1 /* $NetBSD: wi.c,v 1.216 2006/10/12 01:31:02 christos Exp $ */ 2 3 /*- 4 * Copyright (c) 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1997, 1998, 1999 41 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by Bill Paul. 54 * 4. Neither the name of the author nor the names of any co-contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 68 * THE POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. 73 * 74 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu> 75 * Electrical Engineering Department 76 * Columbia University, New York City 77 */ 78 79 /* 80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN 81 * from Lucent. Unlike the older cards, the new ones are programmed 82 * entirely via a firmware-driven controller called the Hermes. 83 * Unfortunately, Lucent will not release the Hermes programming manual 84 * without an NDA (if at all). What they do release is an API library 85 * called the HCF (Hardware Control Functions) which is supposed to 86 * do the device-specific operations of a device driver for you. The 87 * publically available version of the HCF library (the 'HCF Light') is 88 * a) extremely gross, b) lacks certain features, particularly support 89 * for 802.11 frames, and c) is contaminated by the GNU Public License. 90 * 91 * This driver does not use the HCF or HCF Light at all. Instead, it 92 * programs the Hermes controller directly, using information gleaned 93 * from the HCF Light code and corresponding documentation. 94 * 95 * This driver supports both the PCMCIA and ISA versions of the 96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really 97 * anything of the sort: it's actually a PCMCIA bridge adapter 98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is 99 * inserted. Consequently, you need to use the pccard support for 100 * both the ISA and PCMCIA adapters. 101 */ 102 103 /* 104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the 105 * Oslo IETF plenary meeting. 106 */ 107 108 #include <sys/cdefs.h> 109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.216 2006/10/12 01:31:02 christos Exp $"); 110 111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ 112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ 113 #undef WI_HISTOGRAM 114 #undef WI_RING_DEBUG 115 #define STATIC static 116 117 #include "bpfilter.h" 118 119 #include <sys/param.h> 120 #include <sys/sysctl.h> 121 #include <sys/systm.h> 122 #include <sys/callout.h> 123 #include <sys/device.h> 124 #include <sys/socket.h> 125 #include <sys/mbuf.h> 126 #include <sys/ioctl.h> 127 #include <sys/kernel.h> /* for hz */ 128 #include <sys/proc.h> 129 #include <sys/kauth.h> 130 131 #include <net/if.h> 132 #include <net/if_dl.h> 133 #include <net/if_llc.h> 134 #include <net/if_media.h> 135 #include <net/if_ether.h> 136 #include <net/route.h> 137 138 #include <net80211/ieee80211_netbsd.h> 139 #include <net80211/ieee80211_var.h> 140 #include <net80211/ieee80211_ioctl.h> 141 #include <net80211/ieee80211_radiotap.h> 142 #include <net80211/ieee80211_rssadapt.h> 143 144 #if NBPFILTER > 0 145 #include <net/bpf.h> 146 #include <net/bpfdesc.h> 147 #endif 148 149 #include <machine/bus.h> 150 151 #include <dev/ic/wi_ieee.h> 152 #include <dev/ic/wireg.h> 153 #include <dev/ic/wivar.h> 154 155 STATIC int wi_init(struct ifnet *); 156 STATIC void wi_stop(struct ifnet *, int); 157 STATIC void wi_start(struct ifnet *); 158 STATIC int wi_reset(struct wi_softc *); 159 STATIC void wi_watchdog(struct ifnet *); 160 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t); 161 STATIC int wi_media_change(struct ifnet *); 162 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *); 163 164 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *); 165 STATIC void wi_node_free(struct ieee80211_node *); 166 167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *, 170 struct ieee80211_frame *, u_int); 171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *); 172 STATIC void wi_rssadapt_updatestats(void *); 173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *); 174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[], 175 wi_rssdescq_t *, u_int8_t (*)[]); 176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]); 177 178 STATIC void wi_rx_intr(struct wi_softc *); 179 STATIC void wi_txalloc_intr(struct wi_softc *); 180 STATIC void wi_cmd_intr(struct wi_softc *); 181 STATIC void wi_tx_intr(struct wi_softc *); 182 STATIC void wi_tx_ex_intr(struct wi_softc *); 183 STATIC void wi_info_intr(struct wi_softc *); 184 185 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *); 186 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *, 187 const u_int8_t[IEEE80211_ADDR_LEN]); 188 STATIC void wi_key_update_begin(struct ieee80211com *); 189 STATIC void wi_key_update_end(struct ieee80211com *); 190 191 STATIC void wi_push_packet(struct wi_softc *); 192 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t); 193 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t); 194 STATIC int wi_cfg_txrate(struct wi_softc *); 195 STATIC int wi_write_txrate(struct wi_softc *, int); 196 STATIC int wi_write_wep(struct wi_softc *); 197 STATIC int wi_write_multi(struct wi_softc *); 198 STATIC int wi_alloc_fid(struct wi_softc *, int, int *); 199 STATIC void wi_read_nicid(struct wi_softc *); 200 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); 201 202 STATIC int wi_cmd(struct wi_softc *, int, int, int, int); 203 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int); 204 STATIC int wi_cmd_wait(struct wi_softc *, int, int); 205 STATIC int wi_seek_bap(struct wi_softc *, int, int); 206 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int); 207 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int); 208 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); 209 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *); 210 STATIC int wi_write_rid(struct wi_softc *, int, void *, int); 211 212 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); 213 STATIC void wi_set_tim(struct ieee80211_node *, int); 214 215 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); 216 STATIC void wi_scan_result(struct wi_softc *, int, int); 217 218 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); 219 STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state); 220 221 static inline int 222 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) 223 { 224 225 val = htole16(val); 226 return wi_write_rid(sc, rid, &val, sizeof(val)); 227 } 228 229 static struct timeval lasttxerror; /* time of last tx error msg */ 230 static int curtxeps = 0; /* current tx error msgs/sec */ 231 static int wi_txerate = 0; /* tx error rate: max msgs/sec */ 232 233 #ifdef WI_DEBUG 234 #define WI_DEBUG_MAX 2 235 int wi_debug = 0; 236 237 #define DPRINTF(X) if (wi_debug) printf X 238 #define DPRINTF2(X) if (wi_debug > 1) printf X 239 #define IFF_DUMPPKTS(_ifp) \ 240 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 241 static int wi_sysctl_verify_debug(SYSCTLFN_PROTO); 242 #else 243 #define DPRINTF(X) 244 #define DPRINTF2(X) 245 #define IFF_DUMPPKTS(_ifp) 0 246 #endif 247 248 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \ 249 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD) 250 251 struct wi_card_ident 252 wi_card_ident[] = { 253 /* CARD_ID CARD_NAME FIRM_TYPE */ 254 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, 255 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, 256 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, 257 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, 258 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, 259 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, 260 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, 261 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, 262 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, 263 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, 264 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, 265 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, 266 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 267 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 268 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 269 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 270 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 271 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 272 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 273 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 274 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 275 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 276 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 277 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 278 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 279 { 0, NULL, 0 }, 280 }; 281 282 #ifndef _LKM 283 /* 284 * Setup sysctl(3) MIB, hw.wi.* 285 * 286 * TBD condition CTLFLAG_PERMANENT on being an LKM or not 287 */ 288 SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup") 289 { 290 int rc; 291 const struct sysctlnode *rnode; 292 #ifdef WI_DEBUG 293 const struct sysctlnode *cnode; 294 #endif /* WI_DEBUG */ 295 296 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 297 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 298 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) 299 goto err; 300 301 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, 302 CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi", 303 "Lucent/Prism/Symbol 802.11 controls", 304 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) 305 goto err; 306 307 #ifdef WI_DEBUG 308 /* control debugging printfs */ 309 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 310 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 311 "debug", SYSCTL_DESCR("Enable debugging output"), 312 wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) 313 goto err; 314 #endif /* WI_DEBUG */ 315 return; 316 err: 317 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 318 } 319 #endif 320 321 #ifdef WI_DEBUG 322 static int 323 wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper) 324 { 325 int error, t; 326 struct sysctlnode node; 327 328 node = *rnode; 329 t = *(int*)rnode->sysctl_data; 330 node.sysctl_data = &t; 331 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 332 if (error || newp == NULL) 333 return (error); 334 335 if (t < lower || t > upper) 336 return (EINVAL); 337 338 *(int*)rnode->sysctl_data = t; 339 340 return (0); 341 } 342 343 static int 344 wi_sysctl_verify_debug(SYSCTLFN_ARGS) 345 { 346 return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 347 0, WI_DEBUG_MAX); 348 } 349 #endif /* WI_DEBUG */ 350 351 STATIC int 352 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen) 353 { 354 int buflen, rc; 355 356 buflen = ebuflen; 357 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0) 358 return rc; 359 360 if (buflen < ebuflen) { 361 #ifdef WI_DEBUG 362 printf("%s: rid=%#04x read %d, expected %d\n", __func__, 363 rid, buflen, ebuflen); 364 #endif 365 return -1; 366 } 367 return 0; 368 } 369 370 int 371 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr) 372 { 373 struct ieee80211com *ic = &sc->sc_ic; 374 struct ifnet *ifp = &sc->sc_if; 375 int chan, nrate, buflen; 376 u_int16_t val, chanavail; 377 struct { 378 u_int16_t nrates; 379 char rates[IEEE80211_RATE_SIZE]; 380 } ratebuf; 381 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 382 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 383 }; 384 int s; 385 386 s = splnet(); 387 388 /* Make sure interrupts are disabled. */ 389 CSR_WRITE_2(sc, WI_INT_EN, 0); 390 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 391 392 sc->sc_invalid = 0; 393 394 /* Reset the NIC. */ 395 if (wi_reset(sc) != 0) { 396 sc->sc_invalid = 1; 397 splx(s); 398 return 1; 399 } 400 401 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, 402 IEEE80211_ADDR_LEN) != 0 || 403 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { 404 if (macaddr != NULL) 405 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN); 406 else { 407 printf(" could not get mac address, attach failed\n"); 408 splx(s); 409 return 1; 410 } 411 } 412 413 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); 414 415 /* Read NIC identification */ 416 wi_read_nicid(sc); 417 418 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 419 ifp->if_softc = sc; 420 ifp->if_start = wi_start; 421 ifp->if_ioctl = wi_ioctl; 422 ifp->if_watchdog = wi_watchdog; 423 ifp->if_init = wi_init; 424 ifp->if_stop = wi_stop; 425 ifp->if_flags = 426 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; 427 IFQ_SET_READY(&ifp->if_snd); 428 429 ic->ic_ifp = ifp; 430 ic->ic_phytype = IEEE80211_T_DS; 431 ic->ic_opmode = IEEE80211_M_STA; 432 ic->ic_caps = IEEE80211_C_AHDEMO; 433 ic->ic_state = IEEE80211_S_INIT; 434 ic->ic_max_aid = WI_MAX_AID; 435 436 /* Find available channel */ 437 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail, 438 sizeof(chanavail)) != 0) { 439 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname); 440 chanavail = htole16(0x1fff); /* assume 1-13 */ 441 } 442 for (chan = 16; chan > 0; chan--) { 443 if (!isset((u_int8_t*)&chanavail, chan - 1)) 444 continue; 445 ic->ic_ibss_chan = &ic->ic_channels[chan]; 446 ic->ic_channels[chan].ic_freq = 447 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 448 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 449 } 450 451 /* Find default IBSS channel */ 452 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) { 453 chan = le16toh(val); 454 if (isset((u_int8_t*)&chanavail, chan - 1)) 455 ic->ic_ibss_chan = &ic->ic_channels[chan]; 456 } 457 if (ic->ic_ibss_chan == NULL) { 458 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname); 459 return 1; 460 } 461 462 if (sc->sc_firmware_type == WI_LUCENT) { 463 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; 464 } else { 465 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && 466 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0) 467 sc->sc_dbm_offset = le16toh(val); 468 else 469 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; 470 } 471 472 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 473 474 /* 475 * Set flags based on firmware version. 476 */ 477 switch (sc->sc_firmware_type) { 478 case WI_LUCENT: 479 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 480 #ifdef WI_HERMES_AUTOINC_WAR 481 /* XXX: not confirmed, but never seen for recent firmware */ 482 if (sc->sc_sta_firmware_ver < 40000) { 483 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; 484 } 485 #endif 486 if (sc->sc_sta_firmware_ver >= 60000) 487 sc->sc_flags |= WI_FLAGS_HAS_MOR; 488 if (sc->sc_sta_firmware_ver >= 60006) { 489 ic->ic_caps |= IEEE80211_C_IBSS; 490 ic->ic_caps |= IEEE80211_C_MONITOR; 491 } 492 ic->ic_caps |= IEEE80211_C_PMGT; 493 sc->sc_ibss_port = 1; 494 break; 495 496 case WI_INTERSIL: 497 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; 498 sc->sc_flags |= WI_FLAGS_HAS_ROAMING; 499 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 500 if (sc->sc_sta_firmware_ver > 10101) 501 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; 502 if (sc->sc_sta_firmware_ver >= 800) { 503 if (sc->sc_sta_firmware_ver != 10402) 504 ic->ic_caps |= IEEE80211_C_HOSTAP; 505 ic->ic_caps |= IEEE80211_C_IBSS; 506 ic->ic_caps |= IEEE80211_C_MONITOR; 507 } 508 ic->ic_caps |= IEEE80211_C_PMGT; 509 sc->sc_ibss_port = 0; 510 sc->sc_alt_retry = 2; 511 break; 512 513 case WI_SYMBOL: 514 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; 515 if (sc->sc_sta_firmware_ver >= 20000) 516 ic->ic_caps |= IEEE80211_C_IBSS; 517 sc->sc_ibss_port = 4; 518 break; 519 } 520 521 /* 522 * Find out if we support WEP on this card. 523 */ 524 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 && 525 val != htole16(0)) 526 ic->ic_caps |= IEEE80211_C_WEP; 527 528 /* Find supported rates. */ 529 buflen = sizeof(ratebuf); 530 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 && 531 buflen > 2) { 532 nrate = le16toh(ratebuf.nrates); 533 if (nrate > IEEE80211_RATE_SIZE) 534 nrate = IEEE80211_RATE_SIZE; 535 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates, 536 &ratebuf.rates[0], nrate); 537 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; 538 } else { 539 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname); 540 return 1; 541 } 542 543 sc->sc_max_datalen = 2304; 544 sc->sc_rts_thresh = 2347; 545 sc->sc_frag_thresh = 2346; 546 sc->sc_system_scale = 1; 547 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; 548 sc->sc_roaming_mode = 1; 549 550 callout_init(&sc->sc_rssadapt_ch); 551 552 /* 553 * Call MI attach routines. 554 */ 555 if_attach(ifp); 556 ieee80211_ifattach(ic); 557 558 sc->sc_newstate = ic->ic_newstate; 559 sc->sc_set_tim = ic->ic_set_tim; 560 ic->ic_newstate = wi_newstate; 561 ic->ic_node_alloc = wi_node_alloc; 562 ic->ic_node_free = wi_node_free; 563 ic->ic_set_tim = wi_set_tim; 564 565 ic->ic_crypto.cs_key_delete = wi_key_delete; 566 ic->ic_crypto.cs_key_set = wi_key_set; 567 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin; 568 ic->ic_crypto.cs_key_update_end = wi_key_update_end; 569 570 ieee80211_media_init(ic, wi_media_change, wi_media_status); 571 572 #if NBPFILTER > 0 573 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 574 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 575 #endif 576 577 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 578 sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu)); 579 sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT); 580 581 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 582 sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu)); 583 sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT); 584 585 /* Attach is successful. */ 586 sc->sc_attached = 1; 587 588 splx(s); 589 ieee80211_announce(ic); 590 return 0; 591 } 592 593 int 594 wi_detach(struct wi_softc *sc) 595 { 596 struct ifnet *ifp = &sc->sc_if; 597 int s; 598 599 if (!sc->sc_attached) 600 return 0; 601 602 sc->sc_invalid = 1; 603 s = splnet(); 604 605 wi_stop(ifp, 1); 606 607 ieee80211_ifdetach(&sc->sc_ic); 608 if_detach(ifp); 609 splx(s); 610 return 0; 611 } 612 613 #ifdef __NetBSD__ 614 int 615 wi_activate(struct device *self, enum devact act) 616 { 617 struct wi_softc *sc = (struct wi_softc *)self; 618 int rv = 0, s; 619 620 s = splnet(); 621 switch (act) { 622 case DVACT_ACTIVATE: 623 rv = EOPNOTSUPP; 624 break; 625 626 case DVACT_DEACTIVATE: 627 if_deactivate(&sc->sc_if); 628 break; 629 } 630 splx(s); 631 return rv; 632 } 633 634 void 635 wi_power(struct wi_softc *sc, int why) 636 { 637 struct ifnet *ifp = &sc->sc_if; 638 int s; 639 640 s = splnet(); 641 switch (why) { 642 case PWR_SUSPEND: 643 case PWR_STANDBY: 644 wi_stop(ifp, 1); 645 break; 646 case PWR_RESUME: 647 if (ifp->if_flags & IFF_UP) { 648 wi_init(ifp); 649 (void)wi_intr(sc); 650 } 651 break; 652 case PWR_SOFTSUSPEND: 653 case PWR_SOFTSTANDBY: 654 case PWR_SOFTRESUME: 655 break; 656 } 657 splx(s); 658 } 659 #endif /* __NetBSD__ */ 660 661 void 662 wi_shutdown(struct wi_softc *sc) 663 { 664 struct ifnet *ifp = &sc->sc_if; 665 666 if (sc->sc_attached) 667 wi_stop(ifp, 1); 668 } 669 670 int 671 wi_intr(void *arg) 672 { 673 int i; 674 struct wi_softc *sc = arg; 675 struct ifnet *ifp = &sc->sc_if; 676 u_int16_t status; 677 678 if (sc->sc_enabled == 0 || 679 !device_is_active(&sc->sc_dev) || 680 (ifp->if_flags & IFF_RUNNING) == 0) 681 return 0; 682 683 if ((ifp->if_flags & IFF_UP) == 0) { 684 CSR_WRITE_2(sc, WI_INT_EN, 0); 685 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 686 return 1; 687 } 688 689 /* This is superfluous on Prism, but Lucent breaks if we 690 * do not disable interrupts. 691 */ 692 CSR_WRITE_2(sc, WI_INT_EN, 0); 693 694 /* maximum 10 loops per interrupt */ 695 for (i = 0; i < 10; i++) { 696 status = CSR_READ_2(sc, WI_EVENT_STAT); 697 #ifdef WI_DEBUG 698 if (wi_debug > 1) { 699 printf("%s: iter %d status %#04x\n", __func__, i, 700 status); 701 } 702 #endif /* WI_DEBUG */ 703 if ((status & WI_INTRS) == 0) 704 break; 705 706 sc->sc_status = status; 707 708 if (status & WI_EV_RX) 709 wi_rx_intr(sc); 710 711 if (status & WI_EV_ALLOC) 712 wi_txalloc_intr(sc); 713 714 if (status & WI_EV_TX) 715 wi_tx_intr(sc); 716 717 if (status & WI_EV_TX_EXC) 718 wi_tx_ex_intr(sc); 719 720 if (status & WI_EV_INFO) 721 wi_info_intr(sc); 722 723 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status); 724 725 if (sc->sc_status & WI_EV_CMD) 726 wi_cmd_intr(sc); 727 728 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 729 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && 730 !IFQ_IS_EMPTY(&ifp->if_snd)) 731 wi_start(ifp); 732 733 sc->sc_status = 0; 734 } 735 736 /* re-enable interrupts */ 737 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 738 739 sc->sc_status = 0; 740 741 return 1; 742 } 743 744 #define arraylen(a) (sizeof(a) / sizeof((a)[0])) 745 746 STATIC void 747 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree) 748 { 749 int i; 750 SLIST_INIT(rssdfree); 751 for (i = 0; i < arraylen(*rssd); i++) { 752 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next); 753 } 754 } 755 756 STATIC void 757 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS], 758 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE]) 759 { 760 struct ieee80211_node *ni; 761 int i; 762 for (i = 0; i < arraylen(*rssd); i++) { 763 ni = (*rssd)[i].rd_desc.id_node; 764 (*rssd)[i].rd_desc.id_node = NULL; 765 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0) 766 printf("%s: cleaning outstanding rssadapt " 767 "descriptor for %s\n", 768 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr)); 769 if (ni != NULL) 770 ieee80211_free_node(ni); 771 } 772 memset(*txpending, 0, sizeof(*txpending)); 773 wi_rssdescs_init(rssd, rssdfree); 774 } 775 776 STATIC int 777 wi_init(struct ifnet *ifp) 778 { 779 struct wi_softc *sc = ifp->if_softc; 780 struct ieee80211com *ic = &sc->sc_ic; 781 struct wi_joinreq join; 782 int i; 783 int error = 0, wasenabled; 784 785 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled)); 786 wasenabled = sc->sc_enabled; 787 if (!sc->sc_enabled) { 788 if ((error = (*sc->sc_enable)(sc)) != 0) 789 goto out; 790 sc->sc_enabled = 1; 791 } else 792 wi_stop(ifp, 0); 793 794 /* Symbol firmware cannot be initialized more than once */ 795 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) 796 if ((error = wi_reset(sc)) != 0) 797 goto out; 798 799 /* common 802.11 configuration */ 800 ic->ic_flags &= ~IEEE80211_F_IBSSON; 801 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 802 switch (ic->ic_opmode) { 803 case IEEE80211_M_STA: 804 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); 805 break; 806 case IEEE80211_M_IBSS: 807 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); 808 ic->ic_flags |= IEEE80211_F_IBSSON; 809 break; 810 case IEEE80211_M_AHDEMO: 811 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 812 break; 813 case IEEE80211_M_HOSTAP: 814 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); 815 break; 816 case IEEE80211_M_MONITOR: 817 if (sc->sc_firmware_type == WI_LUCENT) 818 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 819 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0); 820 break; 821 } 822 823 /* Intersil interprets this RID as joining ESS even in IBSS mode */ 824 if (sc->sc_firmware_type == WI_LUCENT && 825 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0) 826 wi_write_val(sc, WI_RID_CREATE_IBSS, 1); 827 else 828 wi_write_val(sc, WI_RID_CREATE_IBSS, 0); 829 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); 830 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid, 831 ic->ic_des_esslen); 832 wi_write_val(sc, WI_RID_OWN_CHNL, 833 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 834 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen); 835 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 836 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); 837 if (ic->ic_caps & IEEE80211_C_PMGT) 838 wi_write_val(sc, WI_RID_PM_ENABLED, 839 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); 840 841 /* not yet common 802.11 configuration */ 842 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); 843 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh); 844 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) 845 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh); 846 847 /* driver specific 802.11 configuration */ 848 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) 849 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); 850 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) 851 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); 852 if (sc->sc_flags & WI_FLAGS_HAS_MOR) 853 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); 854 wi_cfg_txrate(sc); 855 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); 856 857 #ifndef IEEE80211_NO_HOSTAP 858 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 859 sc->sc_firmware_type == WI_INTERSIL) { 860 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval); 861 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1); 862 } 863 #endif /* !IEEE80211_NO_HOSTAP */ 864 865 if (sc->sc_firmware_type == WI_INTERSIL) { 866 struct ieee80211_rateset *rs = 867 &ic->ic_sup_rates[IEEE80211_MODE_11B]; 868 u_int16_t basic = 0, supported = 0, rate; 869 870 for (i = 0; i < rs->rs_nrates; i++) { 871 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) { 872 case 2: 873 rate = 1; 874 break; 875 case 4: 876 rate = 2; 877 break; 878 case 11: 879 rate = 4; 880 break; 881 case 22: 882 rate = 8; 883 break; 884 default: 885 rate = 0; 886 break; 887 } 888 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) 889 basic |= rate; 890 supported |= rate; 891 } 892 wi_write_val(sc, WI_RID_BASIC_RATE, basic); 893 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported); 894 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry); 895 } 896 897 /* 898 * Initialize promisc mode. 899 * Being in Host-AP mode causes a great 900 * deal of pain if promiscuous mode is set. 901 * Therefore we avoid confusing the firmware 902 * and always reset promisc mode in Host-AP 903 * mode. Host-AP sees all the packets anyway. 904 */ 905 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 906 (ifp->if_flags & IFF_PROMISC) != 0) { 907 wi_write_val(sc, WI_RID_PROMISC, 1); 908 } else { 909 wi_write_val(sc, WI_RID_PROMISC, 0); 910 } 911 912 /* Configure WEP. */ 913 if (ic->ic_caps & IEEE80211_C_WEP) { 914 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode; 915 wi_write_wep(sc); 916 } 917 918 /* Set multicast filter. */ 919 wi_write_multi(sc); 920 921 sc->sc_txalloc = 0; 922 sc->sc_txalloced = 0; 923 sc->sc_txqueue = 0; 924 sc->sc_txqueued = 0; 925 sc->sc_txstart = 0; 926 sc->sc_txstarted = 0; 927 928 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { 929 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); 930 if (sc->sc_firmware_type == WI_SYMBOL) 931 sc->sc_buflen = 1585; /* XXX */ 932 for (i = 0; i < WI_NTXBUF; i++) { 933 error = wi_alloc_fid(sc, sc->sc_buflen, 934 &sc->sc_txd[i].d_fid); 935 if (error) { 936 printf("%s: tx buffer allocation failed\n", 937 sc->sc_dev.dv_xname); 938 goto out; 939 } 940 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i, 941 sc->sc_txd[i].d_fid)); 942 ++sc->sc_txalloced; 943 } 944 } 945 946 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree); 947 948 /* Enable desired port */ 949 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 950 ifp->if_flags |= IFF_RUNNING; 951 ifp->if_flags &= ~IFF_OACTIVE; 952 ic->ic_state = IEEE80211_S_INIT; 953 954 if (ic->ic_opmode == IEEE80211_M_AHDEMO || 955 ic->ic_opmode == IEEE80211_M_IBSS || 956 ic->ic_opmode == IEEE80211_M_MONITOR || 957 ic->ic_opmode == IEEE80211_M_HOSTAP) 958 ieee80211_create_ibss(ic, ic->ic_ibss_chan); 959 960 /* Enable interrupts */ 961 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 962 963 #ifndef IEEE80211_NO_HOSTAP 964 if (!wasenabled && 965 ic->ic_opmode == IEEE80211_M_HOSTAP && 966 sc->sc_firmware_type == WI_INTERSIL) { 967 /* XXX: some card need to be re-enabled for hostap */ 968 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); 969 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); 970 } 971 #endif /* !IEEE80211_NO_HOSTAP */ 972 973 if (ic->ic_opmode == IEEE80211_M_STA && 974 ((ic->ic_flags & IEEE80211_F_DESBSSID) || 975 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { 976 memset(&join, 0, sizeof(join)); 977 if (ic->ic_flags & IEEE80211_F_DESBSSID) 978 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); 979 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) 980 join.wi_chan = 981 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan)); 982 /* Lucent firmware does not support the JOIN RID. */ 983 if (sc->sc_firmware_type != WI_LUCENT) 984 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); 985 } 986 987 out: 988 if (error) { 989 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 990 wi_stop(ifp, 0); 991 } 992 DPRINTF(("wi_init: return %d\n", error)); 993 return error; 994 } 995 996 STATIC void 997 wi_txcmd_wait(struct wi_softc *sc) 998 { 999 KASSERT(sc->sc_txcmds == 1); 1000 if (sc->sc_status & WI_EV_CMD) { 1001 sc->sc_status &= ~WI_EV_CMD; 1002 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 1003 } else 1004 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0); 1005 } 1006 1007 STATIC void 1008 wi_stop(struct ifnet *ifp, int disable) 1009 { 1010 struct wi_softc *sc = ifp->if_softc; 1011 struct ieee80211com *ic = &sc->sc_ic; 1012 int s; 1013 1014 if (!sc->sc_enabled) 1015 return; 1016 1017 s = splnet(); 1018 1019 DPRINTF(("wi_stop: disable %d\n", disable)); 1020 1021 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1022 1023 /* wait for tx command completion (deassoc, deauth) */ 1024 while (sc->sc_txcmds > 0) { 1025 wi_txcmd_wait(sc); 1026 wi_cmd_intr(sc); 1027 } 1028 1029 /* TBD wait for deassoc, deauth tx completion? */ 1030 1031 if (!sc->sc_invalid) { 1032 CSR_WRITE_2(sc, WI_INT_EN, 0); 1033 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 1034 } 1035 1036 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1037 &sc->sc_txpending); 1038 1039 sc->sc_tx_timer = 0; 1040 sc->sc_scan_timer = 0; 1041 sc->sc_false_syns = 0; 1042 sc->sc_naps = 0; 1043 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); 1044 ifp->if_timer = 0; 1045 1046 if (disable) { 1047 if (sc->sc_disable) 1048 (*sc->sc_disable)(sc); 1049 sc->sc_enabled = 0; 1050 } 1051 splx(s); 1052 } 1053 1054 /* 1055 * Choose a data rate for a packet len bytes long that suits the packet 1056 * type and the wireless conditions. 1057 * 1058 * TBD Adapt fragmentation threshold. 1059 */ 1060 STATIC int 1061 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni, 1062 struct ieee80211_frame *wh, u_int len) 1063 { 1064 struct wi_softc *sc = ic->ic_ifp->if_softc; 1065 struct wi_node *wn = (void*)ni; 1066 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt; 1067 int do_not_adapt, i, rateidx, s; 1068 1069 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) && 1070 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0; 1071 1072 s = splnet(); 1073 1074 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len, 1075 ic->ic_fixed_rate, 1076 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname, 1077 do_not_adapt); 1078 1079 ni->ni_txrate = rateidx; 1080 1081 if (ic->ic_opmode != IEEE80211_M_HOSTAP) { 1082 /* choose the slowest pending rate so that we don't 1083 * accidentally send a packet on the MAC's queue 1084 * too fast. TBD find out if the MAC labels Tx 1085 * packets w/ rate when enqueued or dequeued. 1086 */ 1087 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++); 1088 rateidx = i; 1089 } 1090 1091 splx(s); 1092 return (rateidx); 1093 } 1094 1095 STATIC void 1096 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 1097 { 1098 struct wi_node *wn; 1099 if (id->id_node == NULL) 1100 return; 1101 1102 wn = (void*)id->id_node; 1103 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id); 1104 } 1105 1106 STATIC void 1107 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 1108 { 1109 struct ieee80211_node *ni; 1110 struct wi_node *wn; 1111 int s; 1112 1113 s = splnet(); 1114 1115 if ((ni = id->id_node) == NULL) { 1116 DPRINTF(("wi_lower_rate: missing node\n")); 1117 goto out; 1118 } 1119 1120 wn = (void *)ni; 1121 1122 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id); 1123 out: 1124 splx(s); 1125 return; 1126 } 1127 1128 STATIC void 1129 wi_start(struct ifnet *ifp) 1130 { 1131 struct wi_softc *sc = ifp->if_softc; 1132 struct ieee80211com *ic = &sc->sc_ic; 1133 struct ether_header *eh; 1134 struct ieee80211_node *ni; 1135 struct ieee80211_frame *wh; 1136 struct ieee80211_rateset *rs; 1137 struct wi_rssdesc *rd; 1138 struct ieee80211_rssdesc *id; 1139 struct mbuf *m0; 1140 struct wi_frame frmhdr; 1141 int cur, fid, off, rateidx; 1142 1143 if (!sc->sc_enabled || sc->sc_invalid) 1144 return; 1145 if (sc->sc_flags & WI_FLAGS_OUTRANGE) 1146 return; 1147 1148 memset(&frmhdr, 0, sizeof(frmhdr)); 1149 cur = sc->sc_txqueue; 1150 for (;;) { 1151 ni = ic->ic_bss; 1152 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) { 1153 ifp->if_flags |= IFF_OACTIVE; 1154 break; 1155 } 1156 if (!IF_IS_EMPTY(&ic->ic_mgtq)) { 1157 IF_DEQUEUE(&ic->ic_mgtq, m0); 1158 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 1159 (caddr_t)&frmhdr.wi_ehdr); 1160 frmhdr.wi_ehdr.ether_type = 0; 1161 wh = mtod(m0, struct ieee80211_frame *); 1162 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1163 m0->m_pkthdr.rcvif = NULL; 1164 } else if (ic->ic_state == IEEE80211_S_RUN) { 1165 IFQ_POLL(&ifp->if_snd, m0); 1166 if (m0 == NULL) 1167 break; 1168 IFQ_DEQUEUE(&ifp->if_snd, m0); 1169 ifp->if_opackets++; 1170 m_copydata(m0, 0, ETHER_HDR_LEN, 1171 (caddr_t)&frmhdr.wi_ehdr); 1172 #if NBPFILTER > 0 1173 if (ifp->if_bpf) 1174 bpf_mtap(ifp->if_bpf, m0); 1175 #endif 1176 1177 eh = mtod(m0, struct ether_header *); 1178 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1179 if (ni == NULL) { 1180 ifp->if_oerrors++; 1181 continue; 1182 } 1183 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1184 (m0->m_flags & M_PWR_SAV) == 0) { 1185 ieee80211_pwrsave(ic, ni, m0); 1186 goto next; 1187 } 1188 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 1189 ieee80211_free_node(ni); 1190 ifp->if_oerrors++; 1191 continue; 1192 } 1193 wh = mtod(m0, struct ieee80211_frame *); 1194 } else 1195 break; 1196 #if NBPFILTER > 0 1197 if (ic->ic_rawbpf) 1198 bpf_mtap(ic->ic_rawbpf, m0); 1199 #endif 1200 frmhdr.wi_tx_ctl = 1201 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK); 1202 #ifndef IEEE80211_NO_HOSTAP 1203 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1204 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); 1205 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1206 (wh->i_fc[1] & IEEE80211_FC1_WEP)) { 1207 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { 1208 m_freem(m0); 1209 ifp->if_oerrors++; 1210 goto next; 1211 } 1212 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); 1213 } 1214 #endif /* !IEEE80211_NO_HOSTAP */ 1215 1216 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len); 1217 rs = &ni->ni_rates; 1218 1219 #if NBPFILTER > 0 1220 if (sc->sc_drvbpf) { 1221 struct wi_tx_radiotap_header *tap = &sc->sc_txtap; 1222 1223 tap->wt_rate = rs->rs_rates[rateidx]; 1224 tap->wt_chan_freq = 1225 htole16(ic->ic_bss->ni_chan->ic_freq); 1226 tap->wt_chan_flags = 1227 htole16(ic->ic_bss->ni_chan->ic_flags); 1228 /* TBD tap->wt_flags */ 1229 1230 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0); 1231 } 1232 #endif 1233 1234 rd = SLIST_FIRST(&sc->sc_rssdfree); 1235 id = &rd->rd_desc; 1236 id->id_len = m0->m_pkthdr.len; 1237 id->id_rateidx = ni->ni_txrate; 1238 id->id_rssi = ni->ni_rssi; 1239 1240 frmhdr.wi_tx_idx = rd - sc->sc_rssd; 1241 1242 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1243 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] & 1244 IEEE80211_RATE_VAL); 1245 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) 1246 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]); 1247 1248 m_copydata(m0, 0, sizeof(struct ieee80211_frame), 1249 (caddr_t)&frmhdr.wi_whdr); 1250 m_adj(m0, sizeof(struct ieee80211_frame)); 1251 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); 1252 if (IFF_DUMPPKTS(ifp)) 1253 wi_dump_pkt(&frmhdr, ni, -1); 1254 fid = sc->sc_txd[cur].d_fid; 1255 off = sizeof(frmhdr); 1256 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 || 1257 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) { 1258 printf("%s: %s write fid %x failed\n", 1259 sc->sc_dev.dv_xname, __func__, fid); 1260 ifp->if_oerrors++; 1261 m_freem(m0); 1262 goto next; 1263 } 1264 m_freem(m0); 1265 sc->sc_txpending[ni->ni_txrate]++; 1266 --sc->sc_txalloced; 1267 if (sc->sc_txqueued++ == 0) { 1268 #ifdef DIAGNOSTIC 1269 if (cur != sc->sc_txstart) 1270 printf("%s: ring is desynchronized\n", 1271 sc->sc_dev.dv_xname); 1272 #endif 1273 wi_push_packet(sc); 1274 } else { 1275 #ifdef WI_RING_DEBUG 1276 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1277 sc->sc_dev.dv_xname, fid, 1278 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1279 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1280 #endif 1281 } 1282 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF; 1283 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next); 1284 id->id_node = ni; 1285 continue; 1286 next: 1287 if (ni != NULL) 1288 ieee80211_free_node(ni); 1289 } 1290 } 1291 1292 1293 STATIC int 1294 wi_reset(struct wi_softc *sc) 1295 { 1296 int i, error; 1297 1298 DPRINTF(("wi_reset\n")); 1299 1300 if (sc->sc_reset) 1301 (*sc->sc_reset)(sc); 1302 1303 error = 0; 1304 for (i = 0; i < 5; i++) { 1305 if (sc->sc_invalid) 1306 return ENXIO; 1307 DELAY(20*1000); /* XXX: way too long! */ 1308 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) 1309 break; 1310 } 1311 if (error) { 1312 printf("%s: init failed\n", sc->sc_dev.dv_xname); 1313 return error; 1314 } 1315 CSR_WRITE_2(sc, WI_INT_EN, 0); 1316 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 1317 1318 /* Calibrate timer. */ 1319 wi_write_val(sc, WI_RID_TICK_TIME, 0); 1320 return 0; 1321 } 1322 1323 STATIC void 1324 wi_watchdog(struct ifnet *ifp) 1325 { 1326 struct wi_softc *sc = ifp->if_softc; 1327 1328 ifp->if_timer = 0; 1329 if (!sc->sc_enabled) 1330 return; 1331 1332 if (sc->sc_tx_timer) { 1333 if (--sc->sc_tx_timer == 0) { 1334 printf("%s: device timeout\n", ifp->if_xname); 1335 ifp->if_oerrors++; 1336 wi_init(ifp); 1337 return; 1338 } 1339 ifp->if_timer = 1; 1340 } 1341 1342 if (sc->sc_scan_timer) { 1343 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && 1344 sc->sc_firmware_type == WI_INTERSIL) { 1345 DPRINTF(("wi_watchdog: inquire scan\n")); 1346 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 1347 } 1348 if (sc->sc_scan_timer) 1349 ifp->if_timer = 1; 1350 } 1351 1352 /* TODO: rate control */ 1353 ieee80211_watchdog(&sc->sc_ic); 1354 } 1355 1356 STATIC int 1357 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1358 { 1359 struct wi_softc *sc = ifp->if_softc; 1360 struct ieee80211com *ic = &sc->sc_ic; 1361 struct ifreq *ifr = (struct ifreq *)data; 1362 int s, error = 0; 1363 1364 if (!device_is_active(&sc->sc_dev)) 1365 return ENXIO; 1366 1367 s = splnet(); 1368 1369 switch (cmd) { 1370 case SIOCSIFFLAGS: 1371 /* 1372 * Can't do promisc and hostap at the same time. If all that's 1373 * changing is the promisc flag, try to short-circuit a call to 1374 * wi_init() by just setting PROMISC in the hardware. 1375 */ 1376 if (ifp->if_flags & IFF_UP) { 1377 if (sc->sc_enabled) { 1378 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1379 (ifp->if_flags & IFF_PROMISC) != 0) 1380 wi_write_val(sc, WI_RID_PROMISC, 1); 1381 else 1382 wi_write_val(sc, WI_RID_PROMISC, 0); 1383 } else 1384 error = wi_init(ifp); 1385 } else if (sc->sc_enabled) 1386 wi_stop(ifp, 1); 1387 break; 1388 case SIOCSIFMEDIA: 1389 case SIOCGIFMEDIA: 1390 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1391 break; 1392 case SIOCADDMULTI: 1393 case SIOCDELMULTI: 1394 error = (cmd == SIOCADDMULTI) ? 1395 ether_addmulti(ifr, &sc->sc_ec) : 1396 ether_delmulti(ifr, &sc->sc_ec); 1397 if (error == ENETRESET) { 1398 if (ifp->if_flags & IFF_RUNNING) { 1399 /* do not rescan */ 1400 error = wi_write_multi(sc); 1401 } else 1402 error = 0; 1403 } 1404 break; 1405 case SIOCGIFGENERIC: 1406 error = wi_get_cfg(ifp, cmd, data); 1407 break; 1408 case SIOCSIFGENERIC: 1409 error = kauth_authorize_generic(curlwp->l_cred, 1410 KAUTH_GENERIC_ISSUSER, &curlwp->l_acflag); 1411 if (error) 1412 break; 1413 error = wi_set_cfg(ifp, cmd, data); 1414 if (error == ENETRESET) { 1415 if (ifp->if_flags & IFF_RUNNING) 1416 error = wi_init(ifp); 1417 else 1418 error = 0; 1419 } 1420 break; 1421 case SIOCS80211BSSID: 1422 if (sc->sc_firmware_type == WI_LUCENT) { 1423 error = ENODEV; 1424 break; 1425 } 1426 /* fall through */ 1427 default: 1428 ic->ic_flags |= sc->sc_ic_flags; 1429 error = ieee80211_ioctl(&sc->sc_ic, cmd, data); 1430 sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC; 1431 if (error == ENETRESET) { 1432 if (sc->sc_enabled) 1433 error = wi_init(ifp); 1434 else 1435 error = 0; 1436 } 1437 break; 1438 } 1439 wi_mend_flags(sc, ic->ic_state); 1440 splx(s); 1441 return error; 1442 } 1443 1444 STATIC int 1445 wi_media_change(struct ifnet *ifp) 1446 { 1447 struct wi_softc *sc = ifp->if_softc; 1448 struct ieee80211com *ic = &sc->sc_ic; 1449 int error; 1450 1451 error = ieee80211_media_change(ifp); 1452 if (error == ENETRESET) { 1453 if (sc->sc_enabled) 1454 error = wi_init(ifp); 1455 else 1456 error = 0; 1457 } 1458 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1459 1460 return error; 1461 } 1462 1463 STATIC void 1464 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1465 { 1466 struct wi_softc *sc = ifp->if_softc; 1467 struct ieee80211com *ic = &sc->sc_ic; 1468 u_int16_t val; 1469 int rate; 1470 1471 if (sc->sc_enabled == 0) { 1472 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1473 imr->ifm_status = 0; 1474 return; 1475 } 1476 1477 imr->ifm_status = IFM_AVALID; 1478 imr->ifm_active = IFM_IEEE80211; 1479 if (ic->ic_state == IEEE80211_S_RUN && 1480 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) 1481 imr->ifm_status |= IFM_ACTIVE; 1482 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) { 1483 /* convert to 802.11 rate */ 1484 val = le16toh(val); 1485 rate = val * 2; 1486 if (sc->sc_firmware_type == WI_LUCENT) { 1487 if (rate == 10) 1488 rate = 11; /* 5.5Mbps */ 1489 } else { 1490 if (rate == 4*2) 1491 rate = 11; /* 5.5Mbps */ 1492 else if (rate == 8*2) 1493 rate = 22; /* 11Mbps */ 1494 } 1495 } else 1496 rate = 0; 1497 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1498 switch (ic->ic_opmode) { 1499 case IEEE80211_M_STA: 1500 break; 1501 case IEEE80211_M_IBSS: 1502 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1503 break; 1504 case IEEE80211_M_AHDEMO: 1505 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1506 break; 1507 case IEEE80211_M_HOSTAP: 1508 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1509 break; 1510 case IEEE80211_M_MONITOR: 1511 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1512 break; 1513 } 1514 } 1515 1516 STATIC struct ieee80211_node * 1517 wi_node_alloc(struct ieee80211_node_table *nt __unused) 1518 { 1519 struct wi_node *wn = 1520 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1521 return wn ? &wn->wn_node : NULL; 1522 } 1523 1524 STATIC void 1525 wi_node_free(struct ieee80211_node *ni) 1526 { 1527 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1528 int i; 1529 1530 for (i = 0; i < WI_NTXRSS; i++) { 1531 if (sc->sc_rssd[i].rd_desc.id_node == ni) 1532 sc->sc_rssd[i].rd_desc.id_node = NULL; 1533 } 1534 free(ni, M_DEVBUF); 1535 } 1536 1537 STATIC void 1538 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) 1539 { 1540 struct ieee80211com *ic = &sc->sc_ic; 1541 struct ieee80211_node *ni = ic->ic_bss; 1542 struct ifnet *ifp = &sc->sc_if; 1543 1544 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) 1545 return; 1546 1547 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); 1548 DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); 1549 1550 /* In promiscuous mode, the BSSID field is not a reliable 1551 * indicator of the firmware's BSSID. Damp spurious 1552 * change-of-BSSID indications. 1553 */ 1554 if ((ifp->if_flags & IFF_PROMISC) != 0 && 1555 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns, 1556 WI_MAX_FALSE_SYNS)) 1557 return; 1558 1559 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1); 1560 /* 1561 * XXX hack; we should create a new node with the new bssid 1562 * and replace the existing ic_bss with it but since we don't 1563 * process management frames to collect state we cheat by 1564 * reusing the existing node as we know wi_newstate will be 1565 * called and it will overwrite the node state. 1566 */ 1567 ieee80211_sta_join(ic, ieee80211_ref_node(ni)); 1568 } 1569 1570 static inline void 1571 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni, 1572 struct ieee80211_frame *wh __unused, int rssi) 1573 { 1574 struct wi_node *wn; 1575 1576 if (ni == NULL) { 1577 printf("%s: null node", __func__); 1578 return; 1579 } 1580 1581 wn = (void*)ni; 1582 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi); 1583 } 1584 1585 STATIC void 1586 wi_rx_intr(struct wi_softc *sc) 1587 { 1588 struct ieee80211com *ic = &sc->sc_ic; 1589 struct ifnet *ifp = &sc->sc_if; 1590 struct ieee80211_node *ni; 1591 struct wi_frame frmhdr; 1592 struct mbuf *m; 1593 struct ieee80211_frame *wh; 1594 int fid, len, off, rssi; 1595 u_int8_t dir; 1596 u_int16_t status; 1597 u_int32_t rstamp; 1598 1599 fid = CSR_READ_2(sc, WI_RX_FID); 1600 1601 /* First read in the frame header */ 1602 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { 1603 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1604 __func__, fid); 1605 ifp->if_ierrors++; 1606 return; 1607 } 1608 1609 if (IFF_DUMPPKTS(ifp)) 1610 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); 1611 1612 /* 1613 * Drop undecryptable or packets with receive errors here 1614 */ 1615 status = le16toh(frmhdr.wi_status); 1616 if ((status & WI_STAT_ERRSTAT) != 0 && 1617 ic->ic_opmode != IEEE80211_M_MONITOR) { 1618 ifp->if_ierrors++; 1619 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); 1620 return; 1621 } 1622 rssi = frmhdr.wi_rx_signal; 1623 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | 1624 le16toh(frmhdr.wi_rx_tstamp1); 1625 1626 len = le16toh(frmhdr.wi_dat_len); 1627 off = ALIGN(sizeof(struct ieee80211_frame)); 1628 1629 /* Sometimes the PRISM2.x returns bogusly large frames. Except 1630 * in monitor mode, just throw them away. 1631 */ 1632 if (off + len > MCLBYTES) { 1633 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1634 ifp->if_ierrors++; 1635 DPRINTF(("wi_rx_intr: oversized packet\n")); 1636 return; 1637 } else 1638 len = 0; 1639 } 1640 1641 MGETHDR(m, M_DONTWAIT, MT_DATA); 1642 if (m == NULL) { 1643 ifp->if_ierrors++; 1644 DPRINTF(("wi_rx_intr: MGET failed\n")); 1645 return; 1646 } 1647 if (off + len > MHLEN) { 1648 MCLGET(m, M_DONTWAIT); 1649 if ((m->m_flags & M_EXT) == 0) { 1650 m_freem(m); 1651 ifp->if_ierrors++; 1652 DPRINTF(("wi_rx_intr: MCLGET failed\n")); 1653 return; 1654 } 1655 } 1656 1657 m->m_data += off - sizeof(struct ieee80211_frame); 1658 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); 1659 wi_read_bap(sc, fid, sizeof(frmhdr), 1660 m->m_data + sizeof(struct ieee80211_frame), len); 1661 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; 1662 m->m_pkthdr.rcvif = ifp; 1663 1664 wh = mtod(m, struct ieee80211_frame *); 1665 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1666 /* 1667 * WEP is decrypted by hardware. Clear WEP bit 1668 * header for ieee80211_input(). 1669 */ 1670 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1671 } 1672 #if NBPFILTER > 0 1673 if (sc->sc_drvbpf) { 1674 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap; 1675 1676 tap->wr_rate = frmhdr.wi_rx_rate / 5; 1677 tap->wr_antsignal = frmhdr.wi_rx_signal; 1678 tap->wr_antnoise = frmhdr.wi_rx_silence; 1679 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1680 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1681 if (frmhdr.wi_status & WI_STAT_PCF) 1682 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP; 1683 1684 /* XXX IEEE80211_RADIOTAP_F_WEP */ 1685 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m); 1686 } 1687 #endif 1688 1689 /* synchronize driver's BSSID with firmware's BSSID */ 1690 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; 1691 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) 1692 wi_sync_bssid(sc, wh->i_addr3); 1693 1694 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1695 1696 ieee80211_input(ic, m, ni, rssi, rstamp); 1697 1698 wi_rssadapt_input(ic, ni, wh, rssi); 1699 1700 /* 1701 * The frame may have caused the node to be marked for 1702 * reclamation (e.g. in response to a DEAUTH message) 1703 * so use release_node here instead of unref_node. 1704 */ 1705 ieee80211_free_node(ni); 1706 } 1707 1708 STATIC void 1709 wi_tx_ex_intr(struct wi_softc *sc) 1710 { 1711 struct ieee80211com *ic = &sc->sc_ic; 1712 struct ifnet *ifp = &sc->sc_if; 1713 struct ieee80211_node *ni; 1714 struct ieee80211_rssdesc *id; 1715 struct wi_rssdesc *rssd; 1716 struct wi_frame frmhdr; 1717 int fid; 1718 u_int16_t status; 1719 1720 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1721 /* Read in the frame header */ 1722 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1723 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1724 __func__, fid); 1725 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1726 &sc->sc_txpending); 1727 goto out; 1728 } 1729 1730 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1731 printf("%s: %s bad idx %02x\n", 1732 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1733 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1734 &sc->sc_txpending); 1735 goto out; 1736 } 1737 1738 status = le16toh(frmhdr.wi_status); 1739 1740 /* 1741 * Spontaneous station disconnects appear as xmit 1742 * errors. Don't announce them and/or count them 1743 * as an output error. 1744 */ 1745 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { 1746 printf("%s: tx failed", sc->sc_dev.dv_xname); 1747 if (status & WI_TXSTAT_RET_ERR) 1748 printf(", retry limit exceeded"); 1749 if (status & WI_TXSTAT_AGED_ERR) 1750 printf(", max transmit lifetime exceeded"); 1751 if (status & WI_TXSTAT_DISCONNECT) 1752 printf(", port disconnected"); 1753 if (status & WI_TXSTAT_FORM_ERR) 1754 printf(", invalid format (data len %u src %s)", 1755 le16toh(frmhdr.wi_dat_len), 1756 ether_sprintf(frmhdr.wi_ehdr.ether_shost)); 1757 if (status & ~0xf) 1758 printf(", status=0x%x", status); 1759 printf("\n"); 1760 } 1761 ifp->if_oerrors++; 1762 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1763 id = &rssd->rd_desc; 1764 if ((status & WI_TXSTAT_RET_ERR) != 0) 1765 wi_lower_rate(ic, id); 1766 1767 ni = id->id_node; 1768 id->id_node = NULL; 1769 1770 if (ni == NULL) { 1771 printf("%s: %s null node, rssdesc %02x\n", 1772 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1773 goto out; 1774 } 1775 1776 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1777 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1778 __func__, id->id_rateidx); 1779 sc->sc_txpending[id->id_rateidx] = 0; 1780 } 1781 if (ni != NULL) 1782 ieee80211_free_node(ni); 1783 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1784 out: 1785 ifp->if_flags &= ~IFF_OACTIVE; 1786 } 1787 1788 STATIC void 1789 wi_txalloc_intr(struct wi_softc *sc) 1790 { 1791 int fid, cur; 1792 1793 fid = CSR_READ_2(sc, WI_ALLOC_FID); 1794 1795 cur = sc->sc_txalloc; 1796 #ifdef DIAGNOSTIC 1797 if (sc->sc_txstarted == 0) { 1798 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1799 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur, 1800 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1801 return; 1802 } 1803 #endif 1804 --sc->sc_txstarted; 1805 ++sc->sc_txalloced; 1806 sc->sc_txd[cur].d_fid = fid; 1807 sc->sc_txalloc = (cur + 1) % WI_NTXBUF; 1808 #ifdef WI_RING_DEBUG 1809 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1810 sc->sc_dev.dv_xname, fid, 1811 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1812 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1813 #endif 1814 } 1815 1816 STATIC void 1817 wi_cmd_intr(struct wi_softc *sc) 1818 { 1819 struct ifnet *ifp = &sc->sc_if; 1820 1821 if (sc->sc_invalid) 1822 return; 1823 #ifdef WI_DEBUG 1824 if (wi_debug > 1) 1825 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds); 1826 #endif 1827 KASSERT(sc->sc_txcmds > 0); 1828 1829 --sc->sc_txcmds; 1830 1831 if (--sc->sc_txqueued == 0) { 1832 sc->sc_tx_timer = 0; 1833 ifp->if_flags &= ~IFF_OACTIVE; 1834 #ifdef WI_RING_DEBUG 1835 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n", 1836 sc->sc_dev.dv_xname, 1837 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1838 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1839 #endif 1840 } else 1841 wi_push_packet(sc); 1842 } 1843 1844 STATIC void 1845 wi_push_packet(struct wi_softc *sc) 1846 { 1847 struct ifnet *ifp = &sc->sc_if; 1848 int cur, fid; 1849 1850 cur = sc->sc_txstart; 1851 fid = sc->sc_txd[cur].d_fid; 1852 1853 KASSERT(sc->sc_txcmds == 0); 1854 1855 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) { 1856 printf("%s: xmit failed\n", sc->sc_dev.dv_xname); 1857 /* XXX ring might have a hole */ 1858 } 1859 1860 if (sc->sc_txcmds++ > 0) 1861 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds); 1862 1863 ++sc->sc_txstarted; 1864 #ifdef DIAGNOSTIC 1865 if (sc->sc_txstarted > WI_NTXBUF) 1866 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname); 1867 #endif 1868 sc->sc_txstart = (cur + 1) % WI_NTXBUF; 1869 sc->sc_tx_timer = 5; 1870 ifp->if_timer = 1; 1871 #ifdef WI_RING_DEBUG 1872 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1873 sc->sc_dev.dv_xname, fid, 1874 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1875 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1876 #endif 1877 } 1878 1879 STATIC void 1880 wi_tx_intr(struct wi_softc *sc) 1881 { 1882 struct ieee80211com *ic = &sc->sc_ic; 1883 struct ifnet *ifp = &sc->sc_if; 1884 struct ieee80211_node *ni; 1885 struct ieee80211_rssdesc *id; 1886 struct wi_rssdesc *rssd; 1887 struct wi_frame frmhdr; 1888 int fid; 1889 1890 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1891 /* Read in the frame header */ 1892 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2), 1893 &frmhdr.wi_tx_swsup2, 2) != 0) { 1894 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1895 __func__, fid); 1896 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1897 &sc->sc_txpending); 1898 goto out; 1899 } 1900 1901 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1902 printf("%s: %s bad idx %02x\n", 1903 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1904 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1905 &sc->sc_txpending); 1906 goto out; 1907 } 1908 1909 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1910 id = &rssd->rd_desc; 1911 wi_raise_rate(ic, id); 1912 1913 ni = id->id_node; 1914 id->id_node = NULL; 1915 1916 if (ni == NULL) { 1917 printf("%s: %s null node, rssdesc %02x\n", 1918 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1919 goto out; 1920 } 1921 1922 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1923 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1924 __func__, id->id_rateidx); 1925 sc->sc_txpending[id->id_rateidx] = 0; 1926 } 1927 if (ni != NULL) 1928 ieee80211_free_node(ni); 1929 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1930 out: 1931 ifp->if_flags &= ~IFF_OACTIVE; 1932 } 1933 1934 STATIC void 1935 wi_info_intr(struct wi_softc *sc) 1936 { 1937 struct ieee80211com *ic = &sc->sc_ic; 1938 struct ifnet *ifp = &sc->sc_if; 1939 int i, fid, len, off; 1940 u_int16_t ltbuf[2]; 1941 u_int16_t stat; 1942 u_int32_t *ptr; 1943 1944 fid = CSR_READ_2(sc, WI_INFO_FID); 1945 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); 1946 1947 switch (le16toh(ltbuf[1])) { 1948 1949 case WI_INFO_LINK_STAT: 1950 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); 1951 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); 1952 switch (le16toh(stat)) { 1953 case CONNECTED: 1954 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1955 if (ic->ic_state == IEEE80211_S_RUN && 1956 ic->ic_opmode != IEEE80211_M_IBSS) 1957 break; 1958 /* FALLTHROUGH */ 1959 case AP_CHANGE: 1960 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1961 break; 1962 case AP_IN_RANGE: 1963 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1964 break; 1965 case AP_OUT_OF_RANGE: 1966 if (sc->sc_firmware_type == WI_SYMBOL && 1967 sc->sc_scan_timer > 0) { 1968 if (wi_cmd(sc, WI_CMD_INQUIRE, 1969 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) 1970 sc->sc_scan_timer = 0; 1971 break; 1972 } 1973 if (ic->ic_opmode == IEEE80211_M_STA) 1974 sc->sc_flags |= WI_FLAGS_OUTRANGE; 1975 break; 1976 case DISCONNECTED: 1977 case ASSOC_FAILED: 1978 if (ic->ic_opmode == IEEE80211_M_STA) 1979 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1980 break; 1981 } 1982 break; 1983 1984 case WI_INFO_COUNTERS: 1985 /* some card versions have a larger stats structure */ 1986 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); 1987 ptr = (u_int32_t *)&sc->sc_stats; 1988 off = sizeof(ltbuf); 1989 for (i = 0; i < len; i++, off += 2, ptr++) { 1990 wi_read_bap(sc, fid, off, &stat, sizeof(stat)); 1991 stat = le16toh(stat); 1992 #ifdef WI_HERMES_STATS_WAR 1993 if (stat & 0xf000) 1994 stat = ~stat; 1995 #endif 1996 *ptr += stat; 1997 } 1998 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + 1999 sc->sc_stats.wi_tx_multi_retries + 2000 sc->sc_stats.wi_tx_retry_limit; 2001 break; 2002 2003 case WI_INFO_SCAN_RESULTS: 2004 case WI_INFO_HOST_SCAN_RESULTS: 2005 wi_scan_result(sc, fid, le16toh(ltbuf[0])); 2006 break; 2007 2008 default: 2009 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, 2010 le16toh(ltbuf[1]), le16toh(ltbuf[0]))); 2011 break; 2012 } 2013 } 2014 2015 STATIC int 2016 wi_write_multi(struct wi_softc *sc) 2017 { 2018 struct ifnet *ifp = &sc->sc_if; 2019 int n; 2020 struct wi_mcast mlist; 2021 struct ether_multi *enm; 2022 struct ether_multistep estep; 2023 2024 if ((ifp->if_flags & IFF_PROMISC) != 0) { 2025 allmulti: 2026 ifp->if_flags |= IFF_ALLMULTI; 2027 memset(&mlist, 0, sizeof(mlist)); 2028 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 2029 sizeof(mlist)); 2030 } 2031 2032 n = 0; 2033 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 2034 while (enm != NULL) { 2035 /* Punt on ranges or too many multicast addresses. */ 2036 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) || 2037 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) 2038 goto allmulti; 2039 2040 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo); 2041 n++; 2042 ETHER_NEXT_MULTI(estep, enm); 2043 } 2044 ifp->if_flags &= ~IFF_ALLMULTI; 2045 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 2046 IEEE80211_ADDR_LEN * n); 2047 } 2048 2049 2050 STATIC void 2051 wi_read_nicid(struct wi_softc *sc) 2052 { 2053 struct wi_card_ident *id; 2054 char *p; 2055 int len; 2056 u_int16_t ver[4]; 2057 2058 /* getting chip identity */ 2059 memset(ver, 0, sizeof(ver)); 2060 len = sizeof(ver); 2061 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); 2062 printf("%s: using ", sc->sc_dev.dv_xname); 2063 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3]))); 2064 2065 sc->sc_firmware_type = WI_NOTYPE; 2066 for (id = wi_card_ident; id->card_name != NULL; id++) { 2067 if (le16toh(ver[0]) == id->card_id) { 2068 printf("%s", id->card_name); 2069 sc->sc_firmware_type = id->firm_type; 2070 break; 2071 } 2072 } 2073 if (sc->sc_firmware_type == WI_NOTYPE) { 2074 if (le16toh(ver[0]) & 0x8000) { 2075 printf("Unknown PRISM2 chip"); 2076 sc->sc_firmware_type = WI_INTERSIL; 2077 } else { 2078 printf("Unknown Lucent chip"); 2079 sc->sc_firmware_type = WI_LUCENT; 2080 } 2081 } 2082 2083 /* get primary firmware version (Only Prism chips) */ 2084 if (sc->sc_firmware_type != WI_LUCENT) { 2085 memset(ver, 0, sizeof(ver)); 2086 len = sizeof(ver); 2087 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); 2088 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + 2089 le16toh(ver[3]) * 100 + le16toh(ver[1]); 2090 } 2091 2092 /* get station firmware version */ 2093 memset(ver, 0, sizeof(ver)); 2094 len = sizeof(ver); 2095 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); 2096 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + 2097 le16toh(ver[3]) * 100 + le16toh(ver[1]); 2098 if (sc->sc_firmware_type == WI_INTERSIL && 2099 (sc->sc_sta_firmware_ver == 10102 || 2100 sc->sc_sta_firmware_ver == 20102)) { 2101 char ident[12]; 2102 memset(ident, 0, sizeof(ident)); 2103 len = sizeof(ident); 2104 /* value should be the format like "V2.00-11" */ 2105 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && 2106 *(p = (char *)ident) >= 'A' && 2107 p[2] == '.' && p[5] == '-' && p[8] == '\0') { 2108 sc->sc_firmware_type = WI_SYMBOL; 2109 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + 2110 (p[3] - '0') * 1000 + (p[4] - '0') * 100 + 2111 (p[6] - '0') * 10 + (p[7] - '0'); 2112 } 2113 } 2114 2115 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname, 2116 sc->sc_firmware_type == WI_LUCENT ? "Lucent" : 2117 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); 2118 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ 2119 printf("Primary (%u.%u.%u), ", 2120 sc->sc_pri_firmware_ver / 10000, 2121 (sc->sc_pri_firmware_ver % 10000) / 100, 2122 sc->sc_pri_firmware_ver % 100); 2123 printf("Station (%u.%u.%u)\n", 2124 sc->sc_sta_firmware_ver / 10000, 2125 (sc->sc_sta_firmware_ver % 10000) / 100, 2126 sc->sc_sta_firmware_ver % 100); 2127 } 2128 2129 STATIC int 2130 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) 2131 { 2132 struct wi_ssid ssid; 2133 2134 if (buflen > IEEE80211_NWID_LEN) 2135 return ENOBUFS; 2136 memset(&ssid, 0, sizeof(ssid)); 2137 ssid.wi_len = htole16(buflen); 2138 memcpy(ssid.wi_ssid, buf, buflen); 2139 return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); 2140 } 2141 2142 STATIC int 2143 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2144 { 2145 struct wi_softc *sc = ifp->if_softc; 2146 struct ieee80211com *ic = &sc->sc_ic; 2147 struct ifreq *ifr = (struct ifreq *)data; 2148 struct wi_req wreq; 2149 int len, n, error; 2150 2151 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2152 if (error) 2153 return error; 2154 len = (wreq.wi_len - 1) * 2; 2155 if (len < sizeof(u_int16_t)) 2156 return ENOSPC; 2157 if (len > sizeof(wreq.wi_val)) 2158 len = sizeof(wreq.wi_val); 2159 2160 switch (wreq.wi_type) { 2161 2162 case WI_RID_IFACE_STATS: 2163 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); 2164 if (len < sizeof(sc->sc_stats)) 2165 error = ENOSPC; 2166 else 2167 len = sizeof(sc->sc_stats); 2168 break; 2169 2170 case WI_RID_ENCRYPTION: 2171 case WI_RID_TX_CRYPT_KEY: 2172 case WI_RID_DEFLT_CRYPT_KEYS: 2173 case WI_RID_TX_RATE: 2174 return ieee80211_cfgget(ic, cmd, data); 2175 2176 case WI_RID_MICROWAVE_OVEN: 2177 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { 2178 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2179 &len); 2180 break; 2181 } 2182 wreq.wi_val[0] = htole16(sc->sc_microwave_oven); 2183 len = sizeof(u_int16_t); 2184 break; 2185 2186 case WI_RID_DBM_ADJUST: 2187 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { 2188 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2189 &len); 2190 break; 2191 } 2192 wreq.wi_val[0] = htole16(sc->sc_dbm_offset); 2193 len = sizeof(u_int16_t); 2194 break; 2195 2196 case WI_RID_ROAMING_MODE: 2197 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { 2198 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2199 &len); 2200 break; 2201 } 2202 wreq.wi_val[0] = htole16(sc->sc_roaming_mode); 2203 len = sizeof(u_int16_t); 2204 break; 2205 2206 case WI_RID_SYSTEM_SCALE: 2207 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { 2208 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2209 &len); 2210 break; 2211 } 2212 wreq.wi_val[0] = htole16(sc->sc_system_scale); 2213 len = sizeof(u_int16_t); 2214 break; 2215 2216 case WI_RID_FRAG_THRESH: 2217 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { 2218 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2219 &len); 2220 break; 2221 } 2222 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2223 len = sizeof(u_int16_t); 2224 break; 2225 2226 case WI_RID_READ_APS: 2227 #ifndef IEEE80211_NO_HOSTAP 2228 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2229 return ieee80211_cfgget(ic, cmd, data); 2230 #endif /* !IEEE80211_NO_HOSTAP */ 2231 if (sc->sc_scan_timer > 0) { 2232 error = EINPROGRESS; 2233 break; 2234 } 2235 n = sc->sc_naps; 2236 if (len < sizeof(n)) { 2237 error = ENOSPC; 2238 break; 2239 } 2240 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) 2241 n = (len - sizeof(n)) / sizeof(struct wi_apinfo); 2242 len = sizeof(n) + sizeof(struct wi_apinfo) * n; 2243 memcpy(wreq.wi_val, &n, sizeof(n)); 2244 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps, 2245 sizeof(struct wi_apinfo) * n); 2246 break; 2247 2248 default: 2249 if (sc->sc_enabled) { 2250 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2251 &len); 2252 break; 2253 } 2254 switch (wreq.wi_type) { 2255 case WI_RID_MAX_DATALEN: 2256 wreq.wi_val[0] = htole16(sc->sc_max_datalen); 2257 len = sizeof(u_int16_t); 2258 break; 2259 case WI_RID_FRAG_THRESH: 2260 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2261 len = sizeof(u_int16_t); 2262 break; 2263 case WI_RID_RTS_THRESH: 2264 wreq.wi_val[0] = htole16(sc->sc_rts_thresh); 2265 len = sizeof(u_int16_t); 2266 break; 2267 case WI_RID_CNFAUTHMODE: 2268 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); 2269 len = sizeof(u_int16_t); 2270 break; 2271 case WI_RID_NODENAME: 2272 if (len < sc->sc_nodelen + sizeof(u_int16_t)) { 2273 error = ENOSPC; 2274 break; 2275 } 2276 len = sc->sc_nodelen + sizeof(u_int16_t); 2277 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); 2278 memcpy(&wreq.wi_val[1], sc->sc_nodename, 2279 sc->sc_nodelen); 2280 break; 2281 default: 2282 return ieee80211_cfgget(ic, cmd, data); 2283 } 2284 break; 2285 } 2286 if (error) 2287 return error; 2288 wreq.wi_len = (len + 1) / 2 + 1; 2289 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); 2290 } 2291 2292 STATIC int 2293 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2294 { 2295 struct wi_softc *sc = ifp->if_softc; 2296 struct ieee80211com *ic = &sc->sc_ic; 2297 struct ifreq *ifr = (struct ifreq *)data; 2298 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2299 struct wi_req wreq; 2300 struct mbuf *m; 2301 int i, len, error; 2302 2303 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2304 if (error) 2305 return error; 2306 len = (wreq.wi_len - 1) * 2; 2307 switch (wreq.wi_type) { 2308 case WI_RID_MAC_NODE: 2309 (void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN); 2310 IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl),ic->ic_myaddr); 2311 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, 2312 IEEE80211_ADDR_LEN); 2313 break; 2314 2315 case WI_RID_DBM_ADJUST: 2316 return ENODEV; 2317 2318 case WI_RID_NODENAME: 2319 if (le16toh(wreq.wi_val[0]) * 2 > len || 2320 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { 2321 error = ENOSPC; 2322 break; 2323 } 2324 if (sc->sc_enabled) { 2325 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2326 len); 2327 if (error) 2328 break; 2329 } 2330 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; 2331 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); 2332 break; 2333 2334 case WI_RID_MICROWAVE_OVEN: 2335 case WI_RID_ROAMING_MODE: 2336 case WI_RID_SYSTEM_SCALE: 2337 case WI_RID_FRAG_THRESH: 2338 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && 2339 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) 2340 break; 2341 if (wreq.wi_type == WI_RID_ROAMING_MODE && 2342 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) 2343 break; 2344 if (wreq.wi_type == WI_RID_SYSTEM_SCALE && 2345 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) 2346 break; 2347 if (wreq.wi_type == WI_RID_FRAG_THRESH && 2348 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) 2349 break; 2350 /* FALLTHROUGH */ 2351 case WI_RID_RTS_THRESH: 2352 case WI_RID_CNFAUTHMODE: 2353 case WI_RID_MAX_DATALEN: 2354 if (sc->sc_enabled) { 2355 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2356 sizeof(u_int16_t)); 2357 if (error) 2358 break; 2359 } 2360 switch (wreq.wi_type) { 2361 case WI_RID_FRAG_THRESH: 2362 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]); 2363 break; 2364 case WI_RID_RTS_THRESH: 2365 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]); 2366 break; 2367 case WI_RID_MICROWAVE_OVEN: 2368 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); 2369 break; 2370 case WI_RID_ROAMING_MODE: 2371 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); 2372 break; 2373 case WI_RID_SYSTEM_SCALE: 2374 sc->sc_system_scale = le16toh(wreq.wi_val[0]); 2375 break; 2376 case WI_RID_CNFAUTHMODE: 2377 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); 2378 break; 2379 case WI_RID_MAX_DATALEN: 2380 sc->sc_max_datalen = le16toh(wreq.wi_val[0]); 2381 break; 2382 } 2383 break; 2384 2385 case WI_RID_TX_RATE: 2386 switch (le16toh(wreq.wi_val[0])) { 2387 case 3: 2388 ic->ic_fixed_rate = -1; 2389 break; 2390 default: 2391 for (i = 0; i < IEEE80211_RATE_SIZE; i++) { 2392 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) 2393 / 2 == le16toh(wreq.wi_val[0])) 2394 break; 2395 } 2396 if (i == IEEE80211_RATE_SIZE) 2397 return EINVAL; 2398 ic->ic_fixed_rate = i; 2399 } 2400 if (sc->sc_enabled) 2401 error = wi_cfg_txrate(sc); 2402 break; 2403 2404 case WI_RID_SCAN_APS: 2405 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) 2406 error = wi_scan_ap(sc, 0x3fff, 0x000f); 2407 break; 2408 2409 case WI_RID_MGMT_XMIT: 2410 if (!sc->sc_enabled) { 2411 error = ENETDOWN; 2412 break; 2413 } 2414 if (ic->ic_mgtq.ifq_len > 5) { 2415 error = EAGAIN; 2416 break; 2417 } 2418 /* XXX wi_len looks in u_int8_t, not in u_int16_t */ 2419 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); 2420 if (m == NULL) { 2421 error = ENOMEM; 2422 break; 2423 } 2424 IF_ENQUEUE(&ic->ic_mgtq, m); 2425 break; 2426 2427 default: 2428 if (sc->sc_enabled) { 2429 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2430 len); 2431 if (error) 2432 break; 2433 } 2434 error = ieee80211_cfgset(ic, cmd, data); 2435 break; 2436 } 2437 return error; 2438 } 2439 2440 /* Rate is 0 for hardware auto-select, otherwise rate is 2441 * 2, 4, 11, or 22 (units of 500Kbps). 2442 */ 2443 STATIC int 2444 wi_write_txrate(struct wi_softc *sc, int rate) 2445 { 2446 u_int16_t hwrate; 2447 2448 /* rate: 0, 2, 4, 11, 22 */ 2449 switch (sc->sc_firmware_type) { 2450 case WI_LUCENT: 2451 switch (rate & IEEE80211_RATE_VAL) { 2452 case 2: 2453 hwrate = 1; 2454 break; 2455 case 4: 2456 hwrate = 2; 2457 break; 2458 default: 2459 hwrate = 3; /* auto */ 2460 break; 2461 case 11: 2462 hwrate = 4; 2463 break; 2464 case 22: 2465 hwrate = 5; 2466 break; 2467 } 2468 break; 2469 default: 2470 switch (rate & IEEE80211_RATE_VAL) { 2471 case 2: 2472 hwrate = 1; 2473 break; 2474 case 4: 2475 hwrate = 2; 2476 break; 2477 case 11: 2478 hwrate = 4; 2479 break; 2480 case 22: 2481 hwrate = 8; 2482 break; 2483 default: 2484 hwrate = 15; /* auto */ 2485 break; 2486 } 2487 break; 2488 } 2489 2490 if (sc->sc_tx_rate == hwrate) 2491 return 0; 2492 2493 if (sc->sc_if.if_flags & IFF_DEBUG) 2494 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate, 2495 hwrate, rate); 2496 2497 sc->sc_tx_rate = hwrate; 2498 2499 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate); 2500 } 2501 2502 STATIC int 2503 wi_cfg_txrate(struct wi_softc *sc) 2504 { 2505 struct ieee80211com *ic = &sc->sc_ic; 2506 struct ieee80211_rateset *rs; 2507 int rate; 2508 2509 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2510 2511 sc->sc_tx_rate = 0; /* force write to RID */ 2512 2513 if (ic->ic_fixed_rate < 0) 2514 rate = 0; /* auto */ 2515 else 2516 rate = rs->rs_rates[ic->ic_fixed_rate]; 2517 2518 return wi_write_txrate(sc, rate); 2519 } 2520 2521 STATIC int 2522 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 2523 { 2524 struct wi_softc *sc = ic->ic_ifp->if_softc; 2525 u_int keyix = k->wk_keyix; 2526 2527 DPRINTF(("%s: delete key %u\n", __func__, keyix)); 2528 2529 if (keyix >= IEEE80211_WEP_NKID) 2530 return 0; 2531 if (k->wk_keylen != 0) 2532 sc->sc_flags &= ~WI_FLAGS_WEP_VALID; 2533 2534 return 1; 2535 } 2536 2537 static int 2538 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 2539 const u_int8_t mac[IEEE80211_ADDR_LEN] __unused) 2540 { 2541 struct wi_softc *sc = ic->ic_ifp->if_softc; 2542 2543 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix)); 2544 2545 if (k->wk_keyix >= IEEE80211_WEP_NKID) 2546 return 0; 2547 2548 sc->sc_flags &= ~WI_FLAGS_WEP_VALID; 2549 2550 return 1; 2551 } 2552 2553 STATIC void 2554 wi_key_update_begin(struct ieee80211com *ic __unused) 2555 { 2556 DPRINTF(("%s:\n", __func__)); 2557 } 2558 2559 STATIC void 2560 wi_key_update_end(struct ieee80211com *ic) 2561 { 2562 struct ifnet *ifp = ic->ic_ifp; 2563 struct wi_softc *sc = ifp->if_softc; 2564 2565 DPRINTF(("%s:\n", __func__)); 2566 2567 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0) 2568 return; 2569 if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled && 2570 !sc->sc_invalid) 2571 (void)wi_write_wep(sc); 2572 } 2573 2574 STATIC int 2575 wi_write_wep(struct wi_softc *sc) 2576 { 2577 struct ifnet *ifp = &sc->sc_if; 2578 struct ieee80211com *ic = &sc->sc_ic; 2579 int error = 0; 2580 int i, keylen; 2581 u_int16_t val; 2582 struct wi_key wkey[IEEE80211_WEP_NKID]; 2583 2584 if ((ifp->if_flags & IFF_RUNNING) != 0) 2585 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 2586 2587 switch (sc->sc_firmware_type) { 2588 case WI_LUCENT: 2589 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0; 2590 error = wi_write_val(sc, WI_RID_ENCRYPTION, val); 2591 if (error) 2592 break; 2593 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey); 2594 if (error) 2595 break; 2596 memset(wkey, 0, sizeof(wkey)); 2597 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2598 keylen = ic->ic_nw_keys[i].wk_keylen; 2599 wkey[i].wi_keylen = htole16(keylen); 2600 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, 2601 keylen); 2602 } 2603 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, 2604 wkey, sizeof(wkey)); 2605 break; 2606 2607 case WI_INTERSIL: 2608 case WI_SYMBOL: 2609 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 2610 /* 2611 * ONLY HWB3163 EVAL-CARD Firmware version 2612 * less than 0.8 variant2 2613 * 2614 * If promiscuous mode disable, Prism2 chip 2615 * does not work with WEP . 2616 * It is under investigation for details. 2617 * (ichiro@NetBSD.org) 2618 */ 2619 if (sc->sc_firmware_type == WI_INTERSIL && 2620 sc->sc_sta_firmware_ver < 802 ) { 2621 /* firm ver < 0.8 variant 2 */ 2622 wi_write_val(sc, WI_RID_PROMISC, 1); 2623 } 2624 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2625 sc->sc_cnfauthmode); 2626 val = PRIVACY_INVOKED; 2627 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0) 2628 val |= EXCLUDE_UNENCRYPTED; 2629 #ifndef IEEE80211_NO_HOSTAP 2630 /* 2631 * Encryption firmware has a bug for HostAP mode. 2632 */ 2633 if (sc->sc_firmware_type == WI_INTERSIL && 2634 ic->ic_opmode == IEEE80211_M_HOSTAP) 2635 val |= HOST_ENCRYPT; 2636 #endif /* !IEEE80211_NO_HOSTAP */ 2637 } else { 2638 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2639 IEEE80211_AUTH_OPEN); 2640 val = HOST_ENCRYPT | HOST_DECRYPT; 2641 } 2642 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); 2643 if (error) 2644 break; 2645 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, 2646 ic->ic_def_txkey); 2647 if (error) 2648 break; 2649 /* 2650 * It seems that the firmware accept 104bit key only if 2651 * all the keys have 104bit length. We get the length of 2652 * the transmit key and use it for all other keys. 2653 * Perhaps we should use software WEP for such situation. 2654 */ 2655 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 2656 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 2657 keylen = 13; /* No keys => 104bit ok */ 2658 else 2659 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen; 2660 2661 if (keylen > IEEE80211_WEP_KEYLEN) 2662 keylen = 13; /* 104bit keys */ 2663 else 2664 keylen = IEEE80211_WEP_KEYLEN; 2665 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2666 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, 2667 ic->ic_nw_keys[i].wk_key, keylen); 2668 if (error) 2669 break; 2670 } 2671 break; 2672 } 2673 if ((ifp->if_flags & IFF_RUNNING) != 0) 2674 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 2675 if (error == 0) 2676 sc->sc_flags |= WI_FLAGS_WEP_VALID; 2677 return error; 2678 } 2679 2680 /* Must be called at proper protection level! */ 2681 STATIC int 2682 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2683 { 2684 #ifdef WI_HISTOGRAM 2685 static int hist1[11]; 2686 static int hist1count; 2687 #endif 2688 int i; 2689 2690 /* wait for the busy bit to clear */ 2691 for (i = 500; i > 0; i--) { /* 5s */ 2692 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) 2693 break; 2694 if (sc->sc_invalid) 2695 return ENXIO; 2696 DELAY(1000); /* 1 m sec */ 2697 } 2698 if (i == 0) { 2699 printf("%s: wi_cmd: busy bit won't clear.\n", 2700 sc->sc_dev.dv_xname); 2701 return(ETIMEDOUT); 2702 } 2703 #ifdef WI_HISTOGRAM 2704 if (i > 490) 2705 hist1[500 - i]++; 2706 else 2707 hist1[10]++; 2708 if (++hist1count == 1000) { 2709 hist1count = 0; 2710 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n", 2711 sc->sc_dev.dv_xname, 2712 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4], 2713 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9], 2714 hist1[10]); 2715 } 2716 #endif 2717 CSR_WRITE_2(sc, WI_PARAM0, val0); 2718 CSR_WRITE_2(sc, WI_PARAM1, val1); 2719 CSR_WRITE_2(sc, WI_PARAM2, val2); 2720 CSR_WRITE_2(sc, WI_COMMAND, cmd); 2721 2722 return 0; 2723 } 2724 2725 STATIC int 2726 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2727 { 2728 int rc; 2729 2730 #ifdef WI_DEBUG 2731 if (wi_debug) { 2732 printf("%s: [enter] %d txcmds outstanding\n", __func__, 2733 sc->sc_txcmds); 2734 } 2735 #endif 2736 if (sc->sc_txcmds > 0) 2737 wi_txcmd_wait(sc); 2738 2739 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0) 2740 return rc; 2741 2742 if (cmd == WI_CMD_INI) { 2743 /* XXX: should sleep here. */ 2744 if (sc->sc_invalid) 2745 return ENXIO; 2746 DELAY(100*1000); 2747 } 2748 rc = wi_cmd_wait(sc, cmd, val0); 2749 2750 #ifdef WI_DEBUG 2751 if (wi_debug) { 2752 printf("%s: [ ] %d txcmds outstanding\n", __func__, 2753 sc->sc_txcmds); 2754 } 2755 #endif 2756 if (sc->sc_txcmds > 0) 2757 wi_cmd_intr(sc); 2758 2759 #ifdef WI_DEBUG 2760 if (wi_debug) { 2761 printf("%s: [leave] %d txcmds outstanding\n", __func__, 2762 sc->sc_txcmds); 2763 } 2764 #endif 2765 return rc; 2766 } 2767 2768 STATIC int 2769 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0) 2770 { 2771 #ifdef WI_HISTOGRAM 2772 static int hist2[11]; 2773 static int hist2count; 2774 #endif 2775 int i, status; 2776 #ifdef WI_DEBUG 2777 if (wi_debug > 1) 2778 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0); 2779 #endif /* WI_DEBUG */ 2780 2781 /* wait for the cmd completed bit */ 2782 for (i = 0; i < WI_TIMEOUT; i++) { 2783 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) 2784 break; 2785 if (sc->sc_invalid) 2786 return ENXIO; 2787 DELAY(WI_DELAY); 2788 } 2789 2790 #ifdef WI_HISTOGRAM 2791 if (i < 100) 2792 hist2[i/10]++; 2793 else 2794 hist2[10]++; 2795 if (++hist2count == 1000) { 2796 hist2count = 0; 2797 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n", 2798 sc->sc_dev.dv_xname, 2799 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4], 2800 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9], 2801 hist2[10]); 2802 } 2803 #endif 2804 2805 status = CSR_READ_2(sc, WI_STATUS); 2806 2807 if (i == WI_TIMEOUT) { 2808 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n", 2809 sc->sc_dev.dv_xname, cmd, val0); 2810 return ETIMEDOUT; 2811 } 2812 2813 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 2814 2815 if (status & WI_STAT_CMD_RESULT) { 2816 printf("%s: command failed, cmd=0x%x, arg=0x%x\n", 2817 sc->sc_dev.dv_xname, cmd, val0); 2818 return EIO; 2819 } 2820 return 0; 2821 } 2822 2823 STATIC int 2824 wi_seek_bap(struct wi_softc *sc, int id, int off) 2825 { 2826 #ifdef WI_HISTOGRAM 2827 static int hist4[11]; 2828 static int hist4count; 2829 #endif 2830 int i, status; 2831 2832 CSR_WRITE_2(sc, WI_SEL0, id); 2833 CSR_WRITE_2(sc, WI_OFF0, off); 2834 2835 for (i = 0; ; i++) { 2836 status = CSR_READ_2(sc, WI_OFF0); 2837 if ((status & WI_OFF_BUSY) == 0) 2838 break; 2839 if (i == WI_TIMEOUT) { 2840 printf("%s: timeout in wi_seek to %x/%x\n", 2841 sc->sc_dev.dv_xname, id, off); 2842 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2843 return ETIMEDOUT; 2844 } 2845 if (sc->sc_invalid) 2846 return ENXIO; 2847 DELAY(2); 2848 } 2849 #ifdef WI_HISTOGRAM 2850 if (i < 100) 2851 hist4[i/10]++; 2852 else 2853 hist4[10]++; 2854 if (++hist4count == 2500) { 2855 hist4count = 0; 2856 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n", 2857 sc->sc_dev.dv_xname, 2858 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4], 2859 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9], 2860 hist4[10]); 2861 } 2862 #endif 2863 if (status & WI_OFF_ERR) { 2864 printf("%s: failed in wi_seek to %x/%x\n", 2865 sc->sc_dev.dv_xname, id, off); 2866 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2867 return EIO; 2868 } 2869 sc->sc_bap_id = id; 2870 sc->sc_bap_off = off; 2871 return 0; 2872 } 2873 2874 STATIC int 2875 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2876 { 2877 int error, cnt; 2878 2879 if (buflen == 0) 2880 return 0; 2881 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2882 if ((error = wi_seek_bap(sc, id, off)) != 0) 2883 return error; 2884 } 2885 cnt = (buflen + 1) / 2; 2886 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2887 sc->sc_bap_off += cnt * 2; 2888 return 0; 2889 } 2890 2891 STATIC int 2892 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2893 { 2894 int error, cnt; 2895 2896 if (buflen == 0) 2897 return 0; 2898 2899 #ifdef WI_HERMES_AUTOINC_WAR 2900 again: 2901 #endif 2902 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2903 if ((error = wi_seek_bap(sc, id, off)) != 0) 2904 return error; 2905 } 2906 cnt = (buflen + 1) / 2; 2907 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2908 sc->sc_bap_off += cnt * 2; 2909 2910 #ifdef WI_HERMES_AUTOINC_WAR 2911 /* 2912 * According to the comments in the HCF Light code, there is a bug 2913 * in the Hermes (or possibly in certain Hermes firmware revisions) 2914 * where the chip's internal autoincrement counter gets thrown off 2915 * during data writes: the autoincrement is missed, causing one 2916 * data word to be overwritten and subsequent words to be written to 2917 * the wrong memory locations. The end result is that we could end 2918 * up transmitting bogus frames without realizing it. The workaround 2919 * for this is to write a couple of extra guard words after the end 2920 * of the transfer, then attempt to read then back. If we fail to 2921 * locate the guard words where we expect them, we preform the 2922 * transfer over again. 2923 */ 2924 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { 2925 CSR_WRITE_2(sc, WI_DATA0, 0x1234); 2926 CSR_WRITE_2(sc, WI_DATA0, 0x5678); 2927 wi_seek_bap(sc, id, sc->sc_bap_off); 2928 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2929 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || 2930 CSR_READ_2(sc, WI_DATA0) != 0x5678) { 2931 printf("%s: detect auto increment bug, try again\n", 2932 sc->sc_dev.dv_xname); 2933 goto again; 2934 } 2935 } 2936 #endif 2937 return 0; 2938 } 2939 2940 STATIC int 2941 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) 2942 { 2943 int error, len; 2944 struct mbuf *m; 2945 2946 for (m = m0; m != NULL && totlen > 0; m = m->m_next) { 2947 if (m->m_len == 0) 2948 continue; 2949 2950 len = min(m->m_len, totlen); 2951 2952 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { 2953 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf); 2954 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf, 2955 totlen); 2956 } 2957 2958 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) 2959 return error; 2960 2961 off += m->m_len; 2962 totlen -= len; 2963 } 2964 return 0; 2965 } 2966 2967 STATIC int 2968 wi_alloc_fid(struct wi_softc *sc, int len, int *idp) 2969 { 2970 int i; 2971 2972 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { 2973 printf("%s: failed to allocate %d bytes on NIC\n", 2974 sc->sc_dev.dv_xname, len); 2975 return ENOMEM; 2976 } 2977 2978 for (i = 0; i < WI_TIMEOUT; i++) { 2979 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) 2980 break; 2981 DELAY(1); 2982 } 2983 if (i == WI_TIMEOUT) { 2984 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname); 2985 return ETIMEDOUT; 2986 } 2987 *idp = CSR_READ_2(sc, WI_ALLOC_FID); 2988 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 2989 return 0; 2990 } 2991 2992 STATIC int 2993 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) 2994 { 2995 int error, len; 2996 u_int16_t ltbuf[2]; 2997 2998 /* Tell the NIC to enter record read mode. */ 2999 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); 3000 if (error) 3001 return error; 3002 3003 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 3004 if (error) 3005 return error; 3006 3007 if (le16toh(ltbuf[0]) == 0) 3008 return EOPNOTSUPP; 3009 if (le16toh(ltbuf[1]) != rid) { 3010 printf("%s: record read mismatch, rid=%x, got=%x\n", 3011 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1])); 3012 return EIO; 3013 } 3014 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ 3015 if (*buflenp < len) { 3016 printf("%s: record buffer is too small, " 3017 "rid=%x, size=%d, len=%d\n", 3018 sc->sc_dev.dv_xname, rid, *buflenp, len); 3019 return ENOSPC; 3020 } 3021 *buflenp = len; 3022 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); 3023 } 3024 3025 STATIC int 3026 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) 3027 { 3028 int error; 3029 u_int16_t ltbuf[2]; 3030 3031 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ 3032 ltbuf[1] = htole16(rid); 3033 3034 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 3035 if (error) 3036 return error; 3037 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); 3038 if (error) 3039 return error; 3040 3041 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); 3042 } 3043 3044 STATIC void 3045 wi_rssadapt_updatestats_cb(void *arg __unused, struct ieee80211_node *ni) 3046 { 3047 struct wi_node *wn = (void*)ni; 3048 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt); 3049 } 3050 3051 STATIC void 3052 wi_rssadapt_updatestats(void *arg) 3053 { 3054 struct wi_softc *sc = arg; 3055 struct ieee80211com *ic = &sc->sc_ic; 3056 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg); 3057 if (ic->ic_opmode != IEEE80211_M_MONITOR && 3058 ic->ic_state == IEEE80211_S_RUN) 3059 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 3060 wi_rssadapt_updatestats, arg); 3061 } 3062 3063 /* 3064 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating 3065 * with WEP enabled so that the AP drops unencoded frames at the 3066 * 802.11 layer. 3067 * 3068 * In all other modes, clear IEEE80211_F_DROPUNENC when operating 3069 * with WEP enabled so we don't drop unencoded frames at the 802.11 3070 * layer. This is necessary because we must strip the WEP bit from 3071 * the 802.11 header before passing frames to ieee80211_input 3072 * because the card has already stripped the WEP crypto header from 3073 * the packet. 3074 */ 3075 STATIC void 3076 wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate) 3077 { 3078 struct ieee80211com *ic = &sc->sc_ic; 3079 3080 if (nstate == IEEE80211_S_RUN && 3081 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 && 3082 ic->ic_opmode != IEEE80211_M_HOSTAP) 3083 ic->ic_flags &= ~IEEE80211_F_DROPUNENC; 3084 else 3085 ic->ic_flags |= sc->sc_ic_flags; 3086 3087 DPRINTF(("%s: state %d, " 3088 "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", " 3089 "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n", 3090 __func__, nstate, 3091 ic->ic_flags & IEEE80211_F_DROPUNENC, 3092 sc->sc_ic_flags & IEEE80211_F_DROPUNENC)); 3093 } 3094 3095 STATIC int 3096 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 3097 { 3098 struct ifnet *ifp = ic->ic_ifp; 3099 struct wi_softc *sc = ifp->if_softc; 3100 struct ieee80211_node *ni = ic->ic_bss; 3101 u_int16_t val; 3102 struct wi_ssid ssid; 3103 struct wi_macaddr bssid, old_bssid; 3104 enum ieee80211_state ostate; 3105 #ifdef WI_DEBUG 3106 static const char *stname[] = 3107 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" }; 3108 #endif /* WI_DEBUG */ 3109 3110 ostate = ic->ic_state; 3111 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate])); 3112 3113 switch (nstate) { 3114 case IEEE80211_S_INIT: 3115 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3116 callout_stop(&sc->sc_rssadapt_ch); 3117 ic->ic_flags &= ~IEEE80211_F_SIBSS; 3118 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 3119 break; 3120 3121 case IEEE80211_S_SCAN: 3122 case IEEE80211_S_AUTH: 3123 case IEEE80211_S_ASSOC: 3124 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */ 3125 wi_mend_flags(sc, nstate); 3126 return 0; 3127 3128 case IEEE80211_S_RUN: 3129 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 3130 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid); 3131 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid, 3132 IEEE80211_ADDR_LEN); 3133 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid); 3134 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid); 3135 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val)); 3136 if (!isset(ic->ic_chan_avail, le16toh(val))) 3137 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname, 3138 le16toh(val)); 3139 ni->ni_chan = &ic->ic_channels[le16toh(val)]; 3140 3141 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 3142 #ifndef IEEE80211_NO_HOSTAP 3143 ni->ni_esslen = ic->ic_des_esslen; 3144 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen); 3145 ni->ni_rates = ic->ic_sup_rates[ 3146 ieee80211_chan2mode(ic, ni->ni_chan)]; 3147 ni->ni_intval = ic->ic_lintval; 3148 ni->ni_capinfo = IEEE80211_CAPINFO_ESS; 3149 if (ic->ic_flags & IEEE80211_F_PRIVACY) 3150 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; 3151 #endif /* !IEEE80211_NO_HOSTAP */ 3152 } else { 3153 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid, 3154 sizeof(ssid)); 3155 ni->ni_esslen = le16toh(ssid.wi_len); 3156 if (ni->ni_esslen > IEEE80211_NWID_LEN) 3157 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 3158 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); 3159 ni->ni_rates = ic->ic_sup_rates[ 3160 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/ 3161 } 3162 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3163 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 3164 wi_rssadapt_updatestats, sc); 3165 /* Trigger routing socket messages. XXX Copied from 3166 * ieee80211_newstate. 3167 */ 3168 if (ic->ic_opmode == IEEE80211_M_STA) 3169 ieee80211_notify_node_join(ic, ic->ic_bss, 3170 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); 3171 break; 3172 } 3173 wi_mend_flags(sc, nstate); 3174 return (*sc->sc_newstate)(ic, nstate, arg); 3175 } 3176 3177 STATIC void 3178 wi_set_tim(struct ieee80211_node *ni, int set) 3179 { 3180 struct ieee80211com *ic = ni->ni_ic; 3181 struct wi_softc *sc = ic->ic_ifp->if_softc; 3182 3183 (*sc->sc_set_tim)(ni, set); 3184 3185 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0) 3186 return; 3187 3188 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 3189 3190 (void)wi_write_val(sc, WI_RID_SET_TIM, 3191 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0)); 3192 } 3193 3194 STATIC int 3195 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) 3196 { 3197 int error = 0; 3198 u_int16_t val[2]; 3199 3200 if (!sc->sc_enabled) 3201 return ENXIO; 3202 switch (sc->sc_firmware_type) { 3203 case WI_LUCENT: 3204 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 3205 break; 3206 case WI_INTERSIL: 3207 val[0] = htole16(chanmask); /* channel */ 3208 val[1] = htole16(txrate); /* tx rate */ 3209 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); 3210 break; 3211 case WI_SYMBOL: 3212 /* 3213 * XXX only supported on 3.x ? 3214 */ 3215 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME); 3216 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, 3217 val, sizeof(val[0])); 3218 break; 3219 } 3220 if (error == 0) { 3221 sc->sc_scan_timer = WI_SCAN_WAIT; 3222 sc->sc_if.if_timer = 1; 3223 DPRINTF(("wi_scan_ap: start scanning, " 3224 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate)); 3225 } 3226 return error; 3227 } 3228 3229 STATIC void 3230 wi_scan_result(struct wi_softc *sc, int fid, int cnt) 3231 { 3232 #define N(a) (sizeof (a) / sizeof (a[0])) 3233 int i, naps, off, szbuf; 3234 struct wi_scan_header ws_hdr; /* Prism2 header */ 3235 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ 3236 struct wi_apinfo *ap; 3237 3238 off = sizeof(u_int16_t) * 2; 3239 memset(&ws_hdr, 0, sizeof(ws_hdr)); 3240 switch (sc->sc_firmware_type) { 3241 case WI_INTERSIL: 3242 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); 3243 off += sizeof(ws_hdr); 3244 szbuf = sizeof(struct wi_scan_data_p2); 3245 break; 3246 case WI_SYMBOL: 3247 szbuf = sizeof(struct wi_scan_data_p2) + 6; 3248 break; 3249 case WI_LUCENT: 3250 szbuf = sizeof(struct wi_scan_data); 3251 break; 3252 default: 3253 printf("%s: wi_scan_result: unknown firmware type %u\n", 3254 sc->sc_dev.dv_xname, sc->sc_firmware_type); 3255 naps = 0; 3256 goto done; 3257 } 3258 naps = (cnt * 2 + 2 - off) / szbuf; 3259 if (naps > N(sc->sc_aps)) 3260 naps = N(sc->sc_aps); 3261 sc->sc_naps = naps; 3262 /* Read Data */ 3263 ap = sc->sc_aps; 3264 memset(&ws_dat, 0, sizeof(ws_dat)); 3265 for (i = 0; i < naps; i++, ap++) { 3266 wi_read_bap(sc, fid, off, &ws_dat, 3267 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); 3268 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, 3269 ether_sprintf(ws_dat.wi_bssid))); 3270 off += szbuf; 3271 ap->scanreason = le16toh(ws_hdr.wi_reason); 3272 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); 3273 ap->channel = le16toh(ws_dat.wi_chid); 3274 ap->signal = le16toh(ws_dat.wi_signal); 3275 ap->noise = le16toh(ws_dat.wi_noise); 3276 ap->quality = ap->signal - ap->noise; 3277 ap->capinfo = le16toh(ws_dat.wi_capinfo); 3278 ap->interval = le16toh(ws_dat.wi_interval); 3279 ap->rate = le16toh(ws_dat.wi_rate); 3280 ap->namelen = le16toh(ws_dat.wi_namelen); 3281 if (ap->namelen > sizeof(ap->name)) 3282 ap->namelen = sizeof(ap->name); 3283 memcpy(ap->name, ws_dat.wi_name, ap->namelen); 3284 } 3285 done: 3286 /* Done scanning */ 3287 sc->sc_scan_timer = 0; 3288 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); 3289 #undef N 3290 } 3291 3292 STATIC void 3293 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) 3294 { 3295 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), 3296 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL 3297 : -1, 3298 rssi); 3299 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", 3300 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), 3301 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); 3302 printf(" rx_signal %u rx_rate %u rx_flow %u\n", 3303 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); 3304 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", 3305 wh->wi_tx_rtry, wh->wi_tx_rate, 3306 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); 3307 printf(" ehdr dst %s src %s type 0x%x\n", 3308 ether_sprintf(wh->wi_ehdr.ether_dhost), 3309 ether_sprintf(wh->wi_ehdr.ether_shost), 3310 wh->wi_ehdr.ether_type); 3311 } 3312