1 /* $NetBSD: wi.c,v 1.231 2009/09/15 20:51:12 dyoung Exp $ */ 2 3 /*- 4 * Copyright (c) 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * Copyright (c) 1997, 1998, 1999 34 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. All advertising materials mentioning features or use of this software 45 * must display the following acknowledgement: 46 * This product includes software developed by Bill Paul. 47 * 4. Neither the name of the author nor the names of any co-contributors 48 * may be used to endorse or promote products derived from this software 49 * without specific prior written permission. 50 * 51 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 52 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 53 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 54 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 55 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 56 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 57 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 58 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 59 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 60 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 61 * THE POSSIBILITY OF SUCH DAMAGE. 62 */ 63 64 /* 65 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. 66 * 67 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu> 68 * Electrical Engineering Department 69 * Columbia University, New York City 70 */ 71 72 /* 73 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN 74 * from Lucent. Unlike the older cards, the new ones are programmed 75 * entirely via a firmware-driven controller called the Hermes. 76 * Unfortunately, Lucent will not release the Hermes programming manual 77 * without an NDA (if at all). What they do release is an API library 78 * called the HCF (Hardware Control Functions) which is supposed to 79 * do the device-specific operations of a device driver for you. The 80 * publically available version of the HCF library (the 'HCF Light') is 81 * a) extremely gross, b) lacks certain features, particularly support 82 * for 802.11 frames, and c) is contaminated by the GNU Public License. 83 * 84 * This driver does not use the HCF or HCF Light at all. Instead, it 85 * programs the Hermes controller directly, using information gleaned 86 * from the HCF Light code and corresponding documentation. 87 * 88 * This driver supports both the PCMCIA and ISA versions of the 89 * WaveLAN/IEEE cards. Note however that the ISA card isn't really 90 * anything of the sort: it's actually a PCMCIA bridge adapter 91 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is 92 * inserted. Consequently, you need to use the pccard support for 93 * both the ISA and PCMCIA adapters. 94 */ 95 96 /* 97 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the 98 * Oslo IETF plenary meeting. 99 */ 100 101 #include <sys/cdefs.h> 102 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.231 2009/09/15 20:51:12 dyoung Exp $"); 103 104 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ 105 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ 106 #undef WI_HISTOGRAM 107 #undef WI_RING_DEBUG 108 #define STATIC static 109 110 #include "bpfilter.h" 111 112 #include <sys/param.h> 113 #include <sys/sysctl.h> 114 #include <sys/systm.h> 115 #include <sys/callout.h> 116 #include <sys/device.h> 117 #include <sys/socket.h> 118 #include <sys/mbuf.h> 119 #include <sys/ioctl.h> 120 #include <sys/kernel.h> /* for hz */ 121 #include <sys/proc.h> 122 #include <sys/kauth.h> 123 124 #include <net/if.h> 125 #include <net/if_dl.h> 126 #include <net/if_llc.h> 127 #include <net/if_media.h> 128 #include <net/if_ether.h> 129 #include <net/route.h> 130 131 #include <net80211/ieee80211_netbsd.h> 132 #include <net80211/ieee80211_var.h> 133 #include <net80211/ieee80211_ioctl.h> 134 #include <net80211/ieee80211_radiotap.h> 135 #include <net80211/ieee80211_rssadapt.h> 136 137 #if NBPFILTER > 0 138 #include <net/bpf.h> 139 #include <net/bpfdesc.h> 140 #endif 141 142 #include <sys/bus.h> 143 144 #include <dev/ic/wi_ieee.h> 145 #include <dev/ic/wireg.h> 146 #include <dev/ic/wivar.h> 147 148 STATIC int wi_init(struct ifnet *); 149 STATIC void wi_stop(struct ifnet *, int); 150 STATIC void wi_start(struct ifnet *); 151 STATIC int wi_reset(struct wi_softc *); 152 STATIC void wi_watchdog(struct ifnet *); 153 STATIC int wi_ioctl(struct ifnet *, u_long, void *); 154 STATIC int wi_media_change(struct ifnet *); 155 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *); 156 157 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *); 158 STATIC void wi_node_free(struct ieee80211_node *); 159 160 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 161 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 162 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *, 163 struct ieee80211_frame *, u_int); 164 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *); 165 STATIC void wi_rssadapt_updatestats(void *); 166 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *); 167 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[], 168 wi_rssdescq_t *, u_int8_t (*)[]); 169 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]); 170 171 STATIC void wi_rx_intr(struct wi_softc *); 172 STATIC void wi_txalloc_intr(struct wi_softc *); 173 STATIC void wi_cmd_intr(struct wi_softc *); 174 STATIC void wi_tx_intr(struct wi_softc *); 175 STATIC void wi_tx_ex_intr(struct wi_softc *); 176 STATIC void wi_info_intr(struct wi_softc *); 177 178 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *); 179 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *, 180 const u_int8_t[IEEE80211_ADDR_LEN]); 181 STATIC void wi_key_update_begin(struct ieee80211com *); 182 STATIC void wi_key_update_end(struct ieee80211com *); 183 184 STATIC void wi_push_packet(struct wi_softc *); 185 STATIC int wi_get_cfg(struct ifnet *, u_long, void *); 186 STATIC int wi_set_cfg(struct ifnet *, u_long, void *); 187 STATIC int wi_cfg_txrate(struct wi_softc *); 188 STATIC int wi_write_txrate(struct wi_softc *, int); 189 STATIC int wi_write_wep(struct wi_softc *); 190 STATIC int wi_write_multi(struct wi_softc *); 191 STATIC int wi_alloc_fid(struct wi_softc *, int, int *); 192 STATIC void wi_read_nicid(struct wi_softc *); 193 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); 194 195 STATIC int wi_cmd(struct wi_softc *, int, int, int, int); 196 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int); 197 STATIC int wi_cmd_wait(struct wi_softc *, int, int); 198 STATIC int wi_seek_bap(struct wi_softc *, int, int); 199 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int); 200 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int); 201 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); 202 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *); 203 STATIC int wi_write_rid(struct wi_softc *, int, void *, int); 204 205 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); 206 STATIC void wi_set_tim(struct ieee80211_node *, int); 207 208 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); 209 STATIC void wi_scan_result(struct wi_softc *, int, int); 210 211 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); 212 STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state); 213 214 static inline int 215 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) 216 { 217 218 val = htole16(val); 219 return wi_write_rid(sc, rid, &val, sizeof(val)); 220 } 221 222 static struct timeval lasttxerror; /* time of last tx error msg */ 223 static int curtxeps = 0; /* current tx error msgs/sec */ 224 static int wi_txerate = 0; /* tx error rate: max msgs/sec */ 225 226 #ifdef WI_DEBUG 227 #define WI_DEBUG_MAX 2 228 int wi_debug = 0; 229 230 #define DPRINTF(X) if (wi_debug) printf X 231 #define DPRINTF2(X) if (wi_debug > 1) printf X 232 #define IFF_DUMPPKTS(_ifp) \ 233 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 234 static int wi_sysctl_verify_debug(SYSCTLFN_PROTO); 235 #else 236 #define DPRINTF(X) 237 #define DPRINTF2(X) 238 #define IFF_DUMPPKTS(_ifp) 0 239 #endif 240 241 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \ 242 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD) 243 244 struct wi_card_ident 245 wi_card_ident[] = { 246 /* CARD_ID CARD_NAME FIRM_TYPE */ 247 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, 248 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, 249 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, 250 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, 251 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, 252 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, 253 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, 254 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, 255 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, 256 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, 257 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, 258 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, 259 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 260 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 261 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 262 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 263 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 264 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 265 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 266 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 267 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 268 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 269 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 270 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 271 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 272 { 0, NULL, 0 }, 273 }; 274 275 #ifndef _MODULE 276 /* 277 * Setup sysctl(3) MIB, hw.wi.* 278 * 279 * TBD condition CTLFLAG_PERMANENT on being a module or not 280 */ 281 SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup") 282 { 283 int rc; 284 const struct sysctlnode *rnode; 285 #ifdef WI_DEBUG 286 const struct sysctlnode *cnode; 287 #endif /* WI_DEBUG */ 288 289 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 290 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 291 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) 292 goto err; 293 294 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, 295 CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi", 296 "Lucent/Prism/Symbol 802.11 controls", 297 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) 298 goto err; 299 300 #ifdef WI_DEBUG 301 /* control debugging printfs */ 302 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 303 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 304 "debug", SYSCTL_DESCR("Enable debugging output"), 305 wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) 306 goto err; 307 #endif /* WI_DEBUG */ 308 return; 309 err: 310 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 311 } 312 #endif 313 314 #ifdef WI_DEBUG 315 static int 316 wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper) 317 { 318 int error, t; 319 struct sysctlnode node; 320 321 node = *rnode; 322 t = *(int*)rnode->sysctl_data; 323 node.sysctl_data = &t; 324 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 325 if (error || newp == NULL) 326 return (error); 327 328 if (t < lower || t > upper) 329 return (EINVAL); 330 331 *(int*)rnode->sysctl_data = t; 332 333 return (0); 334 } 335 336 static int 337 wi_sysctl_verify_debug(SYSCTLFN_ARGS) 338 { 339 return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 340 0, WI_DEBUG_MAX); 341 } 342 #endif /* WI_DEBUG */ 343 344 STATIC int 345 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen) 346 { 347 int buflen, rc; 348 349 buflen = ebuflen; 350 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0) 351 return rc; 352 353 if (buflen < ebuflen) { 354 #ifdef WI_DEBUG 355 printf("%s: rid=%#04x read %d, expected %d\n", __func__, 356 rid, buflen, ebuflen); 357 #endif 358 return -1; 359 } 360 return 0; 361 } 362 363 int 364 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr) 365 { 366 struct ieee80211com *ic = &sc->sc_ic; 367 struct ifnet *ifp = &sc->sc_if; 368 int chan, nrate, buflen; 369 u_int16_t val, chanavail; 370 struct { 371 u_int16_t nrates; 372 char rates[IEEE80211_RATE_SIZE]; 373 } ratebuf; 374 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 375 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 376 }; 377 int s; 378 379 s = splnet(); 380 381 /* Make sure interrupts are disabled. */ 382 CSR_WRITE_2(sc, WI_INT_EN, 0); 383 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 384 385 sc->sc_invalid = 0; 386 387 /* Reset the NIC. */ 388 if (wi_reset(sc) != 0) { 389 sc->sc_invalid = 1; 390 splx(s); 391 return 1; 392 } 393 394 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, 395 IEEE80211_ADDR_LEN) != 0 || 396 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { 397 if (macaddr != NULL) 398 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN); 399 else { 400 printf(" could not get mac address, attach failed\n"); 401 splx(s); 402 return 1; 403 } 404 } 405 406 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); 407 408 /* Read NIC identification */ 409 wi_read_nicid(sc); 410 411 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ); 412 ifp->if_softc = sc; 413 ifp->if_start = wi_start; 414 ifp->if_ioctl = wi_ioctl; 415 ifp->if_watchdog = wi_watchdog; 416 ifp->if_init = wi_init; 417 ifp->if_stop = wi_stop; 418 ifp->if_flags = 419 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; 420 IFQ_SET_READY(&ifp->if_snd); 421 422 ic->ic_ifp = ifp; 423 ic->ic_phytype = IEEE80211_T_DS; 424 ic->ic_opmode = IEEE80211_M_STA; 425 ic->ic_caps = IEEE80211_C_AHDEMO; 426 ic->ic_state = IEEE80211_S_INIT; 427 ic->ic_max_aid = WI_MAX_AID; 428 429 /* Find available channel */ 430 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail, 431 sizeof(chanavail)) != 0) { 432 aprint_normal_dev(&sc->sc_dev, "using default channel list\n"); 433 chanavail = htole16(0x1fff); /* assume 1-13 */ 434 } 435 for (chan = 16; chan > 0; chan--) { 436 if (!isset((u_int8_t*)&chanavail, chan - 1)) 437 continue; 438 ic->ic_ibss_chan = &ic->ic_channels[chan]; 439 ic->ic_channels[chan].ic_freq = 440 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 441 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 442 } 443 444 /* Find default IBSS channel */ 445 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) { 446 chan = le16toh(val); 447 if (isset((u_int8_t*)&chanavail, chan - 1)) 448 ic->ic_ibss_chan = &ic->ic_channels[chan]; 449 } 450 if (ic->ic_ibss_chan == NULL) { 451 aprint_error_dev(&sc->sc_dev, "no available channel\n"); 452 return 1; 453 } 454 455 if (sc->sc_firmware_type == WI_LUCENT) { 456 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; 457 } else { 458 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && 459 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0) 460 sc->sc_dbm_offset = le16toh(val); 461 else 462 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; 463 } 464 465 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 466 467 /* 468 * Set flags based on firmware version. 469 */ 470 switch (sc->sc_firmware_type) { 471 case WI_LUCENT: 472 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 473 #ifdef WI_HERMES_AUTOINC_WAR 474 /* XXX: not confirmed, but never seen for recent firmware */ 475 if (sc->sc_sta_firmware_ver < 40000) { 476 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; 477 } 478 #endif 479 if (sc->sc_sta_firmware_ver >= 60000) 480 sc->sc_flags |= WI_FLAGS_HAS_MOR; 481 if (sc->sc_sta_firmware_ver >= 60006) { 482 ic->ic_caps |= IEEE80211_C_IBSS; 483 ic->ic_caps |= IEEE80211_C_MONITOR; 484 } 485 ic->ic_caps |= IEEE80211_C_PMGT; 486 sc->sc_ibss_port = 1; 487 break; 488 489 case WI_INTERSIL: 490 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; 491 sc->sc_flags |= WI_FLAGS_HAS_ROAMING; 492 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 493 if (sc->sc_sta_firmware_ver > 10101) 494 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; 495 if (sc->sc_sta_firmware_ver >= 800) { 496 if (sc->sc_sta_firmware_ver != 10402) 497 ic->ic_caps |= IEEE80211_C_HOSTAP; 498 ic->ic_caps |= IEEE80211_C_IBSS; 499 ic->ic_caps |= IEEE80211_C_MONITOR; 500 } 501 ic->ic_caps |= IEEE80211_C_PMGT; 502 sc->sc_ibss_port = 0; 503 sc->sc_alt_retry = 2; 504 break; 505 506 case WI_SYMBOL: 507 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; 508 if (sc->sc_sta_firmware_ver >= 20000) 509 ic->ic_caps |= IEEE80211_C_IBSS; 510 sc->sc_ibss_port = 4; 511 break; 512 } 513 514 /* 515 * Find out if we support WEP on this card. 516 */ 517 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 && 518 val != htole16(0)) 519 ic->ic_caps |= IEEE80211_C_WEP; 520 521 /* Find supported rates. */ 522 buflen = sizeof(ratebuf); 523 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 && 524 buflen > 2) { 525 nrate = le16toh(ratebuf.nrates); 526 if (nrate > IEEE80211_RATE_SIZE) 527 nrate = IEEE80211_RATE_SIZE; 528 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates, 529 &ratebuf.rates[0], nrate); 530 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; 531 } else { 532 aprint_error_dev(&sc->sc_dev, "no supported rate list\n"); 533 return 1; 534 } 535 536 sc->sc_max_datalen = 2304; 537 sc->sc_rts_thresh = 2347; 538 sc->sc_frag_thresh = 2346; 539 sc->sc_system_scale = 1; 540 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; 541 sc->sc_roaming_mode = 1; 542 543 callout_init(&sc->sc_rssadapt_ch, 0); 544 545 /* 546 * Call MI attach routines. 547 */ 548 if_attach(ifp); 549 ieee80211_ifattach(ic); 550 551 sc->sc_newstate = ic->ic_newstate; 552 sc->sc_set_tim = ic->ic_set_tim; 553 ic->ic_newstate = wi_newstate; 554 ic->ic_node_alloc = wi_node_alloc; 555 ic->ic_node_free = wi_node_free; 556 ic->ic_set_tim = wi_set_tim; 557 558 ic->ic_crypto.cs_key_delete = wi_key_delete; 559 ic->ic_crypto.cs_key_set = wi_key_set; 560 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin; 561 ic->ic_crypto.cs_key_update_end = wi_key_update_end; 562 563 ieee80211_media_init(ic, wi_media_change, wi_media_status); 564 565 #if NBPFILTER > 0 566 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 567 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 568 #endif 569 570 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 571 sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu)); 572 sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT); 573 574 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 575 sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu)); 576 sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT); 577 578 /* Attach is successful. */ 579 sc->sc_attached = 1; 580 581 splx(s); 582 ieee80211_announce(ic); 583 return 0; 584 } 585 586 int 587 wi_detach(struct wi_softc *sc) 588 { 589 struct ifnet *ifp = &sc->sc_if; 590 int s; 591 592 if (!sc->sc_attached) 593 return 0; 594 595 sc->sc_invalid = 1; 596 s = splnet(); 597 598 wi_stop(ifp, 1); 599 600 ieee80211_ifdetach(&sc->sc_ic); 601 if_detach(ifp); 602 splx(s); 603 return 0; 604 } 605 606 int 607 wi_activate(device_t self, enum devact act) 608 { 609 struct wi_softc *sc = device_private(self); 610 611 switch (act) { 612 case DVACT_DEACTIVATE: 613 if_deactivate(&sc->sc_if); 614 return 0; 615 default: 616 return EOPNOTSUPP; 617 } 618 } 619 620 int 621 wi_intr(void *arg) 622 { 623 int i; 624 struct wi_softc *sc = arg; 625 struct ifnet *ifp = &sc->sc_if; 626 u_int16_t status; 627 628 if (sc->sc_enabled == 0 || 629 !device_is_active(&sc->sc_dev) || 630 (ifp->if_flags & IFF_RUNNING) == 0) 631 return 0; 632 633 if ((ifp->if_flags & IFF_UP) == 0) { 634 CSR_WRITE_2(sc, WI_INT_EN, 0); 635 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 636 return 1; 637 } 638 639 /* This is superfluous on Prism, but Lucent breaks if we 640 * do not disable interrupts. 641 */ 642 CSR_WRITE_2(sc, WI_INT_EN, 0); 643 644 /* maximum 10 loops per interrupt */ 645 for (i = 0; i < 10; i++) { 646 status = CSR_READ_2(sc, WI_EVENT_STAT); 647 #ifdef WI_DEBUG 648 if (wi_debug > 1) { 649 printf("%s: iter %d status %#04x\n", __func__, i, 650 status); 651 } 652 #endif /* WI_DEBUG */ 653 if ((status & WI_INTRS) == 0) 654 break; 655 656 sc->sc_status = status; 657 658 if (status & WI_EV_RX) 659 wi_rx_intr(sc); 660 661 if (status & WI_EV_ALLOC) 662 wi_txalloc_intr(sc); 663 664 if (status & WI_EV_TX) 665 wi_tx_intr(sc); 666 667 if (status & WI_EV_TX_EXC) 668 wi_tx_ex_intr(sc); 669 670 if (status & WI_EV_INFO) 671 wi_info_intr(sc); 672 673 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status); 674 675 if (sc->sc_status & WI_EV_CMD) 676 wi_cmd_intr(sc); 677 678 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 679 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && 680 !IFQ_IS_EMPTY(&ifp->if_snd)) 681 wi_start(ifp); 682 683 sc->sc_status = 0; 684 } 685 686 /* re-enable interrupts */ 687 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 688 689 sc->sc_status = 0; 690 691 return 1; 692 } 693 694 #define arraylen(a) (sizeof(a) / sizeof((a)[0])) 695 696 STATIC void 697 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree) 698 { 699 int i; 700 SLIST_INIT(rssdfree); 701 for (i = 0; i < arraylen(*rssd); i++) { 702 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next); 703 } 704 } 705 706 STATIC void 707 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS], 708 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE]) 709 { 710 struct ieee80211_node *ni; 711 int i; 712 for (i = 0; i < arraylen(*rssd); i++) { 713 ni = (*rssd)[i].rd_desc.id_node; 714 (*rssd)[i].rd_desc.id_node = NULL; 715 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0) 716 printf("%s: cleaning outstanding rssadapt " 717 "descriptor for %s\n", 718 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr)); 719 if (ni != NULL) 720 ieee80211_free_node(ni); 721 } 722 memset(*txpending, 0, sizeof(*txpending)); 723 wi_rssdescs_init(rssd, rssdfree); 724 } 725 726 STATIC int 727 wi_init(struct ifnet *ifp) 728 { 729 struct wi_softc *sc = ifp->if_softc; 730 struct ieee80211com *ic = &sc->sc_ic; 731 struct wi_joinreq join; 732 int i; 733 int error = 0, wasenabled; 734 735 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled)); 736 wasenabled = sc->sc_enabled; 737 if (!sc->sc_enabled) { 738 if ((error = (*sc->sc_enable)(sc)) != 0) 739 goto out; 740 sc->sc_enabled = 1; 741 } else 742 wi_stop(ifp, 0); 743 744 /* Symbol firmware cannot be initialized more than once */ 745 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) 746 if ((error = wi_reset(sc)) != 0) 747 goto out; 748 749 /* common 802.11 configuration */ 750 ic->ic_flags &= ~IEEE80211_F_IBSSON; 751 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 752 switch (ic->ic_opmode) { 753 case IEEE80211_M_STA: 754 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); 755 break; 756 case IEEE80211_M_IBSS: 757 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); 758 ic->ic_flags |= IEEE80211_F_IBSSON; 759 break; 760 case IEEE80211_M_AHDEMO: 761 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 762 break; 763 case IEEE80211_M_HOSTAP: 764 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); 765 break; 766 case IEEE80211_M_MONITOR: 767 if (sc->sc_firmware_type == WI_LUCENT) 768 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 769 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0); 770 break; 771 } 772 773 /* Intersil interprets this RID as joining ESS even in IBSS mode */ 774 if (sc->sc_firmware_type == WI_LUCENT && 775 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0) 776 wi_write_val(sc, WI_RID_CREATE_IBSS, 1); 777 else 778 wi_write_val(sc, WI_RID_CREATE_IBSS, 0); 779 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); 780 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid, 781 ic->ic_des_esslen); 782 wi_write_val(sc, WI_RID_OWN_CHNL, 783 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 784 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen); 785 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 786 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); 787 if (ic->ic_caps & IEEE80211_C_PMGT) 788 wi_write_val(sc, WI_RID_PM_ENABLED, 789 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); 790 791 /* not yet common 802.11 configuration */ 792 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); 793 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh); 794 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) 795 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh); 796 797 /* driver specific 802.11 configuration */ 798 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) 799 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); 800 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) 801 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); 802 if (sc->sc_flags & WI_FLAGS_HAS_MOR) 803 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); 804 wi_cfg_txrate(sc); 805 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); 806 807 #ifndef IEEE80211_NO_HOSTAP 808 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 809 sc->sc_firmware_type == WI_INTERSIL) { 810 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval); 811 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1); 812 } 813 #endif /* !IEEE80211_NO_HOSTAP */ 814 815 if (sc->sc_firmware_type == WI_INTERSIL) { 816 struct ieee80211_rateset *rs = 817 &ic->ic_sup_rates[IEEE80211_MODE_11B]; 818 u_int16_t basic = 0, supported = 0, rate; 819 820 for (i = 0; i < rs->rs_nrates; i++) { 821 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) { 822 case 2: 823 rate = 1; 824 break; 825 case 4: 826 rate = 2; 827 break; 828 case 11: 829 rate = 4; 830 break; 831 case 22: 832 rate = 8; 833 break; 834 default: 835 rate = 0; 836 break; 837 } 838 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) 839 basic |= rate; 840 supported |= rate; 841 } 842 wi_write_val(sc, WI_RID_BASIC_RATE, basic); 843 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported); 844 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry); 845 } 846 847 /* 848 * Initialize promisc mode. 849 * Being in Host-AP mode causes a great 850 * deal of pain if promiscuous mode is set. 851 * Therefore we avoid confusing the firmware 852 * and always reset promisc mode in Host-AP 853 * mode. Host-AP sees all the packets anyway. 854 */ 855 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 856 (ifp->if_flags & IFF_PROMISC) != 0) { 857 wi_write_val(sc, WI_RID_PROMISC, 1); 858 } else { 859 wi_write_val(sc, WI_RID_PROMISC, 0); 860 } 861 862 /* Configure WEP. */ 863 if (ic->ic_caps & IEEE80211_C_WEP) { 864 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode; 865 wi_write_wep(sc); 866 } 867 868 /* Set multicast filter. */ 869 wi_write_multi(sc); 870 871 sc->sc_txalloc = 0; 872 sc->sc_txalloced = 0; 873 sc->sc_txqueue = 0; 874 sc->sc_txqueued = 0; 875 sc->sc_txstart = 0; 876 sc->sc_txstarted = 0; 877 878 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { 879 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); 880 if (sc->sc_firmware_type == WI_SYMBOL) 881 sc->sc_buflen = 1585; /* XXX */ 882 for (i = 0; i < WI_NTXBUF; i++) { 883 error = wi_alloc_fid(sc, sc->sc_buflen, 884 &sc->sc_txd[i].d_fid); 885 if (error) { 886 aprint_error_dev(&sc->sc_dev, "tx buffer allocation failed\n"); 887 goto out; 888 } 889 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i, 890 sc->sc_txd[i].d_fid)); 891 ++sc->sc_txalloced; 892 } 893 } 894 895 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree); 896 897 /* Enable desired port */ 898 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 899 ifp->if_flags |= IFF_RUNNING; 900 ifp->if_flags &= ~IFF_OACTIVE; 901 ic->ic_state = IEEE80211_S_INIT; 902 903 if (ic->ic_opmode == IEEE80211_M_AHDEMO || 904 ic->ic_opmode == IEEE80211_M_IBSS || 905 ic->ic_opmode == IEEE80211_M_MONITOR || 906 ic->ic_opmode == IEEE80211_M_HOSTAP) 907 ieee80211_create_ibss(ic, ic->ic_ibss_chan); 908 909 /* Enable interrupts */ 910 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 911 912 #ifndef IEEE80211_NO_HOSTAP 913 if (!wasenabled && 914 ic->ic_opmode == IEEE80211_M_HOSTAP && 915 sc->sc_firmware_type == WI_INTERSIL) { 916 /* XXX: some card need to be re-enabled for hostap */ 917 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); 918 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); 919 } 920 #endif /* !IEEE80211_NO_HOSTAP */ 921 922 if (ic->ic_opmode == IEEE80211_M_STA && 923 ((ic->ic_flags & IEEE80211_F_DESBSSID) || 924 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { 925 memset(&join, 0, sizeof(join)); 926 if (ic->ic_flags & IEEE80211_F_DESBSSID) 927 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); 928 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) 929 join.wi_chan = 930 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan)); 931 /* Lucent firmware does not support the JOIN RID. */ 932 if (sc->sc_firmware_type != WI_LUCENT) 933 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); 934 } 935 936 out: 937 if (error) { 938 printf("%s: interface not running\n", device_xname(&sc->sc_dev)); 939 wi_stop(ifp, 0); 940 } 941 DPRINTF(("wi_init: return %d\n", error)); 942 return error; 943 } 944 945 STATIC void 946 wi_txcmd_wait(struct wi_softc *sc) 947 { 948 KASSERT(sc->sc_txcmds == 1); 949 if (sc->sc_status & WI_EV_CMD) { 950 sc->sc_status &= ~WI_EV_CMD; 951 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 952 } else 953 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0); 954 } 955 956 STATIC void 957 wi_stop(struct ifnet *ifp, int disable) 958 { 959 struct wi_softc *sc = ifp->if_softc; 960 struct ieee80211com *ic = &sc->sc_ic; 961 int s; 962 963 if (!sc->sc_enabled) 964 return; 965 966 s = splnet(); 967 968 DPRINTF(("wi_stop: disable %d\n", disable)); 969 970 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 971 972 /* wait for tx command completion (deassoc, deauth) */ 973 while (sc->sc_txcmds > 0) { 974 wi_txcmd_wait(sc); 975 wi_cmd_intr(sc); 976 } 977 978 /* TBD wait for deassoc, deauth tx completion? */ 979 980 if (!sc->sc_invalid) { 981 CSR_WRITE_2(sc, WI_INT_EN, 0); 982 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 983 } 984 985 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 986 &sc->sc_txpending); 987 988 sc->sc_tx_timer = 0; 989 sc->sc_scan_timer = 0; 990 sc->sc_false_syns = 0; 991 sc->sc_naps = 0; 992 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); 993 ifp->if_timer = 0; 994 995 if (disable) { 996 if (sc->sc_disable) 997 (*sc->sc_disable)(sc); 998 sc->sc_enabled = 0; 999 } 1000 splx(s); 1001 } 1002 1003 /* 1004 * Choose a data rate for a packet len bytes long that suits the packet 1005 * type and the wireless conditions. 1006 * 1007 * TBD Adapt fragmentation threshold. 1008 */ 1009 STATIC int 1010 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni, 1011 struct ieee80211_frame *wh, u_int len) 1012 { 1013 struct wi_softc *sc = ic->ic_ifp->if_softc; 1014 struct wi_node *wn = (void*)ni; 1015 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt; 1016 int do_not_adapt, i, rateidx, s; 1017 1018 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) && 1019 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0; 1020 1021 s = splnet(); 1022 1023 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len, 1024 ic->ic_fixed_rate, 1025 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname, 1026 do_not_adapt); 1027 1028 ni->ni_txrate = rateidx; 1029 1030 if (ic->ic_opmode != IEEE80211_M_HOSTAP) { 1031 /* choose the slowest pending rate so that we don't 1032 * accidentally send a packet on the MAC's queue 1033 * too fast. TBD find out if the MAC labels Tx 1034 * packets w/ rate when enqueued or dequeued. 1035 */ 1036 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++); 1037 rateidx = i; 1038 } 1039 1040 splx(s); 1041 return (rateidx); 1042 } 1043 1044 STATIC void 1045 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 1046 { 1047 struct wi_node *wn; 1048 if (id->id_node == NULL) 1049 return; 1050 1051 wn = (void*)id->id_node; 1052 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id); 1053 } 1054 1055 STATIC void 1056 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 1057 { 1058 struct ieee80211_node *ni; 1059 struct wi_node *wn; 1060 int s; 1061 1062 s = splnet(); 1063 1064 if ((ni = id->id_node) == NULL) { 1065 DPRINTF(("wi_lower_rate: missing node\n")); 1066 goto out; 1067 } 1068 1069 wn = (void *)ni; 1070 1071 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id); 1072 out: 1073 splx(s); 1074 return; 1075 } 1076 1077 STATIC void 1078 wi_start(struct ifnet *ifp) 1079 { 1080 struct wi_softc *sc = ifp->if_softc; 1081 struct ieee80211com *ic = &sc->sc_ic; 1082 struct ether_header *eh; 1083 struct ieee80211_node *ni; 1084 struct ieee80211_frame *wh; 1085 struct ieee80211_rateset *rs; 1086 struct wi_rssdesc *rd; 1087 struct ieee80211_rssdesc *id; 1088 struct mbuf *m0; 1089 struct wi_frame frmhdr; 1090 int cur, fid, off, rateidx; 1091 1092 if (!sc->sc_enabled || sc->sc_invalid) 1093 return; 1094 if (sc->sc_flags & WI_FLAGS_OUTRANGE) 1095 return; 1096 1097 memset(&frmhdr, 0, sizeof(frmhdr)); 1098 cur = sc->sc_txqueue; 1099 for (;;) { 1100 ni = ic->ic_bss; 1101 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) { 1102 ifp->if_flags |= IFF_OACTIVE; 1103 break; 1104 } 1105 if (!IF_IS_EMPTY(&ic->ic_mgtq)) { 1106 IF_DEQUEUE(&ic->ic_mgtq, m0); 1107 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 1108 (void *)&frmhdr.wi_ehdr); 1109 frmhdr.wi_ehdr.ether_type = 0; 1110 wh = mtod(m0, struct ieee80211_frame *); 1111 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1112 m0->m_pkthdr.rcvif = NULL; 1113 } else if (ic->ic_state == IEEE80211_S_RUN) { 1114 IFQ_POLL(&ifp->if_snd, m0); 1115 if (m0 == NULL) 1116 break; 1117 IFQ_DEQUEUE(&ifp->if_snd, m0); 1118 ifp->if_opackets++; 1119 m_copydata(m0, 0, ETHER_HDR_LEN, 1120 (void *)&frmhdr.wi_ehdr); 1121 #if NBPFILTER > 0 1122 if (ifp->if_bpf) 1123 bpf_mtap(ifp->if_bpf, m0); 1124 #endif 1125 1126 eh = mtod(m0, struct ether_header *); 1127 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1128 if (ni == NULL) { 1129 ifp->if_oerrors++; 1130 continue; 1131 } 1132 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1133 (m0->m_flags & M_PWR_SAV) == 0) { 1134 ieee80211_pwrsave(ic, ni, m0); 1135 goto next; 1136 } 1137 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 1138 ieee80211_free_node(ni); 1139 ifp->if_oerrors++; 1140 continue; 1141 } 1142 wh = mtod(m0, struct ieee80211_frame *); 1143 } else 1144 break; 1145 #if NBPFILTER > 0 1146 if (ic->ic_rawbpf) 1147 bpf_mtap(ic->ic_rawbpf, m0); 1148 #endif 1149 frmhdr.wi_tx_ctl = 1150 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK); 1151 #ifndef IEEE80211_NO_HOSTAP 1152 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1153 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); 1154 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1155 (wh->i_fc[1] & IEEE80211_FC1_WEP)) { 1156 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { 1157 m_freem(m0); 1158 ifp->if_oerrors++; 1159 goto next; 1160 } 1161 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); 1162 } 1163 #endif /* !IEEE80211_NO_HOSTAP */ 1164 1165 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len); 1166 rs = &ni->ni_rates; 1167 1168 #if NBPFILTER > 0 1169 if (sc->sc_drvbpf) { 1170 struct wi_tx_radiotap_header *tap = &sc->sc_txtap; 1171 1172 tap->wt_rate = rs->rs_rates[rateidx]; 1173 tap->wt_chan_freq = 1174 htole16(ic->ic_bss->ni_chan->ic_freq); 1175 tap->wt_chan_flags = 1176 htole16(ic->ic_bss->ni_chan->ic_flags); 1177 /* TBD tap->wt_flags */ 1178 1179 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0); 1180 } 1181 #endif 1182 1183 rd = SLIST_FIRST(&sc->sc_rssdfree); 1184 id = &rd->rd_desc; 1185 id->id_len = m0->m_pkthdr.len; 1186 id->id_rateidx = ni->ni_txrate; 1187 id->id_rssi = ni->ni_rssi; 1188 1189 frmhdr.wi_tx_idx = rd - sc->sc_rssd; 1190 1191 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1192 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] & 1193 IEEE80211_RATE_VAL); 1194 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) 1195 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]); 1196 1197 m_copydata(m0, 0, sizeof(struct ieee80211_frame), 1198 (void *)&frmhdr.wi_whdr); 1199 m_adj(m0, sizeof(struct ieee80211_frame)); 1200 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); 1201 if (IFF_DUMPPKTS(ifp)) 1202 wi_dump_pkt(&frmhdr, ni, -1); 1203 fid = sc->sc_txd[cur].d_fid; 1204 off = sizeof(frmhdr); 1205 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 || 1206 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) { 1207 aprint_error_dev(&sc->sc_dev, "%s write fid %x failed\n", 1208 __func__, fid); 1209 ifp->if_oerrors++; 1210 m_freem(m0); 1211 goto next; 1212 } 1213 m_freem(m0); 1214 sc->sc_txpending[ni->ni_txrate]++; 1215 --sc->sc_txalloced; 1216 if (sc->sc_txqueued++ == 0) { 1217 #ifdef DIAGNOSTIC 1218 if (cur != sc->sc_txstart) 1219 printf("%s: ring is desynchronized\n", 1220 device_xname(&sc->sc_dev)); 1221 #endif 1222 wi_push_packet(sc); 1223 } else { 1224 #ifdef WI_RING_DEBUG 1225 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1226 device_xname(&sc->sc_dev), fid, 1227 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1228 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1229 #endif 1230 } 1231 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF; 1232 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next); 1233 id->id_node = ni; 1234 continue; 1235 next: 1236 if (ni != NULL) 1237 ieee80211_free_node(ni); 1238 } 1239 } 1240 1241 1242 STATIC int 1243 wi_reset(struct wi_softc *sc) 1244 { 1245 int i, error; 1246 1247 DPRINTF(("wi_reset\n")); 1248 1249 if (sc->sc_reset) 1250 (*sc->sc_reset)(sc); 1251 1252 error = 0; 1253 for (i = 0; i < 5; i++) { 1254 if (sc->sc_invalid) 1255 return ENXIO; 1256 DELAY(20*1000); /* XXX: way too long! */ 1257 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) 1258 break; 1259 } 1260 if (error) { 1261 aprint_error_dev(&sc->sc_dev, "init failed\n"); 1262 return error; 1263 } 1264 CSR_WRITE_2(sc, WI_INT_EN, 0); 1265 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 1266 1267 /* Calibrate timer. */ 1268 wi_write_val(sc, WI_RID_TICK_TIME, 0); 1269 return 0; 1270 } 1271 1272 STATIC void 1273 wi_watchdog(struct ifnet *ifp) 1274 { 1275 struct wi_softc *sc = ifp->if_softc; 1276 1277 ifp->if_timer = 0; 1278 if (!sc->sc_enabled) 1279 return; 1280 1281 if (sc->sc_tx_timer) { 1282 if (--sc->sc_tx_timer == 0) { 1283 printf("%s: device timeout\n", ifp->if_xname); 1284 ifp->if_oerrors++; 1285 wi_init(ifp); 1286 return; 1287 } 1288 ifp->if_timer = 1; 1289 } 1290 1291 if (sc->sc_scan_timer) { 1292 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && 1293 sc->sc_firmware_type == WI_INTERSIL) { 1294 DPRINTF(("wi_watchdog: inquire scan\n")); 1295 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 1296 } 1297 if (sc->sc_scan_timer) 1298 ifp->if_timer = 1; 1299 } 1300 1301 /* TODO: rate control */ 1302 ieee80211_watchdog(&sc->sc_ic); 1303 } 1304 1305 STATIC int 1306 wi_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1307 { 1308 struct wi_softc *sc = ifp->if_softc; 1309 struct ieee80211com *ic = &sc->sc_ic; 1310 struct ifreq *ifr = (struct ifreq *)data; 1311 int s, error = 0; 1312 1313 if (!device_is_active(&sc->sc_dev)) 1314 return ENXIO; 1315 1316 s = splnet(); 1317 1318 switch (cmd) { 1319 case SIOCSIFFLAGS: 1320 if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1321 break; 1322 /* 1323 * Can't do promisc and hostap at the same time. If all that's 1324 * changing is the promisc flag, try to short-circuit a call to 1325 * wi_init() by just setting PROMISC in the hardware. 1326 */ 1327 if (ifp->if_flags & IFF_UP) { 1328 if (sc->sc_enabled) { 1329 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1330 (ifp->if_flags & IFF_PROMISC) != 0) 1331 wi_write_val(sc, WI_RID_PROMISC, 1); 1332 else 1333 wi_write_val(sc, WI_RID_PROMISC, 0); 1334 } else 1335 error = wi_init(ifp); 1336 } else if (sc->sc_enabled) 1337 wi_stop(ifp, 1); 1338 break; 1339 case SIOCSIFMEDIA: 1340 case SIOCGIFMEDIA: 1341 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1342 break; 1343 case SIOCADDMULTI: 1344 case SIOCDELMULTI: 1345 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1346 if (ifp->if_flags & IFF_RUNNING) { 1347 /* do not rescan */ 1348 error = wi_write_multi(sc); 1349 } else 1350 error = 0; 1351 } 1352 break; 1353 case SIOCGIFGENERIC: 1354 error = wi_get_cfg(ifp, cmd, data); 1355 break; 1356 case SIOCSIFGENERIC: 1357 error = kauth_authorize_network(curlwp->l_cred, 1358 KAUTH_NETWORK_INTERFACE, 1359 KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), 1360 NULL); 1361 if (error) 1362 break; 1363 error = wi_set_cfg(ifp, cmd, data); 1364 if (error == ENETRESET) { 1365 if (ifp->if_flags & IFF_RUNNING) 1366 error = wi_init(ifp); 1367 else 1368 error = 0; 1369 } 1370 break; 1371 case SIOCS80211BSSID: 1372 if (sc->sc_firmware_type == WI_LUCENT) { 1373 error = ENODEV; 1374 break; 1375 } 1376 /* fall through */ 1377 default: 1378 ic->ic_flags |= sc->sc_ic_flags; 1379 error = ieee80211_ioctl(&sc->sc_ic, cmd, data); 1380 sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC; 1381 if (error == ENETRESET) { 1382 if (sc->sc_enabled) 1383 error = wi_init(ifp); 1384 else 1385 error = 0; 1386 } 1387 break; 1388 } 1389 wi_mend_flags(sc, ic->ic_state); 1390 splx(s); 1391 return error; 1392 } 1393 1394 STATIC int 1395 wi_media_change(struct ifnet *ifp) 1396 { 1397 struct wi_softc *sc = ifp->if_softc; 1398 struct ieee80211com *ic = &sc->sc_ic; 1399 int error; 1400 1401 error = ieee80211_media_change(ifp); 1402 if (error == ENETRESET) { 1403 if (sc->sc_enabled) 1404 error = wi_init(ifp); 1405 else 1406 error = 0; 1407 } 1408 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1409 1410 return error; 1411 } 1412 1413 STATIC void 1414 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1415 { 1416 struct wi_softc *sc = ifp->if_softc; 1417 struct ieee80211com *ic = &sc->sc_ic; 1418 u_int16_t val; 1419 int rate; 1420 1421 if (sc->sc_enabled == 0) { 1422 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1423 imr->ifm_status = 0; 1424 return; 1425 } 1426 1427 imr->ifm_status = IFM_AVALID; 1428 imr->ifm_active = IFM_IEEE80211; 1429 if (ic->ic_state == IEEE80211_S_RUN && 1430 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) 1431 imr->ifm_status |= IFM_ACTIVE; 1432 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) { 1433 /* convert to 802.11 rate */ 1434 val = le16toh(val); 1435 rate = val * 2; 1436 if (sc->sc_firmware_type == WI_LUCENT) { 1437 if (rate == 10) 1438 rate = 11; /* 5.5Mbps */ 1439 } else { 1440 if (rate == 4*2) 1441 rate = 11; /* 5.5Mbps */ 1442 else if (rate == 8*2) 1443 rate = 22; /* 11Mbps */ 1444 } 1445 } else 1446 rate = 0; 1447 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1448 switch (ic->ic_opmode) { 1449 case IEEE80211_M_STA: 1450 break; 1451 case IEEE80211_M_IBSS: 1452 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1453 break; 1454 case IEEE80211_M_AHDEMO: 1455 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1456 break; 1457 case IEEE80211_M_HOSTAP: 1458 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1459 break; 1460 case IEEE80211_M_MONITOR: 1461 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1462 break; 1463 } 1464 } 1465 1466 STATIC struct ieee80211_node * 1467 wi_node_alloc(struct ieee80211_node_table *nt) 1468 { 1469 struct wi_node *wn = 1470 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1471 return wn ? &wn->wn_node : NULL; 1472 } 1473 1474 STATIC void 1475 wi_node_free(struct ieee80211_node *ni) 1476 { 1477 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1478 int i; 1479 1480 for (i = 0; i < WI_NTXRSS; i++) { 1481 if (sc->sc_rssd[i].rd_desc.id_node == ni) 1482 sc->sc_rssd[i].rd_desc.id_node = NULL; 1483 } 1484 free(ni, M_DEVBUF); 1485 } 1486 1487 STATIC void 1488 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) 1489 { 1490 struct ieee80211com *ic = &sc->sc_ic; 1491 struct ieee80211_node *ni = ic->ic_bss; 1492 struct ifnet *ifp = &sc->sc_if; 1493 1494 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) 1495 return; 1496 1497 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); 1498 DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); 1499 1500 /* In promiscuous mode, the BSSID field is not a reliable 1501 * indicator of the firmware's BSSID. Damp spurious 1502 * change-of-BSSID indications. 1503 */ 1504 if ((ifp->if_flags & IFF_PROMISC) != 0 && 1505 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns, 1506 WI_MAX_FALSE_SYNS)) 1507 return; 1508 1509 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1); 1510 /* 1511 * XXX hack; we should create a new node with the new bssid 1512 * and replace the existing ic_bss with it but since we don't 1513 * process management frames to collect state we cheat by 1514 * reusing the existing node as we know wi_newstate will be 1515 * called and it will overwrite the node state. 1516 */ 1517 ieee80211_sta_join(ic, ieee80211_ref_node(ni)); 1518 } 1519 1520 static inline void 1521 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni, 1522 struct ieee80211_frame *wh, int rssi) 1523 { 1524 struct wi_node *wn; 1525 1526 if (ni == NULL) { 1527 printf("%s: null node", __func__); 1528 return; 1529 } 1530 1531 wn = (void*)ni; 1532 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi); 1533 } 1534 1535 STATIC void 1536 wi_rx_intr(struct wi_softc *sc) 1537 { 1538 struct ieee80211com *ic = &sc->sc_ic; 1539 struct ifnet *ifp = &sc->sc_if; 1540 struct ieee80211_node *ni; 1541 struct wi_frame frmhdr; 1542 struct mbuf *m; 1543 struct ieee80211_frame *wh; 1544 int fid, len, off, rssi; 1545 u_int8_t dir; 1546 u_int16_t status; 1547 u_int32_t rstamp; 1548 1549 fid = CSR_READ_2(sc, WI_RX_FID); 1550 1551 /* First read in the frame header */ 1552 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { 1553 aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n", 1554 __func__, fid); 1555 ifp->if_ierrors++; 1556 return; 1557 } 1558 1559 if (IFF_DUMPPKTS(ifp)) 1560 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); 1561 1562 /* 1563 * Drop undecryptable or packets with receive errors here 1564 */ 1565 status = le16toh(frmhdr.wi_status); 1566 if ((status & WI_STAT_ERRSTAT) != 0 && 1567 ic->ic_opmode != IEEE80211_M_MONITOR) { 1568 ifp->if_ierrors++; 1569 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); 1570 return; 1571 } 1572 rssi = frmhdr.wi_rx_signal; 1573 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | 1574 le16toh(frmhdr.wi_rx_tstamp1); 1575 1576 len = le16toh(frmhdr.wi_dat_len); 1577 off = ALIGN(sizeof(struct ieee80211_frame)); 1578 1579 /* Sometimes the PRISM2.x returns bogusly large frames. Except 1580 * in monitor mode, just throw them away. 1581 */ 1582 if (off + len > MCLBYTES) { 1583 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1584 ifp->if_ierrors++; 1585 DPRINTF(("wi_rx_intr: oversized packet\n")); 1586 return; 1587 } else 1588 len = 0; 1589 } 1590 1591 MGETHDR(m, M_DONTWAIT, MT_DATA); 1592 if (m == NULL) { 1593 ifp->if_ierrors++; 1594 DPRINTF(("wi_rx_intr: MGET failed\n")); 1595 return; 1596 } 1597 if (off + len > MHLEN) { 1598 MCLGET(m, M_DONTWAIT); 1599 if ((m->m_flags & M_EXT) == 0) { 1600 m_freem(m); 1601 ifp->if_ierrors++; 1602 DPRINTF(("wi_rx_intr: MCLGET failed\n")); 1603 return; 1604 } 1605 } 1606 1607 m->m_data += off - sizeof(struct ieee80211_frame); 1608 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); 1609 wi_read_bap(sc, fid, sizeof(frmhdr), 1610 m->m_data + sizeof(struct ieee80211_frame), len); 1611 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; 1612 m->m_pkthdr.rcvif = ifp; 1613 1614 wh = mtod(m, struct ieee80211_frame *); 1615 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1616 /* 1617 * WEP is decrypted by hardware. Clear WEP bit 1618 * header for ieee80211_input(). 1619 */ 1620 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1621 } 1622 #if NBPFILTER > 0 1623 if (sc->sc_drvbpf) { 1624 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap; 1625 1626 tap->wr_rate = frmhdr.wi_rx_rate / 5; 1627 tap->wr_antsignal = frmhdr.wi_rx_signal; 1628 tap->wr_antnoise = frmhdr.wi_rx_silence; 1629 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1630 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1631 if (frmhdr.wi_status & WI_STAT_PCF) 1632 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP; 1633 1634 /* XXX IEEE80211_RADIOTAP_F_WEP */ 1635 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m); 1636 } 1637 #endif 1638 1639 /* synchronize driver's BSSID with firmware's BSSID */ 1640 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; 1641 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) 1642 wi_sync_bssid(sc, wh->i_addr3); 1643 1644 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1645 1646 ieee80211_input(ic, m, ni, rssi, rstamp); 1647 1648 wi_rssadapt_input(ic, ni, wh, rssi); 1649 1650 /* 1651 * The frame may have caused the node to be marked for 1652 * reclamation (e.g. in response to a DEAUTH message) 1653 * so use release_node here instead of unref_node. 1654 */ 1655 ieee80211_free_node(ni); 1656 } 1657 1658 STATIC void 1659 wi_tx_ex_intr(struct wi_softc *sc) 1660 { 1661 struct ieee80211com *ic = &sc->sc_ic; 1662 struct ifnet *ifp = &sc->sc_if; 1663 struct ieee80211_node *ni; 1664 struct ieee80211_rssdesc *id; 1665 struct wi_rssdesc *rssd; 1666 struct wi_frame frmhdr; 1667 int fid; 1668 u_int16_t status; 1669 1670 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1671 /* Read in the frame header */ 1672 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1673 aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n", 1674 __func__, fid); 1675 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1676 &sc->sc_txpending); 1677 goto out; 1678 } 1679 1680 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1681 printf("%s: %s bad idx %02x\n", 1682 device_xname(&sc->sc_dev), __func__, frmhdr.wi_tx_idx); 1683 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1684 &sc->sc_txpending); 1685 goto out; 1686 } 1687 1688 status = le16toh(frmhdr.wi_status); 1689 1690 /* 1691 * Spontaneous station disconnects appear as xmit 1692 * errors. Don't announce them and/or count them 1693 * as an output error. 1694 */ 1695 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { 1696 aprint_error_dev(&sc->sc_dev, "tx failed"); 1697 if (status & WI_TXSTAT_RET_ERR) 1698 printf(", retry limit exceeded"); 1699 if (status & WI_TXSTAT_AGED_ERR) 1700 printf(", max transmit lifetime exceeded"); 1701 if (status & WI_TXSTAT_DISCONNECT) 1702 printf(", port disconnected"); 1703 if (status & WI_TXSTAT_FORM_ERR) 1704 printf(", invalid format (data len %u src %s)", 1705 le16toh(frmhdr.wi_dat_len), 1706 ether_sprintf(frmhdr.wi_ehdr.ether_shost)); 1707 if (status & ~0xf) 1708 printf(", status=0x%x", status); 1709 printf("\n"); 1710 } 1711 ifp->if_oerrors++; 1712 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1713 id = &rssd->rd_desc; 1714 if ((status & WI_TXSTAT_RET_ERR) != 0) 1715 wi_lower_rate(ic, id); 1716 1717 ni = id->id_node; 1718 id->id_node = NULL; 1719 1720 if (ni == NULL) { 1721 aprint_error_dev(&sc->sc_dev, "%s null node, rssdesc %02x\n", 1722 __func__, frmhdr.wi_tx_idx); 1723 goto out; 1724 } 1725 1726 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1727 aprint_error_dev(&sc->sc_dev, "%s txpending[%i] wraparound", 1728 __func__, id->id_rateidx); 1729 sc->sc_txpending[id->id_rateidx] = 0; 1730 } 1731 if (ni != NULL) 1732 ieee80211_free_node(ni); 1733 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1734 out: 1735 ifp->if_flags &= ~IFF_OACTIVE; 1736 } 1737 1738 STATIC void 1739 wi_txalloc_intr(struct wi_softc *sc) 1740 { 1741 int fid, cur; 1742 1743 fid = CSR_READ_2(sc, WI_ALLOC_FID); 1744 1745 cur = sc->sc_txalloc; 1746 #ifdef DIAGNOSTIC 1747 if (sc->sc_txstarted == 0) { 1748 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1749 device_xname(&sc->sc_dev), fid, sc->sc_txd[cur].d_fid, cur, 1750 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1751 return; 1752 } 1753 #endif 1754 --sc->sc_txstarted; 1755 ++sc->sc_txalloced; 1756 sc->sc_txd[cur].d_fid = fid; 1757 sc->sc_txalloc = (cur + 1) % WI_NTXBUF; 1758 #ifdef WI_RING_DEBUG 1759 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1760 device_xname(&sc->sc_dev), fid, 1761 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1762 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1763 #endif 1764 } 1765 1766 STATIC void 1767 wi_cmd_intr(struct wi_softc *sc) 1768 { 1769 struct ifnet *ifp = &sc->sc_if; 1770 1771 if (sc->sc_invalid) 1772 return; 1773 #ifdef WI_DEBUG 1774 if (wi_debug > 1) 1775 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds); 1776 #endif 1777 KASSERT(sc->sc_txcmds > 0); 1778 1779 --sc->sc_txcmds; 1780 1781 if (--sc->sc_txqueued == 0) { 1782 sc->sc_tx_timer = 0; 1783 ifp->if_flags &= ~IFF_OACTIVE; 1784 #ifdef WI_RING_DEBUG 1785 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n", 1786 device_xname(&sc->sc_dev), 1787 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1788 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1789 #endif 1790 } else 1791 wi_push_packet(sc); 1792 } 1793 1794 STATIC void 1795 wi_push_packet(struct wi_softc *sc) 1796 { 1797 struct ifnet *ifp = &sc->sc_if; 1798 int cur, fid; 1799 1800 cur = sc->sc_txstart; 1801 fid = sc->sc_txd[cur].d_fid; 1802 1803 KASSERT(sc->sc_txcmds == 0); 1804 1805 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) { 1806 aprint_error_dev(&sc->sc_dev, "xmit failed\n"); 1807 /* XXX ring might have a hole */ 1808 } 1809 1810 if (sc->sc_txcmds++ > 0) 1811 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds); 1812 1813 ++sc->sc_txstarted; 1814 #ifdef DIAGNOSTIC 1815 if (sc->sc_txstarted > WI_NTXBUF) 1816 aprint_error_dev(&sc->sc_dev, "too many buffers started\n"); 1817 #endif 1818 sc->sc_txstart = (cur + 1) % WI_NTXBUF; 1819 sc->sc_tx_timer = 5; 1820 ifp->if_timer = 1; 1821 #ifdef WI_RING_DEBUG 1822 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1823 device_xname(&sc->sc_dev), fid, 1824 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1825 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1826 #endif 1827 } 1828 1829 STATIC void 1830 wi_tx_intr(struct wi_softc *sc) 1831 { 1832 struct ieee80211com *ic = &sc->sc_ic; 1833 struct ifnet *ifp = &sc->sc_if; 1834 struct ieee80211_node *ni; 1835 struct ieee80211_rssdesc *id; 1836 struct wi_rssdesc *rssd; 1837 struct wi_frame frmhdr; 1838 int fid; 1839 1840 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1841 /* Read in the frame header */ 1842 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2), 1843 &frmhdr.wi_tx_swsup2, 2) != 0) { 1844 aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n", 1845 __func__, fid); 1846 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1847 &sc->sc_txpending); 1848 goto out; 1849 } 1850 1851 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1852 aprint_error_dev(&sc->sc_dev, "%s bad idx %02x\n", 1853 __func__, frmhdr.wi_tx_idx); 1854 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1855 &sc->sc_txpending); 1856 goto out; 1857 } 1858 1859 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1860 id = &rssd->rd_desc; 1861 wi_raise_rate(ic, id); 1862 1863 ni = id->id_node; 1864 id->id_node = NULL; 1865 1866 if (ni == NULL) { 1867 aprint_error_dev(&sc->sc_dev, "%s null node, rssdesc %02x\n", 1868 __func__, frmhdr.wi_tx_idx); 1869 goto out; 1870 } 1871 1872 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1873 aprint_error_dev(&sc->sc_dev, "%s txpending[%i] wraparound", 1874 __func__, id->id_rateidx); 1875 sc->sc_txpending[id->id_rateidx] = 0; 1876 } 1877 if (ni != NULL) 1878 ieee80211_free_node(ni); 1879 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1880 out: 1881 ifp->if_flags &= ~IFF_OACTIVE; 1882 } 1883 1884 STATIC void 1885 wi_info_intr(struct wi_softc *sc) 1886 { 1887 struct ieee80211com *ic = &sc->sc_ic; 1888 struct ifnet *ifp = &sc->sc_if; 1889 int i, fid, len, off; 1890 u_int16_t ltbuf[2]; 1891 u_int16_t stat; 1892 u_int32_t *ptr; 1893 1894 fid = CSR_READ_2(sc, WI_INFO_FID); 1895 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); 1896 1897 switch (le16toh(ltbuf[1])) { 1898 1899 case WI_INFO_LINK_STAT: 1900 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); 1901 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); 1902 switch (le16toh(stat)) { 1903 case CONNECTED: 1904 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1905 if (ic->ic_state == IEEE80211_S_RUN && 1906 ic->ic_opmode != IEEE80211_M_IBSS) 1907 break; 1908 /* FALLTHROUGH */ 1909 case AP_CHANGE: 1910 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1911 break; 1912 case AP_IN_RANGE: 1913 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1914 break; 1915 case AP_OUT_OF_RANGE: 1916 if (sc->sc_firmware_type == WI_SYMBOL && 1917 sc->sc_scan_timer > 0) { 1918 if (wi_cmd(sc, WI_CMD_INQUIRE, 1919 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) 1920 sc->sc_scan_timer = 0; 1921 break; 1922 } 1923 if (ic->ic_opmode == IEEE80211_M_STA) 1924 sc->sc_flags |= WI_FLAGS_OUTRANGE; 1925 break; 1926 case DISCONNECTED: 1927 case ASSOC_FAILED: 1928 if (ic->ic_opmode == IEEE80211_M_STA) 1929 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1930 break; 1931 } 1932 break; 1933 1934 case WI_INFO_COUNTERS: 1935 /* some card versions have a larger stats structure */ 1936 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); 1937 ptr = (u_int32_t *)&sc->sc_stats; 1938 off = sizeof(ltbuf); 1939 for (i = 0; i < len; i++, off += 2, ptr++) { 1940 wi_read_bap(sc, fid, off, &stat, sizeof(stat)); 1941 stat = le16toh(stat); 1942 #ifdef WI_HERMES_STATS_WAR 1943 if (stat & 0xf000) 1944 stat = ~stat; 1945 #endif 1946 *ptr += stat; 1947 } 1948 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + 1949 sc->sc_stats.wi_tx_multi_retries + 1950 sc->sc_stats.wi_tx_retry_limit; 1951 break; 1952 1953 case WI_INFO_SCAN_RESULTS: 1954 case WI_INFO_HOST_SCAN_RESULTS: 1955 wi_scan_result(sc, fid, le16toh(ltbuf[0])); 1956 break; 1957 1958 default: 1959 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, 1960 le16toh(ltbuf[1]), le16toh(ltbuf[0]))); 1961 break; 1962 } 1963 } 1964 1965 STATIC int 1966 wi_write_multi(struct wi_softc *sc) 1967 { 1968 struct ifnet *ifp = &sc->sc_if; 1969 int n; 1970 struct wi_mcast mlist; 1971 struct ether_multi *enm; 1972 struct ether_multistep estep; 1973 1974 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1975 allmulti: 1976 ifp->if_flags |= IFF_ALLMULTI; 1977 memset(&mlist, 0, sizeof(mlist)); 1978 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1979 sizeof(mlist)); 1980 } 1981 1982 n = 0; 1983 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1984 while (enm != NULL) { 1985 /* Punt on ranges or too many multicast addresses. */ 1986 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) || 1987 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) 1988 goto allmulti; 1989 1990 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo); 1991 n++; 1992 ETHER_NEXT_MULTI(estep, enm); 1993 } 1994 ifp->if_flags &= ~IFF_ALLMULTI; 1995 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1996 IEEE80211_ADDR_LEN * n); 1997 } 1998 1999 2000 STATIC void 2001 wi_read_nicid(struct wi_softc *sc) 2002 { 2003 struct wi_card_ident *id; 2004 char *p; 2005 int len; 2006 u_int16_t ver[4]; 2007 2008 /* getting chip identity */ 2009 memset(ver, 0, sizeof(ver)); 2010 len = sizeof(ver); 2011 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); 2012 printf("%s: using ", device_xname(&sc->sc_dev)); 2013 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3]))); 2014 2015 sc->sc_firmware_type = WI_NOTYPE; 2016 for (id = wi_card_ident; id->card_name != NULL; id++) { 2017 if (le16toh(ver[0]) == id->card_id) { 2018 printf("%s", id->card_name); 2019 sc->sc_firmware_type = id->firm_type; 2020 break; 2021 } 2022 } 2023 if (sc->sc_firmware_type == WI_NOTYPE) { 2024 if (le16toh(ver[0]) & 0x8000) { 2025 printf("Unknown PRISM2 chip"); 2026 sc->sc_firmware_type = WI_INTERSIL; 2027 } else { 2028 printf("Unknown Lucent chip"); 2029 sc->sc_firmware_type = WI_LUCENT; 2030 } 2031 } 2032 2033 /* get primary firmware version (Only Prism chips) */ 2034 if (sc->sc_firmware_type != WI_LUCENT) { 2035 memset(ver, 0, sizeof(ver)); 2036 len = sizeof(ver); 2037 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); 2038 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + 2039 le16toh(ver[3]) * 100 + le16toh(ver[1]); 2040 } 2041 2042 /* get station firmware version */ 2043 memset(ver, 0, sizeof(ver)); 2044 len = sizeof(ver); 2045 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); 2046 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + 2047 le16toh(ver[3]) * 100 + le16toh(ver[1]); 2048 if (sc->sc_firmware_type == WI_INTERSIL && 2049 (sc->sc_sta_firmware_ver == 10102 || 2050 sc->sc_sta_firmware_ver == 20102)) { 2051 char ident[12]; 2052 memset(ident, 0, sizeof(ident)); 2053 len = sizeof(ident); 2054 /* value should be the format like "V2.00-11" */ 2055 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && 2056 *(p = (char *)ident) >= 'A' && 2057 p[2] == '.' && p[5] == '-' && p[8] == '\0') { 2058 sc->sc_firmware_type = WI_SYMBOL; 2059 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + 2060 (p[3] - '0') * 1000 + (p[4] - '0') * 100 + 2061 (p[6] - '0') * 10 + (p[7] - '0'); 2062 } 2063 } 2064 2065 printf("\n%s: %s Firmware: ", device_xname(&sc->sc_dev), 2066 sc->sc_firmware_type == WI_LUCENT ? "Lucent" : 2067 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); 2068 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ 2069 printf("Primary (%u.%u.%u), ", 2070 sc->sc_pri_firmware_ver / 10000, 2071 (sc->sc_pri_firmware_ver % 10000) / 100, 2072 sc->sc_pri_firmware_ver % 100); 2073 printf("Station (%u.%u.%u)\n", 2074 sc->sc_sta_firmware_ver / 10000, 2075 (sc->sc_sta_firmware_ver % 10000) / 100, 2076 sc->sc_sta_firmware_ver % 100); 2077 } 2078 2079 STATIC int 2080 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) 2081 { 2082 struct wi_ssid ssid; 2083 2084 if (buflen > IEEE80211_NWID_LEN) 2085 return ENOBUFS; 2086 memset(&ssid, 0, sizeof(ssid)); 2087 ssid.wi_len = htole16(buflen); 2088 memcpy(ssid.wi_ssid, buf, buflen); 2089 return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); 2090 } 2091 2092 STATIC int 2093 wi_get_cfg(struct ifnet *ifp, u_long cmd, void *data) 2094 { 2095 struct wi_softc *sc = ifp->if_softc; 2096 struct ieee80211com *ic = &sc->sc_ic; 2097 struct ifreq *ifr = (struct ifreq *)data; 2098 struct wi_req wreq; 2099 int len, n, error; 2100 2101 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2102 if (error) 2103 return error; 2104 len = (wreq.wi_len - 1) * 2; 2105 if (len < sizeof(u_int16_t)) 2106 return ENOSPC; 2107 if (len > sizeof(wreq.wi_val)) 2108 len = sizeof(wreq.wi_val); 2109 2110 switch (wreq.wi_type) { 2111 2112 case WI_RID_IFACE_STATS: 2113 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); 2114 if (len < sizeof(sc->sc_stats)) 2115 error = ENOSPC; 2116 else 2117 len = sizeof(sc->sc_stats); 2118 break; 2119 2120 case WI_RID_ENCRYPTION: 2121 case WI_RID_TX_CRYPT_KEY: 2122 case WI_RID_DEFLT_CRYPT_KEYS: 2123 case WI_RID_TX_RATE: 2124 return ieee80211_cfgget(ic, cmd, data); 2125 2126 case WI_RID_MICROWAVE_OVEN: 2127 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { 2128 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2129 &len); 2130 break; 2131 } 2132 wreq.wi_val[0] = htole16(sc->sc_microwave_oven); 2133 len = sizeof(u_int16_t); 2134 break; 2135 2136 case WI_RID_DBM_ADJUST: 2137 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { 2138 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2139 &len); 2140 break; 2141 } 2142 wreq.wi_val[0] = htole16(sc->sc_dbm_offset); 2143 len = sizeof(u_int16_t); 2144 break; 2145 2146 case WI_RID_ROAMING_MODE: 2147 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { 2148 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2149 &len); 2150 break; 2151 } 2152 wreq.wi_val[0] = htole16(sc->sc_roaming_mode); 2153 len = sizeof(u_int16_t); 2154 break; 2155 2156 case WI_RID_SYSTEM_SCALE: 2157 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { 2158 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2159 &len); 2160 break; 2161 } 2162 wreq.wi_val[0] = htole16(sc->sc_system_scale); 2163 len = sizeof(u_int16_t); 2164 break; 2165 2166 case WI_RID_FRAG_THRESH: 2167 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { 2168 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2169 &len); 2170 break; 2171 } 2172 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2173 len = sizeof(u_int16_t); 2174 break; 2175 2176 case WI_RID_READ_APS: 2177 #ifndef IEEE80211_NO_HOSTAP 2178 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2179 return ieee80211_cfgget(ic, cmd, data); 2180 #endif /* !IEEE80211_NO_HOSTAP */ 2181 if (sc->sc_scan_timer > 0) { 2182 error = EINPROGRESS; 2183 break; 2184 } 2185 n = sc->sc_naps; 2186 if (len < sizeof(n)) { 2187 error = ENOSPC; 2188 break; 2189 } 2190 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) 2191 n = (len - sizeof(n)) / sizeof(struct wi_apinfo); 2192 len = sizeof(n) + sizeof(struct wi_apinfo) * n; 2193 memcpy(wreq.wi_val, &n, sizeof(n)); 2194 memcpy((char *)wreq.wi_val + sizeof(n), sc->sc_aps, 2195 sizeof(struct wi_apinfo) * n); 2196 break; 2197 2198 default: 2199 if (sc->sc_enabled) { 2200 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2201 &len); 2202 break; 2203 } 2204 switch (wreq.wi_type) { 2205 case WI_RID_MAX_DATALEN: 2206 wreq.wi_val[0] = htole16(sc->sc_max_datalen); 2207 len = sizeof(u_int16_t); 2208 break; 2209 case WI_RID_FRAG_THRESH: 2210 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2211 len = sizeof(u_int16_t); 2212 break; 2213 case WI_RID_RTS_THRESH: 2214 wreq.wi_val[0] = htole16(sc->sc_rts_thresh); 2215 len = sizeof(u_int16_t); 2216 break; 2217 case WI_RID_CNFAUTHMODE: 2218 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); 2219 len = sizeof(u_int16_t); 2220 break; 2221 case WI_RID_NODENAME: 2222 if (len < sc->sc_nodelen + sizeof(u_int16_t)) { 2223 error = ENOSPC; 2224 break; 2225 } 2226 len = sc->sc_nodelen + sizeof(u_int16_t); 2227 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); 2228 memcpy(&wreq.wi_val[1], sc->sc_nodename, 2229 sc->sc_nodelen); 2230 break; 2231 default: 2232 return ieee80211_cfgget(ic, cmd, data); 2233 } 2234 break; 2235 } 2236 if (error) 2237 return error; 2238 wreq.wi_len = (len + 1) / 2 + 1; 2239 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); 2240 } 2241 2242 STATIC int 2243 wi_set_cfg(struct ifnet *ifp, u_long cmd, void *data) 2244 { 2245 struct wi_softc *sc = ifp->if_softc; 2246 struct ieee80211com *ic = &sc->sc_ic; 2247 struct ifreq *ifr = (struct ifreq *)data; 2248 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2249 struct wi_req wreq; 2250 struct mbuf *m; 2251 int i, len, error; 2252 2253 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2254 if (error) 2255 return error; 2256 len = (wreq.wi_len - 1) * 2; 2257 switch (wreq.wi_type) { 2258 case WI_RID_MAC_NODE: 2259 /* XXX convert to SIOCALIFADDR, AF_LINK, IFLR_ACTIVE */ 2260 (void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN); 2261 if_set_sadl(ifp, ic->ic_myaddr, ETHER_ADDR_LEN, false); 2262 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, 2263 IEEE80211_ADDR_LEN); 2264 break; 2265 2266 case WI_RID_DBM_ADJUST: 2267 return ENODEV; 2268 2269 case WI_RID_NODENAME: 2270 if (le16toh(wreq.wi_val[0]) * 2 > len || 2271 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { 2272 error = ENOSPC; 2273 break; 2274 } 2275 if (sc->sc_enabled) { 2276 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2277 len); 2278 if (error) 2279 break; 2280 } 2281 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; 2282 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); 2283 break; 2284 2285 case WI_RID_MICROWAVE_OVEN: 2286 case WI_RID_ROAMING_MODE: 2287 case WI_RID_SYSTEM_SCALE: 2288 case WI_RID_FRAG_THRESH: 2289 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && 2290 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) 2291 break; 2292 if (wreq.wi_type == WI_RID_ROAMING_MODE && 2293 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) 2294 break; 2295 if (wreq.wi_type == WI_RID_SYSTEM_SCALE && 2296 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) 2297 break; 2298 if (wreq.wi_type == WI_RID_FRAG_THRESH && 2299 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) 2300 break; 2301 /* FALLTHROUGH */ 2302 case WI_RID_RTS_THRESH: 2303 case WI_RID_CNFAUTHMODE: 2304 case WI_RID_MAX_DATALEN: 2305 if (sc->sc_enabled) { 2306 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2307 sizeof(u_int16_t)); 2308 if (error) 2309 break; 2310 } 2311 switch (wreq.wi_type) { 2312 case WI_RID_FRAG_THRESH: 2313 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]); 2314 break; 2315 case WI_RID_RTS_THRESH: 2316 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]); 2317 break; 2318 case WI_RID_MICROWAVE_OVEN: 2319 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); 2320 break; 2321 case WI_RID_ROAMING_MODE: 2322 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); 2323 break; 2324 case WI_RID_SYSTEM_SCALE: 2325 sc->sc_system_scale = le16toh(wreq.wi_val[0]); 2326 break; 2327 case WI_RID_CNFAUTHMODE: 2328 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); 2329 break; 2330 case WI_RID_MAX_DATALEN: 2331 sc->sc_max_datalen = le16toh(wreq.wi_val[0]); 2332 break; 2333 } 2334 break; 2335 2336 case WI_RID_TX_RATE: 2337 switch (le16toh(wreq.wi_val[0])) { 2338 case 3: 2339 ic->ic_fixed_rate = -1; 2340 break; 2341 default: 2342 for (i = 0; i < IEEE80211_RATE_SIZE; i++) { 2343 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) 2344 / 2 == le16toh(wreq.wi_val[0])) 2345 break; 2346 } 2347 if (i == IEEE80211_RATE_SIZE) 2348 return EINVAL; 2349 ic->ic_fixed_rate = i; 2350 } 2351 if (sc->sc_enabled) 2352 error = wi_cfg_txrate(sc); 2353 break; 2354 2355 case WI_RID_SCAN_APS: 2356 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) 2357 error = wi_scan_ap(sc, 0x3fff, 0x000f); 2358 break; 2359 2360 case WI_RID_MGMT_XMIT: 2361 if (!sc->sc_enabled) { 2362 error = ENETDOWN; 2363 break; 2364 } 2365 if (ic->ic_mgtq.ifq_len > 5) { 2366 error = EAGAIN; 2367 break; 2368 } 2369 /* XXX wi_len looks in u_int8_t, not in u_int16_t */ 2370 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); 2371 if (m == NULL) { 2372 error = ENOMEM; 2373 break; 2374 } 2375 IF_ENQUEUE(&ic->ic_mgtq, m); 2376 break; 2377 2378 default: 2379 if (sc->sc_enabled) { 2380 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2381 len); 2382 if (error) 2383 break; 2384 } 2385 error = ieee80211_cfgset(ic, cmd, data); 2386 break; 2387 } 2388 return error; 2389 } 2390 2391 /* Rate is 0 for hardware auto-select, otherwise rate is 2392 * 2, 4, 11, or 22 (units of 500Kbps). 2393 */ 2394 STATIC int 2395 wi_write_txrate(struct wi_softc *sc, int rate) 2396 { 2397 u_int16_t hwrate; 2398 2399 /* rate: 0, 2, 4, 11, 22 */ 2400 switch (sc->sc_firmware_type) { 2401 case WI_LUCENT: 2402 switch (rate & IEEE80211_RATE_VAL) { 2403 case 2: 2404 hwrate = 1; 2405 break; 2406 case 4: 2407 hwrate = 2; 2408 break; 2409 default: 2410 hwrate = 3; /* auto */ 2411 break; 2412 case 11: 2413 hwrate = 4; 2414 break; 2415 case 22: 2416 hwrate = 5; 2417 break; 2418 } 2419 break; 2420 default: 2421 switch (rate & IEEE80211_RATE_VAL) { 2422 case 2: 2423 hwrate = 1; 2424 break; 2425 case 4: 2426 hwrate = 2; 2427 break; 2428 case 11: 2429 hwrate = 4; 2430 break; 2431 case 22: 2432 hwrate = 8; 2433 break; 2434 default: 2435 hwrate = 15; /* auto */ 2436 break; 2437 } 2438 break; 2439 } 2440 2441 if (sc->sc_tx_rate == hwrate) 2442 return 0; 2443 2444 if (sc->sc_if.if_flags & IFF_DEBUG) 2445 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate, 2446 hwrate, rate); 2447 2448 sc->sc_tx_rate = hwrate; 2449 2450 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate); 2451 } 2452 2453 STATIC int 2454 wi_cfg_txrate(struct wi_softc *sc) 2455 { 2456 struct ieee80211com *ic = &sc->sc_ic; 2457 struct ieee80211_rateset *rs; 2458 int rate; 2459 2460 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2461 2462 sc->sc_tx_rate = 0; /* force write to RID */ 2463 2464 if (ic->ic_fixed_rate < 0) 2465 rate = 0; /* auto */ 2466 else 2467 rate = rs->rs_rates[ic->ic_fixed_rate]; 2468 2469 return wi_write_txrate(sc, rate); 2470 } 2471 2472 STATIC int 2473 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 2474 { 2475 struct wi_softc *sc = ic->ic_ifp->if_softc; 2476 u_int keyix = k->wk_keyix; 2477 2478 DPRINTF(("%s: delete key %u\n", __func__, keyix)); 2479 2480 if (keyix >= IEEE80211_WEP_NKID) 2481 return 0; 2482 if (k->wk_keylen != 0) 2483 sc->sc_flags &= ~WI_FLAGS_WEP_VALID; 2484 2485 return 1; 2486 } 2487 2488 static int 2489 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 2490 const u_int8_t mac[IEEE80211_ADDR_LEN]) 2491 { 2492 struct wi_softc *sc = ic->ic_ifp->if_softc; 2493 2494 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix)); 2495 2496 if (k->wk_keyix >= IEEE80211_WEP_NKID) 2497 return 0; 2498 2499 sc->sc_flags &= ~WI_FLAGS_WEP_VALID; 2500 2501 return 1; 2502 } 2503 2504 STATIC void 2505 wi_key_update_begin(struct ieee80211com *ic) 2506 { 2507 DPRINTF(("%s:\n", __func__)); 2508 } 2509 2510 STATIC void 2511 wi_key_update_end(struct ieee80211com *ic) 2512 { 2513 struct ifnet *ifp = ic->ic_ifp; 2514 struct wi_softc *sc = ifp->if_softc; 2515 2516 DPRINTF(("%s:\n", __func__)); 2517 2518 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0) 2519 return; 2520 if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled && 2521 !sc->sc_invalid) 2522 (void)wi_write_wep(sc); 2523 } 2524 2525 STATIC int 2526 wi_write_wep(struct wi_softc *sc) 2527 { 2528 struct ifnet *ifp = &sc->sc_if; 2529 struct ieee80211com *ic = &sc->sc_ic; 2530 int error = 0; 2531 int i, keylen; 2532 u_int16_t val; 2533 struct wi_key wkey[IEEE80211_WEP_NKID]; 2534 2535 if ((ifp->if_flags & IFF_RUNNING) != 0) 2536 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 2537 2538 switch (sc->sc_firmware_type) { 2539 case WI_LUCENT: 2540 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0; 2541 error = wi_write_val(sc, WI_RID_ENCRYPTION, val); 2542 if (error) 2543 break; 2544 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey); 2545 if (error) 2546 break; 2547 memset(wkey, 0, sizeof(wkey)); 2548 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2549 keylen = ic->ic_nw_keys[i].wk_keylen; 2550 wkey[i].wi_keylen = htole16(keylen); 2551 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, 2552 keylen); 2553 } 2554 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, 2555 wkey, sizeof(wkey)); 2556 break; 2557 2558 case WI_INTERSIL: 2559 case WI_SYMBOL: 2560 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 2561 /* 2562 * ONLY HWB3163 EVAL-CARD Firmware version 2563 * less than 0.8 variant2 2564 * 2565 * If promiscuous mode disable, Prism2 chip 2566 * does not work with WEP . 2567 * It is under investigation for details. 2568 * (ichiro@NetBSD.org) 2569 */ 2570 if (sc->sc_firmware_type == WI_INTERSIL && 2571 sc->sc_sta_firmware_ver < 802 ) { 2572 /* firm ver < 0.8 variant 2 */ 2573 wi_write_val(sc, WI_RID_PROMISC, 1); 2574 } 2575 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2576 sc->sc_cnfauthmode); 2577 val = PRIVACY_INVOKED; 2578 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0) 2579 val |= EXCLUDE_UNENCRYPTED; 2580 #ifndef IEEE80211_NO_HOSTAP 2581 /* 2582 * Encryption firmware has a bug for HostAP mode. 2583 */ 2584 if (sc->sc_firmware_type == WI_INTERSIL && 2585 ic->ic_opmode == IEEE80211_M_HOSTAP) 2586 val |= HOST_ENCRYPT; 2587 #endif /* !IEEE80211_NO_HOSTAP */ 2588 } else { 2589 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2590 IEEE80211_AUTH_OPEN); 2591 val = HOST_ENCRYPT | HOST_DECRYPT; 2592 } 2593 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); 2594 if (error) 2595 break; 2596 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, 2597 ic->ic_def_txkey); 2598 if (error) 2599 break; 2600 /* 2601 * It seems that the firmware accept 104bit key only if 2602 * all the keys have 104bit length. We get the length of 2603 * the transmit key and use it for all other keys. 2604 * Perhaps we should use software WEP for such situation. 2605 */ 2606 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 2607 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 2608 keylen = 13; /* No keys => 104bit ok */ 2609 else 2610 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen; 2611 2612 if (keylen > IEEE80211_WEP_KEYLEN) 2613 keylen = 13; /* 104bit keys */ 2614 else 2615 keylen = IEEE80211_WEP_KEYLEN; 2616 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2617 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, 2618 ic->ic_nw_keys[i].wk_key, keylen); 2619 if (error) 2620 break; 2621 } 2622 break; 2623 } 2624 if ((ifp->if_flags & IFF_RUNNING) != 0) 2625 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 2626 if (error == 0) 2627 sc->sc_flags |= WI_FLAGS_WEP_VALID; 2628 return error; 2629 } 2630 2631 /* Must be called at proper protection level! */ 2632 STATIC int 2633 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2634 { 2635 #ifdef WI_HISTOGRAM 2636 static int hist1[11]; 2637 static int hist1count; 2638 #endif 2639 int i; 2640 2641 /* wait for the busy bit to clear */ 2642 for (i = 500; i > 0; i--) { /* 5s */ 2643 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) 2644 break; 2645 if (sc->sc_invalid) 2646 return ENXIO; 2647 DELAY(1000); /* 1 m sec */ 2648 } 2649 if (i == 0) { 2650 aprint_error_dev(&sc->sc_dev, "wi_cmd: busy bit won't clear.\n"); 2651 return(ETIMEDOUT); 2652 } 2653 #ifdef WI_HISTOGRAM 2654 if (i > 490) 2655 hist1[500 - i]++; 2656 else 2657 hist1[10]++; 2658 if (++hist1count == 1000) { 2659 hist1count = 0; 2660 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n", 2661 device_xname(&sc->sc_dev), 2662 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4], 2663 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9], 2664 hist1[10]); 2665 } 2666 #endif 2667 CSR_WRITE_2(sc, WI_PARAM0, val0); 2668 CSR_WRITE_2(sc, WI_PARAM1, val1); 2669 CSR_WRITE_2(sc, WI_PARAM2, val2); 2670 CSR_WRITE_2(sc, WI_COMMAND, cmd); 2671 2672 return 0; 2673 } 2674 2675 STATIC int 2676 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2677 { 2678 int rc; 2679 2680 #ifdef WI_DEBUG 2681 if (wi_debug) { 2682 printf("%s: [enter] %d txcmds outstanding\n", __func__, 2683 sc->sc_txcmds); 2684 } 2685 #endif 2686 if (sc->sc_txcmds > 0) 2687 wi_txcmd_wait(sc); 2688 2689 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0) 2690 return rc; 2691 2692 if (cmd == WI_CMD_INI) { 2693 /* XXX: should sleep here. */ 2694 if (sc->sc_invalid) 2695 return ENXIO; 2696 DELAY(100*1000); 2697 } 2698 rc = wi_cmd_wait(sc, cmd, val0); 2699 2700 #ifdef WI_DEBUG 2701 if (wi_debug) { 2702 printf("%s: [ ] %d txcmds outstanding\n", __func__, 2703 sc->sc_txcmds); 2704 } 2705 #endif 2706 if (sc->sc_txcmds > 0) 2707 wi_cmd_intr(sc); 2708 2709 #ifdef WI_DEBUG 2710 if (wi_debug) { 2711 printf("%s: [leave] %d txcmds outstanding\n", __func__, 2712 sc->sc_txcmds); 2713 } 2714 #endif 2715 return rc; 2716 } 2717 2718 STATIC int 2719 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0) 2720 { 2721 #ifdef WI_HISTOGRAM 2722 static int hist2[11]; 2723 static int hist2count; 2724 #endif 2725 int i, status; 2726 #ifdef WI_DEBUG 2727 if (wi_debug > 1) 2728 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0); 2729 #endif /* WI_DEBUG */ 2730 2731 /* wait for the cmd completed bit */ 2732 for (i = 0; i < WI_TIMEOUT; i++) { 2733 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) 2734 break; 2735 if (sc->sc_invalid) 2736 return ENXIO; 2737 DELAY(WI_DELAY); 2738 } 2739 2740 #ifdef WI_HISTOGRAM 2741 if (i < 100) 2742 hist2[i/10]++; 2743 else 2744 hist2[10]++; 2745 if (++hist2count == 1000) { 2746 hist2count = 0; 2747 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n", 2748 device_xname(&sc->sc_dev), 2749 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4], 2750 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9], 2751 hist2[10]); 2752 } 2753 #endif 2754 2755 status = CSR_READ_2(sc, WI_STATUS); 2756 2757 if (i == WI_TIMEOUT) { 2758 aprint_error_dev(&sc->sc_dev, "command timed out, cmd=0x%x, arg=0x%x\n", 2759 cmd, val0); 2760 return ETIMEDOUT; 2761 } 2762 2763 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 2764 2765 if (status & WI_STAT_CMD_RESULT) { 2766 aprint_error_dev(&sc->sc_dev, "command failed, cmd=0x%x, arg=0x%x\n", 2767 cmd, val0); 2768 return EIO; 2769 } 2770 return 0; 2771 } 2772 2773 STATIC int 2774 wi_seek_bap(struct wi_softc *sc, int id, int off) 2775 { 2776 #ifdef WI_HISTOGRAM 2777 static int hist4[11]; 2778 static int hist4count; 2779 #endif 2780 int i, status; 2781 2782 CSR_WRITE_2(sc, WI_SEL0, id); 2783 CSR_WRITE_2(sc, WI_OFF0, off); 2784 2785 for (i = 0; ; i++) { 2786 status = CSR_READ_2(sc, WI_OFF0); 2787 if ((status & WI_OFF_BUSY) == 0) 2788 break; 2789 if (i == WI_TIMEOUT) { 2790 aprint_error_dev(&sc->sc_dev, "timeout in wi_seek to %x/%x\n", 2791 id, off); 2792 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2793 return ETIMEDOUT; 2794 } 2795 if (sc->sc_invalid) 2796 return ENXIO; 2797 DELAY(2); 2798 } 2799 #ifdef WI_HISTOGRAM 2800 if (i < 100) 2801 hist4[i/10]++; 2802 else 2803 hist4[10]++; 2804 if (++hist4count == 2500) { 2805 hist4count = 0; 2806 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n", 2807 device_xname(&sc->sc_dev), 2808 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4], 2809 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9], 2810 hist4[10]); 2811 } 2812 #endif 2813 if (status & WI_OFF_ERR) { 2814 printf("%s: failed in wi_seek to %x/%x\n", 2815 device_xname(&sc->sc_dev), id, off); 2816 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2817 return EIO; 2818 } 2819 sc->sc_bap_id = id; 2820 sc->sc_bap_off = off; 2821 return 0; 2822 } 2823 2824 STATIC int 2825 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2826 { 2827 int error, cnt; 2828 2829 if (buflen == 0) 2830 return 0; 2831 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2832 if ((error = wi_seek_bap(sc, id, off)) != 0) 2833 return error; 2834 } 2835 cnt = (buflen + 1) / 2; 2836 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2837 sc->sc_bap_off += cnt * 2; 2838 return 0; 2839 } 2840 2841 STATIC int 2842 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2843 { 2844 int error, cnt; 2845 2846 if (buflen == 0) 2847 return 0; 2848 2849 #ifdef WI_HERMES_AUTOINC_WAR 2850 again: 2851 #endif 2852 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2853 if ((error = wi_seek_bap(sc, id, off)) != 0) 2854 return error; 2855 } 2856 cnt = (buflen + 1) / 2; 2857 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2858 sc->sc_bap_off += cnt * 2; 2859 2860 #ifdef WI_HERMES_AUTOINC_WAR 2861 /* 2862 * According to the comments in the HCF Light code, there is a bug 2863 * in the Hermes (or possibly in certain Hermes firmware revisions) 2864 * where the chip's internal autoincrement counter gets thrown off 2865 * during data writes: the autoincrement is missed, causing one 2866 * data word to be overwritten and subsequent words to be written to 2867 * the wrong memory locations. The end result is that we could end 2868 * up transmitting bogus frames without realizing it. The workaround 2869 * for this is to write a couple of extra guard words after the end 2870 * of the transfer, then attempt to read then back. If we fail to 2871 * locate the guard words where we expect them, we preform the 2872 * transfer over again. 2873 */ 2874 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { 2875 CSR_WRITE_2(sc, WI_DATA0, 0x1234); 2876 CSR_WRITE_2(sc, WI_DATA0, 0x5678); 2877 wi_seek_bap(sc, id, sc->sc_bap_off); 2878 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2879 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || 2880 CSR_READ_2(sc, WI_DATA0) != 0x5678) { 2881 aprint_error_dev(&sc->sc_dev, "detect auto increment bug, try again\n"); 2882 goto again; 2883 } 2884 } 2885 #endif 2886 return 0; 2887 } 2888 2889 STATIC int 2890 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) 2891 { 2892 int error, len; 2893 struct mbuf *m; 2894 2895 for (m = m0; m != NULL && totlen > 0; m = m->m_next) { 2896 if (m->m_len == 0) 2897 continue; 2898 2899 len = min(m->m_len, totlen); 2900 2901 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { 2902 m_copydata(m, 0, totlen, (void *)&sc->sc_txbuf); 2903 return wi_write_bap(sc, id, off, (void *)&sc->sc_txbuf, 2904 totlen); 2905 } 2906 2907 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) 2908 return error; 2909 2910 off += m->m_len; 2911 totlen -= len; 2912 } 2913 return 0; 2914 } 2915 2916 STATIC int 2917 wi_alloc_fid(struct wi_softc *sc, int len, int *idp) 2918 { 2919 int i; 2920 2921 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { 2922 aprint_error_dev(&sc->sc_dev, "failed to allocate %d bytes on NIC\n", len); 2923 return ENOMEM; 2924 } 2925 2926 for (i = 0; i < WI_TIMEOUT; i++) { 2927 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) 2928 break; 2929 DELAY(1); 2930 } 2931 if (i == WI_TIMEOUT) { 2932 aprint_error_dev(&sc->sc_dev, "timeout in alloc\n"); 2933 return ETIMEDOUT; 2934 } 2935 *idp = CSR_READ_2(sc, WI_ALLOC_FID); 2936 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 2937 return 0; 2938 } 2939 2940 STATIC int 2941 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) 2942 { 2943 int error, len; 2944 u_int16_t ltbuf[2]; 2945 2946 /* Tell the NIC to enter record read mode. */ 2947 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); 2948 if (error) 2949 return error; 2950 2951 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2952 if (error) 2953 return error; 2954 2955 if (le16toh(ltbuf[0]) == 0) 2956 return EOPNOTSUPP; 2957 if (le16toh(ltbuf[1]) != rid) { 2958 aprint_error_dev(&sc->sc_dev, "record read mismatch, rid=%x, got=%x\n", 2959 rid, le16toh(ltbuf[1])); 2960 return EIO; 2961 } 2962 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ 2963 if (*buflenp < len) { 2964 aprint_error_dev(&sc->sc_dev, "record buffer is too small, " 2965 "rid=%x, size=%d, len=%d\n", 2966 rid, *buflenp, len); 2967 return ENOSPC; 2968 } 2969 *buflenp = len; 2970 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); 2971 } 2972 2973 STATIC int 2974 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) 2975 { 2976 int error; 2977 u_int16_t ltbuf[2]; 2978 2979 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ 2980 ltbuf[1] = htole16(rid); 2981 2982 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2983 if (error) 2984 return error; 2985 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); 2986 if (error) 2987 return error; 2988 2989 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); 2990 } 2991 2992 STATIC void 2993 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni) 2994 { 2995 struct wi_node *wn = (void*)ni; 2996 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt); 2997 } 2998 2999 STATIC void 3000 wi_rssadapt_updatestats(void *arg) 3001 { 3002 struct wi_softc *sc = arg; 3003 struct ieee80211com *ic = &sc->sc_ic; 3004 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg); 3005 if (ic->ic_opmode != IEEE80211_M_MONITOR && 3006 ic->ic_state == IEEE80211_S_RUN) 3007 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 3008 wi_rssadapt_updatestats, arg); 3009 } 3010 3011 /* 3012 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating 3013 * with WEP enabled so that the AP drops unencoded frames at the 3014 * 802.11 layer. 3015 * 3016 * In all other modes, clear IEEE80211_F_DROPUNENC when operating 3017 * with WEP enabled so we don't drop unencoded frames at the 802.11 3018 * layer. This is necessary because we must strip the WEP bit from 3019 * the 802.11 header before passing frames to ieee80211_input 3020 * because the card has already stripped the WEP crypto header from 3021 * the packet. 3022 */ 3023 STATIC void 3024 wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate) 3025 { 3026 struct ieee80211com *ic = &sc->sc_ic; 3027 3028 if (nstate == IEEE80211_S_RUN && 3029 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 && 3030 ic->ic_opmode != IEEE80211_M_HOSTAP) 3031 ic->ic_flags &= ~IEEE80211_F_DROPUNENC; 3032 else 3033 ic->ic_flags |= sc->sc_ic_flags; 3034 3035 DPRINTF(("%s: state %d, " 3036 "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", " 3037 "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n", 3038 __func__, nstate, 3039 ic->ic_flags & IEEE80211_F_DROPUNENC, 3040 sc->sc_ic_flags & IEEE80211_F_DROPUNENC)); 3041 } 3042 3043 STATIC int 3044 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 3045 { 3046 struct ifnet *ifp = ic->ic_ifp; 3047 struct wi_softc *sc = ifp->if_softc; 3048 struct ieee80211_node *ni = ic->ic_bss; 3049 u_int16_t val; 3050 struct wi_ssid ssid; 3051 struct wi_macaddr bssid, old_bssid; 3052 enum ieee80211_state ostate; 3053 #ifdef WI_DEBUG 3054 static const char *stname[] = 3055 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" }; 3056 #endif /* WI_DEBUG */ 3057 3058 ostate = ic->ic_state; 3059 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate])); 3060 3061 switch (nstate) { 3062 case IEEE80211_S_INIT: 3063 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3064 callout_stop(&sc->sc_rssadapt_ch); 3065 ic->ic_flags &= ~IEEE80211_F_SIBSS; 3066 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 3067 break; 3068 3069 case IEEE80211_S_SCAN: 3070 case IEEE80211_S_AUTH: 3071 case IEEE80211_S_ASSOC: 3072 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */ 3073 wi_mend_flags(sc, nstate); 3074 return 0; 3075 3076 case IEEE80211_S_RUN: 3077 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 3078 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid); 3079 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid, 3080 IEEE80211_ADDR_LEN); 3081 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid); 3082 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid); 3083 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val)); 3084 if (!isset(ic->ic_chan_avail, le16toh(val))) 3085 panic("%s: invalid channel %d\n", device_xname(&sc->sc_dev), 3086 le16toh(val)); 3087 ni->ni_chan = &ic->ic_channels[le16toh(val)]; 3088 3089 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 3090 #ifndef IEEE80211_NO_HOSTAP 3091 ni->ni_esslen = ic->ic_des_esslen; 3092 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen); 3093 ni->ni_rates = ic->ic_sup_rates[ 3094 ieee80211_chan2mode(ic, ni->ni_chan)]; 3095 ni->ni_intval = ic->ic_lintval; 3096 ni->ni_capinfo = IEEE80211_CAPINFO_ESS; 3097 if (ic->ic_flags & IEEE80211_F_PRIVACY) 3098 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; 3099 #endif /* !IEEE80211_NO_HOSTAP */ 3100 } else { 3101 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid, 3102 sizeof(ssid)); 3103 ni->ni_esslen = le16toh(ssid.wi_len); 3104 if (ni->ni_esslen > IEEE80211_NWID_LEN) 3105 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 3106 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); 3107 ni->ni_rates = ic->ic_sup_rates[ 3108 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/ 3109 } 3110 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3111 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 3112 wi_rssadapt_updatestats, sc); 3113 /* Trigger routing socket messages. XXX Copied from 3114 * ieee80211_newstate. 3115 */ 3116 if (ic->ic_opmode == IEEE80211_M_STA) 3117 ieee80211_notify_node_join(ic, ic->ic_bss, 3118 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); 3119 break; 3120 } 3121 wi_mend_flags(sc, nstate); 3122 return (*sc->sc_newstate)(ic, nstate, arg); 3123 } 3124 3125 STATIC void 3126 wi_set_tim(struct ieee80211_node *ni, int set) 3127 { 3128 struct ieee80211com *ic = ni->ni_ic; 3129 struct wi_softc *sc = ic->ic_ifp->if_softc; 3130 3131 (*sc->sc_set_tim)(ni, set); 3132 3133 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0) 3134 return; 3135 3136 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 3137 3138 (void)wi_write_val(sc, WI_RID_SET_TIM, 3139 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0)); 3140 } 3141 3142 STATIC int 3143 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) 3144 { 3145 int error = 0; 3146 u_int16_t val[2]; 3147 3148 if (!sc->sc_enabled) 3149 return ENXIO; 3150 switch (sc->sc_firmware_type) { 3151 case WI_LUCENT: 3152 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 3153 break; 3154 case WI_INTERSIL: 3155 val[0] = htole16(chanmask); /* channel */ 3156 val[1] = htole16(txrate); /* tx rate */ 3157 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); 3158 break; 3159 case WI_SYMBOL: 3160 /* 3161 * XXX only supported on 3.x ? 3162 */ 3163 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME); 3164 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, 3165 val, sizeof(val[0])); 3166 break; 3167 } 3168 if (error == 0) { 3169 sc->sc_scan_timer = WI_SCAN_WAIT; 3170 sc->sc_if.if_timer = 1; 3171 DPRINTF(("wi_scan_ap: start scanning, " 3172 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate)); 3173 } 3174 return error; 3175 } 3176 3177 STATIC void 3178 wi_scan_result(struct wi_softc *sc, int fid, int cnt) 3179 { 3180 #define N(a) (sizeof (a) / sizeof (a[0])) 3181 int i, naps, off, szbuf; 3182 struct wi_scan_header ws_hdr; /* Prism2 header */ 3183 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ 3184 struct wi_apinfo *ap; 3185 3186 off = sizeof(u_int16_t) * 2; 3187 memset(&ws_hdr, 0, sizeof(ws_hdr)); 3188 switch (sc->sc_firmware_type) { 3189 case WI_INTERSIL: 3190 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); 3191 off += sizeof(ws_hdr); 3192 szbuf = sizeof(struct wi_scan_data_p2); 3193 break; 3194 case WI_SYMBOL: 3195 szbuf = sizeof(struct wi_scan_data_p2) + 6; 3196 break; 3197 case WI_LUCENT: 3198 szbuf = sizeof(struct wi_scan_data); 3199 break; 3200 default: 3201 aprint_error_dev(&sc->sc_dev, "wi_scan_result: unknown firmware type %u\n", 3202 sc->sc_firmware_type); 3203 naps = 0; 3204 goto done; 3205 } 3206 naps = (cnt * 2 + 2 - off) / szbuf; 3207 if (naps > N(sc->sc_aps)) 3208 naps = N(sc->sc_aps); 3209 sc->sc_naps = naps; 3210 /* Read Data */ 3211 ap = sc->sc_aps; 3212 memset(&ws_dat, 0, sizeof(ws_dat)); 3213 for (i = 0; i < naps; i++, ap++) { 3214 wi_read_bap(sc, fid, off, &ws_dat, 3215 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); 3216 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, 3217 ether_sprintf(ws_dat.wi_bssid))); 3218 off += szbuf; 3219 ap->scanreason = le16toh(ws_hdr.wi_reason); 3220 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); 3221 ap->channel = le16toh(ws_dat.wi_chid); 3222 ap->signal = le16toh(ws_dat.wi_signal); 3223 ap->noise = le16toh(ws_dat.wi_noise); 3224 ap->quality = ap->signal - ap->noise; 3225 ap->capinfo = le16toh(ws_dat.wi_capinfo); 3226 ap->interval = le16toh(ws_dat.wi_interval); 3227 ap->rate = le16toh(ws_dat.wi_rate); 3228 ap->namelen = le16toh(ws_dat.wi_namelen); 3229 if (ap->namelen > sizeof(ap->name)) 3230 ap->namelen = sizeof(ap->name); 3231 memcpy(ap->name, ws_dat.wi_name, ap->namelen); 3232 } 3233 done: 3234 /* Done scanning */ 3235 sc->sc_scan_timer = 0; 3236 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); 3237 #undef N 3238 } 3239 3240 STATIC void 3241 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) 3242 { 3243 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), 3244 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL 3245 : -1, 3246 rssi); 3247 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", 3248 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), 3249 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); 3250 printf(" rx_signal %u rx_rate %u rx_flow %u\n", 3251 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); 3252 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", 3253 wh->wi_tx_rtry, wh->wi_tx_rate, 3254 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); 3255 printf(" ehdr dst %s src %s type 0x%x\n", 3256 ether_sprintf(wh->wi_ehdr.ether_dhost), 3257 ether_sprintf(wh->wi_ehdr.ether_shost), 3258 wh->wi_ehdr.ether_type); 3259 } 3260