preg[1];
1452 		zs_write_reg(cs, 1, cs->cs_creg[1]);
1453 	}
1454 
1455 #if 0
1456 	printf("%xH%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1457 #endif
1458 }
1459 
1460 /*
1461  * transmitter ready interrupt.  (splzs)
1462  */
1463 static void
1464 zstty_txint(cs)
1465 	struct zs_chanstate *cs;
1466 {
1467 	struct zstty_softc *zst = cs->cs_private;
1468 
1469 	/*
1470 	 * If we've delayed a parameter change, do it now, and restart
1471 	 * output.
1472 	 */
1473 	if (cs->cs_heldchange) {
1474 		zs_loadchannelregs(cs);
1475 		cs->cs_heldchange = 0;
1476 		zst->zst_tbc = zst->zst_heldtbc;
1477 		zst->zst_heldtbc = 0;
1478 	}
1479 
1480 	/* Output the next character in the buffer, if any. */
1481 	if (zst->zst_tbc > 0) {
1482 		zs_write_data(cs, *zst->zst_tba);
1483 		zst->zst_tbc--;
1484 		zst->zst_tba++;
1485 	} else {
1486 		/* Disable transmit completion interrupts if necessary. */
1487 		if (ISSET(cs->cs_preg[1], ZSWR1_TIE)) {
1488 			CLR(cs->cs_preg[1], ZSWR1_TIE);
1489 			cs->cs_creg[1] = cs->cs_preg[1];
1490 			zs_write_reg(cs, 1, cs->cs_creg[1]);
1491 		}
1492 		if (zst->zst_tx_busy) {
1493 			zst->zst_tx_busy = 0;
1494 			zst->zst_tx_done = 1;
1495 			cs->cs_softreq = 1;
1496 		}
1497 	}
1498 }
1499 
1500 /*
1501  * status change interrupt.  (splzs)
1502  */
1503 static void
1504 zstty_stint(cs, force)
1505 	struct zs_chanstate *cs;
1506 	int force;
1507 {
1508 	struct zstty_softc *zst = cs->cs_private;
1509 	u_char rr0, delta;
1510 
1511 	rr0 = zs_read_csr(cs);
1512 	zs_write_csr(cs, ZSWR0_RESET_STATUS);
1513 
1514 	/*
1515 	 * Check here for console break, so that we can abort
1516 	 * even when interrupts are locking up the machine.
1517 	 */
1518 	if (ISSET(rr0, ZSRR0_BREAK))
1519 		cn_check_magic(zst->zst_tty->t_dev, CNC_BREAK, zstty_cnm_state);
1520 
1521 	if (!force)
1522 		delta = rr0 ^ cs->cs_rr0;
1523 	else
1524 		delta = cs->cs_rr0_mask;
1525 	cs->cs_rr0 = rr0;
1526 
1527 	if (ISSET(delta, cs->cs_rr0_mask)) {
1528 		SET(cs->cs_rr0_delta, delta);
1529 
1530 		/*
1531 		 * Pulse-per-second clock signal on edge of DCD?
1532 		 */
1533 		if (ISSET(delta, zst->zst_ppsmask)) {
1534 			struct timeval tv;
1535 			if (ISSET(rr0, zst->zst_ppsmask) == zst->zst_ppsassert) {
1536 				/* XXX nanotime() */
1537 				microtime(&tv);
1538 				TIMEVAL_TO_TIMESPEC(&tv,
1539 					&zst->ppsinfo.assert_timestamp);
1540 				if (zst->ppsparam.mode & PPS_OFFSETASSERT) {
1541 					timespecadd(&zst->ppsinfo.assert_timestamp,
1542 					    &zst->ppsparam.assert_offset,
1543 					    &zst->ppsinfo.assert_timestamp);
1544 				}
1545 
1546 #ifdef PPS_SYNC
1547 				if (zst->ppsparam.mode & PPS_HARDPPSONASSERT)
1548 					hardpps(&tv, tv.tv_usec);
1549 #endif
1550 				zst->ppsinfo.assert_sequence++;
1551 				zst->ppsinfo.current_mode = zst->ppsparam.mode;
1552 			} else if (ISSET(rr0, zst->zst_ppsmask) ==
1553 						zst->zst_ppsclear) {
1554 				/* XXX nanotime() */
1555 				microtime(&tv);
1556 				TIMEVAL_TO_TIMESPEC(&tv,
1557 					&zst->ppsinfo.clear_timestamp);
1558 				if (zst->ppsparam.mode & PPS_OFFSETCLEAR) {
1559 					timespecadd(&zst->ppsinfo.clear_timestamp,
1560 						&zst->ppsparam.clear_offset,
1561 						&zst->ppsinfo.clear_timestamp);
1562 				}
1563 
1564 #ifdef PPS_SYNC
1565 				if (zst->ppsparam.mode & PPS_HARDPPSONCLEAR)
1566 					hardpps(&tv, tv.tv_usec);
1567 #endif
1568 				zst->ppsinfo.clear_sequence++;
1569 				zst->ppsinfo.current_mode = zst->ppsparam.mode;
1570 			}
1571 		}
1572 
1573 		/*
1574 		 * Stop output immediately if we lose the output
1575 		 * flow control signal or carrier detect.
1576 		 */
1577 		if (ISSET(~rr0, cs->cs_rr0_mask)) {
1578 			zst->zst_tbc = 0;
1579 			zst->zst_heldtbc = 0;
1580 		}
1581 
1582 		zst->zst_st_check = 1;
1583 		cs->cs_softreq = 1;
1584 	}
1585 }
1586 
1587 void
1588 zstty_diag(arg)
1589 	void *arg;
1590 {
1591 	struct zstty_softc *zst = arg;
1592 	int overflows, floods;
1593 	int s;
1594 
1595 	s = splzs();
1596 	overflows = zst->zst_overflows;
1597 	zst->zst_overflows = 0;
1598 	floods = zst->zst_floods;
1599 	zst->zst_floods = 0;
1600 	zst->zst_errors = 0;
1601 	splx(s);
1602 
1603 	log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1604 	    zst->zst_dev.dv_xname,
1605 	    overflows, overflows == 1 ? "" : "s",
1606 	    floods, floods == 1 ? "" : "s");
1607 }
1608 
1609 integrate void
1610 zstty_rxsoft(zst, tp)
1611 	struct zstty_softc *zst;
1612 	struct tty *tp;
1613 {
1614 	struct zs_chanstate *cs = zst->zst_cs;
1615 	int (*rint) __P((int c, struct tty *tp)) = tp->t_linesw->l_rint;
1616 	u_char *get, *end;
1617 	u_int cc, scc;
1618 	u_char rr1;
1619 	int code;
1620 	int s;
1621 
1622 	end = zst->zst_ebuf;
1623 	get = zst->zst_rbget;
1624 	scc = cc = zstty_rbuf_size - zst->zst_rbavail;
1625 
1626 	if (cc == zstty_rbuf_size) {
1627 		zst->zst_floods++;
1628 		if (zst->zst_errors++ == 0)
1629 			callout_reset(&zst->zst_diag_ch, 60 * hz,
1630 			    zstty_diag, zst);
1631 	}
1632 
1633 	/* If not yet open, drop the entire buffer content here */
1634 	if (!ISSET(tp->t_state, TS_ISOPEN)) {
1635 		get += cc << 1;
1636 		if (get >= end)
1637 			get -= zstty_rbuf_size << 1;
1638 		cc = 0;
1639 	}
1640 	while (cc) {
1641 		code = get[0];
1642 		rr1 = get[1];
1643 		if (ISSET(rr1, ZSRR1_DO | ZSRR1_FE | ZSRR1_PE)) {
1644 			if (ISSET(rr1, ZSRR1_DO)) {
1645 				zst->zst_overflows++;
1646 				if (zst->zst_errors++ == 0)
1647 					callout_reset(&zst->zst_diag_ch,
1648 					    60 * hz, zstty_diag, zst);
1649 			}
1650 			if (ISSET(rr1, ZSRR1_FE))
1651 				SET(code, TTY_FE);
1652 			if (ISSET(rr1, ZSRR1_PE))
1653 				SET(code, TTY_PE);
1654 		}
1655 		if ((*rint)(code, tp) == -1) {
1656 			/*
1657 			 * The line discipline's buffer is out of space.
1658 			 */
1659 			if (!ISSET(zst->zst_rx_flags, RX_TTY_BLOCKED)) {
1660 				/*
1661 				 * We're either not using flow control, or the
1662 				 * line discipline didn't tell us to block for
1663 				 * some reason.  Either way, we have no way to
1664 				 * know when there's more space available, so
1665 				 * just drop the rest of the data.
1666 				 */
1667 				get += cc << 1;
1668 				if (get >= end)
1669 					get -= zstty_rbuf_size << 1;
1670 				cc = 0;
1671 			} else {
1672 				/*
1673 				 * Don't schedule any more receive processing
1674 				 * until the line discipline tells us there's
1675 				 * space available (through comhwiflow()).
1676 				 * Leave the rest of the data in the input
1677 				 * buffer.
1678 				 */
1679 				SET(zst->zst_rx_flags, RX_TTY_OVERFLOWED);
1680 			}
1681 			break;
1682 		}
1683 		get += 2;
1684 		if (get >= end)
1685 			get = zst->zst_rbuf;
1686 		cc--;
1687 	}
1688 
1689 	if (cc != scc) {
1690 		zst->zst_rbget = get;
1691 		s = splzs();
1692 		cc = zst->zst_rbavail += scc - cc;
1693 		/* Buffers should be ok again, release possible block. */
1694 		if (cc >= zst->zst_r_lowat) {
1695 			if (ISSET(zst->zst_rx_flags, RX_IBUF_OVERFLOWED)) {
1696 				CLR(zst->zst_rx_flags, RX_IBUF_OVERFLOWED);
1697 				SET(cs->cs_preg[1], ZSWR1_RIE);
1698 				cs->cs_creg[1] = cs->cs_preg[1];
1699 				zs_write_reg(cs, 1, cs->cs_creg[1]);
1700 			}
1701 			if (ISSET(zst->zst_rx_flags, RX_IBUF_BLOCKED)) {
1702 				CLR(zst->zst_rx_flags, RX_IBUF_BLOCKED);
1703 				zs_hwiflow(zst);
1704 			}
1705 		}
1706 		splx(s);
1707 	}
1708 
1709 #if 0
1710 	printf("%xS%04d\n", zst->zst_rx_flags, zst->zst_rbavail);
1711 #endif
1712 }
1713 
1714 integrate void
1715 zstty_txsoft(zst, tp)
1716 	struct zstty_softc *zst;
1717 	struct tty *tp;
1718 {
1719 
1720 	CLR(tp->t_state, TS_BUSY);
1721 	if (ISSET(tp->t_state, TS_FLUSH))
1722 		CLR(tp->t_state, TS_FLUSH);
1723 	else
1724 		ndflush(&tp->t_outq, (int)(zst->zst_tba - tp->t_outq.c_cf));
1725 	(*tp->t_linesw->l_start)(tp);
1726 }
1727 
1728 integrate void
1729 zstty_stsoft(zst, tp)
1730 	struct zstty_softc *zst;
1731 	struct tty *tp;
1732 {
1733 	struct zs_chanstate *cs = zst->zst_cs;
1734 	u_char rr0, delta;
1735 	int s;
1736 
1737 	s = splzs();
1738 	rr0 = cs->cs_rr0;
1739 	delta = cs->cs_rr0_delta;
1740 	cs->cs_rr0_delta = 0;
1741 	splx(s);
1742 
1743 	if (ISSET(delta, cs->cs_rr0_dcd)) {
1744 		/*
1745 		 * Inform the tty layer that carrier detect changed.
1746 		 */
1747 		(void) (*tp->t_linesw->l_modem)(tp, ISSET(rr0, ZSRR0_DCD));
1748 	}
1749 
1750 	if (ISSET(delta, cs->cs_rr0_cts)) {
1751 		/* Block or unblock output according to flow control. */
1752 		if (ISSET(rr0, cs->cs_rr0_cts)) {
1753 			zst->zst_tx_stopped = 0;
1754 			(*tp->t_linesw->l_start)(tp);
1755 		} else {
1756 			zst->zst_tx_stopped = 1;
1757 		}
1758 	}
1759 }
1760 
1761 /*
1762  * Software interrupt.  Called at zssoft
1763  *
1764  * The main job to be done here is to empty the input ring
1765  * by passing its contents up to the tty layer.  The ring is
1766  * always emptied during this operation, therefore the ring
1767  * must not be larger than the space after "high water" in
1768  * the tty layer, or the tty layer might drop our input.
1769  *
1770  * Note: an "input blockage" condition is assumed to exist if
1771  * EITHER the TS_TBLOCK flag or zst_rx_blocked flag is set.
1772  */
1773 static void
1774 zstty_softint(cs)
1775 	struct zs_chanstate *cs;
1776 {
1777 	struct zstty_softc *zst = cs->cs_private;
1778 	struct tty *tp = zst->zst_tty;
1779 	int s;
1780 
1781 	s = spltty();
1782 
1783 	if (zst->zst_rx_ready) {
1784 		zst->zst_rx_ready = 0;
1785 		zstty_rxsoft(zst, tp);
1786 	}
1787 
1788 	if (zst->zst_st_check) {
1789 		zst->zst_st_check = 0;
1790 		zstty_stsoft(zst, tp);
1791 	}
1792 
1793 	if (zst->zst_tx_done) {
1794 		zst->zst_tx_done = 0;
1795 		zstty_txsoft(zst, tp);
1796 	}
1797 
1798 	splx(s);
1799 }
1800 
1801 struct zsops zsops_tty = {
1802 	zstty_rxint,	/* receive char available */
1803 	zstty_stint,	/* external/status */
1804 	zstty_txint,	/* xmit buffer empty */
1805 	zstty_softint,	/* process software interrupt */
1806 };
1807