1 /* $NetBSD: wi.c,v 1.154 2004/02/10 01:08:05 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998, 1999 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. 37 * 38 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu> 39 * Electrical Engineering Department 40 * Columbia University, New York City 41 */ 42 43 /* 44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN 45 * from Lucent. Unlike the older cards, the new ones are programmed 46 * entirely via a firmware-driven controller called the Hermes. 47 * Unfortunately, Lucent will not release the Hermes programming manual 48 * without an NDA (if at all). What they do release is an API library 49 * called the HCF (Hardware Control Functions) which is supposed to 50 * do the device-specific operations of a device driver for you. The 51 * publically available version of the HCF library (the 'HCF Light') is 52 * a) extremely gross, b) lacks certain features, particularly support 53 * for 802.11 frames, and c) is contaminated by the GNU Public License. 54 * 55 * This driver does not use the HCF or HCF Light at all. Instead, it 56 * programs the Hermes controller directly, using information gleaned 57 * from the HCF Light code and corresponding documentation. 58 * 59 * This driver supports both the PCMCIA and ISA versions of the 60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really 61 * anything of the sort: it's actually a PCMCIA bridge adapter 62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is 63 * inserted. Consequently, you need to use the pccard support for 64 * both the ISA and PCMCIA adapters. 65 */ 66 67 /* 68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the 69 * Oslo IETF plenary meeting. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.154 2004/02/10 01:08:05 dyoung Exp $"); 74 75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ 76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ 77 78 #include "bpfilter.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/callout.h> 83 #include <sys/device.h> 84 #include <sys/socket.h> 85 #include <sys/mbuf.h> 86 #include <sys/ioctl.h> 87 #include <sys/kernel.h> /* for hz */ 88 #include <sys/proc.h> 89 90 #include <net/if.h> 91 #include <net/if_dl.h> 92 #include <net/if_llc.h> 93 #include <net/if_media.h> 94 #include <net/if_ether.h> 95 96 #include <net80211/ieee80211_var.h> 97 #include <net80211/ieee80211_compat.h> 98 #include <net80211/ieee80211_ioctl.h> 99 #include <net80211/ieee80211_radiotap.h> 100 #include <net80211/ieee80211_rssadapt.h> 101 102 #if NBPFILTER > 0 103 #include <net/bpf.h> 104 #include <net/bpfdesc.h> 105 #endif 106 107 #include <machine/bus.h> 108 109 #include <dev/ic/wi_ieee.h> 110 #include <dev/ic/wireg.h> 111 #include <dev/ic/wivar.h> 112 113 static int wi_init(struct ifnet *); 114 static void wi_stop(struct ifnet *, int); 115 static void wi_start(struct ifnet *); 116 static int wi_reset(struct wi_softc *); 117 static void wi_watchdog(struct ifnet *); 118 static int wi_ioctl(struct ifnet *, u_long, caddr_t); 119 static int wi_media_change(struct ifnet *); 120 static void wi_media_status(struct ifnet *, struct ifmediareq *); 121 122 static struct ieee80211_node *wi_node_alloc(struct ieee80211com *); 123 static void wi_node_copy(struct ieee80211com *, struct ieee80211_node *, 124 const struct ieee80211_node *); 125 static void wi_node_free(struct ieee80211com *, struct ieee80211_node *); 126 127 static void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 128 static void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 129 static void wi_choose_rate(struct ieee80211com *, struct ieee80211_node *, 130 struct ieee80211_frame *, u_int); 131 static void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *); 132 static void wi_rssadapt_updatestats(void *); 133 134 static void wi_rx_intr(struct wi_softc *); 135 static void wi_txalloc_intr(struct wi_softc *); 136 static void wi_tx_intr(struct wi_softc *); 137 static void wi_tx_ex_intr(struct wi_softc *); 138 static void wi_info_intr(struct wi_softc *); 139 140 static int wi_get_cfg(struct ifnet *, u_long, caddr_t); 141 static int wi_set_cfg(struct ifnet *, u_long, caddr_t); 142 static int wi_cfg_txrate(struct wi_softc *); 143 static int wi_write_txrate(struct wi_softc *, int); 144 static int wi_write_wep(struct wi_softc *); 145 static int wi_write_multi(struct wi_softc *); 146 static int wi_alloc_fid(struct wi_softc *, int, int *); 147 static void wi_read_nicid(struct wi_softc *); 148 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); 149 150 static int wi_cmd(struct wi_softc *, int, int, int, int); 151 static int wi_seek_bap(struct wi_softc *, int, int); 152 static int wi_read_bap(struct wi_softc *, int, int, void *, int); 153 static int wi_write_bap(struct wi_softc *, int, int, void *, int); 154 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); 155 static int wi_read_rid(struct wi_softc *, int, void *, int *); 156 static int wi_write_rid(struct wi_softc *, int, void *, int); 157 158 static int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); 159 static int wi_set_tim(struct ieee80211com *, int, int); 160 161 static int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); 162 static void wi_scan_result(struct wi_softc *, int, int); 163 164 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); 165 166 static inline int 167 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) 168 { 169 170 val = htole16(val); 171 return wi_write_rid(sc, rid, &val, sizeof(val)); 172 } 173 174 static struct timeval lasttxerror; /* time of last tx error msg */ 175 static int curtxeps = 0; /* current tx error msgs/sec */ 176 static int wi_txerate = 0; /* tx error rate: max msgs/sec */ 177 178 #ifdef WI_DEBUG 179 int wi_debug = 0; 180 181 #define DPRINTF(X) if (wi_debug) printf X 182 #define DPRINTF2(X) if (wi_debug > 1) printf X 183 #define IFF_DUMPPKTS(_ifp) \ 184 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 185 #else 186 #define DPRINTF(X) 187 #define DPRINTF2(X) 188 #define IFF_DUMPPKTS(_ifp) 0 189 #endif 190 191 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO) 192 193 struct wi_card_ident 194 wi_card_ident[] = { 195 /* CARD_ID CARD_NAME FIRM_TYPE */ 196 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, 197 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, 198 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, 199 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, 200 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, 201 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, 202 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, 203 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, 204 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, 205 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, 206 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, 207 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, 208 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 209 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 210 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 211 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 212 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 213 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 214 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 215 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 216 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 217 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 218 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 219 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 220 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 221 { 0, NULL, 0 }, 222 }; 223 224 int 225 wi_attach(struct wi_softc *sc) 226 { 227 struct ieee80211com *ic = &sc->sc_ic; 228 struct ifnet *ifp = &ic->ic_if; 229 int chan, nrate, buflen; 230 u_int16_t val, chanavail; 231 struct { 232 u_int16_t nrates; 233 char rates[IEEE80211_RATE_SIZE]; 234 } ratebuf; 235 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 236 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 237 }; 238 int s; 239 240 s = splnet(); 241 242 /* Make sure interrupts are disabled. */ 243 CSR_WRITE_2(sc, WI_INT_EN, 0); 244 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 245 246 sc->sc_invalid = 0; 247 248 /* Reset the NIC. */ 249 if (wi_reset(sc) != 0) { 250 sc->sc_invalid = 1; 251 splx(s); 252 return 1; 253 } 254 255 buflen = IEEE80211_ADDR_LEN; 256 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 || 257 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { 258 printf(" could not get mac address, attach failed\n"); 259 splx(s); 260 return 1; 261 } 262 263 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); 264 265 /* Read NIC identification */ 266 wi_read_nicid(sc); 267 268 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 269 ifp->if_softc = sc; 270 ifp->if_start = wi_start; 271 ifp->if_ioctl = wi_ioctl; 272 ifp->if_watchdog = wi_watchdog; 273 ifp->if_init = wi_init; 274 ifp->if_stop = wi_stop; 275 ifp->if_flags = 276 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; 277 IFQ_SET_READY(&ifp->if_snd); 278 279 ic->ic_phytype = IEEE80211_T_DS; 280 ic->ic_opmode = IEEE80211_M_STA; 281 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_AHDEMO; 282 ic->ic_state = IEEE80211_S_INIT; 283 ic->ic_max_aid = WI_MAX_AID; 284 285 /* Find available channel */ 286 buflen = sizeof(chanavail); 287 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &chanavail, &buflen) != 0) 288 chanavail = htole16(0x1fff); /* assume 1-11 */ 289 for (chan = 16; chan > 0; chan--) { 290 if (!isset((u_int8_t*)&chanavail, chan - 1)) 291 continue; 292 ic->ic_ibss_chan = &ic->ic_channels[chan]; 293 ic->ic_channels[chan].ic_freq = 294 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 295 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 296 } 297 298 /* Find default IBSS channel */ 299 buflen = sizeof(val); 300 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0) { 301 chan = le16toh(val); 302 if (isset((u_int8_t*)&chanavail, chan - 1)) 303 ic->ic_ibss_chan = &ic->ic_channels[chan]; 304 } 305 if (ic->ic_ibss_chan == NULL) 306 panic("%s: no available channel\n", sc->sc_dev.dv_xname); 307 308 if (sc->sc_firmware_type == WI_LUCENT) { 309 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; 310 } else { 311 buflen = sizeof(val); 312 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && 313 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) 314 sc->sc_dbm_offset = le16toh(val); 315 else 316 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; 317 } 318 319 /* 320 * Set flags based on firmware version. 321 */ 322 switch (sc->sc_firmware_type) { 323 case WI_LUCENT: 324 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 325 #ifdef WI_HERMES_AUTOINC_WAR 326 /* XXX: not confirmed, but never seen for recent firmware */ 327 if (sc->sc_sta_firmware_ver < 40000) { 328 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; 329 } 330 #endif 331 /* RSS rate-adaptation is known to cause STA f/w 332 * 8.42.1 to lock up. STA f/w 8.70.1 and 7.28.1 333 * appear to work. I suspect that most versions 334 * will work. 335 */ 336 switch (sc->sc_sta_firmware_ver) { 337 case 0x084201: 338 sc->sc_flags &= ~WI_FLAGS_RSSADAPTSTA; 339 break; 340 case 0x087001: 341 case 0x072801: 342 default: 343 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 344 break; 345 } 346 if (sc->sc_sta_firmware_ver >= 60000) 347 sc->sc_flags |= WI_FLAGS_HAS_MOR; 348 if (sc->sc_sta_firmware_ver >= 60006) { 349 ic->ic_caps |= IEEE80211_C_IBSS; 350 ic->ic_caps |= IEEE80211_C_MONITOR; 351 } 352 sc->sc_ibss_port = 1; 353 break; 354 355 case WI_INTERSIL: 356 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 357 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; 358 sc->sc_flags |= WI_FLAGS_HAS_ROAMING; 359 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 360 if (sc->sc_sta_firmware_ver > 10101) 361 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; 362 if (sc->sc_sta_firmware_ver >= 800) { 363 if (sc->sc_sta_firmware_ver != 10402) 364 ic->ic_caps |= IEEE80211_C_HOSTAP; 365 ic->ic_caps |= IEEE80211_C_IBSS; 366 ic->ic_caps |= IEEE80211_C_MONITOR; 367 } 368 sc->sc_ibss_port = 0; 369 sc->sc_alt_retry = 2; 370 break; 371 372 case WI_SYMBOL: 373 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 374 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; 375 if (sc->sc_sta_firmware_ver >= 20000) 376 ic->ic_caps |= IEEE80211_C_IBSS; 377 sc->sc_ibss_port = 4; 378 break; 379 } 380 381 /* 382 * Find out if we support WEP on this card. 383 */ 384 buflen = sizeof(val); 385 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 && 386 val != htole16(0)) 387 ic->ic_caps |= IEEE80211_C_WEP; 388 389 /* Find supported rates. */ 390 buflen = sizeof(ratebuf); 391 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0) { 392 nrate = le16toh(ratebuf.nrates); 393 if (nrate > IEEE80211_RATE_SIZE) 394 nrate = IEEE80211_RATE_SIZE; 395 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates, 396 &ratebuf.rates[0], nrate); 397 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; 398 } 399 buflen = sizeof(val); 400 401 sc->sc_max_datalen = 2304; 402 sc->sc_rts_thresh = 2347; 403 sc->sc_frag_thresh = 2346; 404 sc->sc_system_scale = 1; 405 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; 406 sc->sc_roaming_mode = 1; 407 408 callout_init(&sc->sc_rssadapt_ch); 409 410 /* 411 * Call MI attach routines. 412 */ 413 if_attach(ifp); 414 ieee80211_ifattach(ifp); 415 416 sc->sc_newstate = ic->ic_newstate; 417 ic->ic_newstate = wi_newstate; 418 ic->ic_node_alloc = wi_node_alloc; 419 ic->ic_node_free = wi_node_free; 420 ic->ic_node_copy = wi_node_copy; 421 ic->ic_set_tim = wi_set_tim; 422 423 ieee80211_media_init(ifp, wi_media_change, wi_media_status); 424 425 #if NBPFILTER > 0 426 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 427 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 428 #endif 429 430 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 431 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu); 432 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT; 433 434 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 435 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu); 436 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT; 437 438 /* Attach is successful. */ 439 sc->sc_attached = 1; 440 441 splx(s); 442 return 0; 443 } 444 445 int 446 wi_detach(struct wi_softc *sc) 447 { 448 struct ifnet *ifp = &sc->sc_ic.ic_if; 449 int s; 450 451 if (!sc->sc_attached) 452 return 0; 453 454 s = splnet(); 455 456 sc->sc_invalid = 1; 457 wi_stop(ifp, 1); 458 459 /* Delete all remaining media. */ 460 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY); 461 462 ieee80211_ifdetach(ifp); 463 if_detach(ifp); 464 splx(s); 465 return 0; 466 } 467 468 #ifdef __NetBSD__ 469 int 470 wi_activate(struct device *self, enum devact act) 471 { 472 struct wi_softc *sc = (struct wi_softc *)self; 473 int rv = 0, s; 474 475 s = splnet(); 476 switch (act) { 477 case DVACT_ACTIVATE: 478 rv = EOPNOTSUPP; 479 break; 480 481 case DVACT_DEACTIVATE: 482 if_deactivate(&sc->sc_ic.ic_if); 483 break; 484 } 485 splx(s); 486 return rv; 487 } 488 489 void 490 wi_power(struct wi_softc *sc, int why) 491 { 492 struct ifnet *ifp = &sc->sc_ic.ic_if; 493 int s; 494 495 s = splnet(); 496 switch (why) { 497 case PWR_SUSPEND: 498 case PWR_STANDBY: 499 wi_stop(ifp, 1); 500 break; 501 case PWR_RESUME: 502 if (ifp->if_flags & IFF_UP) { 503 wi_init(ifp); 504 (void)wi_intr(sc); 505 } 506 break; 507 case PWR_SOFTSUSPEND: 508 case PWR_SOFTSTANDBY: 509 case PWR_SOFTRESUME: 510 break; 511 } 512 splx(s); 513 } 514 #endif /* __NetBSD__ */ 515 516 void 517 wi_shutdown(struct wi_softc *sc) 518 { 519 struct ifnet *ifp = &sc->sc_ic.ic_if; 520 521 if (sc->sc_attached) 522 wi_stop(ifp, 1); 523 } 524 525 int 526 wi_intr(void *arg) 527 { 528 int i; 529 struct wi_softc *sc = arg; 530 struct ifnet *ifp = &sc->sc_ic.ic_if; 531 u_int16_t status; 532 533 if (sc->sc_enabled == 0 || 534 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || 535 (ifp->if_flags & IFF_RUNNING) == 0) 536 return 0; 537 538 if ((ifp->if_flags & IFF_UP) == 0) { 539 CSR_WRITE_2(sc, WI_INT_EN, 0); 540 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 541 return 1; 542 } 543 544 /* This is superfluous on Prism, but Lucent breaks if we 545 * do not disable interrupts. 546 */ 547 CSR_WRITE_2(sc, WI_INT_EN, 0); 548 549 /* maximum 10 loops per interrupt */ 550 for (i = 0; i < 10; i++) { 551 /* 552 * Only believe a status bit when we enter wi_intr, or when 553 * the bit was "off" the last time through the loop. This is 554 * my strategy to avoid racing the hardware/firmware if I 555 * can re-read the event status register more quickly than 556 * it is updated. 557 */ 558 status = CSR_READ_2(sc, WI_EVENT_STAT); 559 if ((status & WI_INTRS) == 0) 560 break; 561 562 if (status & WI_EV_RX) 563 wi_rx_intr(sc); 564 565 if (status & WI_EV_ALLOC) 566 wi_txalloc_intr(sc); 567 568 if (status & WI_EV_TX) 569 wi_tx_intr(sc); 570 571 if (status & WI_EV_TX_EXC) 572 wi_tx_ex_intr(sc); 573 574 if (status & WI_EV_INFO) 575 wi_info_intr(sc); 576 577 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 578 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && 579 !IFQ_IS_EMPTY(&ifp->if_snd)) 580 wi_start(ifp); 581 } 582 583 /* re-enable interrupts */ 584 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 585 586 return 1; 587 } 588 589 #define arraylen(a) (sizeof(a) / sizeof((a)[0])) 590 591 static void 592 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree) 593 { 594 int i; 595 SLIST_INIT(rssdfree); 596 for (i = 0; i < arraylen(*rssd); i++) { 597 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next); 598 } 599 } 600 601 static void 602 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS], 603 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE]) 604 { 605 struct ieee80211_node *ni; 606 int i; 607 for (i = 0; i < arraylen(*rssd); i++) { 608 ni = (*rssd)[i].rd_desc.id_node; 609 (*rssd)[i].rd_desc.id_node = NULL; 610 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0) 611 printf("%s: cleaning outstanding rssadapt " 612 "descriptor for %s\n", 613 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr)); 614 if (ni != NULL && ni != ic->ic_bss) 615 ieee80211_free_node(ic, ni); 616 } 617 memset(*txpending, 0, sizeof(*txpending)); 618 wi_rssdescs_init(rssd, rssdfree); 619 } 620 621 static int 622 wi_init(struct ifnet *ifp) 623 { 624 struct wi_softc *sc = ifp->if_softc; 625 struct ieee80211com *ic = &sc->sc_ic; 626 struct wi_joinreq join; 627 int i; 628 int error = 0, wasenabled; 629 630 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled)); 631 wasenabled = sc->sc_enabled; 632 if (!sc->sc_enabled) { 633 if ((error = (*sc->sc_enable)(sc)) != 0) 634 goto out; 635 sc->sc_enabled = 1; 636 } else 637 wi_stop(ifp, 0); 638 639 /* Symbol firmware cannot be initialized more than once */ 640 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) 641 if ((error = wi_reset(sc)) != 0) 642 goto out; 643 644 /* common 802.11 configuration */ 645 ic->ic_flags &= ~IEEE80211_F_IBSSON; 646 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 647 switch (ic->ic_opmode) { 648 case IEEE80211_M_STA: 649 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); 650 break; 651 case IEEE80211_M_IBSS: 652 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); 653 ic->ic_flags |= IEEE80211_F_IBSSON; 654 sc->sc_syn_timer = 5; 655 ifp->if_timer = 1; 656 break; 657 case IEEE80211_M_AHDEMO: 658 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 659 break; 660 case IEEE80211_M_HOSTAP: 661 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); 662 break; 663 case IEEE80211_M_MONITOR: 664 if (sc->sc_firmware_type == WI_LUCENT) 665 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 666 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0); 667 break; 668 } 669 670 /* Intersil interprets this RID as joining ESS even in IBSS mode */ 671 if (sc->sc_firmware_type == WI_LUCENT && 672 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0) 673 wi_write_val(sc, WI_RID_CREATE_IBSS, 1); 674 else 675 wi_write_val(sc, WI_RID_CREATE_IBSS, 0); 676 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); 677 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid, 678 ic->ic_des_esslen); 679 wi_write_val(sc, WI_RID_OWN_CHNL, 680 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 681 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen); 682 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 683 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); 684 wi_write_val(sc, WI_RID_PM_ENABLED, 685 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); 686 687 /* not yet common 802.11 configuration */ 688 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); 689 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh); 690 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) 691 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh); 692 693 /* driver specific 802.11 configuration */ 694 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) 695 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); 696 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) 697 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); 698 if (sc->sc_flags & WI_FLAGS_HAS_MOR) 699 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); 700 wi_cfg_txrate(sc); 701 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); 702 703 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 704 sc->sc_firmware_type == WI_INTERSIL) { 705 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval); 706 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */ 707 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */ 708 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1); 709 } 710 711 if (sc->sc_firmware_type == WI_INTERSIL) 712 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry); 713 714 /* 715 * Initialize promisc mode. 716 * Being in Host-AP mode causes a great 717 * deal of pain if promiscuous mode is set. 718 * Therefore we avoid confusing the firmware 719 * and always reset promisc mode in Host-AP 720 * mode. Host-AP sees all the packets anyway. 721 */ 722 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 723 (ifp->if_flags & IFF_PROMISC) != 0) { 724 wi_write_val(sc, WI_RID_PROMISC, 1); 725 } else { 726 wi_write_val(sc, WI_RID_PROMISC, 0); 727 } 728 729 /* Configure WEP. */ 730 if (ic->ic_caps & IEEE80211_C_WEP) 731 wi_write_wep(sc); 732 733 /* Set multicast filter. */ 734 wi_write_multi(sc); 735 736 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { 737 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); 738 if (sc->sc_firmware_type == WI_SYMBOL) 739 sc->sc_buflen = 1585; /* XXX */ 740 for (i = 0; i < WI_NTXBUF; i++) { 741 error = wi_alloc_fid(sc, sc->sc_buflen, 742 &sc->sc_txd[i].d_fid); 743 if (error) { 744 printf("%s: tx buffer allocation failed\n", 745 sc->sc_dev.dv_xname); 746 goto out; 747 } 748 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i, 749 sc->sc_txd[i].d_fid)); 750 sc->sc_txd[i].d_len = 0; 751 } 752 } 753 sc->sc_txcur = sc->sc_txnext = 0; 754 755 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree); 756 757 /* Enable desired port */ 758 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 759 ifp->if_flags |= IFF_RUNNING; 760 ifp->if_flags &= ~IFF_OACTIVE; 761 ic->ic_state = IEEE80211_S_INIT; 762 763 if (ic->ic_opmode == IEEE80211_M_AHDEMO || 764 ic->ic_opmode == IEEE80211_M_MONITOR || 765 ic->ic_opmode == IEEE80211_M_HOSTAP) 766 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 767 768 /* Enable interrupts */ 769 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 770 771 if (!wasenabled && 772 ic->ic_opmode == IEEE80211_M_HOSTAP && 773 sc->sc_firmware_type == WI_INTERSIL) { 774 /* XXX: some card need to be re-enabled for hostap */ 775 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); 776 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); 777 } 778 779 if (ic->ic_opmode == IEEE80211_M_STA && 780 ((ic->ic_flags & IEEE80211_F_DESBSSID) || 781 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { 782 memset(&join, 0, sizeof(join)); 783 if (ic->ic_flags & IEEE80211_F_DESBSSID) 784 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); 785 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) 786 join.wi_chan = 787 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan)); 788 /* Lucent firmware does not support the JOIN RID. */ 789 if (sc->sc_firmware_type != WI_LUCENT) 790 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); 791 } 792 793 out: 794 if (error) { 795 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 796 wi_stop(ifp, 0); 797 } 798 DPRINTF(("wi_init: return %d\n", error)); 799 return error; 800 } 801 802 static void 803 wi_stop(struct ifnet *ifp, int disable) 804 { 805 struct wi_softc *sc = ifp->if_softc; 806 struct ieee80211com *ic = &sc->sc_ic; 807 int s; 808 809 if (!sc->sc_enabled) 810 return; 811 812 s = splnet(); 813 814 DPRINTF(("wi_stop: disable %d\n", disable)); 815 816 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 817 if (!sc->sc_invalid) { 818 CSR_WRITE_2(sc, WI_INT_EN, 0); 819 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 820 } 821 822 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 823 &sc->sc_txpending); 824 825 sc->sc_tx_timer = 0; 826 sc->sc_scan_timer = 0; 827 sc->sc_syn_timer = 0; 828 sc->sc_false_syns = 0; 829 sc->sc_naps = 0; 830 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); 831 ifp->if_timer = 0; 832 833 if (disable) { 834 if (sc->sc_disable) 835 (*sc->sc_disable)(sc); 836 sc->sc_enabled = 0; 837 } 838 splx(s); 839 } 840 841 /* 842 * Choose a data rate for a packet len bytes long that suits the packet 843 * type and the wireless conditions. 844 * 845 * TBD Adapt fragmentation threshold. 846 */ 847 static void 848 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni, 849 struct ieee80211_frame *wh, u_int len) 850 { 851 struct wi_softc *sc = ic->ic_if.if_softc; 852 struct ieee80211_rssadapt *ra; 853 u_int16_t (*thrs)[IEEE80211_RATE_SIZE]; 854 struct wi_node *wn; 855 int flags = 0, i, rateidx = 0, s, thridx, top; 856 struct ieee80211_rateset *rs; 857 858 s = splnet(); 859 860 wn = (void*)ni; 861 ra = &wn->wn_rssadapt; 862 rs = &ni->ni_rates; 863 864 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) 865 flags |= IEEE80211_RATE_BASIC; 866 867 for (i = 0, top = IEEE80211_RSSADAPT_BKT0; 868 i < IEEE80211_RSSADAPT_BKTS; 869 i++, top <<= IEEE80211_RSSADAPT_BKTPOWER) { 870 thridx = i; 871 if (len <= top) 872 break; 873 } 874 875 thrs = &ra->ra_rate_thresh[thridx]; 876 877 if (ic->ic_fixed_rate != -1) { 878 if ((rs->rs_rates[ic->ic_fixed_rate] & flags) == flags) { 879 ni->ni_txrate = ic->ic_fixed_rate; 880 return; 881 } 882 flags |= IEEE80211_RATE_BASIC; 883 i = ic->ic_fixed_rate; 884 } else 885 i = rs->rs_nrates; 886 887 while (--i >= 0) { 888 rateidx = i; 889 if ((rs->rs_rates[i] & flags) != flags) 890 continue; 891 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 892 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0) 893 break; 894 if ((*thrs)[i] < ra->ra_avg_rssi) 895 break; 896 } 897 898 if (ic->ic_if.if_flags & IFF_DEBUG) 899 printf("%s: dst %s threshold[%d, %d.%d] %d < %d\n", 900 ic->ic_if.if_xname, ether_sprintf(wh->i_addr1), len, 901 (rs->rs_rates[rateidx] & IEEE80211_RATE_VAL) / 2, 902 (rs->rs_rates[rateidx] & IEEE80211_RATE_VAL) * 5 % 10, 903 (*thrs)[rateidx], ra->ra_avg_rssi); 904 if (ic->ic_opmode != IEEE80211_M_HOSTAP) { 905 /* choose the slowest pending rate so that we don't 906 * accidentally send a packet on the MAC's queue 907 * too fast. TBD find out if the MAC labels Tx 908 * packets w/ rate when enqueued or dequeued. 909 */ 910 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++); 911 ni->ni_txrate = i; 912 } else 913 ni->ni_txrate = rateidx; 914 splx(s); 915 return; 916 } 917 918 static void 919 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 920 { 921 struct wi_node *wn; 922 if (id->id_node == NULL) 923 return; 924 925 wn = (void*)id->id_node; 926 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id); 927 } 928 929 static void 930 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 931 { 932 struct ieee80211_node *ni; 933 struct wi_node *wn; 934 int s; 935 936 s = splnet(); 937 938 if ((ni = id->id_node) == NULL) { 939 DPRINTF(("wi_lower_rate: missing node\n")); 940 goto out; 941 } 942 943 wn = (void *)ni; 944 945 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id); 946 out: 947 splx(s); 948 return; 949 } 950 951 static void 952 wi_start(struct ifnet *ifp) 953 { 954 struct wi_softc *sc = ifp->if_softc; 955 struct ieee80211com *ic = &sc->sc_ic; 956 struct ieee80211_node *ni; 957 struct ieee80211_frame *wh; 958 struct ieee80211_rateset *rs; 959 struct wi_rssdesc *rd; 960 struct ieee80211_rssdesc *id; 961 struct mbuf *m0; 962 struct wi_frame frmhdr; 963 int cur, fid, off; 964 965 if (!sc->sc_enabled || sc->sc_invalid) 966 return; 967 if (sc->sc_flags & WI_FLAGS_OUTRANGE) 968 return; 969 970 memset(&frmhdr, 0, sizeof(frmhdr)); 971 cur = sc->sc_txnext; 972 for (;;) { 973 ni = ic->ic_bss; 974 if (!IF_IS_EMPTY(&ic->ic_mgtq)) { 975 if (sc->sc_txd[cur].d_len != 0 || 976 SLIST_EMPTY(&sc->sc_rssdfree)) { 977 ifp->if_flags |= IFF_OACTIVE; 978 break; 979 } 980 IF_DEQUEUE(&ic->ic_mgtq, m0); 981 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 982 (caddr_t)&frmhdr.wi_ehdr); 983 frmhdr.wi_ehdr.ether_type = 0; 984 wh = mtod(m0, struct ieee80211_frame *); 985 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 986 m0->m_pkthdr.rcvif = NULL; 987 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) { 988 struct llc *llc; 989 990 /* 991 * Should these packets be processed after the 992 * regular packets or before? Since they are being 993 * probed for, they are probably less time critical 994 * than other packets, but, on the other hand, 995 * we want the power saving nodes to go back to 996 * sleep as quickly as possible to save power... 997 */ 998 999 if (ic->ic_state != IEEE80211_S_RUN) 1000 break; 1001 1002 if (sc->sc_txd[cur].d_len != 0 || 1003 SLIST_EMPTY(&sc->sc_rssdfree)) { 1004 ifp->if_flags |= IFF_OACTIVE; 1005 break; 1006 } 1007 IF_DEQUEUE(&ic->ic_pwrsaveq, m0); 1008 wh = mtod(m0, struct ieee80211_frame *); 1009 llc = (struct llc *) (wh + 1); 1010 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 1011 (caddr_t)&frmhdr.wi_ehdr); 1012 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type; 1013 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1014 m0->m_pkthdr.rcvif = NULL; 1015 } else { 1016 if (ic->ic_state != IEEE80211_S_RUN) { 1017 break; 1018 } 1019 IFQ_POLL(&ifp->if_snd, m0); 1020 if (m0 == NULL) { 1021 break; 1022 } 1023 if (sc->sc_txd[cur].d_len != 0 || 1024 SLIST_EMPTY(&sc->sc_rssdfree)) { 1025 ifp->if_flags |= IFF_OACTIVE; 1026 break; 1027 } 1028 IFQ_DEQUEUE(&ifp->if_snd, m0); 1029 ifp->if_opackets++; 1030 m_copydata(m0, 0, ETHER_HDR_LEN, 1031 (caddr_t)&frmhdr.wi_ehdr); 1032 #if NBPFILTER > 0 1033 if (ifp->if_bpf) 1034 bpf_mtap(ifp->if_bpf, m0); 1035 #endif 1036 1037 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) { 1038 ifp->if_oerrors++; 1039 continue; 1040 } 1041 wh = mtod(m0, struct ieee80211_frame *); 1042 if (ic->ic_flags & IEEE80211_F_WEPON) 1043 wh->i_fc[1] |= IEEE80211_FC1_WEP; 1044 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1045 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1046 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1047 IEEE80211_FC0_TYPE_DATA) { 1048 if (ni->ni_associd == 0) { 1049 m_freem(m0); 1050 ifp->if_oerrors++; 1051 goto next; 1052 } 1053 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) { 1054 ieee80211_pwrsave(ic, ni, m0); 1055 continue; /* don't free node. */ 1056 } 1057 } 1058 } 1059 #if NBPFILTER > 0 1060 if (ic->ic_rawbpf) 1061 bpf_mtap(ic->ic_rawbpf, m0); 1062 #endif 1063 frmhdr.wi_tx_ctl = 1064 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK); 1065 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1066 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); 1067 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1068 (wh->i_fc[1] & IEEE80211_FC1_WEP)) { 1069 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) { 1070 ifp->if_oerrors++; 1071 goto next; 1072 } 1073 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); 1074 } 1075 1076 wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len); 1077 1078 #if NBPFILTER > 0 1079 if (sc->sc_drvbpf) { 1080 struct mbuf mb; 1081 1082 struct wi_tx_radiotap_header *tap = &sc->sc_txtap; 1083 1084 tap->wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1085 tap->wt_chan_freq = 1086 htole16(ic->ic_bss->ni_chan->ic_freq); 1087 tap->wt_chan_flags = 1088 htole16(ic->ic_bss->ni_chan->ic_flags); 1089 1090 /* TBD tap->wt_flags */ 1091 1092 M_COPY_PKTHDR(&mb, m0); 1093 mb.m_data = (caddr_t)tap; 1094 mb.m_len = tap->wt_ihdr.it_len; 1095 mb.m_next = m0; 1096 mb.m_pkthdr.len += mb.m_len; 1097 bpf_mtap(sc->sc_drvbpf, &mb); 1098 } 1099 #endif 1100 rs = &ni->ni_rates; 1101 rd = SLIST_FIRST(&sc->sc_rssdfree); 1102 id = &rd->rd_desc; 1103 id->id_len = m0->m_pkthdr.len; 1104 sc->sc_txd[cur].d_rate = id->id_rateidx = ni->ni_txrate; 1105 id->id_rssi = ni->ni_rssi; 1106 1107 frmhdr.wi_tx_idx = rd - sc->sc_rssd; 1108 1109 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1110 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[ni->ni_txrate] & 1111 IEEE80211_RATE_VAL); 1112 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) 1113 (void)wi_write_txrate(sc, rs->rs_rates[ni->ni_txrate]); 1114 1115 m_copydata(m0, 0, sizeof(struct ieee80211_frame), 1116 (caddr_t)&frmhdr.wi_whdr); 1117 m_adj(m0, sizeof(struct ieee80211_frame)); 1118 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); 1119 if (IFF_DUMPPKTS(ifp)) 1120 wi_dump_pkt(&frmhdr, ni, -1); 1121 fid = sc->sc_txd[cur].d_fid; 1122 off = sizeof(frmhdr); 1123 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 || 1124 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) { 1125 ifp->if_oerrors++; 1126 m_freem(m0); 1127 goto next; 1128 } 1129 m_freem(m0); 1130 sc->sc_txd[cur].d_len = off; 1131 if (sc->sc_txcur == cur) { 1132 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) { 1133 printf("%s: xmit failed\n", 1134 sc->sc_dev.dv_xname); 1135 sc->sc_txd[cur].d_len = 0; 1136 goto next; 1137 } 1138 sc->sc_txpending[ni->ni_txrate]++; 1139 sc->sc_tx_timer = 5; 1140 ifp->if_timer = 1; 1141 } 1142 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF; 1143 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next); 1144 id->id_node = ni; 1145 continue; 1146 next: 1147 if (ni != NULL && ni != ic->ic_bss) 1148 ieee80211_free_node(ic, ni); 1149 } 1150 } 1151 1152 1153 static int 1154 wi_reset(struct wi_softc *sc) 1155 { 1156 int i, error; 1157 1158 DPRINTF(("wi_reset\n")); 1159 1160 if (sc->sc_reset) 1161 (*sc->sc_reset)(sc); 1162 1163 error = 0; 1164 for (i = 0; i < 5; i++) { 1165 DELAY(20*1000); /* XXX: way too long! */ 1166 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) 1167 break; 1168 } 1169 if (error) { 1170 printf("%s: init failed\n", sc->sc_dev.dv_xname); 1171 return error; 1172 } 1173 CSR_WRITE_2(sc, WI_INT_EN, 0); 1174 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 1175 1176 /* Calibrate timer. */ 1177 wi_write_val(sc, WI_RID_TICK_TIME, 0); 1178 return 0; 1179 } 1180 1181 static void 1182 wi_watchdog(struct ifnet *ifp) 1183 { 1184 struct wi_softc *sc = ifp->if_softc; 1185 struct ieee80211com *ic = &sc->sc_ic; 1186 1187 ifp->if_timer = 0; 1188 if (!sc->sc_enabled) 1189 return; 1190 1191 if (sc->sc_tx_timer) { 1192 if (--sc->sc_tx_timer == 0) { 1193 printf("%s: device timeout\n", ifp->if_xname); 1194 ifp->if_oerrors++; 1195 wi_init(ifp); 1196 return; 1197 } 1198 ifp->if_timer = 1; 1199 } 1200 1201 if (sc->sc_scan_timer) { 1202 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && 1203 sc->sc_firmware_type == WI_INTERSIL) { 1204 DPRINTF(("wi_watchdog: inquire scan\n")); 1205 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 1206 } 1207 if (sc->sc_scan_timer) 1208 ifp->if_timer = 1; 1209 } 1210 1211 if (sc->sc_syn_timer) { 1212 if (--sc->sc_syn_timer == 0) { 1213 DPRINTF2(("%s: %d false syns\n", 1214 sc->sc_dev.dv_xname, sc->sc_false_syns)); 1215 sc->sc_false_syns = 0; 1216 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1217 sc->sc_syn_timer = 5; 1218 } 1219 ifp->if_timer = 1; 1220 } 1221 1222 /* TODO: rate control */ 1223 ieee80211_watchdog(ifp); 1224 } 1225 1226 static int 1227 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1228 { 1229 struct wi_softc *sc = ifp->if_softc; 1230 struct ieee80211com *ic = &sc->sc_ic; 1231 struct ifreq *ifr = (struct ifreq *)data; 1232 int s, error = 0; 1233 1234 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 1235 return ENXIO; 1236 1237 s = splnet(); 1238 1239 switch (cmd) { 1240 case SIOCSIFFLAGS: 1241 /* 1242 * Can't do promisc and hostap at the same time. If all that's 1243 * changing is the promisc flag, try to short-circuit a call to 1244 * wi_init() by just setting PROMISC in the hardware. 1245 */ 1246 if (ifp->if_flags & IFF_UP) { 1247 if (sc->sc_enabled) { 1248 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1249 (ifp->if_flags & IFF_PROMISC) != 0) 1250 wi_write_val(sc, WI_RID_PROMISC, 1); 1251 else 1252 wi_write_val(sc, WI_RID_PROMISC, 0); 1253 } else 1254 error = wi_init(ifp); 1255 } else if (sc->sc_enabled) 1256 wi_stop(ifp, 1); 1257 break; 1258 case SIOCSIFMEDIA: 1259 case SIOCGIFMEDIA: 1260 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1261 break; 1262 case SIOCADDMULTI: 1263 case SIOCDELMULTI: 1264 error = (cmd == SIOCADDMULTI) ? 1265 ether_addmulti(ifr, &sc->sc_ic.ic_ec) : 1266 ether_delmulti(ifr, &sc->sc_ic.ic_ec); 1267 if (error == ENETRESET) { 1268 if (sc->sc_enabled) { 1269 /* do not rescan */ 1270 error = wi_write_multi(sc); 1271 } else 1272 error = 0; 1273 } 1274 break; 1275 case SIOCGIFGENERIC: 1276 error = wi_get_cfg(ifp, cmd, data); 1277 break; 1278 case SIOCSIFGENERIC: 1279 error = suser(curproc->p_ucred, &curproc->p_acflag); 1280 if (error) 1281 break; 1282 error = wi_set_cfg(ifp, cmd, data); 1283 if (error == ENETRESET) { 1284 if (sc->sc_enabled) 1285 error = wi_init(ifp); 1286 else 1287 error = 0; 1288 } 1289 break; 1290 case SIOCS80211BSSID: 1291 if (sc->sc_firmware_type == WI_LUCENT) { 1292 error = ENODEV; 1293 break; 1294 } 1295 /* fall through */ 1296 default: 1297 error = ieee80211_ioctl(ifp, cmd, data); 1298 if (error == ENETRESET) { 1299 if (sc->sc_enabled) 1300 error = wi_init(ifp); 1301 else 1302 error = 0; 1303 } 1304 break; 1305 } 1306 splx(s); 1307 return error; 1308 } 1309 1310 /* TBD factor with ieee80211_media_change */ 1311 static int 1312 wi_media_change(struct ifnet *ifp) 1313 { 1314 struct wi_softc *sc = ifp->if_softc; 1315 struct ieee80211com *ic = &sc->sc_ic; 1316 struct ifmedia_entry *ime; 1317 enum ieee80211_opmode newmode; 1318 int i, rate, error = 0; 1319 1320 ime = ic->ic_media.ifm_cur; 1321 if (IFM_SUBTYPE(ime->ifm_media) == IFM_AUTO) { 1322 i = -1; 1323 } else { 1324 struct ieee80211_rateset *rs = 1325 &ic->ic_sup_rates[ieee80211_chan2mode(ic, 1326 ic->ic_bss->ni_chan)]; 1327 rate = ieee80211_media2rate(ime->ifm_media); 1328 if (rate == 0) 1329 return EINVAL; 1330 for (i = 0; i < rs->rs_nrates; i++) { 1331 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rate) 1332 break; 1333 } 1334 if (i == rs->rs_nrates) 1335 return EINVAL; 1336 } 1337 if (ic->ic_fixed_rate != i) { 1338 ic->ic_fixed_rate = i; 1339 error = ENETRESET; 1340 } 1341 1342 if ((ime->ifm_media & IFM_IEEE80211_ADHOC) && 1343 (ime->ifm_media & IFM_FLAG0)) 1344 newmode = IEEE80211_M_AHDEMO; 1345 else if (ime->ifm_media & IFM_IEEE80211_ADHOC) 1346 newmode = IEEE80211_M_IBSS; 1347 else if (ime->ifm_media & IFM_IEEE80211_HOSTAP) 1348 newmode = IEEE80211_M_HOSTAP; 1349 else if (ime->ifm_media & IFM_IEEE80211_MONITOR) 1350 newmode = IEEE80211_M_MONITOR; 1351 else 1352 newmode = IEEE80211_M_STA; 1353 if (ic->ic_opmode != newmode) { 1354 ic->ic_opmode = newmode; 1355 error = ENETRESET; 1356 } 1357 if (error == ENETRESET) { 1358 if (sc->sc_enabled) 1359 error = wi_init(ifp); 1360 else 1361 error = 0; 1362 } 1363 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1364 1365 return error; 1366 } 1367 1368 static void 1369 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1370 { 1371 struct wi_softc *sc = ifp->if_softc; 1372 struct ieee80211com *ic = &sc->sc_ic; 1373 u_int16_t val; 1374 int rate, len; 1375 1376 if (sc->sc_enabled == 0) { 1377 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1378 imr->ifm_status = 0; 1379 return; 1380 } 1381 1382 imr->ifm_status = IFM_AVALID; 1383 imr->ifm_active = IFM_IEEE80211; 1384 if (ic->ic_state == IEEE80211_S_RUN && 1385 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) 1386 imr->ifm_status |= IFM_ACTIVE; 1387 len = sizeof(val); 1388 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0) 1389 rate = 0; 1390 else { 1391 /* convert to 802.11 rate */ 1392 val = le16toh(val); 1393 rate = val * 2; 1394 if (sc->sc_firmware_type == WI_LUCENT) { 1395 if (rate == 10) 1396 rate = 11; /* 5.5Mbps */ 1397 } else { 1398 if (rate == 4*2) 1399 rate = 11; /* 5.5Mbps */ 1400 else if (rate == 8*2) 1401 rate = 22; /* 11Mbps */ 1402 } 1403 } 1404 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1405 switch (ic->ic_opmode) { 1406 case IEEE80211_M_STA: 1407 break; 1408 case IEEE80211_M_IBSS: 1409 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1410 break; 1411 case IEEE80211_M_AHDEMO: 1412 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1413 break; 1414 case IEEE80211_M_HOSTAP: 1415 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1416 break; 1417 case IEEE80211_M_MONITOR: 1418 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1419 break; 1420 } 1421 } 1422 1423 static struct ieee80211_node * 1424 wi_node_alloc(struct ieee80211com *ic) 1425 { 1426 struct wi_node *wn = 1427 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1428 return wn ? &wn->wn_node : NULL; 1429 } 1430 1431 static void 1432 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) 1433 { 1434 struct wi_softc *sc = ic->ic_if.if_softc; 1435 int i; 1436 1437 for (i = 0; i < WI_NTXRSS; i++) { 1438 if (sc->sc_rssd[i].rd_desc.id_node == ni) 1439 sc->sc_rssd[i].rd_desc.id_node = NULL; 1440 } 1441 free(ni, M_DEVBUF); 1442 } 1443 1444 static void 1445 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst, 1446 const struct ieee80211_node *src) 1447 { 1448 *(struct wi_node *)dst = *(const struct wi_node *)src; 1449 } 1450 1451 static void 1452 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) 1453 { 1454 struct ieee80211com *ic = &sc->sc_ic; 1455 struct ieee80211_node *ni = ic->ic_bss; 1456 struct ifnet *ifp = &ic->ic_if; 1457 1458 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) 1459 return; 1460 1461 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); 1462 DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); 1463 1464 /* In promiscuous mode, the BSSID field is not a reliable 1465 * indicator of the firmware's BSSID. Damp spurious 1466 * change-of-BSSID indications. 1467 */ 1468 if ((ifp->if_flags & IFF_PROMISC) != 0 && 1469 sc->sc_false_syns >= WI_MAX_FALSE_SYNS) 1470 return; 1471 1472 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1473 } 1474 1475 static __inline void 1476 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni, 1477 struct ieee80211_frame *wh, int rssi) 1478 { 1479 struct wi_node *wn; 1480 1481 if (ni == NULL) { 1482 printf("%s: null node", __func__); 1483 return; 1484 } 1485 1486 wn = (void*)ni; 1487 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi); 1488 } 1489 1490 static void 1491 wi_rx_intr(struct wi_softc *sc) 1492 { 1493 struct ieee80211com *ic = &sc->sc_ic; 1494 struct ifnet *ifp = &ic->ic_if; 1495 struct ieee80211_node *ni; 1496 struct wi_frame frmhdr; 1497 struct mbuf *m; 1498 struct ieee80211_frame *wh; 1499 int fid, len, off, rssi; 1500 u_int8_t dir; 1501 u_int16_t status; 1502 u_int32_t rstamp; 1503 1504 fid = CSR_READ_2(sc, WI_RX_FID); 1505 1506 /* First read in the frame header */ 1507 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { 1508 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1509 ifp->if_ierrors++; 1510 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid)); 1511 return; 1512 } 1513 1514 if (IFF_DUMPPKTS(ifp)) 1515 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); 1516 1517 /* 1518 * Drop undecryptable or packets with receive errors here 1519 */ 1520 status = le16toh(frmhdr.wi_status); 1521 if ((status & WI_STAT_ERRSTAT) != 0 && 1522 ic->ic_opmode != IEEE80211_M_MONITOR) { 1523 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1524 ifp->if_ierrors++; 1525 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); 1526 return; 1527 } 1528 rssi = frmhdr.wi_rx_signal; 1529 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | 1530 le16toh(frmhdr.wi_rx_tstamp1); 1531 1532 len = le16toh(frmhdr.wi_dat_len); 1533 off = ALIGN(sizeof(struct ieee80211_frame)); 1534 1535 /* Sometimes the PRISM2.x returns bogusly large frames. Except 1536 * in monitor mode, just throw them away. 1537 */ 1538 if (off + len > MCLBYTES) { 1539 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1540 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1541 ifp->if_ierrors++; 1542 DPRINTF(("wi_rx_intr: oversized packet\n")); 1543 return; 1544 } else 1545 len = 0; 1546 } 1547 1548 MGETHDR(m, M_DONTWAIT, MT_DATA); 1549 if (m == NULL) { 1550 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1551 ifp->if_ierrors++; 1552 DPRINTF(("wi_rx_intr: MGET failed\n")); 1553 return; 1554 } 1555 if (off + len > MHLEN) { 1556 MCLGET(m, M_DONTWAIT); 1557 if ((m->m_flags & M_EXT) == 0) { 1558 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1559 m_freem(m); 1560 ifp->if_ierrors++; 1561 DPRINTF(("wi_rx_intr: MCLGET failed\n")); 1562 return; 1563 } 1564 } 1565 1566 m->m_data += off - sizeof(struct ieee80211_frame); 1567 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); 1568 wi_read_bap(sc, fid, sizeof(frmhdr), 1569 m->m_data + sizeof(struct ieee80211_frame), len); 1570 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; 1571 m->m_pkthdr.rcvif = ifp; 1572 1573 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1574 1575 #if NBPFILTER > 0 1576 if (sc->sc_drvbpf) { 1577 struct mbuf mb; 1578 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap; 1579 1580 tap->wr_rate = frmhdr.wi_rx_rate / 5; 1581 tap->wr_antsignal = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_signal); 1582 tap->wr_antnoise = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_silence); 1583 1584 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1585 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1586 if (frmhdr.wi_status & WI_STAT_PCF) 1587 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP; 1588 1589 M_COPY_PKTHDR(&mb, m); 1590 mb.m_data = (caddr_t)tap; 1591 mb.m_len = tap->wr_ihdr.it_len; 1592 mb.m_next = m; 1593 mb.m_pkthdr.len += mb.m_len; 1594 bpf_mtap(sc->sc_drvbpf, &mb); 1595 } 1596 #endif 1597 wh = mtod(m, struct ieee80211_frame *); 1598 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1599 /* 1600 * WEP is decrypted by hardware. Clear WEP bit 1601 * header for ieee80211_input(). 1602 */ 1603 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1604 } 1605 1606 /* synchronize driver's BSSID with firmware's BSSID */ 1607 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; 1608 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) 1609 wi_sync_bssid(sc, wh->i_addr3); 1610 1611 ni = ieee80211_find_rxnode(ic, wh); 1612 1613 ieee80211_input(ifp, m, ni, rssi, rstamp); 1614 1615 wi_rssadapt_input(ic, ni, wh, rssi); 1616 1617 /* 1618 * The frame may have caused the node to be marked for 1619 * reclamation (e.g. in response to a DEAUTH message) 1620 * so use free_node here instead of unref_node. 1621 */ 1622 if (ni == ic->ic_bss) 1623 ieee80211_unref_node(&ni); 1624 else 1625 ieee80211_free_node(ic, ni); 1626 } 1627 1628 static void 1629 wi_tx_ex_intr(struct wi_softc *sc) 1630 { 1631 struct ieee80211com *ic = &sc->sc_ic; 1632 struct ifnet *ifp = &ic->ic_if; 1633 struct ieee80211_node *ni; 1634 struct ieee80211_rssdesc *id; 1635 struct wi_rssdesc *rssd; 1636 struct wi_frame frmhdr; 1637 int fid; 1638 u_int16_t status; 1639 1640 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1641 /* Read in the frame header */ 1642 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1643 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1644 __func__, fid); 1645 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1646 &sc->sc_txpending); 1647 goto out; 1648 } 1649 1650 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1651 printf("%s: %s bad idx %02x\n", 1652 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1653 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1654 &sc->sc_txpending); 1655 goto out; 1656 } 1657 1658 status = le16toh(frmhdr.wi_status); 1659 1660 /* 1661 * Spontaneous station disconnects appear as xmit 1662 * errors. Don't announce them and/or count them 1663 * as an output error. 1664 */ 1665 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { 1666 printf("%s: tx failed", sc->sc_dev.dv_xname); 1667 if (status & WI_TXSTAT_RET_ERR) 1668 printf(", retry limit exceeded"); 1669 if (status & WI_TXSTAT_AGED_ERR) 1670 printf(", max transmit lifetime exceeded"); 1671 if (status & WI_TXSTAT_DISCONNECT) 1672 printf(", port disconnected"); 1673 if (status & WI_TXSTAT_FORM_ERR) 1674 printf(", invalid format (data len %u src %s)", 1675 le16toh(frmhdr.wi_dat_len), 1676 ether_sprintf(frmhdr.wi_ehdr.ether_shost)); 1677 if (status & ~0xf) 1678 printf(", status=0x%x", status); 1679 printf("\n"); 1680 } 1681 ifp->if_oerrors++; 1682 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1683 id = &rssd->rd_desc; 1684 if ((status & WI_TXSTAT_RET_ERR) != 0) 1685 wi_lower_rate(ic, id); 1686 1687 ni = id->id_node; 1688 id->id_node = NULL; 1689 1690 if (ni == NULL) { 1691 printf("%s: %s null node, rssdesc %02x\n", 1692 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1693 goto out; 1694 } 1695 1696 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1697 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1698 __func__, id->id_rateidx); 1699 sc->sc_txpending[id->id_rateidx] = 0; 1700 } 1701 if (ni != NULL && ni != ic->ic_bss) 1702 ieee80211_free_node(ic, ni); 1703 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1704 out: 1705 ifp->if_flags &= ~IFF_OACTIVE; 1706 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); 1707 } 1708 1709 static void 1710 wi_txalloc_intr(struct wi_softc *sc) 1711 { 1712 struct ieee80211com *ic = &sc->sc_ic; 1713 struct ifnet *ifp = &ic->ic_if; 1714 int fid, cur; 1715 1716 fid = CSR_READ_2(sc, WI_ALLOC_FID); 1717 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 1718 1719 cur = sc->sc_txcur; 1720 if (sc->sc_txd[cur].d_fid != fid) { 1721 printf("%s: bad alloc %x != %x, cur %d nxt %d\n", 1722 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur, 1723 sc->sc_txnext); 1724 return; 1725 } 1726 sc->sc_tx_timer = 0; 1727 sc->sc_txd[cur].d_len = 0; 1728 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF; 1729 if (sc->sc_txd[cur].d_len == 0) 1730 ifp->if_flags &= ~IFF_OACTIVE; 1731 else { 1732 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid, 1733 0, 0)) { 1734 printf("%s: xmit failed\n", sc->sc_dev.dv_xname); 1735 sc->sc_txd[cur].d_len = 0; 1736 } else { 1737 sc->sc_txpending[sc->sc_txd[cur].d_rate]++; 1738 sc->sc_tx_timer = 5; 1739 ifp->if_timer = 1; 1740 } 1741 } 1742 } 1743 1744 static void 1745 wi_tx_intr(struct wi_softc *sc) 1746 { 1747 struct ieee80211com *ic = &sc->sc_ic; 1748 struct ifnet *ifp = &ic->ic_if; 1749 struct ieee80211_node *ni; 1750 struct ieee80211_rssdesc *id; 1751 struct wi_rssdesc *rssd; 1752 struct wi_frame frmhdr; 1753 int fid; 1754 1755 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1756 /* Read in the frame header */ 1757 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1758 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1759 __func__, fid); 1760 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1761 &sc->sc_txpending); 1762 goto out; 1763 } 1764 1765 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1766 printf("%s: %s bad idx %02x\n", 1767 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1768 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1769 &sc->sc_txpending); 1770 goto out; 1771 } 1772 1773 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1774 id = &rssd->rd_desc; 1775 wi_raise_rate(ic, id); 1776 1777 ni = id->id_node; 1778 id->id_node = NULL; 1779 1780 if (ni == NULL) { 1781 printf("%s: %s null node, rssdesc %02x\n", 1782 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1783 goto out; 1784 } 1785 1786 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1787 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1788 __func__, id->id_rateidx); 1789 sc->sc_txpending[id->id_rateidx] = 0; 1790 } 1791 if (ni != NULL && ni != ic->ic_bss) 1792 ieee80211_free_node(ic, ni); 1793 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1794 out: 1795 ifp->if_flags &= ~IFF_OACTIVE; 1796 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); 1797 } 1798 1799 static void 1800 wi_info_intr(struct wi_softc *sc) 1801 { 1802 struct ieee80211com *ic = &sc->sc_ic; 1803 struct ifnet *ifp = &ic->ic_if; 1804 int i, fid, len, off; 1805 u_int16_t ltbuf[2]; 1806 u_int16_t stat; 1807 u_int32_t *ptr; 1808 1809 fid = CSR_READ_2(sc, WI_INFO_FID); 1810 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); 1811 1812 switch (le16toh(ltbuf[1])) { 1813 1814 case WI_INFO_LINK_STAT: 1815 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); 1816 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); 1817 switch (le16toh(stat)) { 1818 case CONNECTED: 1819 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1820 if (ic->ic_state == IEEE80211_S_RUN && 1821 ic->ic_opmode != IEEE80211_M_IBSS) 1822 break; 1823 /* FALLTHROUGH */ 1824 case AP_CHANGE: 1825 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1826 break; 1827 case AP_IN_RANGE: 1828 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1829 break; 1830 case AP_OUT_OF_RANGE: 1831 if (sc->sc_firmware_type == WI_SYMBOL && 1832 sc->sc_scan_timer > 0) { 1833 if (wi_cmd(sc, WI_CMD_INQUIRE, 1834 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) 1835 sc->sc_scan_timer = 0; 1836 break; 1837 } 1838 if (ic->ic_opmode == IEEE80211_M_STA) 1839 sc->sc_flags |= WI_FLAGS_OUTRANGE; 1840 break; 1841 case DISCONNECTED: 1842 case ASSOC_FAILED: 1843 if (ic->ic_opmode == IEEE80211_M_STA) 1844 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1845 break; 1846 } 1847 break; 1848 1849 case WI_INFO_COUNTERS: 1850 /* some card versions have a larger stats structure */ 1851 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); 1852 ptr = (u_int32_t *)&sc->sc_stats; 1853 off = sizeof(ltbuf); 1854 for (i = 0; i < len; i++, off += 2, ptr++) { 1855 wi_read_bap(sc, fid, off, &stat, sizeof(stat)); 1856 stat = le16toh(stat); 1857 #ifdef WI_HERMES_STATS_WAR 1858 if (stat & 0xf000) 1859 stat = ~stat; 1860 #endif 1861 *ptr += stat; 1862 } 1863 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + 1864 sc->sc_stats.wi_tx_multi_retries + 1865 sc->sc_stats.wi_tx_retry_limit; 1866 break; 1867 1868 case WI_INFO_SCAN_RESULTS: 1869 case WI_INFO_HOST_SCAN_RESULTS: 1870 wi_scan_result(sc, fid, le16toh(ltbuf[0])); 1871 break; 1872 1873 default: 1874 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, 1875 le16toh(ltbuf[1]), le16toh(ltbuf[0]))); 1876 break; 1877 } 1878 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); 1879 } 1880 1881 static int 1882 wi_write_multi(struct wi_softc *sc) 1883 { 1884 struct ifnet *ifp = &sc->sc_ic.ic_if; 1885 int n; 1886 struct wi_mcast mlist; 1887 struct ether_multi *enm; 1888 struct ether_multistep estep; 1889 1890 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1891 allmulti: 1892 ifp->if_flags |= IFF_ALLMULTI; 1893 memset(&mlist, 0, sizeof(mlist)); 1894 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1895 sizeof(mlist)); 1896 } 1897 1898 n = 0; 1899 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm); 1900 while (enm != NULL) { 1901 /* Punt on ranges or too many multicast addresses. */ 1902 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) || 1903 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) 1904 goto allmulti; 1905 1906 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo); 1907 n++; 1908 ETHER_NEXT_MULTI(estep, enm); 1909 } 1910 ifp->if_flags &= ~IFF_ALLMULTI; 1911 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1912 IEEE80211_ADDR_LEN * n); 1913 } 1914 1915 1916 static void 1917 wi_read_nicid(struct wi_softc *sc) 1918 { 1919 struct wi_card_ident *id; 1920 char *p; 1921 int len; 1922 u_int16_t ver[4]; 1923 1924 /* getting chip identity */ 1925 memset(ver, 0, sizeof(ver)); 1926 len = sizeof(ver); 1927 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); 1928 printf("%s: using ", sc->sc_dev.dv_xname); 1929 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3]))); 1930 1931 sc->sc_firmware_type = WI_NOTYPE; 1932 for (id = wi_card_ident; id->card_name != NULL; id++) { 1933 if (le16toh(ver[0]) == id->card_id) { 1934 printf("%s", id->card_name); 1935 sc->sc_firmware_type = id->firm_type; 1936 break; 1937 } 1938 } 1939 if (sc->sc_firmware_type == WI_NOTYPE) { 1940 if (le16toh(ver[0]) & 0x8000) { 1941 printf("Unknown PRISM2 chip"); 1942 sc->sc_firmware_type = WI_INTERSIL; 1943 } else { 1944 printf("Unknown Lucent chip"); 1945 sc->sc_firmware_type = WI_LUCENT; 1946 } 1947 } 1948 1949 /* get primary firmware version (Only Prism chips) */ 1950 if (sc->sc_firmware_type != WI_LUCENT) { 1951 memset(ver, 0, sizeof(ver)); 1952 len = sizeof(ver); 1953 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); 1954 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + 1955 le16toh(ver[3]) * 100 + le16toh(ver[1]); 1956 } 1957 1958 /* get station firmware version */ 1959 memset(ver, 0, sizeof(ver)); 1960 len = sizeof(ver); 1961 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); 1962 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + 1963 le16toh(ver[3]) * 100 + le16toh(ver[1]); 1964 if (sc->sc_firmware_type == WI_INTERSIL && 1965 (sc->sc_sta_firmware_ver == 10102 || 1966 sc->sc_sta_firmware_ver == 20102)) { 1967 char ident[12]; 1968 memset(ident, 0, sizeof(ident)); 1969 len = sizeof(ident); 1970 /* value should be the format like "V2.00-11" */ 1971 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && 1972 *(p = (char *)ident) >= 'A' && 1973 p[2] == '.' && p[5] == '-' && p[8] == '\0') { 1974 sc->sc_firmware_type = WI_SYMBOL; 1975 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + 1976 (p[3] - '0') * 1000 + (p[4] - '0') * 100 + 1977 (p[6] - '0') * 10 + (p[7] - '0'); 1978 } 1979 } 1980 1981 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname, 1982 sc->sc_firmware_type == WI_LUCENT ? "Lucent" : 1983 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); 1984 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ 1985 printf("Primary (%u.%u.%u), ", 1986 sc->sc_pri_firmware_ver / 10000, 1987 (sc->sc_pri_firmware_ver % 10000) / 100, 1988 sc->sc_pri_firmware_ver % 100); 1989 printf("Station (%u.%u.%u)\n", 1990 sc->sc_sta_firmware_ver / 10000, 1991 (sc->sc_sta_firmware_ver % 10000) / 100, 1992 sc->sc_sta_firmware_ver % 100); 1993 } 1994 1995 static int 1996 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) 1997 { 1998 struct wi_ssid ssid; 1999 2000 if (buflen > IEEE80211_NWID_LEN) 2001 return ENOBUFS; 2002 memset(&ssid, 0, sizeof(ssid)); 2003 ssid.wi_len = htole16(buflen); 2004 memcpy(ssid.wi_ssid, buf, buflen); 2005 return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); 2006 } 2007 2008 static int 2009 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2010 { 2011 struct wi_softc *sc = ifp->if_softc; 2012 struct ieee80211com *ic = &sc->sc_ic; 2013 struct ifreq *ifr = (struct ifreq *)data; 2014 struct wi_req wreq; 2015 int len, n, error; 2016 2017 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2018 if (error) 2019 return error; 2020 len = (wreq.wi_len - 1) * 2; 2021 if (len < sizeof(u_int16_t)) 2022 return ENOSPC; 2023 if (len > sizeof(wreq.wi_val)) 2024 len = sizeof(wreq.wi_val); 2025 2026 switch (wreq.wi_type) { 2027 2028 case WI_RID_IFACE_STATS: 2029 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); 2030 if (len < sizeof(sc->sc_stats)) 2031 error = ENOSPC; 2032 else 2033 len = sizeof(sc->sc_stats); 2034 break; 2035 2036 case WI_RID_ENCRYPTION: 2037 case WI_RID_TX_CRYPT_KEY: 2038 case WI_RID_DEFLT_CRYPT_KEYS: 2039 case WI_RID_TX_RATE: 2040 return ieee80211_cfgget(ifp, cmd, data); 2041 2042 case WI_RID_MICROWAVE_OVEN: 2043 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { 2044 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2045 &len); 2046 break; 2047 } 2048 wreq.wi_val[0] = htole16(sc->sc_microwave_oven); 2049 len = sizeof(u_int16_t); 2050 break; 2051 2052 case WI_RID_DBM_ADJUST: 2053 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { 2054 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2055 &len); 2056 break; 2057 } 2058 wreq.wi_val[0] = htole16(sc->sc_dbm_offset); 2059 len = sizeof(u_int16_t); 2060 break; 2061 2062 case WI_RID_ROAMING_MODE: 2063 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { 2064 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2065 &len); 2066 break; 2067 } 2068 wreq.wi_val[0] = htole16(sc->sc_roaming_mode); 2069 len = sizeof(u_int16_t); 2070 break; 2071 2072 case WI_RID_SYSTEM_SCALE: 2073 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { 2074 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2075 &len); 2076 break; 2077 } 2078 wreq.wi_val[0] = htole16(sc->sc_system_scale); 2079 len = sizeof(u_int16_t); 2080 break; 2081 2082 case WI_RID_FRAG_THRESH: 2083 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { 2084 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2085 &len); 2086 break; 2087 } 2088 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2089 len = sizeof(u_int16_t); 2090 break; 2091 2092 case WI_RID_READ_APS: 2093 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2094 return ieee80211_cfgget(ifp, cmd, data); 2095 if (sc->sc_scan_timer > 0) { 2096 error = EINPROGRESS; 2097 break; 2098 } 2099 n = sc->sc_naps; 2100 if (len < sizeof(n)) { 2101 error = ENOSPC; 2102 break; 2103 } 2104 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) 2105 n = (len - sizeof(n)) / sizeof(struct wi_apinfo); 2106 len = sizeof(n) + sizeof(struct wi_apinfo) * n; 2107 memcpy(wreq.wi_val, &n, sizeof(n)); 2108 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps, 2109 sizeof(struct wi_apinfo) * n); 2110 break; 2111 2112 default: 2113 if (sc->sc_enabled) { 2114 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2115 &len); 2116 break; 2117 } 2118 switch (wreq.wi_type) { 2119 case WI_RID_MAX_DATALEN: 2120 wreq.wi_val[0] = htole16(sc->sc_max_datalen); 2121 len = sizeof(u_int16_t); 2122 break; 2123 case WI_RID_FRAG_THRESH: 2124 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2125 len = sizeof(u_int16_t); 2126 break; 2127 case WI_RID_RTS_THRESH: 2128 wreq.wi_val[0] = htole16(sc->sc_rts_thresh); 2129 len = sizeof(u_int16_t); 2130 break; 2131 case WI_RID_CNFAUTHMODE: 2132 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); 2133 len = sizeof(u_int16_t); 2134 break; 2135 case WI_RID_NODENAME: 2136 if (len < sc->sc_nodelen + sizeof(u_int16_t)) { 2137 error = ENOSPC; 2138 break; 2139 } 2140 len = sc->sc_nodelen + sizeof(u_int16_t); 2141 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); 2142 memcpy(&wreq.wi_val[1], sc->sc_nodename, 2143 sc->sc_nodelen); 2144 break; 2145 default: 2146 return ieee80211_cfgget(ifp, cmd, data); 2147 } 2148 break; 2149 } 2150 if (error) 2151 return error; 2152 wreq.wi_len = (len + 1) / 2 + 1; 2153 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); 2154 } 2155 2156 static int 2157 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2158 { 2159 struct wi_softc *sc = ifp->if_softc; 2160 struct ieee80211com *ic = &sc->sc_ic; 2161 struct ifreq *ifr = (struct ifreq *)data; 2162 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2163 struct wi_req wreq; 2164 struct mbuf *m; 2165 int i, len, error; 2166 2167 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2168 if (error) 2169 return error; 2170 len = (wreq.wi_len - 1) * 2; 2171 switch (wreq.wi_type) { 2172 case WI_RID_DBM_ADJUST: 2173 return ENODEV; 2174 2175 case WI_RID_NODENAME: 2176 if (le16toh(wreq.wi_val[0]) * 2 > len || 2177 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { 2178 error = ENOSPC; 2179 break; 2180 } 2181 if (sc->sc_enabled) { 2182 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2183 len); 2184 if (error) 2185 break; 2186 } 2187 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; 2188 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); 2189 break; 2190 2191 case WI_RID_MICROWAVE_OVEN: 2192 case WI_RID_ROAMING_MODE: 2193 case WI_RID_SYSTEM_SCALE: 2194 case WI_RID_FRAG_THRESH: 2195 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && 2196 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) 2197 break; 2198 if (wreq.wi_type == WI_RID_ROAMING_MODE && 2199 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) 2200 break; 2201 if (wreq.wi_type == WI_RID_SYSTEM_SCALE && 2202 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) 2203 break; 2204 if (wreq.wi_type == WI_RID_FRAG_THRESH && 2205 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) 2206 break; 2207 /* FALLTHROUGH */ 2208 case WI_RID_RTS_THRESH: 2209 case WI_RID_CNFAUTHMODE: 2210 case WI_RID_MAX_DATALEN: 2211 if (sc->sc_enabled) { 2212 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2213 sizeof(u_int16_t)); 2214 if (error) 2215 break; 2216 } 2217 switch (wreq.wi_type) { 2218 case WI_RID_FRAG_THRESH: 2219 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]); 2220 break; 2221 case WI_RID_RTS_THRESH: 2222 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]); 2223 break; 2224 case WI_RID_MICROWAVE_OVEN: 2225 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); 2226 break; 2227 case WI_RID_ROAMING_MODE: 2228 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); 2229 break; 2230 case WI_RID_SYSTEM_SCALE: 2231 sc->sc_system_scale = le16toh(wreq.wi_val[0]); 2232 break; 2233 case WI_RID_CNFAUTHMODE: 2234 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); 2235 break; 2236 case WI_RID_MAX_DATALEN: 2237 sc->sc_max_datalen = le16toh(wreq.wi_val[0]); 2238 break; 2239 } 2240 break; 2241 2242 case WI_RID_TX_RATE: 2243 switch (le16toh(wreq.wi_val[0])) { 2244 case 3: 2245 ic->ic_fixed_rate = -1; 2246 break; 2247 default: 2248 for (i = 0; i < IEEE80211_RATE_SIZE; i++) { 2249 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) 2250 / 2 == le16toh(wreq.wi_val[0])) 2251 break; 2252 } 2253 if (i == IEEE80211_RATE_SIZE) 2254 return EINVAL; 2255 ic->ic_fixed_rate = i; 2256 } 2257 if (sc->sc_enabled) 2258 error = wi_cfg_txrate(sc); 2259 break; 2260 2261 case WI_RID_SCAN_APS: 2262 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) 2263 error = wi_scan_ap(sc, 0x3fff, 0x000f); 2264 break; 2265 2266 case WI_RID_MGMT_XMIT: 2267 if (!sc->sc_enabled) { 2268 error = ENETDOWN; 2269 break; 2270 } 2271 if (ic->ic_mgtq.ifq_len > 5) { 2272 error = EAGAIN; 2273 break; 2274 } 2275 /* XXX wi_len looks in u_int8_t, not in u_int16_t */ 2276 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); 2277 if (m == NULL) { 2278 error = ENOMEM; 2279 break; 2280 } 2281 IF_ENQUEUE(&ic->ic_mgtq, m); 2282 break; 2283 2284 default: 2285 if (sc->sc_enabled) { 2286 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2287 len); 2288 if (error) 2289 break; 2290 } 2291 error = ieee80211_cfgset(ifp, cmd, data); 2292 break; 2293 } 2294 return error; 2295 } 2296 2297 /* Rate is 0 for hardware auto-select, otherwise rate is 2298 * 2, 4, 11, or 22 (units of 500Kbps). 2299 */ 2300 static int 2301 wi_write_txrate(struct wi_softc *sc, int rate) 2302 { 2303 u_int16_t hwrate; 2304 int i; 2305 2306 rate = (rate & IEEE80211_RATE_VAL) / 2; 2307 2308 /* rate: 0, 1, 2, 5, 11 */ 2309 switch (sc->sc_firmware_type) { 2310 case WI_LUCENT: 2311 switch (rate) { 2312 case 0: 2313 hwrate = 3; /* auto */ 2314 break; 2315 case 5: 2316 hwrate = 4; 2317 break; 2318 case 11: 2319 hwrate = 5; 2320 break; 2321 default: 2322 hwrate = rate; 2323 break; 2324 } 2325 break; 2326 default: 2327 /* Choose a bit according to this table. 2328 * 2329 * bit | data rate 2330 * ----+------------------- 2331 * 0 | 1Mbps 2332 * 1 | 2Mbps 2333 * 2 | 5.5Mbps 2334 * 3 | 11Mbps 2335 */ 2336 for (i = 8; i > 0; i >>= 1) { 2337 if (rate >= i) 2338 break; 2339 } 2340 if (i == 0) 2341 hwrate = 0xf; /* auto */ 2342 else 2343 hwrate = i; 2344 break; 2345 } 2346 2347 if (sc->sc_tx_rate == hwrate) 2348 return 0; 2349 2350 if (sc->sc_if.if_flags & IFF_DEBUG) 2351 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate, 2352 hwrate, rate); 2353 2354 sc->sc_tx_rate = hwrate; 2355 2356 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate); 2357 } 2358 2359 static int 2360 wi_cfg_txrate(struct wi_softc *sc) 2361 { 2362 struct ieee80211com *ic = &sc->sc_ic; 2363 struct ieee80211_rateset *rs; 2364 int rate; 2365 2366 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2367 2368 sc->sc_tx_rate = 0; /* force write to RID */ 2369 2370 if (ic->ic_fixed_rate < 0) 2371 rate = 0; /* auto */ 2372 else 2373 rate = rs->rs_rates[ic->ic_fixed_rate]; 2374 2375 return wi_write_txrate(sc, rate); 2376 } 2377 2378 static int 2379 wi_write_wep(struct wi_softc *sc) 2380 { 2381 struct ieee80211com *ic = &sc->sc_ic; 2382 int error = 0; 2383 int i, keylen; 2384 u_int16_t val; 2385 struct wi_key wkey[IEEE80211_WEP_NKID]; 2386 2387 switch (sc->sc_firmware_type) { 2388 case WI_LUCENT: 2389 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0; 2390 error = wi_write_val(sc, WI_RID_ENCRYPTION, val); 2391 if (error) 2392 break; 2393 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey); 2394 if (error) 2395 break; 2396 memset(wkey, 0, sizeof(wkey)); 2397 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2398 keylen = ic->ic_nw_keys[i].wk_len; 2399 wkey[i].wi_keylen = htole16(keylen); 2400 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, 2401 keylen); 2402 } 2403 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, 2404 wkey, sizeof(wkey)); 2405 break; 2406 2407 case WI_INTERSIL: 2408 case WI_SYMBOL: 2409 if (ic->ic_flags & IEEE80211_F_WEPON) { 2410 /* 2411 * ONLY HWB3163 EVAL-CARD Firmware version 2412 * less than 0.8 variant2 2413 * 2414 * If promiscuous mode disable, Prism2 chip 2415 * does not work with WEP . 2416 * It is under investigation for details. 2417 * (ichiro@NetBSD.org) 2418 */ 2419 if (sc->sc_firmware_type == WI_INTERSIL && 2420 sc->sc_sta_firmware_ver < 802 ) { 2421 /* firm ver < 0.8 variant 2 */ 2422 wi_write_val(sc, WI_RID_PROMISC, 1); 2423 } 2424 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2425 sc->sc_cnfauthmode); 2426 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED; 2427 /* 2428 * Encryption firmware has a bug for HostAP mode. 2429 */ 2430 if (sc->sc_firmware_type == WI_INTERSIL && 2431 ic->ic_opmode == IEEE80211_M_HOSTAP) 2432 val |= HOST_ENCRYPT; 2433 } else { 2434 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2435 IEEE80211_AUTH_OPEN); 2436 val = HOST_ENCRYPT | HOST_DECRYPT; 2437 } 2438 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); 2439 if (error) 2440 break; 2441 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, 2442 ic->ic_wep_txkey); 2443 if (error) 2444 break; 2445 /* 2446 * It seems that the firmware accept 104bit key only if 2447 * all the keys have 104bit length. We get the length of 2448 * the transmit key and use it for all other keys. 2449 * Perhaps we should use software WEP for such situation. 2450 */ 2451 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len; 2452 if (keylen > IEEE80211_WEP_KEYLEN) 2453 keylen = 13; /* 104bit keys */ 2454 else 2455 keylen = IEEE80211_WEP_KEYLEN; 2456 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2457 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, 2458 ic->ic_nw_keys[i].wk_key, keylen); 2459 if (error) 2460 break; 2461 } 2462 break; 2463 } 2464 return error; 2465 } 2466 2467 /* Must be called at proper protection level! */ 2468 static int 2469 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2470 { 2471 int i, status; 2472 2473 /* wait for the busy bit to clear */ 2474 for (i = 500; i > 0; i--) { /* 5s */ 2475 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) 2476 break; 2477 DELAY(10*1000); /* 10 m sec */ 2478 } 2479 if (i == 0) { 2480 printf("%s: wi_cmd: busy bit won't clear.\n", 2481 sc->sc_dev.dv_xname); 2482 return(ETIMEDOUT); 2483 } 2484 CSR_WRITE_2(sc, WI_PARAM0, val0); 2485 CSR_WRITE_2(sc, WI_PARAM1, val1); 2486 CSR_WRITE_2(sc, WI_PARAM2, val2); 2487 CSR_WRITE_2(sc, WI_COMMAND, cmd); 2488 2489 if (cmd == WI_CMD_INI) { 2490 /* XXX: should sleep here. */ 2491 DELAY(100*1000); 2492 } 2493 /* wait for the cmd completed bit */ 2494 for (i = 0; i < WI_TIMEOUT; i++) { 2495 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) 2496 break; 2497 DELAY(WI_DELAY); 2498 } 2499 2500 status = CSR_READ_2(sc, WI_STATUS); 2501 2502 /* Ack the command */ 2503 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 2504 2505 if (i == WI_TIMEOUT) { 2506 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n", 2507 sc->sc_dev.dv_xname, cmd, val0); 2508 return ETIMEDOUT; 2509 } 2510 2511 if (status & WI_STAT_CMD_RESULT) { 2512 printf("%s: command failed, cmd=0x%x, arg=0x%x\n", 2513 sc->sc_dev.dv_xname, cmd, val0); 2514 return EIO; 2515 } 2516 return 0; 2517 } 2518 2519 static int 2520 wi_seek_bap(struct wi_softc *sc, int id, int off) 2521 { 2522 int i, status; 2523 2524 CSR_WRITE_2(sc, WI_SEL0, id); 2525 CSR_WRITE_2(sc, WI_OFF0, off); 2526 2527 for (i = 0; ; i++) { 2528 status = CSR_READ_2(sc, WI_OFF0); 2529 if ((status & WI_OFF_BUSY) == 0) 2530 break; 2531 if (i == WI_TIMEOUT) { 2532 printf("%s: timeout in wi_seek to %x/%x\n", 2533 sc->sc_dev.dv_xname, id, off); 2534 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2535 return ETIMEDOUT; 2536 } 2537 DELAY(1); 2538 } 2539 if (status & WI_OFF_ERR) { 2540 printf("%s: failed in wi_seek to %x/%x\n", 2541 sc->sc_dev.dv_xname, id, off); 2542 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2543 return EIO; 2544 } 2545 sc->sc_bap_id = id; 2546 sc->sc_bap_off = off; 2547 return 0; 2548 } 2549 2550 static int 2551 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2552 { 2553 int error, cnt; 2554 2555 if (buflen == 0) 2556 return 0; 2557 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2558 if ((error = wi_seek_bap(sc, id, off)) != 0) 2559 return error; 2560 } 2561 cnt = (buflen + 1) / 2; 2562 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2563 sc->sc_bap_off += cnt * 2; 2564 return 0; 2565 } 2566 2567 static int 2568 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2569 { 2570 int error, cnt; 2571 2572 if (buflen == 0) 2573 return 0; 2574 2575 #ifdef WI_HERMES_AUTOINC_WAR 2576 again: 2577 #endif 2578 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2579 if ((error = wi_seek_bap(sc, id, off)) != 0) 2580 return error; 2581 } 2582 cnt = (buflen + 1) / 2; 2583 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2584 sc->sc_bap_off += cnt * 2; 2585 2586 #ifdef WI_HERMES_AUTOINC_WAR 2587 /* 2588 * According to the comments in the HCF Light code, there is a bug 2589 * in the Hermes (or possibly in certain Hermes firmware revisions) 2590 * where the chip's internal autoincrement counter gets thrown off 2591 * during data writes: the autoincrement is missed, causing one 2592 * data word to be overwritten and subsequent words to be written to 2593 * the wrong memory locations. The end result is that we could end 2594 * up transmitting bogus frames without realizing it. The workaround 2595 * for this is to write a couple of extra guard words after the end 2596 * of the transfer, then attempt to read then back. If we fail to 2597 * locate the guard words where we expect them, we preform the 2598 * transfer over again. 2599 */ 2600 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { 2601 CSR_WRITE_2(sc, WI_DATA0, 0x1234); 2602 CSR_WRITE_2(sc, WI_DATA0, 0x5678); 2603 wi_seek_bap(sc, id, sc->sc_bap_off); 2604 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2605 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || 2606 CSR_READ_2(sc, WI_DATA0) != 0x5678) { 2607 printf("%s: detect auto increment bug, try again\n", 2608 sc->sc_dev.dv_xname); 2609 goto again; 2610 } 2611 } 2612 #endif 2613 return 0; 2614 } 2615 2616 static int 2617 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) 2618 { 2619 int error, len; 2620 struct mbuf *m; 2621 2622 for (m = m0; m != NULL && totlen > 0; m = m->m_next) { 2623 if (m->m_len == 0) 2624 continue; 2625 2626 len = min(m->m_len, totlen); 2627 2628 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { 2629 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf); 2630 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf, 2631 totlen); 2632 } 2633 2634 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) 2635 return error; 2636 2637 off += m->m_len; 2638 totlen -= len; 2639 } 2640 return 0; 2641 } 2642 2643 static int 2644 wi_alloc_fid(struct wi_softc *sc, int len, int *idp) 2645 { 2646 int i; 2647 2648 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { 2649 printf("%s: failed to allocate %d bytes on NIC\n", 2650 sc->sc_dev.dv_xname, len); 2651 return ENOMEM; 2652 } 2653 2654 for (i = 0; i < WI_TIMEOUT; i++) { 2655 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) 2656 break; 2657 if (i == WI_TIMEOUT) { 2658 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname); 2659 return ETIMEDOUT; 2660 } 2661 DELAY(1); 2662 } 2663 *idp = CSR_READ_2(sc, WI_ALLOC_FID); 2664 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 2665 return 0; 2666 } 2667 2668 static int 2669 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) 2670 { 2671 int error, len; 2672 u_int16_t ltbuf[2]; 2673 2674 /* Tell the NIC to enter record read mode. */ 2675 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); 2676 if (error) 2677 return error; 2678 2679 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2680 if (error) 2681 return error; 2682 2683 if (le16toh(ltbuf[1]) != rid) { 2684 printf("%s: record read mismatch, rid=%x, got=%x\n", 2685 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1])); 2686 return EIO; 2687 } 2688 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ 2689 if (*buflenp < len) { 2690 printf("%s: record buffer is too small, " 2691 "rid=%x, size=%d, len=%d\n", 2692 sc->sc_dev.dv_xname, rid, *buflenp, len); 2693 return ENOSPC; 2694 } 2695 *buflenp = len; 2696 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); 2697 } 2698 2699 static int 2700 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) 2701 { 2702 int error; 2703 u_int16_t ltbuf[2]; 2704 2705 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ 2706 ltbuf[1] = htole16(rid); 2707 2708 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2709 if (error) 2710 return error; 2711 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); 2712 if (error) 2713 return error; 2714 2715 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); 2716 } 2717 2718 static void 2719 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni) 2720 { 2721 struct wi_node *wn = (void*)ni; 2722 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt); 2723 } 2724 2725 static void 2726 wi_rssadapt_updatestats(void *arg) 2727 { 2728 struct wi_softc *sc = arg; 2729 struct ieee80211com *ic = &sc->sc_ic; 2730 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg); 2731 if (ic->ic_opmode != IEEE80211_M_MONITOR && 2732 ic->ic_state == IEEE80211_S_RUN) 2733 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 2734 wi_rssadapt_updatestats, arg); 2735 } 2736 2737 static int 2738 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2739 { 2740 struct wi_softc *sc = ic->ic_softc; 2741 struct ieee80211_node *ni = ic->ic_bss; 2742 int buflen; 2743 u_int16_t val; 2744 struct wi_ssid ssid; 2745 struct wi_macaddr bssid, old_bssid; 2746 enum ieee80211_state ostate; 2747 #ifdef WI_DEBUG 2748 static const char *stname[] = 2749 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" }; 2750 #endif /* WI_DEBUG */ 2751 2752 ostate = ic->ic_state; 2753 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate])); 2754 2755 switch (nstate) { 2756 case IEEE80211_S_INIT: 2757 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2758 callout_stop(&sc->sc_rssadapt_ch); 2759 ic->ic_flags &= ~IEEE80211_F_SIBSS; 2760 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 2761 return (*sc->sc_newstate)(ic, nstate, arg); 2762 2763 case IEEE80211_S_RUN: 2764 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 2765 buflen = IEEE80211_ADDR_LEN; 2766 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid); 2767 wi_read_rid(sc, WI_RID_CURRENT_BSSID, &bssid, &buflen); 2768 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid); 2769 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid); 2770 buflen = sizeof(val); 2771 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen); 2772 if (!isset(ic->ic_chan_avail, le16toh(val))) 2773 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname, 2774 le16toh(val)); 2775 ni->ni_chan = &ic->ic_channels[le16toh(val)]; 2776 2777 if (IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid)) 2778 sc->sc_false_syns++; 2779 else 2780 sc->sc_false_syns = 0; 2781 2782 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2783 ni->ni_esslen = ic->ic_des_esslen; 2784 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen); 2785 ni->ni_rates = ic->ic_sup_rates[ 2786 ieee80211_chan2mode(ic, ni->ni_chan)]; 2787 ni->ni_intval = ic->ic_lintval; 2788 ni->ni_capinfo = IEEE80211_CAPINFO_ESS; 2789 if (ic->ic_flags & IEEE80211_F_WEPON) 2790 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; 2791 } else { 2792 buflen = sizeof(ssid); 2793 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen); 2794 ni->ni_esslen = le16toh(ssid.wi_len); 2795 if (ni->ni_esslen > IEEE80211_NWID_LEN) 2796 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 2797 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); 2798 ni->ni_rates = ic->ic_sup_rates[ 2799 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/ 2800 } 2801 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2802 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 2803 wi_rssadapt_updatestats, sc); 2804 break; 2805 2806 case IEEE80211_S_SCAN: 2807 case IEEE80211_S_AUTH: 2808 case IEEE80211_S_ASSOC: 2809 break; 2810 } 2811 2812 ic->ic_state = nstate; 2813 /* skip standard ieee80211 handling */ 2814 return 0; 2815 } 2816 2817 static int 2818 wi_set_tim(struct ieee80211com *ic, int aid, int which) 2819 { 2820 struct wi_softc *sc = ic->ic_softc; 2821 2822 aid &= ~0xc000; 2823 if (which) 2824 aid |= 0x8000; 2825 2826 return wi_write_val(sc, WI_RID_SET_TIM, aid); 2827 } 2828 2829 static int 2830 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) 2831 { 2832 int error = 0; 2833 u_int16_t val[2]; 2834 2835 if (!sc->sc_enabled) 2836 return ENXIO; 2837 switch (sc->sc_firmware_type) { 2838 case WI_LUCENT: 2839 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 2840 break; 2841 case WI_INTERSIL: 2842 val[0] = htole16(chanmask); /* channel */ 2843 val[1] = htole16(txrate); /* tx rate */ 2844 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); 2845 break; 2846 case WI_SYMBOL: 2847 /* 2848 * XXX only supported on 3.x ? 2849 */ 2850 val[0] = BSCAN_BCAST | BSCAN_ONETIME; 2851 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, 2852 val, sizeof(val[0])); 2853 break; 2854 } 2855 if (error == 0) { 2856 sc->sc_scan_timer = WI_SCAN_WAIT; 2857 sc->sc_ic.ic_if.if_timer = 1; 2858 DPRINTF(("wi_scan_ap: start scanning, " 2859 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate)); 2860 } 2861 return error; 2862 } 2863 2864 static void 2865 wi_scan_result(struct wi_softc *sc, int fid, int cnt) 2866 { 2867 #define N(a) (sizeof (a) / sizeof (a[0])) 2868 int i, naps, off, szbuf; 2869 struct wi_scan_header ws_hdr; /* Prism2 header */ 2870 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ 2871 struct wi_apinfo *ap; 2872 2873 off = sizeof(u_int16_t) * 2; 2874 memset(&ws_hdr, 0, sizeof(ws_hdr)); 2875 switch (sc->sc_firmware_type) { 2876 case WI_INTERSIL: 2877 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); 2878 off += sizeof(ws_hdr); 2879 szbuf = sizeof(struct wi_scan_data_p2); 2880 break; 2881 case WI_SYMBOL: 2882 szbuf = sizeof(struct wi_scan_data_p2) + 6; 2883 break; 2884 case WI_LUCENT: 2885 szbuf = sizeof(struct wi_scan_data); 2886 break; 2887 default: 2888 printf("%s: wi_scan_result: unknown firmware type %u\n", 2889 sc->sc_dev.dv_xname, sc->sc_firmware_type); 2890 naps = 0; 2891 goto done; 2892 } 2893 naps = (cnt * 2 + 2 - off) / szbuf; 2894 if (naps > N(sc->sc_aps)) 2895 naps = N(sc->sc_aps); 2896 sc->sc_naps = naps; 2897 /* Read Data */ 2898 ap = sc->sc_aps; 2899 memset(&ws_dat, 0, sizeof(ws_dat)); 2900 for (i = 0; i < naps; i++, ap++) { 2901 wi_read_bap(sc, fid, off, &ws_dat, 2902 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); 2903 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, 2904 ether_sprintf(ws_dat.wi_bssid))); 2905 off += szbuf; 2906 ap->scanreason = le16toh(ws_hdr.wi_reason); 2907 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); 2908 ap->channel = le16toh(ws_dat.wi_chid); 2909 ap->signal = le16toh(ws_dat.wi_signal); 2910 ap->noise = le16toh(ws_dat.wi_noise); 2911 ap->quality = ap->signal - ap->noise; 2912 ap->capinfo = le16toh(ws_dat.wi_capinfo); 2913 ap->interval = le16toh(ws_dat.wi_interval); 2914 ap->rate = le16toh(ws_dat.wi_rate); 2915 ap->namelen = le16toh(ws_dat.wi_namelen); 2916 if (ap->namelen > sizeof(ap->name)) 2917 ap->namelen = sizeof(ap->name); 2918 memcpy(ap->name, ws_dat.wi_name, ap->namelen); 2919 } 2920 done: 2921 /* Done scanning */ 2922 sc->sc_scan_timer = 0; 2923 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); 2924 #undef N 2925 } 2926 2927 static void 2928 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) 2929 { 2930 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), 2931 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL 2932 : -1, 2933 rssi); 2934 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", 2935 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), 2936 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); 2937 printf(" rx_signal %u rx_rate %u rx_flow %u\n", 2938 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); 2939 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", 2940 wh->wi_tx_rtry, wh->wi_tx_rate, 2941 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); 2942 printf(" ehdr dst %s src %s type 0x%x\n", 2943 ether_sprintf(wh->wi_ehdr.ether_dhost), 2944 ether_sprintf(wh->wi_ehdr.ether_shost), 2945 wh->wi_ehdr.ether_type); 2946 } 2947