1 /* $NetBSD: wi.c,v 1.201 2005/06/26 21:51:37 erh Exp $ */ 2 3 /*- 4 * Copyright (c) 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1997, 1998, 1999 41 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by Bill Paul. 54 * 4. Neither the name of the author nor the names of any co-contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 68 * THE POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. 73 * 74 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu> 75 * Electrical Engineering Department 76 * Columbia University, New York City 77 */ 78 79 /* 80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN 81 * from Lucent. Unlike the older cards, the new ones are programmed 82 * entirely via a firmware-driven controller called the Hermes. 83 * Unfortunately, Lucent will not release the Hermes programming manual 84 * without an NDA (if at all). What they do release is an API library 85 * called the HCF (Hardware Control Functions) which is supposed to 86 * do the device-specific operations of a device driver for you. The 87 * publically available version of the HCF library (the 'HCF Light') is 88 * a) extremely gross, b) lacks certain features, particularly support 89 * for 802.11 frames, and c) is contaminated by the GNU Public License. 90 * 91 * This driver does not use the HCF or HCF Light at all. Instead, it 92 * programs the Hermes controller directly, using information gleaned 93 * from the HCF Light code and corresponding documentation. 94 * 95 * This driver supports both the PCMCIA and ISA versions of the 96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really 97 * anything of the sort: it's actually a PCMCIA bridge adapter 98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is 99 * inserted. Consequently, you need to use the pccard support for 100 * both the ISA and PCMCIA adapters. 101 */ 102 103 /* 104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the 105 * Oslo IETF plenary meeting. 106 */ 107 108 #include <sys/cdefs.h> 109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.201 2005/06/26 21:51:37 erh Exp $"); 110 111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ 112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ 113 #undef WI_HISTOGRAM 114 #undef WI_RING_DEBUG 115 #define STATIC static 116 117 #include "bpfilter.h" 118 119 #include <sys/param.h> 120 #include <sys/systm.h> 121 #include <sys/callout.h> 122 #include <sys/device.h> 123 #include <sys/socket.h> 124 #include <sys/mbuf.h> 125 #include <sys/ioctl.h> 126 #include <sys/kernel.h> /* for hz */ 127 #include <sys/proc.h> 128 129 #include <net/if.h> 130 #include <net/if_dl.h> 131 #include <net/if_llc.h> 132 #include <net/if_media.h> 133 #include <net/if_ether.h> 134 #include <net/route.h> 135 136 #include <net80211/ieee80211_netbsd.h> 137 #include <net80211/ieee80211_var.h> 138 #include <net80211/ieee80211_ioctl.h> 139 #include <net80211/ieee80211_radiotap.h> 140 #include <net80211/ieee80211_rssadapt.h> 141 142 #if NBPFILTER > 0 143 #include <net/bpf.h> 144 #include <net/bpfdesc.h> 145 #endif 146 147 #include <machine/bus.h> 148 149 #include <dev/ic/wi_ieee.h> 150 #include <dev/ic/wireg.h> 151 #include <dev/ic/wivar.h> 152 153 STATIC int wi_init(struct ifnet *); 154 STATIC void wi_stop(struct ifnet *, int); 155 STATIC void wi_start(struct ifnet *); 156 STATIC int wi_reset(struct wi_softc *); 157 STATIC void wi_watchdog(struct ifnet *); 158 STATIC int wi_ioctl(struct ifnet *, u_long, caddr_t); 159 STATIC int wi_media_change(struct ifnet *); 160 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *); 161 162 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *); 163 STATIC void wi_node_free(struct ieee80211_node *); 164 165 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 166 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 167 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *, 168 struct ieee80211_frame *, u_int); 169 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *); 170 STATIC void wi_rssadapt_updatestats(void *); 171 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *); 172 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[], 173 wi_rssdescq_t *, u_int8_t (*)[]); 174 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]); 175 176 STATIC void wi_rx_intr(struct wi_softc *); 177 STATIC void wi_txalloc_intr(struct wi_softc *); 178 STATIC void wi_cmd_intr(struct wi_softc *); 179 STATIC void wi_tx_intr(struct wi_softc *); 180 STATIC void wi_tx_ex_intr(struct wi_softc *); 181 STATIC void wi_info_intr(struct wi_softc *); 182 183 STATIC int wi_key_alloc(struct ieee80211com *, const struct ieee80211_key *); 184 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *); 185 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *, 186 const u_int8_t[IEEE80211_ADDR_LEN]); 187 STATIC void wi_key_update_begin(struct ieee80211com *); 188 STATIC void wi_key_update_end(struct ieee80211com *); 189 190 STATIC void wi_push_packet(struct wi_softc *); 191 STATIC int wi_get_cfg(struct ifnet *, u_long, caddr_t); 192 STATIC int wi_set_cfg(struct ifnet *, u_long, caddr_t); 193 STATIC int wi_cfg_txrate(struct wi_softc *); 194 STATIC int wi_write_txrate(struct wi_softc *, int); 195 STATIC int wi_write_wep(struct wi_softc *); 196 STATIC int wi_write_multi(struct wi_softc *); 197 STATIC int wi_alloc_fid(struct wi_softc *, int, int *); 198 STATIC void wi_read_nicid(struct wi_softc *); 199 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); 200 201 STATIC int wi_cmd(struct wi_softc *, int, int, int, int); 202 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int); 203 STATIC int wi_cmd_wait(struct wi_softc *, int, int); 204 STATIC int wi_seek_bap(struct wi_softc *, int, int); 205 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int); 206 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int); 207 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); 208 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *); 209 STATIC int wi_write_rid(struct wi_softc *, int, void *, int); 210 211 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); 212 STATIC void wi_set_tim(struct ieee80211com *, struct ieee80211_node *, int); 213 214 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); 215 STATIC void wi_scan_result(struct wi_softc *, int, int); 216 217 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); 218 STATIC void wi_mend_flags(struct wi_softc *); 219 220 static inline int 221 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) 222 { 223 224 val = htole16(val); 225 return wi_write_rid(sc, rid, &val, sizeof(val)); 226 } 227 228 static struct timeval lasttxerror; /* time of last tx error msg */ 229 static int curtxeps = 0; /* current tx error msgs/sec */ 230 static int wi_txerate = 0; /* tx error rate: max msgs/sec */ 231 232 #ifdef WI_DEBUG 233 int wi_debug = 0; 234 235 #define DPRINTF(X) if (wi_debug) printf X 236 #define DPRINTF2(X) if (wi_debug > 1) printf X 237 #define IFF_DUMPPKTS(_ifp) \ 238 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 239 #else 240 #define DPRINTF(X) 241 #define DPRINTF2(X) 242 #define IFF_DUMPPKTS(_ifp) 0 243 #endif 244 245 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \ 246 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD) 247 248 struct wi_card_ident 249 wi_card_ident[] = { 250 /* CARD_ID CARD_NAME FIRM_TYPE */ 251 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, 252 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, 253 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, 254 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, 255 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, 256 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, 257 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, 258 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, 259 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, 260 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, 261 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, 262 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, 263 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 264 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 265 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 266 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 267 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 268 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 269 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 270 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 271 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 272 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 273 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 274 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 275 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 276 { 0, NULL, 0 }, 277 }; 278 279 STATIC int 280 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen) 281 { 282 int buflen, rc; 283 284 buflen = ebuflen; 285 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0) 286 return rc; 287 288 if (buflen < ebuflen) { 289 #ifdef WI_DEBUG 290 printf("%s: rid=%#04x read %d, expected %d\n", __func__, 291 rid, buflen, ebuflen); 292 #endif 293 return -1; 294 } 295 return 0; 296 } 297 298 int 299 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr) 300 { 301 struct ieee80211com *ic = &sc->sc_ic; 302 struct ifnet *ifp = &sc->sc_if; 303 int chan, nrate, buflen; 304 u_int16_t val, chanavail; 305 struct { 306 u_int16_t nrates; 307 char rates[IEEE80211_RATE_SIZE]; 308 } ratebuf; 309 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 310 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 311 }; 312 int s; 313 314 s = splnet(); 315 316 /* Make sure interrupts are disabled. */ 317 CSR_WRITE_2(sc, WI_INT_EN, 0); 318 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 319 320 sc->sc_invalid = 0; 321 322 /* Reset the NIC. */ 323 if (wi_reset(sc) != 0) { 324 sc->sc_invalid = 1; 325 splx(s); 326 return 1; 327 } 328 329 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, 330 IEEE80211_ADDR_LEN) != 0 || 331 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { 332 if (macaddr != NULL) 333 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN); 334 else { 335 printf(" could not get mac address, attach failed\n"); 336 splx(s); 337 return 1; 338 } 339 } 340 341 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); 342 343 /* Read NIC identification */ 344 wi_read_nicid(sc); 345 346 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 347 ifp->if_softc = sc; 348 ifp->if_start = wi_start; 349 ifp->if_ioctl = wi_ioctl; 350 ifp->if_watchdog = wi_watchdog; 351 ifp->if_init = wi_init; 352 ifp->if_stop = wi_stop; 353 ifp->if_flags = 354 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; 355 IFQ_SET_READY(&ifp->if_snd); 356 357 ic->ic_ifp = ifp; 358 ic->ic_phytype = IEEE80211_T_DS; 359 ic->ic_opmode = IEEE80211_M_STA; 360 ic->ic_caps = IEEE80211_C_AHDEMO; 361 ic->ic_state = IEEE80211_S_INIT; 362 ic->ic_max_aid = WI_MAX_AID; 363 364 /* Find available channel */ 365 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail, 366 sizeof(chanavail)) != 0) { 367 aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname); 368 chanavail = htole16(0x1fff); /* assume 1-13 */ 369 } 370 for (chan = 16; chan > 0; chan--) { 371 if (!isset((u_int8_t*)&chanavail, chan - 1)) 372 continue; 373 ic->ic_ibss_chan = &ic->ic_channels[chan]; 374 ic->ic_channels[chan].ic_freq = 375 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 376 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 377 } 378 379 /* Find default IBSS channel */ 380 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) { 381 chan = le16toh(val); 382 if (isset((u_int8_t*)&chanavail, chan - 1)) 383 ic->ic_ibss_chan = &ic->ic_channels[chan]; 384 } 385 if (ic->ic_ibss_chan == NULL) { 386 aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname); 387 return 1; 388 } 389 390 if (sc->sc_firmware_type == WI_LUCENT) { 391 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; 392 } else { 393 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && 394 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0) 395 sc->sc_dbm_offset = le16toh(val); 396 else 397 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; 398 } 399 400 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 401 402 /* 403 * Set flags based on firmware version. 404 */ 405 switch (sc->sc_firmware_type) { 406 case WI_LUCENT: 407 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 408 #ifdef WI_HERMES_AUTOINC_WAR 409 /* XXX: not confirmed, but never seen for recent firmware */ 410 if (sc->sc_sta_firmware_ver < 40000) { 411 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; 412 } 413 #endif 414 if (sc->sc_sta_firmware_ver >= 60000) 415 sc->sc_flags |= WI_FLAGS_HAS_MOR; 416 if (sc->sc_sta_firmware_ver >= 60006) { 417 ic->ic_caps |= IEEE80211_C_IBSS; 418 ic->ic_caps |= IEEE80211_C_MONITOR; 419 } 420 ic->ic_caps |= IEEE80211_C_PMGT; 421 sc->sc_ibss_port = 1; 422 break; 423 424 case WI_INTERSIL: 425 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; 426 sc->sc_flags |= WI_FLAGS_HAS_ROAMING; 427 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 428 if (sc->sc_sta_firmware_ver > 10101) 429 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; 430 if (sc->sc_sta_firmware_ver >= 800) { 431 if (sc->sc_sta_firmware_ver != 10402) 432 ic->ic_caps |= IEEE80211_C_HOSTAP; 433 ic->ic_caps |= IEEE80211_C_IBSS; 434 ic->ic_caps |= IEEE80211_C_MONITOR; 435 } 436 ic->ic_caps |= IEEE80211_C_PMGT; 437 sc->sc_ibss_port = 0; 438 sc->sc_alt_retry = 2; 439 break; 440 441 case WI_SYMBOL: 442 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; 443 if (sc->sc_sta_firmware_ver >= 20000) 444 ic->ic_caps |= IEEE80211_C_IBSS; 445 sc->sc_ibss_port = 4; 446 break; 447 } 448 449 /* 450 * Find out if we support WEP on this card. 451 */ 452 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 && 453 val != htole16(0)) 454 ic->ic_caps |= IEEE80211_C_WEP; 455 456 /* Find supported rates. */ 457 buflen = sizeof(ratebuf); 458 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 && 459 buflen > 2) { 460 nrate = le16toh(ratebuf.nrates); 461 if (nrate > IEEE80211_RATE_SIZE) 462 nrate = IEEE80211_RATE_SIZE; 463 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates, 464 &ratebuf.rates[0], nrate); 465 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; 466 } else { 467 aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname); 468 return 1; 469 } 470 471 sc->sc_max_datalen = 2304; 472 sc->sc_rts_thresh = 2347; 473 sc->sc_frag_thresh = 2346; 474 sc->sc_system_scale = 1; 475 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; 476 sc->sc_roaming_mode = 1; 477 478 callout_init(&sc->sc_rssadapt_ch); 479 480 /* 481 * Call MI attach routines. 482 */ 483 if_attach(ifp); 484 ieee80211_ifattach(ic); 485 486 sc->sc_newstate = ic->ic_newstate; 487 sc->sc_set_tim = ic->ic_set_tim; 488 ic->ic_newstate = wi_newstate; 489 ic->ic_node_alloc = wi_node_alloc; 490 ic->ic_node_free = wi_node_free; 491 ic->ic_set_tim = wi_set_tim; 492 493 ic->ic_crypto.cs_key_alloc = wi_key_alloc; 494 ic->ic_crypto.cs_key_delete = wi_key_delete; 495 ic->ic_crypto.cs_key_set = wi_key_set; 496 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin; 497 ic->ic_crypto.cs_key_update_end = wi_key_update_end; 498 499 ieee80211_media_init(ic, wi_media_change, wi_media_status); 500 501 #if NBPFILTER > 0 502 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 503 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 504 #endif 505 506 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 507 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu); 508 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT; 509 510 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 511 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu); 512 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT; 513 514 /* Attach is successful. */ 515 sc->sc_attached = 1; 516 517 splx(s); 518 return 0; 519 } 520 521 int 522 wi_detach(struct wi_softc *sc) 523 { 524 struct ifnet *ifp = &sc->sc_if; 525 int s; 526 527 if (!sc->sc_attached) 528 return 0; 529 530 sc->sc_invalid = 1; 531 s = splnet(); 532 533 wi_stop(ifp, 1); 534 535 ieee80211_ifdetach(&sc->sc_ic); 536 if_detach(ifp); 537 splx(s); 538 return 0; 539 } 540 541 #ifdef __NetBSD__ 542 int 543 wi_activate(struct device *self, enum devact act) 544 { 545 struct wi_softc *sc = (struct wi_softc *)self; 546 int rv = 0, s; 547 548 s = splnet(); 549 switch (act) { 550 case DVACT_ACTIVATE: 551 rv = EOPNOTSUPP; 552 break; 553 554 case DVACT_DEACTIVATE: 555 if_deactivate(&sc->sc_if); 556 break; 557 } 558 splx(s); 559 return rv; 560 } 561 562 void 563 wi_power(struct wi_softc *sc, int why) 564 { 565 struct ifnet *ifp = &sc->sc_if; 566 int s; 567 568 s = splnet(); 569 switch (why) { 570 case PWR_SUSPEND: 571 case PWR_STANDBY: 572 wi_stop(ifp, 1); 573 break; 574 case PWR_RESUME: 575 if (ifp->if_flags & IFF_UP) { 576 wi_init(ifp); 577 (void)wi_intr(sc); 578 } 579 break; 580 case PWR_SOFTSUSPEND: 581 case PWR_SOFTSTANDBY: 582 case PWR_SOFTRESUME: 583 break; 584 } 585 splx(s); 586 } 587 #endif /* __NetBSD__ */ 588 589 void 590 wi_shutdown(struct wi_softc *sc) 591 { 592 struct ifnet *ifp = &sc->sc_if; 593 594 if (sc->sc_attached) 595 wi_stop(ifp, 1); 596 } 597 598 int 599 wi_intr(void *arg) 600 { 601 int i; 602 struct wi_softc *sc = arg; 603 struct ifnet *ifp = &sc->sc_if; 604 u_int16_t status; 605 606 if (sc->sc_enabled == 0 || 607 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || 608 (ifp->if_flags & IFF_RUNNING) == 0) 609 return 0; 610 611 if ((ifp->if_flags & IFF_UP) == 0) { 612 CSR_WRITE_2(sc, WI_INT_EN, 0); 613 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 614 return 1; 615 } 616 617 /* This is superfluous on Prism, but Lucent breaks if we 618 * do not disable interrupts. 619 */ 620 CSR_WRITE_2(sc, WI_INT_EN, 0); 621 622 /* maximum 10 loops per interrupt */ 623 for (i = 0; i < 10; i++) { 624 status = CSR_READ_2(sc, WI_EVENT_STAT); 625 #ifdef WI_DEBUG 626 if (wi_debug > 1) { 627 printf("%s: iter %d status %#04x\n", __func__, i, 628 status); 629 } 630 #endif /* WI_DEBUG */ 631 if ((status & WI_INTRS) == 0) 632 break; 633 634 sc->sc_status = status; 635 636 if (status & WI_EV_RX) 637 wi_rx_intr(sc); 638 639 if (status & WI_EV_ALLOC) 640 wi_txalloc_intr(sc); 641 642 if (status & WI_EV_TX) 643 wi_tx_intr(sc); 644 645 if (status & WI_EV_TX_EXC) 646 wi_tx_ex_intr(sc); 647 648 if (status & WI_EV_INFO) 649 wi_info_intr(sc); 650 651 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status); 652 653 if (sc->sc_status & WI_EV_CMD) 654 wi_cmd_intr(sc); 655 656 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 657 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && 658 !IFQ_IS_EMPTY(&ifp->if_snd)) 659 wi_start(ifp); 660 661 sc->sc_status = 0; 662 } 663 664 /* re-enable interrupts */ 665 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 666 667 sc->sc_status = 0; 668 669 return 1; 670 } 671 672 #define arraylen(a) (sizeof(a) / sizeof((a)[0])) 673 674 STATIC void 675 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree) 676 { 677 int i; 678 SLIST_INIT(rssdfree); 679 for (i = 0; i < arraylen(*rssd); i++) { 680 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next); 681 } 682 } 683 684 STATIC void 685 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS], 686 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE]) 687 { 688 struct ieee80211_node *ni; 689 int i; 690 for (i = 0; i < arraylen(*rssd); i++) { 691 ni = (*rssd)[i].rd_desc.id_node; 692 (*rssd)[i].rd_desc.id_node = NULL; 693 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0) 694 printf("%s: cleaning outstanding rssadapt " 695 "descriptor for %s\n", 696 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr)); 697 if (ni != NULL) 698 ieee80211_free_node(ni); 699 } 700 memset(*txpending, 0, sizeof(*txpending)); 701 wi_rssdescs_init(rssd, rssdfree); 702 } 703 704 STATIC int 705 wi_init(struct ifnet *ifp) 706 { 707 struct wi_softc *sc = ifp->if_softc; 708 struct ieee80211com *ic = &sc->sc_ic; 709 struct wi_joinreq join; 710 int i; 711 int error = 0, wasenabled; 712 713 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled)); 714 wasenabled = sc->sc_enabled; 715 if (!sc->sc_enabled) { 716 if ((error = (*sc->sc_enable)(sc)) != 0) 717 goto out; 718 sc->sc_enabled = 1; 719 } else 720 wi_stop(ifp, 0); 721 722 /* Symbol firmware cannot be initialized more than once */ 723 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) 724 if ((error = wi_reset(sc)) != 0) 725 goto out; 726 727 /* common 802.11 configuration */ 728 ic->ic_flags &= ~IEEE80211_F_IBSSON; 729 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 730 switch (ic->ic_opmode) { 731 case IEEE80211_M_STA: 732 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); 733 break; 734 case IEEE80211_M_IBSS: 735 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); 736 ic->ic_flags |= IEEE80211_F_IBSSON; 737 break; 738 case IEEE80211_M_AHDEMO: 739 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 740 break; 741 case IEEE80211_M_HOSTAP: 742 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); 743 break; 744 case IEEE80211_M_MONITOR: 745 if (sc->sc_firmware_type == WI_LUCENT) 746 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 747 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0); 748 break; 749 } 750 751 /* Intersil interprets this RID as joining ESS even in IBSS mode */ 752 if (sc->sc_firmware_type == WI_LUCENT && 753 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0) 754 wi_write_val(sc, WI_RID_CREATE_IBSS, 1); 755 else 756 wi_write_val(sc, WI_RID_CREATE_IBSS, 0); 757 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); 758 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid, 759 ic->ic_des_esslen); 760 wi_write_val(sc, WI_RID_OWN_CHNL, 761 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 762 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen); 763 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 764 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); 765 if (ic->ic_caps & IEEE80211_C_PMGT) 766 wi_write_val(sc, WI_RID_PM_ENABLED, 767 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); 768 769 /* not yet common 802.11 configuration */ 770 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); 771 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh); 772 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) 773 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh); 774 775 /* driver specific 802.11 configuration */ 776 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) 777 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); 778 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) 779 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); 780 if (sc->sc_flags & WI_FLAGS_HAS_MOR) 781 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); 782 wi_cfg_txrate(sc); 783 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); 784 785 #ifndef IEEE80211_NO_HOSTAP 786 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 787 sc->sc_firmware_type == WI_INTERSIL) { 788 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval); 789 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1); 790 } 791 #endif /* !IEEE80211_NO_HOSTAP */ 792 793 if (sc->sc_firmware_type == WI_INTERSIL) { 794 struct ieee80211_rateset *rs = 795 &ic->ic_sup_rates[IEEE80211_MODE_11B]; 796 u_int16_t basic = 0, supported = 0, rate; 797 798 for (i = 0; i < rs->rs_nrates; i++) { 799 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) { 800 case 2: 801 rate = 1; 802 break; 803 case 4: 804 rate = 2; 805 break; 806 case 11: 807 rate = 4; 808 break; 809 case 22: 810 rate = 8; 811 break; 812 default: 813 rate = 0; 814 break; 815 } 816 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) 817 basic |= rate; 818 supported |= rate; 819 } 820 wi_write_val(sc, WI_RID_BASIC_RATE, basic); 821 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported); 822 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry); 823 } 824 825 /* 826 * Initialize promisc mode. 827 * Being in Host-AP mode causes a great 828 * deal of pain if promiscuous mode is set. 829 * Therefore we avoid confusing the firmware 830 * and always reset promisc mode in Host-AP 831 * mode. Host-AP sees all the packets anyway. 832 */ 833 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 834 (ifp->if_flags & IFF_PROMISC) != 0) { 835 wi_write_val(sc, WI_RID_PROMISC, 1); 836 } else { 837 wi_write_val(sc, WI_RID_PROMISC, 0); 838 } 839 840 /* Configure WEP. */ 841 if (ic->ic_caps & IEEE80211_C_WEP) { 842 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode; 843 wi_write_wep(sc); 844 } 845 846 /* Set multicast filter. */ 847 wi_write_multi(sc); 848 849 sc->sc_txalloc = 0; 850 sc->sc_txalloced = 0; 851 sc->sc_txqueue = 0; 852 sc->sc_txqueued = 0; 853 sc->sc_txstart = 0; 854 sc->sc_txstarted = 0; 855 856 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { 857 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); 858 if (sc->sc_firmware_type == WI_SYMBOL) 859 sc->sc_buflen = 1585; /* XXX */ 860 for (i = 0; i < WI_NTXBUF; i++) { 861 error = wi_alloc_fid(sc, sc->sc_buflen, 862 &sc->sc_txd[i].d_fid); 863 if (error) { 864 printf("%s: tx buffer allocation failed\n", 865 sc->sc_dev.dv_xname); 866 goto out; 867 } 868 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i, 869 sc->sc_txd[i].d_fid)); 870 ++sc->sc_txalloced; 871 } 872 } 873 874 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree); 875 876 /* Enable desired port */ 877 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 878 ifp->if_flags |= IFF_RUNNING; 879 ifp->if_flags &= ~IFF_OACTIVE; 880 ic->ic_state = IEEE80211_S_INIT; 881 882 if (ic->ic_opmode == IEEE80211_M_AHDEMO || 883 ic->ic_opmode == IEEE80211_M_IBSS || 884 ic->ic_opmode == IEEE80211_M_MONITOR || 885 ic->ic_opmode == IEEE80211_M_HOSTAP) 886 ieee80211_create_ibss(ic, ic->ic_ibss_chan); 887 888 /* Enable interrupts */ 889 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 890 891 #ifndef IEEE80211_NO_HOSTAP 892 if (!wasenabled && 893 ic->ic_opmode == IEEE80211_M_HOSTAP && 894 sc->sc_firmware_type == WI_INTERSIL) { 895 /* XXX: some card need to be re-enabled for hostap */ 896 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); 897 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); 898 } 899 #endif /* !IEEE80211_NO_HOSTAP */ 900 901 if (ic->ic_opmode == IEEE80211_M_STA && 902 ((ic->ic_flags & IEEE80211_F_DESBSSID) || 903 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { 904 memset(&join, 0, sizeof(join)); 905 if (ic->ic_flags & IEEE80211_F_DESBSSID) 906 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); 907 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) 908 join.wi_chan = 909 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan)); 910 /* Lucent firmware does not support the JOIN RID. */ 911 if (sc->sc_firmware_type != WI_LUCENT) 912 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); 913 } 914 915 out: 916 if (error) { 917 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 918 wi_stop(ifp, 0); 919 } 920 DPRINTF(("wi_init: return %d\n", error)); 921 return error; 922 } 923 924 STATIC void 925 wi_txcmd_wait(struct wi_softc *sc) 926 { 927 KASSERT(sc->sc_txcmds == 1); 928 if (sc->sc_status & WI_EV_CMD) { 929 sc->sc_status &= ~WI_EV_CMD; 930 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 931 } else 932 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0); 933 } 934 935 STATIC void 936 wi_stop(struct ifnet *ifp, int disable) 937 { 938 struct wi_softc *sc = ifp->if_softc; 939 struct ieee80211com *ic = &sc->sc_ic; 940 int s; 941 942 if (!sc->sc_enabled) 943 return; 944 945 s = splnet(); 946 947 DPRINTF(("wi_stop: disable %d\n", disable)); 948 949 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 950 951 /* wait for tx command completion (deassoc, deauth) */ 952 while (sc->sc_txcmds > 0) { 953 wi_txcmd_wait(sc); 954 wi_cmd_intr(sc); 955 } 956 957 /* TBD wait for deassoc, deauth tx completion? */ 958 959 if (!sc->sc_invalid) { 960 CSR_WRITE_2(sc, WI_INT_EN, 0); 961 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 962 } 963 964 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 965 &sc->sc_txpending); 966 967 sc->sc_tx_timer = 0; 968 sc->sc_scan_timer = 0; 969 sc->sc_false_syns = 0; 970 sc->sc_naps = 0; 971 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); 972 ifp->if_timer = 0; 973 974 if (disable) { 975 if (sc->sc_disable) 976 (*sc->sc_disable)(sc); 977 sc->sc_enabled = 0; 978 } 979 splx(s); 980 } 981 982 /* 983 * Choose a data rate for a packet len bytes long that suits the packet 984 * type and the wireless conditions. 985 * 986 * TBD Adapt fragmentation threshold. 987 */ 988 STATIC int 989 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni, 990 struct ieee80211_frame *wh, u_int len) 991 { 992 struct wi_softc *sc = ic->ic_ifp->if_softc; 993 struct wi_node *wn = (void*)ni; 994 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt; 995 int do_not_adapt, i, rateidx, s; 996 997 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) && 998 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0; 999 1000 s = splnet(); 1001 1002 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len, 1003 ic->ic_fixed_rate, 1004 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname, 1005 do_not_adapt); 1006 1007 ni->ni_txrate = rateidx; 1008 1009 if (ic->ic_opmode != IEEE80211_M_HOSTAP) { 1010 /* choose the slowest pending rate so that we don't 1011 * accidentally send a packet on the MAC's queue 1012 * too fast. TBD find out if the MAC labels Tx 1013 * packets w/ rate when enqueued or dequeued. 1014 */ 1015 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++); 1016 rateidx = i; 1017 } 1018 1019 splx(s); 1020 return (rateidx); 1021 } 1022 1023 STATIC void 1024 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 1025 { 1026 struct wi_node *wn; 1027 if (id->id_node == NULL) 1028 return; 1029 1030 wn = (void*)id->id_node; 1031 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id); 1032 } 1033 1034 STATIC void 1035 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 1036 { 1037 struct ieee80211_node *ni; 1038 struct wi_node *wn; 1039 int s; 1040 1041 s = splnet(); 1042 1043 if ((ni = id->id_node) == NULL) { 1044 DPRINTF(("wi_lower_rate: missing node\n")); 1045 goto out; 1046 } 1047 1048 wn = (void *)ni; 1049 1050 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id); 1051 out: 1052 splx(s); 1053 return; 1054 } 1055 1056 STATIC void 1057 wi_start(struct ifnet *ifp) 1058 { 1059 struct wi_softc *sc = ifp->if_softc; 1060 struct ieee80211com *ic = &sc->sc_ic; 1061 struct ether_header *eh; 1062 struct ieee80211_node *ni; 1063 struct ieee80211_frame *wh; 1064 struct ieee80211_rateset *rs; 1065 struct wi_rssdesc *rd; 1066 struct ieee80211_rssdesc *id; 1067 struct mbuf *m0; 1068 struct wi_frame frmhdr; 1069 int cur, fid, off, rateidx; 1070 1071 if (!sc->sc_enabled || sc->sc_invalid) 1072 return; 1073 if (sc->sc_flags & WI_FLAGS_OUTRANGE) 1074 return; 1075 1076 memset(&frmhdr, 0, sizeof(frmhdr)); 1077 cur = sc->sc_txqueue; 1078 for (;;) { 1079 ni = ic->ic_bss; 1080 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) { 1081 ifp->if_flags |= IFF_OACTIVE; 1082 break; 1083 } 1084 if (!IF_IS_EMPTY(&ic->ic_mgtq)) { 1085 IF_DEQUEUE(&ic->ic_mgtq, m0); 1086 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 1087 (caddr_t)&frmhdr.wi_ehdr); 1088 frmhdr.wi_ehdr.ether_type = 0; 1089 wh = mtod(m0, struct ieee80211_frame *); 1090 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1091 m0->m_pkthdr.rcvif = NULL; 1092 } else if (ic->ic_state == IEEE80211_S_RUN) { 1093 IFQ_POLL(&ifp->if_snd, m0); 1094 if (m0 == NULL) 1095 break; 1096 IFQ_DEQUEUE(&ifp->if_snd, m0); 1097 ifp->if_opackets++; 1098 m_copydata(m0, 0, ETHER_HDR_LEN, 1099 (caddr_t)&frmhdr.wi_ehdr); 1100 #if NBPFILTER > 0 1101 if (ifp->if_bpf) 1102 bpf_mtap(ifp->if_bpf, m0); 1103 #endif 1104 1105 eh = mtod(m0, struct ether_header *); 1106 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1107 if (ni == NULL) { 1108 ifp->if_oerrors++; 1109 continue; 1110 } 1111 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1112 (m0->m_flags & M_PWR_SAV) == 0) { 1113 ieee80211_pwrsave(ic, ni, m0); 1114 goto next; 1115 } 1116 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 1117 ieee80211_free_node(ni); 1118 ifp->if_oerrors++; 1119 continue; 1120 } 1121 wh = mtod(m0, struct ieee80211_frame *); 1122 } else 1123 break; 1124 #if NBPFILTER > 0 1125 if (ic->ic_rawbpf) 1126 bpf_mtap(ic->ic_rawbpf, m0); 1127 #endif 1128 frmhdr.wi_tx_ctl = 1129 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK); 1130 #ifndef IEEE80211_NO_HOSTAP 1131 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1132 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); 1133 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1134 (wh->i_fc[1] & IEEE80211_FC1_WEP)) { 1135 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { 1136 ifp->if_oerrors++; 1137 goto next; 1138 } 1139 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); 1140 } 1141 #endif /* !IEEE80211_NO_HOSTAP */ 1142 1143 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len); 1144 rs = &ni->ni_rates; 1145 1146 #if NBPFILTER > 0 1147 if (sc->sc_drvbpf) { 1148 struct wi_tx_radiotap_header *tap = &sc->sc_txtap; 1149 1150 tap->wt_rate = rs->rs_rates[rateidx]; 1151 tap->wt_chan_freq = 1152 htole16(ic->ic_bss->ni_chan->ic_freq); 1153 tap->wt_chan_flags = 1154 htole16(ic->ic_bss->ni_chan->ic_flags); 1155 /* TBD tap->wt_flags */ 1156 1157 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0); 1158 } 1159 #endif 1160 1161 rd = SLIST_FIRST(&sc->sc_rssdfree); 1162 id = &rd->rd_desc; 1163 id->id_len = m0->m_pkthdr.len; 1164 id->id_rateidx = ni->ni_txrate; 1165 id->id_rssi = ni->ni_rssi; 1166 1167 frmhdr.wi_tx_idx = rd - sc->sc_rssd; 1168 1169 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1170 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] & 1171 IEEE80211_RATE_VAL); 1172 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) 1173 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]); 1174 1175 m_copydata(m0, 0, sizeof(struct ieee80211_frame), 1176 (caddr_t)&frmhdr.wi_whdr); 1177 m_adj(m0, sizeof(struct ieee80211_frame)); 1178 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); 1179 if (IFF_DUMPPKTS(ifp)) 1180 wi_dump_pkt(&frmhdr, ni, -1); 1181 fid = sc->sc_txd[cur].d_fid; 1182 off = sizeof(frmhdr); 1183 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 || 1184 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) { 1185 printf("%s: %s write fid %x failed\n", 1186 sc->sc_dev.dv_xname, __func__, fid); 1187 ifp->if_oerrors++; 1188 m_freem(m0); 1189 goto next; 1190 } 1191 m_freem(m0); 1192 sc->sc_txpending[ni->ni_txrate]++; 1193 --sc->sc_txalloced; 1194 if (sc->sc_txqueued++ == 0) { 1195 #ifdef DIAGNOSTIC 1196 if (cur != sc->sc_txstart) 1197 printf("%s: ring is desynchronized\n", 1198 sc->sc_dev.dv_xname); 1199 #endif 1200 wi_push_packet(sc); 1201 } else { 1202 #ifdef WI_RING_DEBUG 1203 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1204 sc->sc_dev.dv_xname, fid, 1205 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1206 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1207 #endif 1208 } 1209 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF; 1210 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next); 1211 id->id_node = ni; 1212 continue; 1213 next: 1214 if (ni != NULL) 1215 ieee80211_free_node(ni); 1216 } 1217 } 1218 1219 1220 STATIC int 1221 wi_reset(struct wi_softc *sc) 1222 { 1223 int i, error; 1224 1225 DPRINTF(("wi_reset\n")); 1226 1227 if (sc->sc_reset) 1228 (*sc->sc_reset)(sc); 1229 1230 error = 0; 1231 for (i = 0; i < 5; i++) { 1232 if (sc->sc_invalid) 1233 return ENXIO; 1234 DELAY(20*1000); /* XXX: way too long! */ 1235 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) 1236 break; 1237 } 1238 if (error) { 1239 printf("%s: init failed\n", sc->sc_dev.dv_xname); 1240 return error; 1241 } 1242 CSR_WRITE_2(sc, WI_INT_EN, 0); 1243 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 1244 1245 /* Calibrate timer. */ 1246 wi_write_val(sc, WI_RID_TICK_TIME, 0); 1247 return 0; 1248 } 1249 1250 STATIC void 1251 wi_watchdog(struct ifnet *ifp) 1252 { 1253 struct wi_softc *sc = ifp->if_softc; 1254 1255 ifp->if_timer = 0; 1256 if (!sc->sc_enabled) 1257 return; 1258 1259 if (sc->sc_tx_timer) { 1260 if (--sc->sc_tx_timer == 0) { 1261 printf("%s: device timeout\n", ifp->if_xname); 1262 ifp->if_oerrors++; 1263 wi_init(ifp); 1264 return; 1265 } 1266 ifp->if_timer = 1; 1267 } 1268 1269 if (sc->sc_scan_timer) { 1270 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && 1271 sc->sc_firmware_type == WI_INTERSIL) { 1272 DPRINTF(("wi_watchdog: inquire scan\n")); 1273 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 1274 } 1275 if (sc->sc_scan_timer) 1276 ifp->if_timer = 1; 1277 } 1278 1279 /* TODO: rate control */ 1280 ieee80211_watchdog(&sc->sc_ic); 1281 } 1282 1283 STATIC int 1284 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1285 { 1286 struct wi_softc *sc = ifp->if_softc; 1287 struct ieee80211com *ic = &sc->sc_ic; 1288 struct ifreq *ifr = (struct ifreq *)data; 1289 int s, error = 0; 1290 1291 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 1292 return ENXIO; 1293 1294 s = splnet(); 1295 1296 switch (cmd) { 1297 case SIOCSIFFLAGS: 1298 /* 1299 * Can't do promisc and hostap at the same time. If all that's 1300 * changing is the promisc flag, try to short-circuit a call to 1301 * wi_init() by just setting PROMISC in the hardware. 1302 */ 1303 if (ifp->if_flags & IFF_UP) { 1304 if (sc->sc_enabled) { 1305 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1306 (ifp->if_flags & IFF_PROMISC) != 0) 1307 wi_write_val(sc, WI_RID_PROMISC, 1); 1308 else 1309 wi_write_val(sc, WI_RID_PROMISC, 0); 1310 } else 1311 error = wi_init(ifp); 1312 } else if (sc->sc_enabled) 1313 wi_stop(ifp, 1); 1314 break; 1315 case SIOCSIFMEDIA: 1316 case SIOCGIFMEDIA: 1317 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1318 break; 1319 case SIOCADDMULTI: 1320 case SIOCDELMULTI: 1321 error = (cmd == SIOCADDMULTI) ? 1322 ether_addmulti(ifr, &sc->sc_ec) : 1323 ether_delmulti(ifr, &sc->sc_ec); 1324 if (error == ENETRESET) { 1325 if (ifp->if_flags & IFF_RUNNING) { 1326 /* do not rescan */ 1327 error = wi_write_multi(sc); 1328 } else 1329 error = 0; 1330 } 1331 break; 1332 case SIOCGIFGENERIC: 1333 error = wi_get_cfg(ifp, cmd, data); 1334 break; 1335 case SIOCSIFGENERIC: 1336 error = suser(curproc->p_ucred, &curproc->p_acflag); 1337 if (error) 1338 break; 1339 error = wi_set_cfg(ifp, cmd, data); 1340 if (error == ENETRESET) { 1341 if (ifp->if_flags & IFF_RUNNING) 1342 error = wi_init(ifp); 1343 else 1344 error = 0; 1345 } 1346 break; 1347 case SIOCS80211BSSID: 1348 if (sc->sc_firmware_type == WI_LUCENT) { 1349 error = ENODEV; 1350 break; 1351 } 1352 /* fall through */ 1353 default: 1354 ic->ic_flags = sc->sc_ic_flags; 1355 error = ieee80211_ioctl(&sc->sc_ic, cmd, data); 1356 sc->sc_ic_flags = ic->ic_flags; 1357 wi_mend_flags(sc); 1358 if (error == ENETRESET) { 1359 if (sc->sc_enabled) 1360 error = wi_init(ifp); 1361 else 1362 error = 0; 1363 } 1364 break; 1365 } 1366 splx(s); 1367 return error; 1368 } 1369 1370 STATIC int 1371 wi_media_change(struct ifnet *ifp) 1372 { 1373 struct wi_softc *sc = ifp->if_softc; 1374 struct ieee80211com *ic = &sc->sc_ic; 1375 int error; 1376 1377 error = ieee80211_media_change(ifp); 1378 if (error == ENETRESET) { 1379 if (sc->sc_enabled) 1380 error = wi_init(ifp); 1381 else 1382 error = 0; 1383 } 1384 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1385 1386 return error; 1387 } 1388 1389 STATIC void 1390 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1391 { 1392 struct wi_softc *sc = ifp->if_softc; 1393 struct ieee80211com *ic = &sc->sc_ic; 1394 u_int16_t val; 1395 int rate; 1396 1397 if (sc->sc_enabled == 0) { 1398 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1399 imr->ifm_status = 0; 1400 return; 1401 } 1402 1403 imr->ifm_status = IFM_AVALID; 1404 imr->ifm_active = IFM_IEEE80211; 1405 if (ic->ic_state == IEEE80211_S_RUN && 1406 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) 1407 imr->ifm_status |= IFM_ACTIVE; 1408 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) { 1409 /* convert to 802.11 rate */ 1410 val = le16toh(val); 1411 rate = val * 2; 1412 if (sc->sc_firmware_type == WI_LUCENT) { 1413 if (rate == 10) 1414 rate = 11; /* 5.5Mbps */ 1415 } else { 1416 if (rate == 4*2) 1417 rate = 11; /* 5.5Mbps */ 1418 else if (rate == 8*2) 1419 rate = 22; /* 11Mbps */ 1420 } 1421 } else 1422 rate = 0; 1423 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1424 switch (ic->ic_opmode) { 1425 case IEEE80211_M_STA: 1426 break; 1427 case IEEE80211_M_IBSS: 1428 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1429 break; 1430 case IEEE80211_M_AHDEMO: 1431 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1432 break; 1433 case IEEE80211_M_HOSTAP: 1434 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1435 break; 1436 case IEEE80211_M_MONITOR: 1437 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1438 break; 1439 } 1440 } 1441 1442 STATIC struct ieee80211_node * 1443 wi_node_alloc(struct ieee80211_node_table *nt) 1444 { 1445 struct wi_node *wn = 1446 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1447 return wn ? &wn->wn_node : NULL; 1448 } 1449 1450 STATIC void 1451 wi_node_free(struct ieee80211_node *ni) 1452 { 1453 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1454 int i; 1455 1456 for (i = 0; i < WI_NTXRSS; i++) { 1457 if (sc->sc_rssd[i].rd_desc.id_node == ni) 1458 sc->sc_rssd[i].rd_desc.id_node = NULL; 1459 } 1460 free(ni, M_DEVBUF); 1461 } 1462 1463 STATIC void 1464 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) 1465 { 1466 struct ieee80211com *ic = &sc->sc_ic; 1467 struct ieee80211_node *ni = ic->ic_bss; 1468 struct ifnet *ifp = &sc->sc_if; 1469 1470 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) 1471 return; 1472 1473 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); 1474 DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); 1475 1476 /* In promiscuous mode, the BSSID field is not a reliable 1477 * indicator of the firmware's BSSID. Damp spurious 1478 * change-of-BSSID indications. 1479 */ 1480 if ((ifp->if_flags & IFF_PROMISC) != 0 && 1481 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns, 1482 WI_MAX_FALSE_SYNS)) 1483 return; 1484 1485 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1); 1486 /* 1487 * XXX hack; we should create a new node with the new bssid 1488 * and replace the existing ic_bss with it but since we don't 1489 * process management frames to collect state we cheat by 1490 * reusing the existing node as we know wi_newstate will be 1491 * called and it will overwrite the node state. 1492 */ 1493 ieee80211_sta_join(ic, ieee80211_ref_node(ni)); 1494 } 1495 1496 static __inline void 1497 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni, 1498 struct ieee80211_frame *wh, int rssi) 1499 { 1500 struct wi_node *wn; 1501 1502 if (ni == NULL) { 1503 printf("%s: null node", __func__); 1504 return; 1505 } 1506 1507 wn = (void*)ni; 1508 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi); 1509 } 1510 1511 STATIC void 1512 wi_rx_intr(struct wi_softc *sc) 1513 { 1514 struct ieee80211com *ic = &sc->sc_ic; 1515 struct ifnet *ifp = &sc->sc_if; 1516 struct ieee80211_node *ni; 1517 struct wi_frame frmhdr; 1518 struct mbuf *m; 1519 struct ieee80211_frame *wh; 1520 int fid, len, off, rssi; 1521 u_int8_t dir; 1522 u_int16_t status; 1523 u_int32_t rstamp; 1524 1525 fid = CSR_READ_2(sc, WI_RX_FID); 1526 1527 /* First read in the frame header */ 1528 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { 1529 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1530 __func__, fid); 1531 ifp->if_ierrors++; 1532 return; 1533 } 1534 1535 if (IFF_DUMPPKTS(ifp)) 1536 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); 1537 1538 /* 1539 * Drop undecryptable or packets with receive errors here 1540 */ 1541 status = le16toh(frmhdr.wi_status); 1542 if ((status & WI_STAT_ERRSTAT) != 0 && 1543 ic->ic_opmode != IEEE80211_M_MONITOR) { 1544 ifp->if_ierrors++; 1545 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); 1546 return; 1547 } 1548 rssi = frmhdr.wi_rx_signal; 1549 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | 1550 le16toh(frmhdr.wi_rx_tstamp1); 1551 1552 len = le16toh(frmhdr.wi_dat_len); 1553 off = ALIGN(sizeof(struct ieee80211_frame)); 1554 1555 /* Sometimes the PRISM2.x returns bogusly large frames. Except 1556 * in monitor mode, just throw them away. 1557 */ 1558 if (off + len > MCLBYTES) { 1559 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1560 ifp->if_ierrors++; 1561 DPRINTF(("wi_rx_intr: oversized packet\n")); 1562 return; 1563 } else 1564 len = 0; 1565 } 1566 1567 MGETHDR(m, M_DONTWAIT, MT_DATA); 1568 if (m == NULL) { 1569 ifp->if_ierrors++; 1570 DPRINTF(("wi_rx_intr: MGET failed\n")); 1571 return; 1572 } 1573 if (off + len > MHLEN) { 1574 MCLGET(m, M_DONTWAIT); 1575 if ((m->m_flags & M_EXT) == 0) { 1576 m_freem(m); 1577 ifp->if_ierrors++; 1578 DPRINTF(("wi_rx_intr: MCLGET failed\n")); 1579 return; 1580 } 1581 } 1582 1583 m->m_data += off - sizeof(struct ieee80211_frame); 1584 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); 1585 wi_read_bap(sc, fid, sizeof(frmhdr), 1586 m->m_data + sizeof(struct ieee80211_frame), len); 1587 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; 1588 m->m_pkthdr.rcvif = ifp; 1589 1590 #if NBPFILTER > 0 1591 if (sc->sc_drvbpf) { 1592 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap; 1593 1594 tap->wr_rate = frmhdr.wi_rx_rate / 5; 1595 tap->wr_antsignal = frmhdr.wi_rx_signal; 1596 tap->wr_antnoise = frmhdr.wi_rx_silence; 1597 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1598 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1599 if (frmhdr.wi_status & WI_STAT_PCF) 1600 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP; 1601 1602 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m); 1603 } 1604 #endif 1605 wh = mtod(m, struct ieee80211_frame *); 1606 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1607 /* 1608 * WEP is decrypted by hardware. Clear WEP bit 1609 * header for ieee80211_input(). 1610 */ 1611 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1612 } 1613 1614 /* synchronize driver's BSSID with firmware's BSSID */ 1615 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; 1616 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) 1617 wi_sync_bssid(sc, wh->i_addr3); 1618 1619 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1620 1621 ieee80211_input(ic, m, ni, rssi, rstamp); 1622 1623 wi_rssadapt_input(ic, ni, wh, rssi); 1624 1625 /* 1626 * The frame may have caused the node to be marked for 1627 * reclamation (e.g. in response to a DEAUTH message) 1628 * so use release_node here instead of unref_node. 1629 */ 1630 ieee80211_free_node(ni); 1631 } 1632 1633 STATIC void 1634 wi_tx_ex_intr(struct wi_softc *sc) 1635 { 1636 struct ieee80211com *ic = &sc->sc_ic; 1637 struct ifnet *ifp = &sc->sc_if; 1638 struct ieee80211_node *ni; 1639 struct ieee80211_rssdesc *id; 1640 struct wi_rssdesc *rssd; 1641 struct wi_frame frmhdr; 1642 int fid; 1643 u_int16_t status; 1644 1645 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1646 /* Read in the frame header */ 1647 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1648 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1649 __func__, fid); 1650 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1651 &sc->sc_txpending); 1652 goto out; 1653 } 1654 1655 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1656 printf("%s: %s bad idx %02x\n", 1657 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1658 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1659 &sc->sc_txpending); 1660 goto out; 1661 } 1662 1663 status = le16toh(frmhdr.wi_status); 1664 1665 /* 1666 * Spontaneous station disconnects appear as xmit 1667 * errors. Don't announce them and/or count them 1668 * as an output error. 1669 */ 1670 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { 1671 printf("%s: tx failed", sc->sc_dev.dv_xname); 1672 if (status & WI_TXSTAT_RET_ERR) 1673 printf(", retry limit exceeded"); 1674 if (status & WI_TXSTAT_AGED_ERR) 1675 printf(", max transmit lifetime exceeded"); 1676 if (status & WI_TXSTAT_DISCONNECT) 1677 printf(", port disconnected"); 1678 if (status & WI_TXSTAT_FORM_ERR) 1679 printf(", invalid format (data len %u src %s)", 1680 le16toh(frmhdr.wi_dat_len), 1681 ether_sprintf(frmhdr.wi_ehdr.ether_shost)); 1682 if (status & ~0xf) 1683 printf(", status=0x%x", status); 1684 printf("\n"); 1685 } 1686 ifp->if_oerrors++; 1687 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1688 id = &rssd->rd_desc; 1689 if ((status & WI_TXSTAT_RET_ERR) != 0) 1690 wi_lower_rate(ic, id); 1691 1692 ni = id->id_node; 1693 id->id_node = NULL; 1694 1695 if (ni == NULL) { 1696 printf("%s: %s null node, rssdesc %02x\n", 1697 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1698 goto out; 1699 } 1700 1701 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1702 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1703 __func__, id->id_rateidx); 1704 sc->sc_txpending[id->id_rateidx] = 0; 1705 } 1706 if (ni != NULL) 1707 ieee80211_free_node(ni); 1708 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1709 out: 1710 ifp->if_flags &= ~IFF_OACTIVE; 1711 } 1712 1713 STATIC void 1714 wi_txalloc_intr(struct wi_softc *sc) 1715 { 1716 int fid, cur; 1717 1718 fid = CSR_READ_2(sc, WI_ALLOC_FID); 1719 1720 cur = sc->sc_txalloc; 1721 #ifdef DIAGNOSTIC 1722 if (sc->sc_txstarted == 0) { 1723 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1724 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur, 1725 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1726 return; 1727 } 1728 #endif 1729 --sc->sc_txstarted; 1730 ++sc->sc_txalloced; 1731 sc->sc_txd[cur].d_fid = fid; 1732 sc->sc_txalloc = (cur + 1) % WI_NTXBUF; 1733 #ifdef WI_RING_DEBUG 1734 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1735 sc->sc_dev.dv_xname, fid, 1736 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1737 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1738 #endif 1739 } 1740 1741 STATIC void 1742 wi_cmd_intr(struct wi_softc *sc) 1743 { 1744 struct ifnet *ifp = &sc->sc_if; 1745 1746 if (sc->sc_invalid) 1747 return; 1748 #ifdef WI_DEBUG 1749 if (wi_debug) 1750 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds); 1751 #endif 1752 KASSERT(sc->sc_txcmds > 0); 1753 1754 --sc->sc_txcmds; 1755 1756 if (--sc->sc_txqueued == 0) { 1757 sc->sc_tx_timer = 0; 1758 ifp->if_flags &= ~IFF_OACTIVE; 1759 #ifdef WI_RING_DEBUG 1760 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n", 1761 sc->sc_dev.dv_xname, 1762 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1763 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1764 #endif 1765 } else 1766 wi_push_packet(sc); 1767 } 1768 1769 STATIC void 1770 wi_push_packet(struct wi_softc *sc) 1771 { 1772 struct ifnet *ifp = &sc->sc_if; 1773 int cur, fid; 1774 1775 cur = sc->sc_txstart; 1776 fid = sc->sc_txd[cur].d_fid; 1777 1778 KASSERT(sc->sc_txcmds == 0); 1779 1780 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) { 1781 printf("%s: xmit failed\n", sc->sc_dev.dv_xname); 1782 /* XXX ring might have a hole */ 1783 } 1784 1785 if (sc->sc_txcmds++ > 0) 1786 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds); 1787 1788 ++sc->sc_txstarted; 1789 #ifdef DIAGNOSTIC 1790 if (sc->sc_txstarted > WI_NTXBUF) 1791 printf("%s: too many buffers started\n", sc->sc_dev.dv_xname); 1792 #endif 1793 sc->sc_txstart = (cur + 1) % WI_NTXBUF; 1794 sc->sc_tx_timer = 5; 1795 ifp->if_timer = 1; 1796 #ifdef WI_RING_DEBUG 1797 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1798 sc->sc_dev.dv_xname, fid, 1799 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1800 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1801 #endif 1802 } 1803 1804 STATIC void 1805 wi_tx_intr(struct wi_softc *sc) 1806 { 1807 struct ieee80211com *ic = &sc->sc_ic; 1808 struct ifnet *ifp = &sc->sc_if; 1809 struct ieee80211_node *ni; 1810 struct ieee80211_rssdesc *id; 1811 struct wi_rssdesc *rssd; 1812 struct wi_frame frmhdr; 1813 int fid; 1814 1815 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1816 /* Read in the frame header */ 1817 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2), 1818 &frmhdr.wi_tx_swsup2, 2) != 0) { 1819 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1820 __func__, fid); 1821 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1822 &sc->sc_txpending); 1823 goto out; 1824 } 1825 1826 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1827 printf("%s: %s bad idx %02x\n", 1828 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1829 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1830 &sc->sc_txpending); 1831 goto out; 1832 } 1833 1834 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1835 id = &rssd->rd_desc; 1836 wi_raise_rate(ic, id); 1837 1838 ni = id->id_node; 1839 id->id_node = NULL; 1840 1841 if (ni == NULL) { 1842 printf("%s: %s null node, rssdesc %02x\n", 1843 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1844 goto out; 1845 } 1846 1847 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1848 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1849 __func__, id->id_rateidx); 1850 sc->sc_txpending[id->id_rateidx] = 0; 1851 } 1852 if (ni != NULL) 1853 ieee80211_free_node(ni); 1854 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1855 out: 1856 ifp->if_flags &= ~IFF_OACTIVE; 1857 } 1858 1859 STATIC void 1860 wi_info_intr(struct wi_softc *sc) 1861 { 1862 struct ieee80211com *ic = &sc->sc_ic; 1863 struct ifnet *ifp = &sc->sc_if; 1864 int i, fid, len, off; 1865 u_int16_t ltbuf[2]; 1866 u_int16_t stat; 1867 u_int32_t *ptr; 1868 1869 fid = CSR_READ_2(sc, WI_INFO_FID); 1870 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); 1871 1872 switch (le16toh(ltbuf[1])) { 1873 1874 case WI_INFO_LINK_STAT: 1875 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); 1876 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); 1877 switch (le16toh(stat)) { 1878 case CONNECTED: 1879 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1880 if (ic->ic_state == IEEE80211_S_RUN && 1881 ic->ic_opmode != IEEE80211_M_IBSS) 1882 break; 1883 /* FALLTHROUGH */ 1884 case AP_CHANGE: 1885 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1886 break; 1887 case AP_IN_RANGE: 1888 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1889 break; 1890 case AP_OUT_OF_RANGE: 1891 if (sc->sc_firmware_type == WI_SYMBOL && 1892 sc->sc_scan_timer > 0) { 1893 if (wi_cmd(sc, WI_CMD_INQUIRE, 1894 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) 1895 sc->sc_scan_timer = 0; 1896 break; 1897 } 1898 if (ic->ic_opmode == IEEE80211_M_STA) 1899 sc->sc_flags |= WI_FLAGS_OUTRANGE; 1900 break; 1901 case DISCONNECTED: 1902 case ASSOC_FAILED: 1903 if (ic->ic_opmode == IEEE80211_M_STA) 1904 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1905 break; 1906 } 1907 break; 1908 1909 case WI_INFO_COUNTERS: 1910 /* some card versions have a larger stats structure */ 1911 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); 1912 ptr = (u_int32_t *)&sc->sc_stats; 1913 off = sizeof(ltbuf); 1914 for (i = 0; i < len; i++, off += 2, ptr++) { 1915 wi_read_bap(sc, fid, off, &stat, sizeof(stat)); 1916 stat = le16toh(stat); 1917 #ifdef WI_HERMES_STATS_WAR 1918 if (stat & 0xf000) 1919 stat = ~stat; 1920 #endif 1921 *ptr += stat; 1922 } 1923 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + 1924 sc->sc_stats.wi_tx_multi_retries + 1925 sc->sc_stats.wi_tx_retry_limit; 1926 break; 1927 1928 case WI_INFO_SCAN_RESULTS: 1929 case WI_INFO_HOST_SCAN_RESULTS: 1930 wi_scan_result(sc, fid, le16toh(ltbuf[0])); 1931 break; 1932 1933 default: 1934 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, 1935 le16toh(ltbuf[1]), le16toh(ltbuf[0]))); 1936 break; 1937 } 1938 } 1939 1940 STATIC int 1941 wi_write_multi(struct wi_softc *sc) 1942 { 1943 struct ifnet *ifp = &sc->sc_if; 1944 int n; 1945 struct wi_mcast mlist; 1946 struct ether_multi *enm; 1947 struct ether_multistep estep; 1948 1949 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1950 allmulti: 1951 ifp->if_flags |= IFF_ALLMULTI; 1952 memset(&mlist, 0, sizeof(mlist)); 1953 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1954 sizeof(mlist)); 1955 } 1956 1957 n = 0; 1958 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1959 while (enm != NULL) { 1960 /* Punt on ranges or too many multicast addresses. */ 1961 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) || 1962 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) 1963 goto allmulti; 1964 1965 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo); 1966 n++; 1967 ETHER_NEXT_MULTI(estep, enm); 1968 } 1969 ifp->if_flags &= ~IFF_ALLMULTI; 1970 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1971 IEEE80211_ADDR_LEN * n); 1972 } 1973 1974 1975 STATIC void 1976 wi_read_nicid(struct wi_softc *sc) 1977 { 1978 struct wi_card_ident *id; 1979 char *p; 1980 int len; 1981 u_int16_t ver[4]; 1982 1983 /* getting chip identity */ 1984 memset(ver, 0, sizeof(ver)); 1985 len = sizeof(ver); 1986 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); 1987 printf("%s: using ", sc->sc_dev.dv_xname); 1988 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3]))); 1989 1990 sc->sc_firmware_type = WI_NOTYPE; 1991 for (id = wi_card_ident; id->card_name != NULL; id++) { 1992 if (le16toh(ver[0]) == id->card_id) { 1993 printf("%s", id->card_name); 1994 sc->sc_firmware_type = id->firm_type; 1995 break; 1996 } 1997 } 1998 if (sc->sc_firmware_type == WI_NOTYPE) { 1999 if (le16toh(ver[0]) & 0x8000) { 2000 printf("Unknown PRISM2 chip"); 2001 sc->sc_firmware_type = WI_INTERSIL; 2002 } else { 2003 printf("Unknown Lucent chip"); 2004 sc->sc_firmware_type = WI_LUCENT; 2005 } 2006 } 2007 2008 /* get primary firmware version (Only Prism chips) */ 2009 if (sc->sc_firmware_type != WI_LUCENT) { 2010 memset(ver, 0, sizeof(ver)); 2011 len = sizeof(ver); 2012 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); 2013 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + 2014 le16toh(ver[3]) * 100 + le16toh(ver[1]); 2015 } 2016 2017 /* get station firmware version */ 2018 memset(ver, 0, sizeof(ver)); 2019 len = sizeof(ver); 2020 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); 2021 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + 2022 le16toh(ver[3]) * 100 + le16toh(ver[1]); 2023 if (sc->sc_firmware_type == WI_INTERSIL && 2024 (sc->sc_sta_firmware_ver == 10102 || 2025 sc->sc_sta_firmware_ver == 20102)) { 2026 char ident[12]; 2027 memset(ident, 0, sizeof(ident)); 2028 len = sizeof(ident); 2029 /* value should be the format like "V2.00-11" */ 2030 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && 2031 *(p = (char *)ident) >= 'A' && 2032 p[2] == '.' && p[5] == '-' && p[8] == '\0') { 2033 sc->sc_firmware_type = WI_SYMBOL; 2034 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + 2035 (p[3] - '0') * 1000 + (p[4] - '0') * 100 + 2036 (p[6] - '0') * 10 + (p[7] - '0'); 2037 } 2038 } 2039 2040 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname, 2041 sc->sc_firmware_type == WI_LUCENT ? "Lucent" : 2042 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); 2043 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ 2044 printf("Primary (%u.%u.%u), ", 2045 sc->sc_pri_firmware_ver / 10000, 2046 (sc->sc_pri_firmware_ver % 10000) / 100, 2047 sc->sc_pri_firmware_ver % 100); 2048 printf("Station (%u.%u.%u)\n", 2049 sc->sc_sta_firmware_ver / 10000, 2050 (sc->sc_sta_firmware_ver % 10000) / 100, 2051 sc->sc_sta_firmware_ver % 100); 2052 } 2053 2054 STATIC int 2055 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) 2056 { 2057 struct wi_ssid ssid; 2058 2059 if (buflen > IEEE80211_NWID_LEN) 2060 return ENOBUFS; 2061 memset(&ssid, 0, sizeof(ssid)); 2062 ssid.wi_len = htole16(buflen); 2063 memcpy(ssid.wi_ssid, buf, buflen); 2064 return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); 2065 } 2066 2067 STATIC int 2068 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2069 { 2070 struct wi_softc *sc = ifp->if_softc; 2071 struct ieee80211com *ic = &sc->sc_ic; 2072 struct ifreq *ifr = (struct ifreq *)data; 2073 struct wi_req wreq; 2074 int len, n, error; 2075 2076 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2077 if (error) 2078 return error; 2079 len = (wreq.wi_len - 1) * 2; 2080 if (len < sizeof(u_int16_t)) 2081 return ENOSPC; 2082 if (len > sizeof(wreq.wi_val)) 2083 len = sizeof(wreq.wi_val); 2084 2085 switch (wreq.wi_type) { 2086 2087 case WI_RID_IFACE_STATS: 2088 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); 2089 if (len < sizeof(sc->sc_stats)) 2090 error = ENOSPC; 2091 else 2092 len = sizeof(sc->sc_stats); 2093 break; 2094 2095 case WI_RID_ENCRYPTION: 2096 case WI_RID_TX_CRYPT_KEY: 2097 case WI_RID_DEFLT_CRYPT_KEYS: 2098 case WI_RID_TX_RATE: 2099 return ieee80211_cfgget(ic, cmd, data); 2100 2101 case WI_RID_MICROWAVE_OVEN: 2102 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { 2103 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2104 &len); 2105 break; 2106 } 2107 wreq.wi_val[0] = htole16(sc->sc_microwave_oven); 2108 len = sizeof(u_int16_t); 2109 break; 2110 2111 case WI_RID_DBM_ADJUST: 2112 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { 2113 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2114 &len); 2115 break; 2116 } 2117 wreq.wi_val[0] = htole16(sc->sc_dbm_offset); 2118 len = sizeof(u_int16_t); 2119 break; 2120 2121 case WI_RID_ROAMING_MODE: 2122 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { 2123 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2124 &len); 2125 break; 2126 } 2127 wreq.wi_val[0] = htole16(sc->sc_roaming_mode); 2128 len = sizeof(u_int16_t); 2129 break; 2130 2131 case WI_RID_SYSTEM_SCALE: 2132 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { 2133 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2134 &len); 2135 break; 2136 } 2137 wreq.wi_val[0] = htole16(sc->sc_system_scale); 2138 len = sizeof(u_int16_t); 2139 break; 2140 2141 case WI_RID_FRAG_THRESH: 2142 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { 2143 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2144 &len); 2145 break; 2146 } 2147 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2148 len = sizeof(u_int16_t); 2149 break; 2150 2151 case WI_RID_READ_APS: 2152 #ifndef IEEE80211_NO_HOSTAP 2153 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2154 return ieee80211_cfgget(ic, cmd, data); 2155 #endif /* !IEEE80211_NO_HOSTAP */ 2156 if (sc->sc_scan_timer > 0) { 2157 error = EINPROGRESS; 2158 break; 2159 } 2160 n = sc->sc_naps; 2161 if (len < sizeof(n)) { 2162 error = ENOSPC; 2163 break; 2164 } 2165 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) 2166 n = (len - sizeof(n)) / sizeof(struct wi_apinfo); 2167 len = sizeof(n) + sizeof(struct wi_apinfo) * n; 2168 memcpy(wreq.wi_val, &n, sizeof(n)); 2169 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps, 2170 sizeof(struct wi_apinfo) * n); 2171 break; 2172 2173 default: 2174 if (sc->sc_enabled) { 2175 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2176 &len); 2177 break; 2178 } 2179 switch (wreq.wi_type) { 2180 case WI_RID_MAX_DATALEN: 2181 wreq.wi_val[0] = htole16(sc->sc_max_datalen); 2182 len = sizeof(u_int16_t); 2183 break; 2184 case WI_RID_FRAG_THRESH: 2185 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2186 len = sizeof(u_int16_t); 2187 break; 2188 case WI_RID_RTS_THRESH: 2189 wreq.wi_val[0] = htole16(sc->sc_rts_thresh); 2190 len = sizeof(u_int16_t); 2191 break; 2192 case WI_RID_CNFAUTHMODE: 2193 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); 2194 len = sizeof(u_int16_t); 2195 break; 2196 case WI_RID_NODENAME: 2197 if (len < sc->sc_nodelen + sizeof(u_int16_t)) { 2198 error = ENOSPC; 2199 break; 2200 } 2201 len = sc->sc_nodelen + sizeof(u_int16_t); 2202 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); 2203 memcpy(&wreq.wi_val[1], sc->sc_nodename, 2204 sc->sc_nodelen); 2205 break; 2206 default: 2207 return ieee80211_cfgget(ic, cmd, data); 2208 } 2209 break; 2210 } 2211 if (error) 2212 return error; 2213 wreq.wi_len = (len + 1) / 2 + 1; 2214 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); 2215 } 2216 2217 STATIC int 2218 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2219 { 2220 struct wi_softc *sc = ifp->if_softc; 2221 struct ieee80211com *ic = &sc->sc_ic; 2222 struct ifreq *ifr = (struct ifreq *)data; 2223 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2224 struct wi_req wreq; 2225 struct mbuf *m; 2226 int i, len, error; 2227 2228 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2229 if (error) 2230 return error; 2231 len = (wreq.wi_len - 1) * 2; 2232 switch (wreq.wi_type) { 2233 case WI_RID_DBM_ADJUST: 2234 return ENODEV; 2235 2236 case WI_RID_NODENAME: 2237 if (le16toh(wreq.wi_val[0]) * 2 > len || 2238 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { 2239 error = ENOSPC; 2240 break; 2241 } 2242 if (sc->sc_enabled) { 2243 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2244 len); 2245 if (error) 2246 break; 2247 } 2248 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; 2249 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); 2250 break; 2251 2252 case WI_RID_MICROWAVE_OVEN: 2253 case WI_RID_ROAMING_MODE: 2254 case WI_RID_SYSTEM_SCALE: 2255 case WI_RID_FRAG_THRESH: 2256 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && 2257 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) 2258 break; 2259 if (wreq.wi_type == WI_RID_ROAMING_MODE && 2260 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) 2261 break; 2262 if (wreq.wi_type == WI_RID_SYSTEM_SCALE && 2263 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) 2264 break; 2265 if (wreq.wi_type == WI_RID_FRAG_THRESH && 2266 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) 2267 break; 2268 /* FALLTHROUGH */ 2269 case WI_RID_RTS_THRESH: 2270 case WI_RID_CNFAUTHMODE: 2271 case WI_RID_MAX_DATALEN: 2272 if (sc->sc_enabled) { 2273 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2274 sizeof(u_int16_t)); 2275 if (error) 2276 break; 2277 } 2278 switch (wreq.wi_type) { 2279 case WI_RID_FRAG_THRESH: 2280 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]); 2281 break; 2282 case WI_RID_RTS_THRESH: 2283 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]); 2284 break; 2285 case WI_RID_MICROWAVE_OVEN: 2286 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); 2287 break; 2288 case WI_RID_ROAMING_MODE: 2289 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); 2290 break; 2291 case WI_RID_SYSTEM_SCALE: 2292 sc->sc_system_scale = le16toh(wreq.wi_val[0]); 2293 break; 2294 case WI_RID_CNFAUTHMODE: 2295 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); 2296 break; 2297 case WI_RID_MAX_DATALEN: 2298 sc->sc_max_datalen = le16toh(wreq.wi_val[0]); 2299 break; 2300 } 2301 break; 2302 2303 case WI_RID_TX_RATE: 2304 switch (le16toh(wreq.wi_val[0])) { 2305 case 3: 2306 ic->ic_fixed_rate = -1; 2307 break; 2308 default: 2309 for (i = 0; i < IEEE80211_RATE_SIZE; i++) { 2310 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) 2311 / 2 == le16toh(wreq.wi_val[0])) 2312 break; 2313 } 2314 if (i == IEEE80211_RATE_SIZE) 2315 return EINVAL; 2316 ic->ic_fixed_rate = i; 2317 } 2318 if (sc->sc_enabled) 2319 error = wi_cfg_txrate(sc); 2320 break; 2321 2322 case WI_RID_SCAN_APS: 2323 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) 2324 error = wi_scan_ap(sc, 0x3fff, 0x000f); 2325 break; 2326 2327 case WI_RID_MGMT_XMIT: 2328 if (!sc->sc_enabled) { 2329 error = ENETDOWN; 2330 break; 2331 } 2332 if (ic->ic_mgtq.ifq_len > 5) { 2333 error = EAGAIN; 2334 break; 2335 } 2336 /* XXX wi_len looks in u_int8_t, not in u_int16_t */ 2337 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); 2338 if (m == NULL) { 2339 error = ENOMEM; 2340 break; 2341 } 2342 IF_ENQUEUE(&ic->ic_mgtq, m); 2343 break; 2344 2345 default: 2346 if (sc->sc_enabled) { 2347 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2348 len); 2349 if (error) 2350 break; 2351 } 2352 error = ieee80211_cfgset(ic, cmd, data); 2353 break; 2354 } 2355 return error; 2356 } 2357 2358 /* Rate is 0 for hardware auto-select, otherwise rate is 2359 * 2, 4, 11, or 22 (units of 500Kbps). 2360 */ 2361 STATIC int 2362 wi_write_txrate(struct wi_softc *sc, int rate) 2363 { 2364 u_int16_t hwrate; 2365 2366 /* rate: 0, 2, 4, 11, 22 */ 2367 switch (sc->sc_firmware_type) { 2368 case WI_LUCENT: 2369 switch (rate & IEEE80211_RATE_VAL) { 2370 case 2: 2371 hwrate = 1; 2372 break; 2373 case 4: 2374 hwrate = 2; 2375 break; 2376 default: 2377 hwrate = 3; /* auto */ 2378 break; 2379 case 11: 2380 hwrate = 4; 2381 break; 2382 case 22: 2383 hwrate = 5; 2384 break; 2385 } 2386 break; 2387 default: 2388 switch (rate & IEEE80211_RATE_VAL) { 2389 case 2: 2390 hwrate = 1; 2391 break; 2392 case 4: 2393 hwrate = 2; 2394 break; 2395 case 11: 2396 hwrate = 4; 2397 break; 2398 case 22: 2399 hwrate = 8; 2400 break; 2401 default: 2402 hwrate = 15; /* auto */ 2403 break; 2404 } 2405 break; 2406 } 2407 2408 if (sc->sc_tx_rate == hwrate) 2409 return 0; 2410 2411 if (sc->sc_if.if_flags & IFF_DEBUG) 2412 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate, 2413 hwrate, rate); 2414 2415 sc->sc_tx_rate = hwrate; 2416 2417 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate); 2418 } 2419 2420 STATIC int 2421 wi_cfg_txrate(struct wi_softc *sc) 2422 { 2423 struct ieee80211com *ic = &sc->sc_ic; 2424 struct ieee80211_rateset *rs; 2425 int rate; 2426 2427 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2428 2429 sc->sc_tx_rate = 0; /* force write to RID */ 2430 2431 if (ic->ic_fixed_rate < 0) 2432 rate = 0; /* auto */ 2433 else 2434 rate = rs->rs_rates[ic->ic_fixed_rate]; 2435 2436 return wi_write_txrate(sc, rate); 2437 } 2438 2439 STATIC int 2440 wi_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k) 2441 { 2442 int keyix; 2443 2444 if (&ic->ic_nw_keys[0] <= k && k < &ic->ic_nw_keys[IEEE80211_WEP_NKID]) 2445 keyix = k - ic->ic_nw_keys; 2446 else 2447 keyix = IEEE80211_KEYIX_NONE; 2448 2449 DPRINTF(("%s: alloc key %u\n", __func__, keyix)); 2450 2451 return keyix; 2452 } 2453 2454 STATIC int 2455 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 2456 { 2457 struct wi_softc *sc = ic->ic_ifp->if_softc; 2458 u_int keyix = k->wk_keyix; 2459 2460 DPRINTF(("%s: delete key %u\n", __func__, keyix)); 2461 2462 if (keyix >= IEEE80211_WEP_NKID) 2463 return 0; 2464 if (k->wk_keylen != 0) 2465 sc->sc_flags &= ~WI_FLAGS_WEP_VALID; 2466 2467 return 1; 2468 } 2469 2470 static int 2471 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 2472 const u_int8_t mac[IEEE80211_ADDR_LEN]) 2473 { 2474 struct wi_softc *sc = ic->ic_ifp->if_softc; 2475 2476 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix)); 2477 2478 if (k->wk_keyix >= IEEE80211_WEP_NKID) 2479 return 0; 2480 2481 sc->sc_flags &= ~WI_FLAGS_WEP_VALID; 2482 2483 return 1; 2484 } 2485 2486 STATIC void 2487 wi_key_update_begin(struct ieee80211com *ic) 2488 { 2489 DPRINTF(("%s:\n", __func__)); 2490 } 2491 2492 STATIC void 2493 wi_key_update_end(struct ieee80211com *ic) 2494 { 2495 struct ifnet *ifp = ic->ic_ifp; 2496 struct wi_softc *sc = ifp->if_softc; 2497 2498 DPRINTF(("%s:\n", __func__)); 2499 2500 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0) 2501 return; 2502 if (ic->ic_caps & IEEE80211_C_WEP) 2503 (void)wi_write_wep(sc); 2504 } 2505 2506 STATIC int 2507 wi_write_wep(struct wi_softc *sc) 2508 { 2509 struct ifnet *ifp = &sc->sc_if; 2510 struct ieee80211com *ic = &sc->sc_ic; 2511 int error = 0; 2512 int i, keylen; 2513 u_int16_t val; 2514 struct wi_key wkey[IEEE80211_WEP_NKID]; 2515 2516 if ((ifp->if_flags & IFF_RUNNING) != 0) 2517 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 2518 2519 switch (sc->sc_firmware_type) { 2520 case WI_LUCENT: 2521 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0; 2522 error = wi_write_val(sc, WI_RID_ENCRYPTION, val); 2523 if (error) 2524 break; 2525 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey); 2526 if (error) 2527 break; 2528 memset(wkey, 0, sizeof(wkey)); 2529 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2530 keylen = ic->ic_nw_keys[i].wk_keylen; 2531 wkey[i].wi_keylen = htole16(keylen); 2532 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, 2533 keylen); 2534 } 2535 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, 2536 wkey, sizeof(wkey)); 2537 break; 2538 2539 case WI_INTERSIL: 2540 case WI_SYMBOL: 2541 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 2542 /* 2543 * ONLY HWB3163 EVAL-CARD Firmware version 2544 * less than 0.8 variant2 2545 * 2546 * If promiscuous mode disable, Prism2 chip 2547 * does not work with WEP . 2548 * It is under investigation for details. 2549 * (ichiro@NetBSD.org) 2550 */ 2551 if (sc->sc_firmware_type == WI_INTERSIL && 2552 sc->sc_sta_firmware_ver < 802 ) { 2553 /* firm ver < 0.8 variant 2 */ 2554 wi_write_val(sc, WI_RID_PROMISC, 1); 2555 } 2556 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2557 sc->sc_cnfauthmode); 2558 val = PRIVACY_INVOKED; 2559 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0) 2560 val |= EXCLUDE_UNENCRYPTED; 2561 #ifndef IEEE80211_NO_HOSTAP 2562 /* 2563 * Encryption firmware has a bug for HostAP mode. 2564 */ 2565 if (sc->sc_firmware_type == WI_INTERSIL && 2566 ic->ic_opmode == IEEE80211_M_HOSTAP) 2567 val |= HOST_ENCRYPT; 2568 #endif /* !IEEE80211_NO_HOSTAP */ 2569 } else { 2570 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2571 IEEE80211_AUTH_OPEN); 2572 val = HOST_ENCRYPT | HOST_DECRYPT; 2573 } 2574 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); 2575 if (error) 2576 break; 2577 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, 2578 ic->ic_def_txkey); 2579 if (error) 2580 break; 2581 /* 2582 * It seems that the firmware accept 104bit key only if 2583 * all the keys have 104bit length. We get the length of 2584 * the transmit key and use it for all other keys. 2585 * Perhaps we should use software WEP for such situation. 2586 */ 2587 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 2588 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 2589 keylen = 13; /* No keys => 104bit ok */ 2590 else 2591 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen; 2592 2593 if (keylen > IEEE80211_WEP_KEYLEN) 2594 keylen = 13; /* 104bit keys */ 2595 else 2596 keylen = IEEE80211_WEP_KEYLEN; 2597 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2598 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, 2599 ic->ic_nw_keys[i].wk_key, keylen); 2600 if (error) 2601 break; 2602 } 2603 break; 2604 } 2605 if ((ifp->if_flags & IFF_RUNNING) != 0) 2606 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 2607 if (error == 0) 2608 sc->sc_flags |= WI_FLAGS_WEP_VALID; 2609 return error; 2610 } 2611 2612 /* Must be called at proper protection level! */ 2613 STATIC int 2614 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2615 { 2616 #ifdef WI_HISTOGRAM 2617 static int hist1[11]; 2618 static int hist1count; 2619 #endif 2620 int i; 2621 2622 /* wait for the busy bit to clear */ 2623 for (i = 500; i > 0; i--) { /* 5s */ 2624 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) 2625 break; 2626 if (sc->sc_invalid) 2627 return ENXIO; 2628 DELAY(1000); /* 1 m sec */ 2629 } 2630 if (i == 0) { 2631 printf("%s: wi_cmd: busy bit won't clear.\n", 2632 sc->sc_dev.dv_xname); 2633 return(ETIMEDOUT); 2634 } 2635 #ifdef WI_HISTOGRAM 2636 if (i > 490) 2637 hist1[500 - i]++; 2638 else 2639 hist1[10]++; 2640 if (++hist1count == 1000) { 2641 hist1count = 0; 2642 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n", 2643 sc->sc_dev.dv_xname, 2644 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4], 2645 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9], 2646 hist1[10]); 2647 } 2648 #endif 2649 CSR_WRITE_2(sc, WI_PARAM0, val0); 2650 CSR_WRITE_2(sc, WI_PARAM1, val1); 2651 CSR_WRITE_2(sc, WI_PARAM2, val2); 2652 CSR_WRITE_2(sc, WI_COMMAND, cmd); 2653 2654 return 0; 2655 } 2656 2657 STATIC int 2658 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2659 { 2660 int rc; 2661 2662 #ifdef WI_DEBUG 2663 if (wi_debug) { 2664 printf("%s: [enter] %d txcmds outstanding\n", __func__, 2665 sc->sc_txcmds); 2666 } 2667 #endif 2668 if (sc->sc_txcmds > 0) 2669 wi_txcmd_wait(sc); 2670 2671 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0) 2672 return rc; 2673 2674 if (cmd == WI_CMD_INI) { 2675 /* XXX: should sleep here. */ 2676 if (sc->sc_invalid) 2677 return ENXIO; 2678 DELAY(100*1000); 2679 } 2680 rc = wi_cmd_wait(sc, cmd, val0); 2681 2682 #ifdef WI_DEBUG 2683 if (wi_debug) { 2684 printf("%s: [ ] %d txcmds outstanding\n", __func__, 2685 sc->sc_txcmds); 2686 } 2687 #endif 2688 if (sc->sc_txcmds > 0) 2689 wi_cmd_intr(sc); 2690 2691 #ifdef WI_DEBUG 2692 if (wi_debug) { 2693 printf("%s: [leave] %d txcmds outstanding\n", __func__, 2694 sc->sc_txcmds); 2695 } 2696 #endif 2697 return rc; 2698 } 2699 2700 STATIC int 2701 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0) 2702 { 2703 #ifdef WI_HISTOGRAM 2704 static int hist2[11]; 2705 static int hist2count; 2706 #endif 2707 int i, status; 2708 #ifdef WI_DEBUG 2709 if (wi_debug > 1) 2710 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0); 2711 #endif /* WI_DEBUG */ 2712 2713 /* wait for the cmd completed bit */ 2714 for (i = 0; i < WI_TIMEOUT; i++) { 2715 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) 2716 break; 2717 if (sc->sc_invalid) 2718 return ENXIO; 2719 DELAY(WI_DELAY); 2720 } 2721 2722 #ifdef WI_HISTOGRAM 2723 if (i < 100) 2724 hist2[i/10]++; 2725 else 2726 hist2[10]++; 2727 if (++hist2count == 1000) { 2728 hist2count = 0; 2729 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n", 2730 sc->sc_dev.dv_xname, 2731 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4], 2732 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9], 2733 hist2[10]); 2734 } 2735 #endif 2736 2737 status = CSR_READ_2(sc, WI_STATUS); 2738 2739 if (i == WI_TIMEOUT) { 2740 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n", 2741 sc->sc_dev.dv_xname, cmd, val0); 2742 return ETIMEDOUT; 2743 } 2744 2745 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 2746 2747 if (status & WI_STAT_CMD_RESULT) { 2748 printf("%s: command failed, cmd=0x%x, arg=0x%x\n", 2749 sc->sc_dev.dv_xname, cmd, val0); 2750 return EIO; 2751 } 2752 return 0; 2753 } 2754 2755 STATIC int 2756 wi_seek_bap(struct wi_softc *sc, int id, int off) 2757 { 2758 #ifdef WI_HISTOGRAM 2759 static int hist4[11]; 2760 static int hist4count; 2761 #endif 2762 int i, status; 2763 2764 CSR_WRITE_2(sc, WI_SEL0, id); 2765 CSR_WRITE_2(sc, WI_OFF0, off); 2766 2767 for (i = 0; ; i++) { 2768 status = CSR_READ_2(sc, WI_OFF0); 2769 if ((status & WI_OFF_BUSY) == 0) 2770 break; 2771 if (i == WI_TIMEOUT) { 2772 printf("%s: timeout in wi_seek to %x/%x\n", 2773 sc->sc_dev.dv_xname, id, off); 2774 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2775 return ETIMEDOUT; 2776 } 2777 if (sc->sc_invalid) 2778 return ENXIO; 2779 DELAY(2); 2780 } 2781 #ifdef WI_HISTOGRAM 2782 if (i < 100) 2783 hist4[i/10]++; 2784 else 2785 hist4[10]++; 2786 if (++hist4count == 2500) { 2787 hist4count = 0; 2788 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n", 2789 sc->sc_dev.dv_xname, 2790 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4], 2791 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9], 2792 hist4[10]); 2793 } 2794 #endif 2795 if (status & WI_OFF_ERR) { 2796 printf("%s: failed in wi_seek to %x/%x\n", 2797 sc->sc_dev.dv_xname, id, off); 2798 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2799 return EIO; 2800 } 2801 sc->sc_bap_id = id; 2802 sc->sc_bap_off = off; 2803 return 0; 2804 } 2805 2806 STATIC int 2807 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2808 { 2809 int error, cnt; 2810 2811 if (buflen == 0) 2812 return 0; 2813 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2814 if ((error = wi_seek_bap(sc, id, off)) != 0) 2815 return error; 2816 } 2817 cnt = (buflen + 1) / 2; 2818 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2819 sc->sc_bap_off += cnt * 2; 2820 return 0; 2821 } 2822 2823 STATIC int 2824 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2825 { 2826 int error, cnt; 2827 2828 if (buflen == 0) 2829 return 0; 2830 2831 #ifdef WI_HERMES_AUTOINC_WAR 2832 again: 2833 #endif 2834 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2835 if ((error = wi_seek_bap(sc, id, off)) != 0) 2836 return error; 2837 } 2838 cnt = (buflen + 1) / 2; 2839 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2840 sc->sc_bap_off += cnt * 2; 2841 2842 #ifdef WI_HERMES_AUTOINC_WAR 2843 /* 2844 * According to the comments in the HCF Light code, there is a bug 2845 * in the Hermes (or possibly in certain Hermes firmware revisions) 2846 * where the chip's internal autoincrement counter gets thrown off 2847 * during data writes: the autoincrement is missed, causing one 2848 * data word to be overwritten and subsequent words to be written to 2849 * the wrong memory locations. The end result is that we could end 2850 * up transmitting bogus frames without realizing it. The workaround 2851 * for this is to write a couple of extra guard words after the end 2852 * of the transfer, then attempt to read then back. If we fail to 2853 * locate the guard words where we expect them, we preform the 2854 * transfer over again. 2855 */ 2856 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { 2857 CSR_WRITE_2(sc, WI_DATA0, 0x1234); 2858 CSR_WRITE_2(sc, WI_DATA0, 0x5678); 2859 wi_seek_bap(sc, id, sc->sc_bap_off); 2860 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2861 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || 2862 CSR_READ_2(sc, WI_DATA0) != 0x5678) { 2863 printf("%s: detect auto increment bug, try again\n", 2864 sc->sc_dev.dv_xname); 2865 goto again; 2866 } 2867 } 2868 #endif 2869 return 0; 2870 } 2871 2872 STATIC int 2873 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) 2874 { 2875 int error, len; 2876 struct mbuf *m; 2877 2878 for (m = m0; m != NULL && totlen > 0; m = m->m_next) { 2879 if (m->m_len == 0) 2880 continue; 2881 2882 len = min(m->m_len, totlen); 2883 2884 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { 2885 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf); 2886 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf, 2887 totlen); 2888 } 2889 2890 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) 2891 return error; 2892 2893 off += m->m_len; 2894 totlen -= len; 2895 } 2896 return 0; 2897 } 2898 2899 STATIC int 2900 wi_alloc_fid(struct wi_softc *sc, int len, int *idp) 2901 { 2902 int i; 2903 2904 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { 2905 printf("%s: failed to allocate %d bytes on NIC\n", 2906 sc->sc_dev.dv_xname, len); 2907 return ENOMEM; 2908 } 2909 2910 for (i = 0; i < WI_TIMEOUT; i++) { 2911 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) 2912 break; 2913 DELAY(1); 2914 } 2915 if (i == WI_TIMEOUT) { 2916 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname); 2917 return ETIMEDOUT; 2918 } 2919 *idp = CSR_READ_2(sc, WI_ALLOC_FID); 2920 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 2921 return 0; 2922 } 2923 2924 STATIC int 2925 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) 2926 { 2927 int error, len; 2928 u_int16_t ltbuf[2]; 2929 2930 /* Tell the NIC to enter record read mode. */ 2931 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); 2932 if (error) 2933 return error; 2934 2935 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2936 if (error) 2937 return error; 2938 2939 if (le16toh(ltbuf[0]) == 0) 2940 return EOPNOTSUPP; 2941 if (le16toh(ltbuf[1]) != rid) { 2942 printf("%s: record read mismatch, rid=%x, got=%x\n", 2943 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1])); 2944 return EIO; 2945 } 2946 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ 2947 if (*buflenp < len) { 2948 printf("%s: record buffer is too small, " 2949 "rid=%x, size=%d, len=%d\n", 2950 sc->sc_dev.dv_xname, rid, *buflenp, len); 2951 return ENOSPC; 2952 } 2953 *buflenp = len; 2954 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); 2955 } 2956 2957 STATIC int 2958 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) 2959 { 2960 int error; 2961 u_int16_t ltbuf[2]; 2962 2963 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ 2964 ltbuf[1] = htole16(rid); 2965 2966 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2967 if (error) 2968 return error; 2969 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); 2970 if (error) 2971 return error; 2972 2973 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); 2974 } 2975 2976 STATIC void 2977 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni) 2978 { 2979 struct wi_node *wn = (void*)ni; 2980 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt); 2981 } 2982 2983 STATIC void 2984 wi_rssadapt_updatestats(void *arg) 2985 { 2986 struct wi_softc *sc = arg; 2987 struct ieee80211com *ic = &sc->sc_ic; 2988 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg); 2989 if (ic->ic_opmode != IEEE80211_M_MONITOR && 2990 ic->ic_state == IEEE80211_S_RUN) 2991 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 2992 wi_rssadapt_updatestats, arg); 2993 } 2994 2995 /* 2996 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating 2997 * with WEP enabled so that the AP drops unencoded frames at the 2998 * 802.11 layer. 2999 * 3000 * In all other modes, clear IEEE80211_F_DROPUNENC when operating 3001 * with WEP enabled so we don't drop unencoded frames at the 802.11 3002 * layer. This is necessary because we must strip the WEP bit from 3003 * the 802.11 header before passing frames to ieee80211_input 3004 * because the card has already stripped the WEP crypto header from 3005 * the packet. 3006 */ 3007 STATIC void 3008 wi_mend_flags(struct wi_softc *sc) 3009 { 3010 struct ieee80211com *ic = &sc->sc_ic; 3011 3012 if (ic->ic_state == IEEE80211_S_RUN && 3013 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 && 3014 ic->ic_opmode != IEEE80211_M_HOSTAP) 3015 ic->ic_flags &= ~IEEE80211_F_DROPUNENC; 3016 else 3017 ic->ic_flags = sc->sc_ic_flags; 3018 } 3019 3020 STATIC int 3021 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 3022 { 3023 struct ifnet *ifp = ic->ic_ifp; 3024 struct wi_softc *sc = ifp->if_softc; 3025 struct ieee80211_node *ni = ic->ic_bss; 3026 u_int16_t val; 3027 struct wi_ssid ssid; 3028 struct wi_macaddr bssid, old_bssid; 3029 enum ieee80211_state ostate; 3030 #ifdef WI_DEBUG 3031 static const char *stname[] = 3032 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" }; 3033 #endif /* WI_DEBUG */ 3034 3035 ostate = ic->ic_state; 3036 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate])); 3037 3038 switch (nstate) { 3039 case IEEE80211_S_INIT: 3040 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3041 callout_stop(&sc->sc_rssadapt_ch); 3042 ic->ic_flags &= ~IEEE80211_F_SIBSS; 3043 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 3044 break; 3045 3046 case IEEE80211_S_SCAN: 3047 case IEEE80211_S_AUTH: 3048 case IEEE80211_S_ASSOC: 3049 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */ 3050 return 0; 3051 3052 case IEEE80211_S_RUN: 3053 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 3054 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid); 3055 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid, 3056 IEEE80211_ADDR_LEN); 3057 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid); 3058 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid); 3059 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val)); 3060 if (!isset(ic->ic_chan_avail, le16toh(val))) 3061 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname, 3062 le16toh(val)); 3063 ni->ni_chan = &ic->ic_channels[le16toh(val)]; 3064 3065 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 3066 #ifndef IEEE80211_NO_HOSTAP 3067 ni->ni_esslen = ic->ic_des_esslen; 3068 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen); 3069 ni->ni_rates = ic->ic_sup_rates[ 3070 ieee80211_chan2mode(ic, ni->ni_chan)]; 3071 ni->ni_intval = ic->ic_lintval; 3072 ni->ni_capinfo = IEEE80211_CAPINFO_ESS; 3073 if (ic->ic_flags & IEEE80211_F_PRIVACY) 3074 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; 3075 #endif /* !IEEE80211_NO_HOSTAP */ 3076 } else { 3077 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid, 3078 sizeof(ssid)); 3079 ni->ni_esslen = le16toh(ssid.wi_len); 3080 if (ni->ni_esslen > IEEE80211_NWID_LEN) 3081 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 3082 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); 3083 ni->ni_rates = ic->ic_sup_rates[ 3084 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/ 3085 } 3086 wi_mend_flags(sc); 3087 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3088 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 3089 wi_rssadapt_updatestats, sc); 3090 /* Trigger routing socket messages. XXX Copied from 3091 * ieee80211_newstate. 3092 */ 3093 if (ic->ic_opmode == IEEE80211_M_STA) 3094 ieee80211_notify_node_join(ic, ic->ic_bss, 3095 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); 3096 break; 3097 } 3098 return (*sc->sc_newstate)(ic, nstate, arg); 3099 } 3100 3101 STATIC void 3102 wi_set_tim(struct ieee80211com *ic, struct ieee80211_node *ni, int set) 3103 { 3104 struct wi_softc *sc = ic->ic_ifp->if_softc; 3105 3106 (*sc->sc_set_tim)(ic, ni, set); 3107 3108 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0) 3109 return; 3110 3111 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 3112 3113 (void)wi_write_val(sc, WI_RID_SET_TIM, 3114 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0)); 3115 } 3116 3117 STATIC int 3118 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) 3119 { 3120 int error = 0; 3121 u_int16_t val[2]; 3122 3123 if (!sc->sc_enabled) 3124 return ENXIO; 3125 switch (sc->sc_firmware_type) { 3126 case WI_LUCENT: 3127 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 3128 break; 3129 case WI_INTERSIL: 3130 val[0] = htole16(chanmask); /* channel */ 3131 val[1] = htole16(txrate); /* tx rate */ 3132 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); 3133 break; 3134 case WI_SYMBOL: 3135 /* 3136 * XXX only supported on 3.x ? 3137 */ 3138 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME); 3139 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, 3140 val, sizeof(val[0])); 3141 break; 3142 } 3143 if (error == 0) { 3144 sc->sc_scan_timer = WI_SCAN_WAIT; 3145 sc->sc_if.if_timer = 1; 3146 DPRINTF(("wi_scan_ap: start scanning, " 3147 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate)); 3148 } 3149 return error; 3150 } 3151 3152 STATIC void 3153 wi_scan_result(struct wi_softc *sc, int fid, int cnt) 3154 { 3155 #define N(a) (sizeof (a) / sizeof (a[0])) 3156 int i, naps, off, szbuf; 3157 struct wi_scan_header ws_hdr; /* Prism2 header */ 3158 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ 3159 struct wi_apinfo *ap; 3160 3161 off = sizeof(u_int16_t) * 2; 3162 memset(&ws_hdr, 0, sizeof(ws_hdr)); 3163 switch (sc->sc_firmware_type) { 3164 case WI_INTERSIL: 3165 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); 3166 off += sizeof(ws_hdr); 3167 szbuf = sizeof(struct wi_scan_data_p2); 3168 break; 3169 case WI_SYMBOL: 3170 szbuf = sizeof(struct wi_scan_data_p2) + 6; 3171 break; 3172 case WI_LUCENT: 3173 szbuf = sizeof(struct wi_scan_data); 3174 break; 3175 default: 3176 printf("%s: wi_scan_result: unknown firmware type %u\n", 3177 sc->sc_dev.dv_xname, sc->sc_firmware_type); 3178 naps = 0; 3179 goto done; 3180 } 3181 naps = (cnt * 2 + 2 - off) / szbuf; 3182 if (naps > N(sc->sc_aps)) 3183 naps = N(sc->sc_aps); 3184 sc->sc_naps = naps; 3185 /* Read Data */ 3186 ap = sc->sc_aps; 3187 memset(&ws_dat, 0, sizeof(ws_dat)); 3188 for (i = 0; i < naps; i++, ap++) { 3189 wi_read_bap(sc, fid, off, &ws_dat, 3190 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); 3191 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, 3192 ether_sprintf(ws_dat.wi_bssid))); 3193 off += szbuf; 3194 ap->scanreason = le16toh(ws_hdr.wi_reason); 3195 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); 3196 ap->channel = le16toh(ws_dat.wi_chid); 3197 ap->signal = le16toh(ws_dat.wi_signal); 3198 ap->noise = le16toh(ws_dat.wi_noise); 3199 ap->quality = ap->signal - ap->noise; 3200 ap->capinfo = le16toh(ws_dat.wi_capinfo); 3201 ap->interval = le16toh(ws_dat.wi_interval); 3202 ap->rate = le16toh(ws_dat.wi_rate); 3203 ap->namelen = le16toh(ws_dat.wi_namelen); 3204 if (ap->namelen > sizeof(ap->name)) 3205 ap->namelen = sizeof(ap->name); 3206 memcpy(ap->name, ws_dat.wi_name, ap->namelen); 3207 } 3208 done: 3209 /* Done scanning */ 3210 sc->sc_scan_timer = 0; 3211 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); 3212 #undef N 3213 } 3214 3215 STATIC void 3216 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) 3217 { 3218 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), 3219 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL 3220 : -1, 3221 rssi); 3222 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", 3223 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), 3224 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); 3225 printf(" rx_signal %u rx_rate %u rx_flow %u\n", 3226 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); 3227 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", 3228 wh->wi_tx_rtry, wh->wi_tx_rate, 3229 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); 3230 printf(" ehdr dst %s src %s type 0x%x\n", 3231 ether_sprintf(wh->wi_ehdr.ether_dhost), 3232 ether_sprintf(wh->wi_ehdr.ether_shost), 3233 wh->wi_ehdr.ether_type); 3234 } 3235