1 /* $NetBSD: wi.c,v 1.225 2008/04/08 12:07:27 cegger Exp $ */ 2 3 /*- 4 * Copyright (c) 2004 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Charles M. Hannum. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. All advertising materials mentioning features or use of this software 19 * must display the following acknowledgement: 20 * This product includes software developed by the NetBSD 21 * Foundation, Inc. and its contributors. 22 * 4. Neither the name of The NetBSD Foundation nor the names of its 23 * contributors may be used to endorse or promote products derived 24 * from this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 36 * POSSIBILITY OF SUCH DAMAGE. 37 */ 38 39 /* 40 * Copyright (c) 1997, 1998, 1999 41 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 42 * 43 * Redistribution and use in source and binary forms, with or without 44 * modification, are permitted provided that the following conditions 45 * are met: 46 * 1. Redistributions of source code must retain the above copyright 47 * notice, this list of conditions and the following disclaimer. 48 * 2. Redistributions in binary form must reproduce the above copyright 49 * notice, this list of conditions and the following disclaimer in the 50 * documentation and/or other materials provided with the distribution. 51 * 3. All advertising materials mentioning features or use of this software 52 * must display the following acknowledgement: 53 * This product includes software developed by Bill Paul. 54 * 4. Neither the name of the author nor the names of any co-contributors 55 * may be used to endorse or promote products derived from this software 56 * without specific prior written permission. 57 * 58 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 61 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 62 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 63 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 64 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 65 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 66 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 67 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 68 * THE POSSIBILITY OF SUCH DAMAGE. 69 */ 70 71 /* 72 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. 73 * 74 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu> 75 * Electrical Engineering Department 76 * Columbia University, New York City 77 */ 78 79 /* 80 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN 81 * from Lucent. Unlike the older cards, the new ones are programmed 82 * entirely via a firmware-driven controller called the Hermes. 83 * Unfortunately, Lucent will not release the Hermes programming manual 84 * without an NDA (if at all). What they do release is an API library 85 * called the HCF (Hardware Control Functions) which is supposed to 86 * do the device-specific operations of a device driver for you. The 87 * publically available version of the HCF library (the 'HCF Light') is 88 * a) extremely gross, b) lacks certain features, particularly support 89 * for 802.11 frames, and c) is contaminated by the GNU Public License. 90 * 91 * This driver does not use the HCF or HCF Light at all. Instead, it 92 * programs the Hermes controller directly, using information gleaned 93 * from the HCF Light code and corresponding documentation. 94 * 95 * This driver supports both the PCMCIA and ISA versions of the 96 * WaveLAN/IEEE cards. Note however that the ISA card isn't really 97 * anything of the sort: it's actually a PCMCIA bridge adapter 98 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is 99 * inserted. Consequently, you need to use the pccard support for 100 * both the ISA and PCMCIA adapters. 101 */ 102 103 /* 104 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the 105 * Oslo IETF plenary meeting. 106 */ 107 108 #include <sys/cdefs.h> 109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.225 2008/04/08 12:07:27 cegger Exp $"); 110 111 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ 112 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ 113 #undef WI_HISTOGRAM 114 #undef WI_RING_DEBUG 115 #define STATIC static 116 117 #include "bpfilter.h" 118 119 #include <sys/param.h> 120 #include <sys/sysctl.h> 121 #include <sys/systm.h> 122 #include <sys/callout.h> 123 #include <sys/device.h> 124 #include <sys/socket.h> 125 #include <sys/mbuf.h> 126 #include <sys/ioctl.h> 127 #include <sys/kernel.h> /* for hz */ 128 #include <sys/proc.h> 129 #include <sys/kauth.h> 130 131 #include <net/if.h> 132 #include <net/if_dl.h> 133 #include <net/if_llc.h> 134 #include <net/if_media.h> 135 #include <net/if_ether.h> 136 #include <net/route.h> 137 138 #include <net80211/ieee80211_netbsd.h> 139 #include <net80211/ieee80211_var.h> 140 #include <net80211/ieee80211_ioctl.h> 141 #include <net80211/ieee80211_radiotap.h> 142 #include <net80211/ieee80211_rssadapt.h> 143 144 #if NBPFILTER > 0 145 #include <net/bpf.h> 146 #include <net/bpfdesc.h> 147 #endif 148 149 #include <sys/bus.h> 150 151 #include <dev/ic/wi_ieee.h> 152 #include <dev/ic/wireg.h> 153 #include <dev/ic/wivar.h> 154 155 STATIC int wi_init(struct ifnet *); 156 STATIC void wi_stop(struct ifnet *, int); 157 STATIC void wi_start(struct ifnet *); 158 STATIC int wi_reset(struct wi_softc *); 159 STATIC void wi_watchdog(struct ifnet *); 160 STATIC int wi_ioctl(struct ifnet *, u_long, void *); 161 STATIC int wi_media_change(struct ifnet *); 162 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *); 163 164 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *); 165 STATIC void wi_node_free(struct ieee80211_node *); 166 167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *, 170 struct ieee80211_frame *, u_int); 171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *); 172 STATIC void wi_rssadapt_updatestats(void *); 173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *); 174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[], 175 wi_rssdescq_t *, u_int8_t (*)[]); 176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]); 177 178 STATIC void wi_rx_intr(struct wi_softc *); 179 STATIC void wi_txalloc_intr(struct wi_softc *); 180 STATIC void wi_cmd_intr(struct wi_softc *); 181 STATIC void wi_tx_intr(struct wi_softc *); 182 STATIC void wi_tx_ex_intr(struct wi_softc *); 183 STATIC void wi_info_intr(struct wi_softc *); 184 185 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *); 186 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *, 187 const u_int8_t[IEEE80211_ADDR_LEN]); 188 STATIC void wi_key_update_begin(struct ieee80211com *); 189 STATIC void wi_key_update_end(struct ieee80211com *); 190 191 STATIC void wi_push_packet(struct wi_softc *); 192 STATIC int wi_get_cfg(struct ifnet *, u_long, void *); 193 STATIC int wi_set_cfg(struct ifnet *, u_long, void *); 194 STATIC int wi_cfg_txrate(struct wi_softc *); 195 STATIC int wi_write_txrate(struct wi_softc *, int); 196 STATIC int wi_write_wep(struct wi_softc *); 197 STATIC int wi_write_multi(struct wi_softc *); 198 STATIC int wi_alloc_fid(struct wi_softc *, int, int *); 199 STATIC void wi_read_nicid(struct wi_softc *); 200 STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); 201 202 STATIC int wi_cmd(struct wi_softc *, int, int, int, int); 203 STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int); 204 STATIC int wi_cmd_wait(struct wi_softc *, int, int); 205 STATIC int wi_seek_bap(struct wi_softc *, int, int); 206 STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int); 207 STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int); 208 STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); 209 STATIC int wi_read_rid(struct wi_softc *, int, void *, int *); 210 STATIC int wi_write_rid(struct wi_softc *, int, void *, int); 211 212 STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); 213 STATIC void wi_set_tim(struct ieee80211_node *, int); 214 215 STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); 216 STATIC void wi_scan_result(struct wi_softc *, int, int); 217 218 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); 219 STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state); 220 221 static inline int 222 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) 223 { 224 225 val = htole16(val); 226 return wi_write_rid(sc, rid, &val, sizeof(val)); 227 } 228 229 static struct timeval lasttxerror; /* time of last tx error msg */ 230 static int curtxeps = 0; /* current tx error msgs/sec */ 231 static int wi_txerate = 0; /* tx error rate: max msgs/sec */ 232 233 #ifdef WI_DEBUG 234 #define WI_DEBUG_MAX 2 235 int wi_debug = 0; 236 237 #define DPRINTF(X) if (wi_debug) printf X 238 #define DPRINTF2(X) if (wi_debug > 1) printf X 239 #define IFF_DUMPPKTS(_ifp) \ 240 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 241 static int wi_sysctl_verify_debug(SYSCTLFN_PROTO); 242 #else 243 #define DPRINTF(X) 244 #define DPRINTF2(X) 245 #define IFF_DUMPPKTS(_ifp) 0 246 #endif 247 248 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \ 249 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD) 250 251 struct wi_card_ident 252 wi_card_ident[] = { 253 /* CARD_ID CARD_NAME FIRM_TYPE */ 254 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, 255 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, 256 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, 257 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, 258 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, 259 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, 260 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, 261 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, 262 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, 263 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, 264 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, 265 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, 266 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 267 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 268 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 269 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 270 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 271 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 272 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 273 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 274 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 275 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 276 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 277 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 278 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 279 { 0, NULL, 0 }, 280 }; 281 282 #ifndef _LKM 283 /* 284 * Setup sysctl(3) MIB, hw.wi.* 285 * 286 * TBD condition CTLFLAG_PERMANENT on being an LKM or not 287 */ 288 SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup") 289 { 290 int rc; 291 const struct sysctlnode *rnode; 292 #ifdef WI_DEBUG 293 const struct sysctlnode *cnode; 294 #endif /* WI_DEBUG */ 295 296 if ((rc = sysctl_createv(clog, 0, NULL, &rnode, 297 CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL, 298 NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) 299 goto err; 300 301 if ((rc = sysctl_createv(clog, 0, &rnode, &rnode, 302 CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi", 303 "Lucent/Prism/Symbol 802.11 controls", 304 NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0) 305 goto err; 306 307 #ifdef WI_DEBUG 308 /* control debugging printfs */ 309 if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, 310 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, 311 "debug", SYSCTL_DESCR("Enable debugging output"), 312 wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) 313 goto err; 314 #endif /* WI_DEBUG */ 315 return; 316 err: 317 printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); 318 } 319 #endif 320 321 #ifdef WI_DEBUG 322 static int 323 wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper) 324 { 325 int error, t; 326 struct sysctlnode node; 327 328 node = *rnode; 329 t = *(int*)rnode->sysctl_data; 330 node.sysctl_data = &t; 331 error = sysctl_lookup(SYSCTLFN_CALL(&node)); 332 if (error || newp == NULL) 333 return (error); 334 335 if (t < lower || t > upper) 336 return (EINVAL); 337 338 *(int*)rnode->sysctl_data = t; 339 340 return (0); 341 } 342 343 static int 344 wi_sysctl_verify_debug(SYSCTLFN_ARGS) 345 { 346 return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 347 0, WI_DEBUG_MAX); 348 } 349 #endif /* WI_DEBUG */ 350 351 STATIC int 352 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen) 353 { 354 int buflen, rc; 355 356 buflen = ebuflen; 357 if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0) 358 return rc; 359 360 if (buflen < ebuflen) { 361 #ifdef WI_DEBUG 362 printf("%s: rid=%#04x read %d, expected %d\n", __func__, 363 rid, buflen, ebuflen); 364 #endif 365 return -1; 366 } 367 return 0; 368 } 369 370 int 371 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr) 372 { 373 struct ieee80211com *ic = &sc->sc_ic; 374 struct ifnet *ifp = &sc->sc_if; 375 int chan, nrate, buflen; 376 u_int16_t val, chanavail; 377 struct { 378 u_int16_t nrates; 379 char rates[IEEE80211_RATE_SIZE]; 380 } ratebuf; 381 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 382 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 383 }; 384 int s; 385 386 s = splnet(); 387 388 /* Make sure interrupts are disabled. */ 389 CSR_WRITE_2(sc, WI_INT_EN, 0); 390 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 391 392 sc->sc_invalid = 0; 393 394 /* Reset the NIC. */ 395 if (wi_reset(sc) != 0) { 396 sc->sc_invalid = 1; 397 splx(s); 398 return 1; 399 } 400 401 if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, 402 IEEE80211_ADDR_LEN) != 0 || 403 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { 404 if (macaddr != NULL) 405 memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN); 406 else { 407 printf(" could not get mac address, attach failed\n"); 408 splx(s); 409 return 1; 410 } 411 } 412 413 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); 414 415 /* Read NIC identification */ 416 wi_read_nicid(sc); 417 418 memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ); 419 ifp->if_softc = sc; 420 ifp->if_start = wi_start; 421 ifp->if_ioctl = wi_ioctl; 422 ifp->if_watchdog = wi_watchdog; 423 ifp->if_init = wi_init; 424 ifp->if_stop = wi_stop; 425 ifp->if_flags = 426 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; 427 IFQ_SET_READY(&ifp->if_snd); 428 429 ic->ic_ifp = ifp; 430 ic->ic_phytype = IEEE80211_T_DS; 431 ic->ic_opmode = IEEE80211_M_STA; 432 ic->ic_caps = IEEE80211_C_AHDEMO; 433 ic->ic_state = IEEE80211_S_INIT; 434 ic->ic_max_aid = WI_MAX_AID; 435 436 /* Find available channel */ 437 if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail, 438 sizeof(chanavail)) != 0) { 439 aprint_normal_dev(&sc->sc_dev, "using default channel list\n"); 440 chanavail = htole16(0x1fff); /* assume 1-13 */ 441 } 442 for (chan = 16; chan > 0; chan--) { 443 if (!isset((u_int8_t*)&chanavail, chan - 1)) 444 continue; 445 ic->ic_ibss_chan = &ic->ic_channels[chan]; 446 ic->ic_channels[chan].ic_freq = 447 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 448 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 449 } 450 451 /* Find default IBSS channel */ 452 if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) { 453 chan = le16toh(val); 454 if (isset((u_int8_t*)&chanavail, chan - 1)) 455 ic->ic_ibss_chan = &ic->ic_channels[chan]; 456 } 457 if (ic->ic_ibss_chan == NULL) { 458 aprint_error_dev(&sc->sc_dev, "no available channel\n"); 459 return 1; 460 } 461 462 if (sc->sc_firmware_type == WI_LUCENT) { 463 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; 464 } else { 465 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && 466 wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0) 467 sc->sc_dbm_offset = le16toh(val); 468 else 469 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; 470 } 471 472 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 473 474 /* 475 * Set flags based on firmware version. 476 */ 477 switch (sc->sc_firmware_type) { 478 case WI_LUCENT: 479 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 480 #ifdef WI_HERMES_AUTOINC_WAR 481 /* XXX: not confirmed, but never seen for recent firmware */ 482 if (sc->sc_sta_firmware_ver < 40000) { 483 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; 484 } 485 #endif 486 if (sc->sc_sta_firmware_ver >= 60000) 487 sc->sc_flags |= WI_FLAGS_HAS_MOR; 488 if (sc->sc_sta_firmware_ver >= 60006) { 489 ic->ic_caps |= IEEE80211_C_IBSS; 490 ic->ic_caps |= IEEE80211_C_MONITOR; 491 } 492 ic->ic_caps |= IEEE80211_C_PMGT; 493 sc->sc_ibss_port = 1; 494 break; 495 496 case WI_INTERSIL: 497 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; 498 sc->sc_flags |= WI_FLAGS_HAS_ROAMING; 499 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 500 if (sc->sc_sta_firmware_ver > 10101) 501 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; 502 if (sc->sc_sta_firmware_ver >= 800) { 503 if (sc->sc_sta_firmware_ver != 10402) 504 ic->ic_caps |= IEEE80211_C_HOSTAP; 505 ic->ic_caps |= IEEE80211_C_IBSS; 506 ic->ic_caps |= IEEE80211_C_MONITOR; 507 } 508 ic->ic_caps |= IEEE80211_C_PMGT; 509 sc->sc_ibss_port = 0; 510 sc->sc_alt_retry = 2; 511 break; 512 513 case WI_SYMBOL: 514 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; 515 if (sc->sc_sta_firmware_ver >= 20000) 516 ic->ic_caps |= IEEE80211_C_IBSS; 517 sc->sc_ibss_port = 4; 518 break; 519 } 520 521 /* 522 * Find out if we support WEP on this card. 523 */ 524 if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 && 525 val != htole16(0)) 526 ic->ic_caps |= IEEE80211_C_WEP; 527 528 /* Find supported rates. */ 529 buflen = sizeof(ratebuf); 530 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 && 531 buflen > 2) { 532 nrate = le16toh(ratebuf.nrates); 533 if (nrate > IEEE80211_RATE_SIZE) 534 nrate = IEEE80211_RATE_SIZE; 535 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates, 536 &ratebuf.rates[0], nrate); 537 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; 538 } else { 539 aprint_error_dev(&sc->sc_dev, "no supported rate list\n"); 540 return 1; 541 } 542 543 sc->sc_max_datalen = 2304; 544 sc->sc_rts_thresh = 2347; 545 sc->sc_frag_thresh = 2346; 546 sc->sc_system_scale = 1; 547 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; 548 sc->sc_roaming_mode = 1; 549 550 callout_init(&sc->sc_rssadapt_ch, 0); 551 552 /* 553 * Call MI attach routines. 554 */ 555 if_attach(ifp); 556 ieee80211_ifattach(ic); 557 558 sc->sc_newstate = ic->ic_newstate; 559 sc->sc_set_tim = ic->ic_set_tim; 560 ic->ic_newstate = wi_newstate; 561 ic->ic_node_alloc = wi_node_alloc; 562 ic->ic_node_free = wi_node_free; 563 ic->ic_set_tim = wi_set_tim; 564 565 ic->ic_crypto.cs_key_delete = wi_key_delete; 566 ic->ic_crypto.cs_key_set = wi_key_set; 567 ic->ic_crypto.cs_key_update_begin = wi_key_update_begin; 568 ic->ic_crypto.cs_key_update_end = wi_key_update_end; 569 570 ieee80211_media_init(ic, wi_media_change, wi_media_status); 571 572 #if NBPFILTER > 0 573 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 574 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 575 #endif 576 577 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 578 sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu)); 579 sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT); 580 581 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 582 sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu)); 583 sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT); 584 585 /* Attach is successful. */ 586 sc->sc_attached = 1; 587 588 splx(s); 589 ieee80211_announce(ic); 590 return 0; 591 } 592 593 int 594 wi_detach(struct wi_softc *sc) 595 { 596 struct ifnet *ifp = &sc->sc_if; 597 int s; 598 599 if (!sc->sc_attached) 600 return 0; 601 602 sc->sc_invalid = 1; 603 s = splnet(); 604 605 wi_stop(ifp, 1); 606 607 ieee80211_ifdetach(&sc->sc_ic); 608 if_detach(ifp); 609 splx(s); 610 return 0; 611 } 612 613 #ifdef __NetBSD__ 614 int 615 wi_activate(struct device *self, enum devact act) 616 { 617 struct wi_softc *sc = (struct wi_softc *)self; 618 int rv = 0, s; 619 620 s = splnet(); 621 switch (act) { 622 case DVACT_ACTIVATE: 623 rv = EOPNOTSUPP; 624 break; 625 626 case DVACT_DEACTIVATE: 627 if_deactivate(&sc->sc_if); 628 break; 629 } 630 splx(s); 631 return rv; 632 } 633 #endif /* __NetBSD__ */ 634 635 int 636 wi_intr(void *arg) 637 { 638 int i; 639 struct wi_softc *sc = arg; 640 struct ifnet *ifp = &sc->sc_if; 641 u_int16_t status; 642 643 if (sc->sc_enabled == 0 || 644 !device_is_active(&sc->sc_dev) || 645 (ifp->if_flags & IFF_RUNNING) == 0) 646 return 0; 647 648 if ((ifp->if_flags & IFF_UP) == 0) { 649 CSR_WRITE_2(sc, WI_INT_EN, 0); 650 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 651 return 1; 652 } 653 654 /* This is superfluous on Prism, but Lucent breaks if we 655 * do not disable interrupts. 656 */ 657 CSR_WRITE_2(sc, WI_INT_EN, 0); 658 659 /* maximum 10 loops per interrupt */ 660 for (i = 0; i < 10; i++) { 661 status = CSR_READ_2(sc, WI_EVENT_STAT); 662 #ifdef WI_DEBUG 663 if (wi_debug > 1) { 664 printf("%s: iter %d status %#04x\n", __func__, i, 665 status); 666 } 667 #endif /* WI_DEBUG */ 668 if ((status & WI_INTRS) == 0) 669 break; 670 671 sc->sc_status = status; 672 673 if (status & WI_EV_RX) 674 wi_rx_intr(sc); 675 676 if (status & WI_EV_ALLOC) 677 wi_txalloc_intr(sc); 678 679 if (status & WI_EV_TX) 680 wi_tx_intr(sc); 681 682 if (status & WI_EV_TX_EXC) 683 wi_tx_ex_intr(sc); 684 685 if (status & WI_EV_INFO) 686 wi_info_intr(sc); 687 688 CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status); 689 690 if (sc->sc_status & WI_EV_CMD) 691 wi_cmd_intr(sc); 692 693 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 694 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && 695 !IFQ_IS_EMPTY(&ifp->if_snd)) 696 wi_start(ifp); 697 698 sc->sc_status = 0; 699 } 700 701 /* re-enable interrupts */ 702 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 703 704 sc->sc_status = 0; 705 706 return 1; 707 } 708 709 #define arraylen(a) (sizeof(a) / sizeof((a)[0])) 710 711 STATIC void 712 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree) 713 { 714 int i; 715 SLIST_INIT(rssdfree); 716 for (i = 0; i < arraylen(*rssd); i++) { 717 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next); 718 } 719 } 720 721 STATIC void 722 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS], 723 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE]) 724 { 725 struct ieee80211_node *ni; 726 int i; 727 for (i = 0; i < arraylen(*rssd); i++) { 728 ni = (*rssd)[i].rd_desc.id_node; 729 (*rssd)[i].rd_desc.id_node = NULL; 730 if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0) 731 printf("%s: cleaning outstanding rssadapt " 732 "descriptor for %s\n", 733 ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr)); 734 if (ni != NULL) 735 ieee80211_free_node(ni); 736 } 737 memset(*txpending, 0, sizeof(*txpending)); 738 wi_rssdescs_init(rssd, rssdfree); 739 } 740 741 STATIC int 742 wi_init(struct ifnet *ifp) 743 { 744 struct wi_softc *sc = ifp->if_softc; 745 struct ieee80211com *ic = &sc->sc_ic; 746 struct wi_joinreq join; 747 int i; 748 int error = 0, wasenabled; 749 750 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled)); 751 wasenabled = sc->sc_enabled; 752 if (!sc->sc_enabled) { 753 if ((error = (*sc->sc_enable)(sc)) != 0) 754 goto out; 755 sc->sc_enabled = 1; 756 } else 757 wi_stop(ifp, 0); 758 759 /* Symbol firmware cannot be initialized more than once */ 760 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) 761 if ((error = wi_reset(sc)) != 0) 762 goto out; 763 764 /* common 802.11 configuration */ 765 ic->ic_flags &= ~IEEE80211_F_IBSSON; 766 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 767 switch (ic->ic_opmode) { 768 case IEEE80211_M_STA: 769 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); 770 break; 771 case IEEE80211_M_IBSS: 772 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); 773 ic->ic_flags |= IEEE80211_F_IBSSON; 774 break; 775 case IEEE80211_M_AHDEMO: 776 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 777 break; 778 case IEEE80211_M_HOSTAP: 779 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); 780 break; 781 case IEEE80211_M_MONITOR: 782 if (sc->sc_firmware_type == WI_LUCENT) 783 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 784 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0); 785 break; 786 } 787 788 /* Intersil interprets this RID as joining ESS even in IBSS mode */ 789 if (sc->sc_firmware_type == WI_LUCENT && 790 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0) 791 wi_write_val(sc, WI_RID_CREATE_IBSS, 1); 792 else 793 wi_write_val(sc, WI_RID_CREATE_IBSS, 0); 794 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); 795 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid, 796 ic->ic_des_esslen); 797 wi_write_val(sc, WI_RID_OWN_CHNL, 798 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 799 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen); 800 IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); 801 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); 802 if (ic->ic_caps & IEEE80211_C_PMGT) 803 wi_write_val(sc, WI_RID_PM_ENABLED, 804 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); 805 806 /* not yet common 802.11 configuration */ 807 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); 808 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh); 809 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) 810 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh); 811 812 /* driver specific 802.11 configuration */ 813 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) 814 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); 815 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) 816 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); 817 if (sc->sc_flags & WI_FLAGS_HAS_MOR) 818 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); 819 wi_cfg_txrate(sc); 820 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); 821 822 #ifndef IEEE80211_NO_HOSTAP 823 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 824 sc->sc_firmware_type == WI_INTERSIL) { 825 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval); 826 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1); 827 } 828 #endif /* !IEEE80211_NO_HOSTAP */ 829 830 if (sc->sc_firmware_type == WI_INTERSIL) { 831 struct ieee80211_rateset *rs = 832 &ic->ic_sup_rates[IEEE80211_MODE_11B]; 833 u_int16_t basic = 0, supported = 0, rate; 834 835 for (i = 0; i < rs->rs_nrates; i++) { 836 switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) { 837 case 2: 838 rate = 1; 839 break; 840 case 4: 841 rate = 2; 842 break; 843 case 11: 844 rate = 4; 845 break; 846 case 22: 847 rate = 8; 848 break; 849 default: 850 rate = 0; 851 break; 852 } 853 if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) 854 basic |= rate; 855 supported |= rate; 856 } 857 wi_write_val(sc, WI_RID_BASIC_RATE, basic); 858 wi_write_val(sc, WI_RID_SUPPORT_RATE, supported); 859 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry); 860 } 861 862 /* 863 * Initialize promisc mode. 864 * Being in Host-AP mode causes a great 865 * deal of pain if promiscuous mode is set. 866 * Therefore we avoid confusing the firmware 867 * and always reset promisc mode in Host-AP 868 * mode. Host-AP sees all the packets anyway. 869 */ 870 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 871 (ifp->if_flags & IFF_PROMISC) != 0) { 872 wi_write_val(sc, WI_RID_PROMISC, 1); 873 } else { 874 wi_write_val(sc, WI_RID_PROMISC, 0); 875 } 876 877 /* Configure WEP. */ 878 if (ic->ic_caps & IEEE80211_C_WEP) { 879 sc->sc_cnfauthmode = ic->ic_bss->ni_authmode; 880 wi_write_wep(sc); 881 } 882 883 /* Set multicast filter. */ 884 wi_write_multi(sc); 885 886 sc->sc_txalloc = 0; 887 sc->sc_txalloced = 0; 888 sc->sc_txqueue = 0; 889 sc->sc_txqueued = 0; 890 sc->sc_txstart = 0; 891 sc->sc_txstarted = 0; 892 893 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { 894 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); 895 if (sc->sc_firmware_type == WI_SYMBOL) 896 sc->sc_buflen = 1585; /* XXX */ 897 for (i = 0; i < WI_NTXBUF; i++) { 898 error = wi_alloc_fid(sc, sc->sc_buflen, 899 &sc->sc_txd[i].d_fid); 900 if (error) { 901 aprint_error_dev(&sc->sc_dev, "tx buffer allocation failed\n"); 902 goto out; 903 } 904 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i, 905 sc->sc_txd[i].d_fid)); 906 ++sc->sc_txalloced; 907 } 908 } 909 910 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree); 911 912 /* Enable desired port */ 913 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 914 ifp->if_flags |= IFF_RUNNING; 915 ifp->if_flags &= ~IFF_OACTIVE; 916 ic->ic_state = IEEE80211_S_INIT; 917 918 if (ic->ic_opmode == IEEE80211_M_AHDEMO || 919 ic->ic_opmode == IEEE80211_M_IBSS || 920 ic->ic_opmode == IEEE80211_M_MONITOR || 921 ic->ic_opmode == IEEE80211_M_HOSTAP) 922 ieee80211_create_ibss(ic, ic->ic_ibss_chan); 923 924 /* Enable interrupts */ 925 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 926 927 #ifndef IEEE80211_NO_HOSTAP 928 if (!wasenabled && 929 ic->ic_opmode == IEEE80211_M_HOSTAP && 930 sc->sc_firmware_type == WI_INTERSIL) { 931 /* XXX: some card need to be re-enabled for hostap */ 932 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); 933 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); 934 } 935 #endif /* !IEEE80211_NO_HOSTAP */ 936 937 if (ic->ic_opmode == IEEE80211_M_STA && 938 ((ic->ic_flags & IEEE80211_F_DESBSSID) || 939 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { 940 memset(&join, 0, sizeof(join)); 941 if (ic->ic_flags & IEEE80211_F_DESBSSID) 942 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); 943 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) 944 join.wi_chan = 945 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan)); 946 /* Lucent firmware does not support the JOIN RID. */ 947 if (sc->sc_firmware_type != WI_LUCENT) 948 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); 949 } 950 951 out: 952 if (error) { 953 printf("%s: interface not running\n", device_xname(&sc->sc_dev)); 954 wi_stop(ifp, 0); 955 } 956 DPRINTF(("wi_init: return %d\n", error)); 957 return error; 958 } 959 960 STATIC void 961 wi_txcmd_wait(struct wi_softc *sc) 962 { 963 KASSERT(sc->sc_txcmds == 1); 964 if (sc->sc_status & WI_EV_CMD) { 965 sc->sc_status &= ~WI_EV_CMD; 966 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 967 } else 968 (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0); 969 } 970 971 STATIC void 972 wi_stop(struct ifnet *ifp, int disable) 973 { 974 struct wi_softc *sc = ifp->if_softc; 975 struct ieee80211com *ic = &sc->sc_ic; 976 int s; 977 978 if (!sc->sc_enabled) 979 return; 980 981 s = splnet(); 982 983 DPRINTF(("wi_stop: disable %d\n", disable)); 984 985 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 986 987 /* wait for tx command completion (deassoc, deauth) */ 988 while (sc->sc_txcmds > 0) { 989 wi_txcmd_wait(sc); 990 wi_cmd_intr(sc); 991 } 992 993 /* TBD wait for deassoc, deauth tx completion? */ 994 995 if (!sc->sc_invalid) { 996 CSR_WRITE_2(sc, WI_INT_EN, 0); 997 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 998 } 999 1000 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1001 &sc->sc_txpending); 1002 1003 sc->sc_tx_timer = 0; 1004 sc->sc_scan_timer = 0; 1005 sc->sc_false_syns = 0; 1006 sc->sc_naps = 0; 1007 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); 1008 ifp->if_timer = 0; 1009 1010 if (disable) { 1011 if (sc->sc_disable) 1012 (*sc->sc_disable)(sc); 1013 sc->sc_enabled = 0; 1014 } 1015 splx(s); 1016 } 1017 1018 /* 1019 * Choose a data rate for a packet len bytes long that suits the packet 1020 * type and the wireless conditions. 1021 * 1022 * TBD Adapt fragmentation threshold. 1023 */ 1024 STATIC int 1025 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni, 1026 struct ieee80211_frame *wh, u_int len) 1027 { 1028 struct wi_softc *sc = ic->ic_ifp->if_softc; 1029 struct wi_node *wn = (void*)ni; 1030 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt; 1031 int do_not_adapt, i, rateidx, s; 1032 1033 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) && 1034 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0; 1035 1036 s = splnet(); 1037 1038 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len, 1039 ic->ic_fixed_rate, 1040 ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname, 1041 do_not_adapt); 1042 1043 ni->ni_txrate = rateidx; 1044 1045 if (ic->ic_opmode != IEEE80211_M_HOSTAP) { 1046 /* choose the slowest pending rate so that we don't 1047 * accidentally send a packet on the MAC's queue 1048 * too fast. TBD find out if the MAC labels Tx 1049 * packets w/ rate when enqueued or dequeued. 1050 */ 1051 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++); 1052 rateidx = i; 1053 } 1054 1055 splx(s); 1056 return (rateidx); 1057 } 1058 1059 STATIC void 1060 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 1061 { 1062 struct wi_node *wn; 1063 if (id->id_node == NULL) 1064 return; 1065 1066 wn = (void*)id->id_node; 1067 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id); 1068 } 1069 1070 STATIC void 1071 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 1072 { 1073 struct ieee80211_node *ni; 1074 struct wi_node *wn; 1075 int s; 1076 1077 s = splnet(); 1078 1079 if ((ni = id->id_node) == NULL) { 1080 DPRINTF(("wi_lower_rate: missing node\n")); 1081 goto out; 1082 } 1083 1084 wn = (void *)ni; 1085 1086 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id); 1087 out: 1088 splx(s); 1089 return; 1090 } 1091 1092 STATIC void 1093 wi_start(struct ifnet *ifp) 1094 { 1095 struct wi_softc *sc = ifp->if_softc; 1096 struct ieee80211com *ic = &sc->sc_ic; 1097 struct ether_header *eh; 1098 struct ieee80211_node *ni; 1099 struct ieee80211_frame *wh; 1100 struct ieee80211_rateset *rs; 1101 struct wi_rssdesc *rd; 1102 struct ieee80211_rssdesc *id; 1103 struct mbuf *m0; 1104 struct wi_frame frmhdr; 1105 int cur, fid, off, rateidx; 1106 1107 if (!sc->sc_enabled || sc->sc_invalid) 1108 return; 1109 if (sc->sc_flags & WI_FLAGS_OUTRANGE) 1110 return; 1111 1112 memset(&frmhdr, 0, sizeof(frmhdr)); 1113 cur = sc->sc_txqueue; 1114 for (;;) { 1115 ni = ic->ic_bss; 1116 if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) { 1117 ifp->if_flags |= IFF_OACTIVE; 1118 break; 1119 } 1120 if (!IF_IS_EMPTY(&ic->ic_mgtq)) { 1121 IF_DEQUEUE(&ic->ic_mgtq, m0); 1122 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 1123 (void *)&frmhdr.wi_ehdr); 1124 frmhdr.wi_ehdr.ether_type = 0; 1125 wh = mtod(m0, struct ieee80211_frame *); 1126 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1127 m0->m_pkthdr.rcvif = NULL; 1128 } else if (ic->ic_state == IEEE80211_S_RUN) { 1129 IFQ_POLL(&ifp->if_snd, m0); 1130 if (m0 == NULL) 1131 break; 1132 IFQ_DEQUEUE(&ifp->if_snd, m0); 1133 ifp->if_opackets++; 1134 m_copydata(m0, 0, ETHER_HDR_LEN, 1135 (void *)&frmhdr.wi_ehdr); 1136 #if NBPFILTER > 0 1137 if (ifp->if_bpf) 1138 bpf_mtap(ifp->if_bpf, m0); 1139 #endif 1140 1141 eh = mtod(m0, struct ether_header *); 1142 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1143 if (ni == NULL) { 1144 ifp->if_oerrors++; 1145 continue; 1146 } 1147 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 1148 (m0->m_flags & M_PWR_SAV) == 0) { 1149 ieee80211_pwrsave(ic, ni, m0); 1150 goto next; 1151 } 1152 if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { 1153 ieee80211_free_node(ni); 1154 ifp->if_oerrors++; 1155 continue; 1156 } 1157 wh = mtod(m0, struct ieee80211_frame *); 1158 } else 1159 break; 1160 #if NBPFILTER > 0 1161 if (ic->ic_rawbpf) 1162 bpf_mtap(ic->ic_rawbpf, m0); 1163 #endif 1164 frmhdr.wi_tx_ctl = 1165 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK); 1166 #ifndef IEEE80211_NO_HOSTAP 1167 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1168 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); 1169 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1170 (wh->i_fc[1] & IEEE80211_FC1_WEP)) { 1171 if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { 1172 m_freem(m0); 1173 ifp->if_oerrors++; 1174 goto next; 1175 } 1176 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); 1177 } 1178 #endif /* !IEEE80211_NO_HOSTAP */ 1179 1180 rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len); 1181 rs = &ni->ni_rates; 1182 1183 #if NBPFILTER > 0 1184 if (sc->sc_drvbpf) { 1185 struct wi_tx_radiotap_header *tap = &sc->sc_txtap; 1186 1187 tap->wt_rate = rs->rs_rates[rateidx]; 1188 tap->wt_chan_freq = 1189 htole16(ic->ic_bss->ni_chan->ic_freq); 1190 tap->wt_chan_flags = 1191 htole16(ic->ic_bss->ni_chan->ic_flags); 1192 /* TBD tap->wt_flags */ 1193 1194 bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0); 1195 } 1196 #endif 1197 1198 rd = SLIST_FIRST(&sc->sc_rssdfree); 1199 id = &rd->rd_desc; 1200 id->id_len = m0->m_pkthdr.len; 1201 id->id_rateidx = ni->ni_txrate; 1202 id->id_rssi = ni->ni_rssi; 1203 1204 frmhdr.wi_tx_idx = rd - sc->sc_rssd; 1205 1206 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1207 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] & 1208 IEEE80211_RATE_VAL); 1209 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) 1210 (void)wi_write_txrate(sc, rs->rs_rates[rateidx]); 1211 1212 m_copydata(m0, 0, sizeof(struct ieee80211_frame), 1213 (void *)&frmhdr.wi_whdr); 1214 m_adj(m0, sizeof(struct ieee80211_frame)); 1215 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); 1216 if (IFF_DUMPPKTS(ifp)) 1217 wi_dump_pkt(&frmhdr, ni, -1); 1218 fid = sc->sc_txd[cur].d_fid; 1219 off = sizeof(frmhdr); 1220 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 || 1221 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) { 1222 aprint_error_dev(&sc->sc_dev, "%s write fid %x failed\n", 1223 __func__, fid); 1224 ifp->if_oerrors++; 1225 m_freem(m0); 1226 goto next; 1227 } 1228 m_freem(m0); 1229 sc->sc_txpending[ni->ni_txrate]++; 1230 --sc->sc_txalloced; 1231 if (sc->sc_txqueued++ == 0) { 1232 #ifdef DIAGNOSTIC 1233 if (cur != sc->sc_txstart) 1234 printf("%s: ring is desynchronized\n", 1235 device_xname(&sc->sc_dev)); 1236 #endif 1237 wi_push_packet(sc); 1238 } else { 1239 #ifdef WI_RING_DEBUG 1240 printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1241 device_xname(&sc->sc_dev), fid, 1242 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1243 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1244 #endif 1245 } 1246 sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF; 1247 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next); 1248 id->id_node = ni; 1249 continue; 1250 next: 1251 if (ni != NULL) 1252 ieee80211_free_node(ni); 1253 } 1254 } 1255 1256 1257 STATIC int 1258 wi_reset(struct wi_softc *sc) 1259 { 1260 int i, error; 1261 1262 DPRINTF(("wi_reset\n")); 1263 1264 if (sc->sc_reset) 1265 (*sc->sc_reset)(sc); 1266 1267 error = 0; 1268 for (i = 0; i < 5; i++) { 1269 if (sc->sc_invalid) 1270 return ENXIO; 1271 DELAY(20*1000); /* XXX: way too long! */ 1272 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) 1273 break; 1274 } 1275 if (error) { 1276 aprint_error_dev(&sc->sc_dev, "init failed\n"); 1277 return error; 1278 } 1279 CSR_WRITE_2(sc, WI_INT_EN, 0); 1280 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 1281 1282 /* Calibrate timer. */ 1283 wi_write_val(sc, WI_RID_TICK_TIME, 0); 1284 return 0; 1285 } 1286 1287 STATIC void 1288 wi_watchdog(struct ifnet *ifp) 1289 { 1290 struct wi_softc *sc = ifp->if_softc; 1291 1292 ifp->if_timer = 0; 1293 if (!sc->sc_enabled) 1294 return; 1295 1296 if (sc->sc_tx_timer) { 1297 if (--sc->sc_tx_timer == 0) { 1298 printf("%s: device timeout\n", ifp->if_xname); 1299 ifp->if_oerrors++; 1300 wi_init(ifp); 1301 return; 1302 } 1303 ifp->if_timer = 1; 1304 } 1305 1306 if (sc->sc_scan_timer) { 1307 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && 1308 sc->sc_firmware_type == WI_INTERSIL) { 1309 DPRINTF(("wi_watchdog: inquire scan\n")); 1310 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 1311 } 1312 if (sc->sc_scan_timer) 1313 ifp->if_timer = 1; 1314 } 1315 1316 /* TODO: rate control */ 1317 ieee80211_watchdog(&sc->sc_ic); 1318 } 1319 1320 STATIC int 1321 wi_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1322 { 1323 struct wi_softc *sc = ifp->if_softc; 1324 struct ieee80211com *ic = &sc->sc_ic; 1325 struct ifreq *ifr = (struct ifreq *)data; 1326 int s, error = 0; 1327 1328 if (!device_is_active(&sc->sc_dev)) 1329 return ENXIO; 1330 1331 s = splnet(); 1332 1333 switch (cmd) { 1334 case SIOCSIFFLAGS: 1335 /* 1336 * Can't do promisc and hostap at the same time. If all that's 1337 * changing is the promisc flag, try to short-circuit a call to 1338 * wi_init() by just setting PROMISC in the hardware. 1339 */ 1340 if (ifp->if_flags & IFF_UP) { 1341 if (sc->sc_enabled) { 1342 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1343 (ifp->if_flags & IFF_PROMISC) != 0) 1344 wi_write_val(sc, WI_RID_PROMISC, 1); 1345 else 1346 wi_write_val(sc, WI_RID_PROMISC, 0); 1347 } else 1348 error = wi_init(ifp); 1349 } else if (sc->sc_enabled) 1350 wi_stop(ifp, 1); 1351 break; 1352 case SIOCSIFMEDIA: 1353 case SIOCGIFMEDIA: 1354 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1355 break; 1356 case SIOCADDMULTI: 1357 case SIOCDELMULTI: 1358 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { 1359 if (ifp->if_flags & IFF_RUNNING) { 1360 /* do not rescan */ 1361 error = wi_write_multi(sc); 1362 } else 1363 error = 0; 1364 } 1365 break; 1366 case SIOCGIFGENERIC: 1367 error = wi_get_cfg(ifp, cmd, data); 1368 break; 1369 case SIOCSIFGENERIC: 1370 error = kauth_authorize_generic(curlwp->l_cred, 1371 KAUTH_GENERIC_ISSUSER, NULL); 1372 if (error) 1373 break; 1374 error = wi_set_cfg(ifp, cmd, data); 1375 if (error == ENETRESET) { 1376 if (ifp->if_flags & IFF_RUNNING) 1377 error = wi_init(ifp); 1378 else 1379 error = 0; 1380 } 1381 break; 1382 case SIOCS80211BSSID: 1383 if (sc->sc_firmware_type == WI_LUCENT) { 1384 error = ENODEV; 1385 break; 1386 } 1387 /* fall through */ 1388 default: 1389 ic->ic_flags |= sc->sc_ic_flags; 1390 error = ieee80211_ioctl(&sc->sc_ic, cmd, data); 1391 sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC; 1392 if (error == ENETRESET) { 1393 if (sc->sc_enabled) 1394 error = wi_init(ifp); 1395 else 1396 error = 0; 1397 } 1398 break; 1399 } 1400 wi_mend_flags(sc, ic->ic_state); 1401 splx(s); 1402 return error; 1403 } 1404 1405 STATIC int 1406 wi_media_change(struct ifnet *ifp) 1407 { 1408 struct wi_softc *sc = ifp->if_softc; 1409 struct ieee80211com *ic = &sc->sc_ic; 1410 int error; 1411 1412 error = ieee80211_media_change(ifp); 1413 if (error == ENETRESET) { 1414 if (sc->sc_enabled) 1415 error = wi_init(ifp); 1416 else 1417 error = 0; 1418 } 1419 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1420 1421 return error; 1422 } 1423 1424 STATIC void 1425 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1426 { 1427 struct wi_softc *sc = ifp->if_softc; 1428 struct ieee80211com *ic = &sc->sc_ic; 1429 u_int16_t val; 1430 int rate; 1431 1432 if (sc->sc_enabled == 0) { 1433 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1434 imr->ifm_status = 0; 1435 return; 1436 } 1437 1438 imr->ifm_status = IFM_AVALID; 1439 imr->ifm_active = IFM_IEEE80211; 1440 if (ic->ic_state == IEEE80211_S_RUN && 1441 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) 1442 imr->ifm_status |= IFM_ACTIVE; 1443 if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) { 1444 /* convert to 802.11 rate */ 1445 val = le16toh(val); 1446 rate = val * 2; 1447 if (sc->sc_firmware_type == WI_LUCENT) { 1448 if (rate == 10) 1449 rate = 11; /* 5.5Mbps */ 1450 } else { 1451 if (rate == 4*2) 1452 rate = 11; /* 5.5Mbps */ 1453 else if (rate == 8*2) 1454 rate = 22; /* 11Mbps */ 1455 } 1456 } else 1457 rate = 0; 1458 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1459 switch (ic->ic_opmode) { 1460 case IEEE80211_M_STA: 1461 break; 1462 case IEEE80211_M_IBSS: 1463 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1464 break; 1465 case IEEE80211_M_AHDEMO: 1466 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1467 break; 1468 case IEEE80211_M_HOSTAP: 1469 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1470 break; 1471 case IEEE80211_M_MONITOR: 1472 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1473 break; 1474 } 1475 } 1476 1477 STATIC struct ieee80211_node * 1478 wi_node_alloc(struct ieee80211_node_table *nt) 1479 { 1480 struct wi_node *wn = 1481 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1482 return wn ? &wn->wn_node : NULL; 1483 } 1484 1485 STATIC void 1486 wi_node_free(struct ieee80211_node *ni) 1487 { 1488 struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc; 1489 int i; 1490 1491 for (i = 0; i < WI_NTXRSS; i++) { 1492 if (sc->sc_rssd[i].rd_desc.id_node == ni) 1493 sc->sc_rssd[i].rd_desc.id_node = NULL; 1494 } 1495 free(ni, M_DEVBUF); 1496 } 1497 1498 STATIC void 1499 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) 1500 { 1501 struct ieee80211com *ic = &sc->sc_ic; 1502 struct ieee80211_node *ni = ic->ic_bss; 1503 struct ifnet *ifp = &sc->sc_if; 1504 1505 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) 1506 return; 1507 1508 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); 1509 DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); 1510 1511 /* In promiscuous mode, the BSSID field is not a reliable 1512 * indicator of the firmware's BSSID. Damp spurious 1513 * change-of-BSSID indications. 1514 */ 1515 if ((ifp->if_flags & IFF_PROMISC) != 0 && 1516 !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns, 1517 WI_MAX_FALSE_SYNS)) 1518 return; 1519 1520 sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1); 1521 /* 1522 * XXX hack; we should create a new node with the new bssid 1523 * and replace the existing ic_bss with it but since we don't 1524 * process management frames to collect state we cheat by 1525 * reusing the existing node as we know wi_newstate will be 1526 * called and it will overwrite the node state. 1527 */ 1528 ieee80211_sta_join(ic, ieee80211_ref_node(ni)); 1529 } 1530 1531 static inline void 1532 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni, 1533 struct ieee80211_frame *wh, int rssi) 1534 { 1535 struct wi_node *wn; 1536 1537 if (ni == NULL) { 1538 printf("%s: null node", __func__); 1539 return; 1540 } 1541 1542 wn = (void*)ni; 1543 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi); 1544 } 1545 1546 STATIC void 1547 wi_rx_intr(struct wi_softc *sc) 1548 { 1549 struct ieee80211com *ic = &sc->sc_ic; 1550 struct ifnet *ifp = &sc->sc_if; 1551 struct ieee80211_node *ni; 1552 struct wi_frame frmhdr; 1553 struct mbuf *m; 1554 struct ieee80211_frame *wh; 1555 int fid, len, off, rssi; 1556 u_int8_t dir; 1557 u_int16_t status; 1558 u_int32_t rstamp; 1559 1560 fid = CSR_READ_2(sc, WI_RX_FID); 1561 1562 /* First read in the frame header */ 1563 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { 1564 aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n", 1565 __func__, fid); 1566 ifp->if_ierrors++; 1567 return; 1568 } 1569 1570 if (IFF_DUMPPKTS(ifp)) 1571 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); 1572 1573 /* 1574 * Drop undecryptable or packets with receive errors here 1575 */ 1576 status = le16toh(frmhdr.wi_status); 1577 if ((status & WI_STAT_ERRSTAT) != 0 && 1578 ic->ic_opmode != IEEE80211_M_MONITOR) { 1579 ifp->if_ierrors++; 1580 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); 1581 return; 1582 } 1583 rssi = frmhdr.wi_rx_signal; 1584 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | 1585 le16toh(frmhdr.wi_rx_tstamp1); 1586 1587 len = le16toh(frmhdr.wi_dat_len); 1588 off = ALIGN(sizeof(struct ieee80211_frame)); 1589 1590 /* Sometimes the PRISM2.x returns bogusly large frames. Except 1591 * in monitor mode, just throw them away. 1592 */ 1593 if (off + len > MCLBYTES) { 1594 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1595 ifp->if_ierrors++; 1596 DPRINTF(("wi_rx_intr: oversized packet\n")); 1597 return; 1598 } else 1599 len = 0; 1600 } 1601 1602 MGETHDR(m, M_DONTWAIT, MT_DATA); 1603 if (m == NULL) { 1604 ifp->if_ierrors++; 1605 DPRINTF(("wi_rx_intr: MGET failed\n")); 1606 return; 1607 } 1608 if (off + len > MHLEN) { 1609 MCLGET(m, M_DONTWAIT); 1610 if ((m->m_flags & M_EXT) == 0) { 1611 m_freem(m); 1612 ifp->if_ierrors++; 1613 DPRINTF(("wi_rx_intr: MCLGET failed\n")); 1614 return; 1615 } 1616 } 1617 1618 m->m_data += off - sizeof(struct ieee80211_frame); 1619 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); 1620 wi_read_bap(sc, fid, sizeof(frmhdr), 1621 m->m_data + sizeof(struct ieee80211_frame), len); 1622 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; 1623 m->m_pkthdr.rcvif = ifp; 1624 1625 wh = mtod(m, struct ieee80211_frame *); 1626 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1627 /* 1628 * WEP is decrypted by hardware. Clear WEP bit 1629 * header for ieee80211_input(). 1630 */ 1631 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1632 } 1633 #if NBPFILTER > 0 1634 if (sc->sc_drvbpf) { 1635 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap; 1636 1637 tap->wr_rate = frmhdr.wi_rx_rate / 5; 1638 tap->wr_antsignal = frmhdr.wi_rx_signal; 1639 tap->wr_antnoise = frmhdr.wi_rx_silence; 1640 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1641 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1642 if (frmhdr.wi_status & WI_STAT_PCF) 1643 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP; 1644 1645 /* XXX IEEE80211_RADIOTAP_F_WEP */ 1646 bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m); 1647 } 1648 #endif 1649 1650 /* synchronize driver's BSSID with firmware's BSSID */ 1651 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; 1652 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) 1653 wi_sync_bssid(sc, wh->i_addr3); 1654 1655 ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); 1656 1657 ieee80211_input(ic, m, ni, rssi, rstamp); 1658 1659 wi_rssadapt_input(ic, ni, wh, rssi); 1660 1661 /* 1662 * The frame may have caused the node to be marked for 1663 * reclamation (e.g. in response to a DEAUTH message) 1664 * so use release_node here instead of unref_node. 1665 */ 1666 ieee80211_free_node(ni); 1667 } 1668 1669 STATIC void 1670 wi_tx_ex_intr(struct wi_softc *sc) 1671 { 1672 struct ieee80211com *ic = &sc->sc_ic; 1673 struct ifnet *ifp = &sc->sc_if; 1674 struct ieee80211_node *ni; 1675 struct ieee80211_rssdesc *id; 1676 struct wi_rssdesc *rssd; 1677 struct wi_frame frmhdr; 1678 int fid; 1679 u_int16_t status; 1680 1681 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1682 /* Read in the frame header */ 1683 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1684 aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n", 1685 __func__, fid); 1686 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1687 &sc->sc_txpending); 1688 goto out; 1689 } 1690 1691 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1692 printf("%s: %s bad idx %02x\n", 1693 device_xname(&sc->sc_dev), __func__, frmhdr.wi_tx_idx); 1694 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1695 &sc->sc_txpending); 1696 goto out; 1697 } 1698 1699 status = le16toh(frmhdr.wi_status); 1700 1701 /* 1702 * Spontaneous station disconnects appear as xmit 1703 * errors. Don't announce them and/or count them 1704 * as an output error. 1705 */ 1706 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { 1707 aprint_error_dev(&sc->sc_dev, "tx failed"); 1708 if (status & WI_TXSTAT_RET_ERR) 1709 printf(", retry limit exceeded"); 1710 if (status & WI_TXSTAT_AGED_ERR) 1711 printf(", max transmit lifetime exceeded"); 1712 if (status & WI_TXSTAT_DISCONNECT) 1713 printf(", port disconnected"); 1714 if (status & WI_TXSTAT_FORM_ERR) 1715 printf(", invalid format (data len %u src %s)", 1716 le16toh(frmhdr.wi_dat_len), 1717 ether_sprintf(frmhdr.wi_ehdr.ether_shost)); 1718 if (status & ~0xf) 1719 printf(", status=0x%x", status); 1720 printf("\n"); 1721 } 1722 ifp->if_oerrors++; 1723 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1724 id = &rssd->rd_desc; 1725 if ((status & WI_TXSTAT_RET_ERR) != 0) 1726 wi_lower_rate(ic, id); 1727 1728 ni = id->id_node; 1729 id->id_node = NULL; 1730 1731 if (ni == NULL) { 1732 aprint_error_dev(&sc->sc_dev, "%s null node, rssdesc %02x\n", 1733 __func__, frmhdr.wi_tx_idx); 1734 goto out; 1735 } 1736 1737 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1738 aprint_error_dev(&sc->sc_dev, "%s txpending[%i] wraparound", 1739 __func__, id->id_rateidx); 1740 sc->sc_txpending[id->id_rateidx] = 0; 1741 } 1742 if (ni != NULL) 1743 ieee80211_free_node(ni); 1744 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1745 out: 1746 ifp->if_flags &= ~IFF_OACTIVE; 1747 } 1748 1749 STATIC void 1750 wi_txalloc_intr(struct wi_softc *sc) 1751 { 1752 int fid, cur; 1753 1754 fid = CSR_READ_2(sc, WI_ALLOC_FID); 1755 1756 cur = sc->sc_txalloc; 1757 #ifdef DIAGNOSTIC 1758 if (sc->sc_txstarted == 0) { 1759 printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1760 device_xname(&sc->sc_dev), fid, sc->sc_txd[cur].d_fid, cur, 1761 sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1762 return; 1763 } 1764 #endif 1765 --sc->sc_txstarted; 1766 ++sc->sc_txalloced; 1767 sc->sc_txd[cur].d_fid = fid; 1768 sc->sc_txalloc = (cur + 1) % WI_NTXBUF; 1769 #ifdef WI_RING_DEBUG 1770 printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1771 device_xname(&sc->sc_dev), fid, 1772 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1773 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1774 #endif 1775 } 1776 1777 STATIC void 1778 wi_cmd_intr(struct wi_softc *sc) 1779 { 1780 struct ifnet *ifp = &sc->sc_if; 1781 1782 if (sc->sc_invalid) 1783 return; 1784 #ifdef WI_DEBUG 1785 if (wi_debug > 1) 1786 printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds); 1787 #endif 1788 KASSERT(sc->sc_txcmds > 0); 1789 1790 --sc->sc_txcmds; 1791 1792 if (--sc->sc_txqueued == 0) { 1793 sc->sc_tx_timer = 0; 1794 ifp->if_flags &= ~IFF_OACTIVE; 1795 #ifdef WI_RING_DEBUG 1796 printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n", 1797 device_xname(&sc->sc_dev), 1798 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1799 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1800 #endif 1801 } else 1802 wi_push_packet(sc); 1803 } 1804 1805 STATIC void 1806 wi_push_packet(struct wi_softc *sc) 1807 { 1808 struct ifnet *ifp = &sc->sc_if; 1809 int cur, fid; 1810 1811 cur = sc->sc_txstart; 1812 fid = sc->sc_txd[cur].d_fid; 1813 1814 KASSERT(sc->sc_txcmds == 0); 1815 1816 if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) { 1817 aprint_error_dev(&sc->sc_dev, "xmit failed\n"); 1818 /* XXX ring might have a hole */ 1819 } 1820 1821 if (sc->sc_txcmds++ > 0) 1822 printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds); 1823 1824 ++sc->sc_txstarted; 1825 #ifdef DIAGNOSTIC 1826 if (sc->sc_txstarted > WI_NTXBUF) 1827 aprint_error_dev(&sc->sc_dev, "too many buffers started\n"); 1828 #endif 1829 sc->sc_txstart = (cur + 1) % WI_NTXBUF; 1830 sc->sc_tx_timer = 5; 1831 ifp->if_timer = 1; 1832 #ifdef WI_RING_DEBUG 1833 printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", 1834 device_xname(&sc->sc_dev), fid, 1835 sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, 1836 sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); 1837 #endif 1838 } 1839 1840 STATIC void 1841 wi_tx_intr(struct wi_softc *sc) 1842 { 1843 struct ieee80211com *ic = &sc->sc_ic; 1844 struct ifnet *ifp = &sc->sc_if; 1845 struct ieee80211_node *ni; 1846 struct ieee80211_rssdesc *id; 1847 struct wi_rssdesc *rssd; 1848 struct wi_frame frmhdr; 1849 int fid; 1850 1851 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1852 /* Read in the frame header */ 1853 if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2), 1854 &frmhdr.wi_tx_swsup2, 2) != 0) { 1855 aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n", 1856 __func__, fid); 1857 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1858 &sc->sc_txpending); 1859 goto out; 1860 } 1861 1862 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1863 aprint_error_dev(&sc->sc_dev, "%s bad idx %02x\n", 1864 __func__, frmhdr.wi_tx_idx); 1865 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1866 &sc->sc_txpending); 1867 goto out; 1868 } 1869 1870 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1871 id = &rssd->rd_desc; 1872 wi_raise_rate(ic, id); 1873 1874 ni = id->id_node; 1875 id->id_node = NULL; 1876 1877 if (ni == NULL) { 1878 aprint_error_dev(&sc->sc_dev, "%s null node, rssdesc %02x\n", 1879 __func__, frmhdr.wi_tx_idx); 1880 goto out; 1881 } 1882 1883 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1884 aprint_error_dev(&sc->sc_dev, "%s txpending[%i] wraparound", 1885 __func__, id->id_rateidx); 1886 sc->sc_txpending[id->id_rateidx] = 0; 1887 } 1888 if (ni != NULL) 1889 ieee80211_free_node(ni); 1890 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1891 out: 1892 ifp->if_flags &= ~IFF_OACTIVE; 1893 } 1894 1895 STATIC void 1896 wi_info_intr(struct wi_softc *sc) 1897 { 1898 struct ieee80211com *ic = &sc->sc_ic; 1899 struct ifnet *ifp = &sc->sc_if; 1900 int i, fid, len, off; 1901 u_int16_t ltbuf[2]; 1902 u_int16_t stat; 1903 u_int32_t *ptr; 1904 1905 fid = CSR_READ_2(sc, WI_INFO_FID); 1906 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); 1907 1908 switch (le16toh(ltbuf[1])) { 1909 1910 case WI_INFO_LINK_STAT: 1911 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); 1912 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); 1913 switch (le16toh(stat)) { 1914 case CONNECTED: 1915 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1916 if (ic->ic_state == IEEE80211_S_RUN && 1917 ic->ic_opmode != IEEE80211_M_IBSS) 1918 break; 1919 /* FALLTHROUGH */ 1920 case AP_CHANGE: 1921 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1922 break; 1923 case AP_IN_RANGE: 1924 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1925 break; 1926 case AP_OUT_OF_RANGE: 1927 if (sc->sc_firmware_type == WI_SYMBOL && 1928 sc->sc_scan_timer > 0) { 1929 if (wi_cmd(sc, WI_CMD_INQUIRE, 1930 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) 1931 sc->sc_scan_timer = 0; 1932 break; 1933 } 1934 if (ic->ic_opmode == IEEE80211_M_STA) 1935 sc->sc_flags |= WI_FLAGS_OUTRANGE; 1936 break; 1937 case DISCONNECTED: 1938 case ASSOC_FAILED: 1939 if (ic->ic_opmode == IEEE80211_M_STA) 1940 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1941 break; 1942 } 1943 break; 1944 1945 case WI_INFO_COUNTERS: 1946 /* some card versions have a larger stats structure */ 1947 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); 1948 ptr = (u_int32_t *)&sc->sc_stats; 1949 off = sizeof(ltbuf); 1950 for (i = 0; i < len; i++, off += 2, ptr++) { 1951 wi_read_bap(sc, fid, off, &stat, sizeof(stat)); 1952 stat = le16toh(stat); 1953 #ifdef WI_HERMES_STATS_WAR 1954 if (stat & 0xf000) 1955 stat = ~stat; 1956 #endif 1957 *ptr += stat; 1958 } 1959 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + 1960 sc->sc_stats.wi_tx_multi_retries + 1961 sc->sc_stats.wi_tx_retry_limit; 1962 break; 1963 1964 case WI_INFO_SCAN_RESULTS: 1965 case WI_INFO_HOST_SCAN_RESULTS: 1966 wi_scan_result(sc, fid, le16toh(ltbuf[0])); 1967 break; 1968 1969 default: 1970 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, 1971 le16toh(ltbuf[1]), le16toh(ltbuf[0]))); 1972 break; 1973 } 1974 } 1975 1976 STATIC int 1977 wi_write_multi(struct wi_softc *sc) 1978 { 1979 struct ifnet *ifp = &sc->sc_if; 1980 int n; 1981 struct wi_mcast mlist; 1982 struct ether_multi *enm; 1983 struct ether_multistep estep; 1984 1985 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1986 allmulti: 1987 ifp->if_flags |= IFF_ALLMULTI; 1988 memset(&mlist, 0, sizeof(mlist)); 1989 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1990 sizeof(mlist)); 1991 } 1992 1993 n = 0; 1994 ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); 1995 while (enm != NULL) { 1996 /* Punt on ranges or too many multicast addresses. */ 1997 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) || 1998 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) 1999 goto allmulti; 2000 2001 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo); 2002 n++; 2003 ETHER_NEXT_MULTI(estep, enm); 2004 } 2005 ifp->if_flags &= ~IFF_ALLMULTI; 2006 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 2007 IEEE80211_ADDR_LEN * n); 2008 } 2009 2010 2011 STATIC void 2012 wi_read_nicid(struct wi_softc *sc) 2013 { 2014 struct wi_card_ident *id; 2015 char *p; 2016 int len; 2017 u_int16_t ver[4]; 2018 2019 /* getting chip identity */ 2020 memset(ver, 0, sizeof(ver)); 2021 len = sizeof(ver); 2022 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); 2023 printf("%s: using ", device_xname(&sc->sc_dev)); 2024 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3]))); 2025 2026 sc->sc_firmware_type = WI_NOTYPE; 2027 for (id = wi_card_ident; id->card_name != NULL; id++) { 2028 if (le16toh(ver[0]) == id->card_id) { 2029 printf("%s", id->card_name); 2030 sc->sc_firmware_type = id->firm_type; 2031 break; 2032 } 2033 } 2034 if (sc->sc_firmware_type == WI_NOTYPE) { 2035 if (le16toh(ver[0]) & 0x8000) { 2036 printf("Unknown PRISM2 chip"); 2037 sc->sc_firmware_type = WI_INTERSIL; 2038 } else { 2039 printf("Unknown Lucent chip"); 2040 sc->sc_firmware_type = WI_LUCENT; 2041 } 2042 } 2043 2044 /* get primary firmware version (Only Prism chips) */ 2045 if (sc->sc_firmware_type != WI_LUCENT) { 2046 memset(ver, 0, sizeof(ver)); 2047 len = sizeof(ver); 2048 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); 2049 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + 2050 le16toh(ver[3]) * 100 + le16toh(ver[1]); 2051 } 2052 2053 /* get station firmware version */ 2054 memset(ver, 0, sizeof(ver)); 2055 len = sizeof(ver); 2056 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); 2057 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + 2058 le16toh(ver[3]) * 100 + le16toh(ver[1]); 2059 if (sc->sc_firmware_type == WI_INTERSIL && 2060 (sc->sc_sta_firmware_ver == 10102 || 2061 sc->sc_sta_firmware_ver == 20102)) { 2062 char ident[12]; 2063 memset(ident, 0, sizeof(ident)); 2064 len = sizeof(ident); 2065 /* value should be the format like "V2.00-11" */ 2066 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && 2067 *(p = (char *)ident) >= 'A' && 2068 p[2] == '.' && p[5] == '-' && p[8] == '\0') { 2069 sc->sc_firmware_type = WI_SYMBOL; 2070 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + 2071 (p[3] - '0') * 1000 + (p[4] - '0') * 100 + 2072 (p[6] - '0') * 10 + (p[7] - '0'); 2073 } 2074 } 2075 2076 printf("\n%s: %s Firmware: ", device_xname(&sc->sc_dev), 2077 sc->sc_firmware_type == WI_LUCENT ? "Lucent" : 2078 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); 2079 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ 2080 printf("Primary (%u.%u.%u), ", 2081 sc->sc_pri_firmware_ver / 10000, 2082 (sc->sc_pri_firmware_ver % 10000) / 100, 2083 sc->sc_pri_firmware_ver % 100); 2084 printf("Station (%u.%u.%u)\n", 2085 sc->sc_sta_firmware_ver / 10000, 2086 (sc->sc_sta_firmware_ver % 10000) / 100, 2087 sc->sc_sta_firmware_ver % 100); 2088 } 2089 2090 STATIC int 2091 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) 2092 { 2093 struct wi_ssid ssid; 2094 2095 if (buflen > IEEE80211_NWID_LEN) 2096 return ENOBUFS; 2097 memset(&ssid, 0, sizeof(ssid)); 2098 ssid.wi_len = htole16(buflen); 2099 memcpy(ssid.wi_ssid, buf, buflen); 2100 return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); 2101 } 2102 2103 STATIC int 2104 wi_get_cfg(struct ifnet *ifp, u_long cmd, void *data) 2105 { 2106 struct wi_softc *sc = ifp->if_softc; 2107 struct ieee80211com *ic = &sc->sc_ic; 2108 struct ifreq *ifr = (struct ifreq *)data; 2109 struct wi_req wreq; 2110 int len, n, error; 2111 2112 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2113 if (error) 2114 return error; 2115 len = (wreq.wi_len - 1) * 2; 2116 if (len < sizeof(u_int16_t)) 2117 return ENOSPC; 2118 if (len > sizeof(wreq.wi_val)) 2119 len = sizeof(wreq.wi_val); 2120 2121 switch (wreq.wi_type) { 2122 2123 case WI_RID_IFACE_STATS: 2124 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); 2125 if (len < sizeof(sc->sc_stats)) 2126 error = ENOSPC; 2127 else 2128 len = sizeof(sc->sc_stats); 2129 break; 2130 2131 case WI_RID_ENCRYPTION: 2132 case WI_RID_TX_CRYPT_KEY: 2133 case WI_RID_DEFLT_CRYPT_KEYS: 2134 case WI_RID_TX_RATE: 2135 return ieee80211_cfgget(ic, cmd, data); 2136 2137 case WI_RID_MICROWAVE_OVEN: 2138 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { 2139 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2140 &len); 2141 break; 2142 } 2143 wreq.wi_val[0] = htole16(sc->sc_microwave_oven); 2144 len = sizeof(u_int16_t); 2145 break; 2146 2147 case WI_RID_DBM_ADJUST: 2148 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { 2149 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2150 &len); 2151 break; 2152 } 2153 wreq.wi_val[0] = htole16(sc->sc_dbm_offset); 2154 len = sizeof(u_int16_t); 2155 break; 2156 2157 case WI_RID_ROAMING_MODE: 2158 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { 2159 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2160 &len); 2161 break; 2162 } 2163 wreq.wi_val[0] = htole16(sc->sc_roaming_mode); 2164 len = sizeof(u_int16_t); 2165 break; 2166 2167 case WI_RID_SYSTEM_SCALE: 2168 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { 2169 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2170 &len); 2171 break; 2172 } 2173 wreq.wi_val[0] = htole16(sc->sc_system_scale); 2174 len = sizeof(u_int16_t); 2175 break; 2176 2177 case WI_RID_FRAG_THRESH: 2178 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { 2179 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2180 &len); 2181 break; 2182 } 2183 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2184 len = sizeof(u_int16_t); 2185 break; 2186 2187 case WI_RID_READ_APS: 2188 #ifndef IEEE80211_NO_HOSTAP 2189 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2190 return ieee80211_cfgget(ic, cmd, data); 2191 #endif /* !IEEE80211_NO_HOSTAP */ 2192 if (sc->sc_scan_timer > 0) { 2193 error = EINPROGRESS; 2194 break; 2195 } 2196 n = sc->sc_naps; 2197 if (len < sizeof(n)) { 2198 error = ENOSPC; 2199 break; 2200 } 2201 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) 2202 n = (len - sizeof(n)) / sizeof(struct wi_apinfo); 2203 len = sizeof(n) + sizeof(struct wi_apinfo) * n; 2204 memcpy(wreq.wi_val, &n, sizeof(n)); 2205 memcpy((char *)wreq.wi_val + sizeof(n), sc->sc_aps, 2206 sizeof(struct wi_apinfo) * n); 2207 break; 2208 2209 default: 2210 if (sc->sc_enabled) { 2211 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2212 &len); 2213 break; 2214 } 2215 switch (wreq.wi_type) { 2216 case WI_RID_MAX_DATALEN: 2217 wreq.wi_val[0] = htole16(sc->sc_max_datalen); 2218 len = sizeof(u_int16_t); 2219 break; 2220 case WI_RID_FRAG_THRESH: 2221 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2222 len = sizeof(u_int16_t); 2223 break; 2224 case WI_RID_RTS_THRESH: 2225 wreq.wi_val[0] = htole16(sc->sc_rts_thresh); 2226 len = sizeof(u_int16_t); 2227 break; 2228 case WI_RID_CNFAUTHMODE: 2229 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); 2230 len = sizeof(u_int16_t); 2231 break; 2232 case WI_RID_NODENAME: 2233 if (len < sc->sc_nodelen + sizeof(u_int16_t)) { 2234 error = ENOSPC; 2235 break; 2236 } 2237 len = sc->sc_nodelen + sizeof(u_int16_t); 2238 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); 2239 memcpy(&wreq.wi_val[1], sc->sc_nodename, 2240 sc->sc_nodelen); 2241 break; 2242 default: 2243 return ieee80211_cfgget(ic, cmd, data); 2244 } 2245 break; 2246 } 2247 if (error) 2248 return error; 2249 wreq.wi_len = (len + 1) / 2 + 1; 2250 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); 2251 } 2252 2253 STATIC int 2254 wi_set_cfg(struct ifnet *ifp, u_long cmd, void *data) 2255 { 2256 struct wi_softc *sc = ifp->if_softc; 2257 struct ieee80211com *ic = &sc->sc_ic; 2258 struct ifreq *ifr = (struct ifreq *)data; 2259 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2260 struct wi_req wreq; 2261 struct mbuf *m; 2262 int i, len, error; 2263 2264 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2265 if (error) 2266 return error; 2267 len = (wreq.wi_len - 1) * 2; 2268 switch (wreq.wi_type) { 2269 case WI_RID_MAC_NODE: 2270 (void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN); 2271 if_set_sadl(ifp, ic->ic_myaddr, ETHER_ADDR_LEN); 2272 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, 2273 IEEE80211_ADDR_LEN); 2274 break; 2275 2276 case WI_RID_DBM_ADJUST: 2277 return ENODEV; 2278 2279 case WI_RID_NODENAME: 2280 if (le16toh(wreq.wi_val[0]) * 2 > len || 2281 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { 2282 error = ENOSPC; 2283 break; 2284 } 2285 if (sc->sc_enabled) { 2286 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2287 len); 2288 if (error) 2289 break; 2290 } 2291 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; 2292 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); 2293 break; 2294 2295 case WI_RID_MICROWAVE_OVEN: 2296 case WI_RID_ROAMING_MODE: 2297 case WI_RID_SYSTEM_SCALE: 2298 case WI_RID_FRAG_THRESH: 2299 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && 2300 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) 2301 break; 2302 if (wreq.wi_type == WI_RID_ROAMING_MODE && 2303 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) 2304 break; 2305 if (wreq.wi_type == WI_RID_SYSTEM_SCALE && 2306 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) 2307 break; 2308 if (wreq.wi_type == WI_RID_FRAG_THRESH && 2309 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) 2310 break; 2311 /* FALLTHROUGH */ 2312 case WI_RID_RTS_THRESH: 2313 case WI_RID_CNFAUTHMODE: 2314 case WI_RID_MAX_DATALEN: 2315 if (sc->sc_enabled) { 2316 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2317 sizeof(u_int16_t)); 2318 if (error) 2319 break; 2320 } 2321 switch (wreq.wi_type) { 2322 case WI_RID_FRAG_THRESH: 2323 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]); 2324 break; 2325 case WI_RID_RTS_THRESH: 2326 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]); 2327 break; 2328 case WI_RID_MICROWAVE_OVEN: 2329 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); 2330 break; 2331 case WI_RID_ROAMING_MODE: 2332 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); 2333 break; 2334 case WI_RID_SYSTEM_SCALE: 2335 sc->sc_system_scale = le16toh(wreq.wi_val[0]); 2336 break; 2337 case WI_RID_CNFAUTHMODE: 2338 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); 2339 break; 2340 case WI_RID_MAX_DATALEN: 2341 sc->sc_max_datalen = le16toh(wreq.wi_val[0]); 2342 break; 2343 } 2344 break; 2345 2346 case WI_RID_TX_RATE: 2347 switch (le16toh(wreq.wi_val[0])) { 2348 case 3: 2349 ic->ic_fixed_rate = -1; 2350 break; 2351 default: 2352 for (i = 0; i < IEEE80211_RATE_SIZE; i++) { 2353 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) 2354 / 2 == le16toh(wreq.wi_val[0])) 2355 break; 2356 } 2357 if (i == IEEE80211_RATE_SIZE) 2358 return EINVAL; 2359 ic->ic_fixed_rate = i; 2360 } 2361 if (sc->sc_enabled) 2362 error = wi_cfg_txrate(sc); 2363 break; 2364 2365 case WI_RID_SCAN_APS: 2366 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) 2367 error = wi_scan_ap(sc, 0x3fff, 0x000f); 2368 break; 2369 2370 case WI_RID_MGMT_XMIT: 2371 if (!sc->sc_enabled) { 2372 error = ENETDOWN; 2373 break; 2374 } 2375 if (ic->ic_mgtq.ifq_len > 5) { 2376 error = EAGAIN; 2377 break; 2378 } 2379 /* XXX wi_len looks in u_int8_t, not in u_int16_t */ 2380 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); 2381 if (m == NULL) { 2382 error = ENOMEM; 2383 break; 2384 } 2385 IF_ENQUEUE(&ic->ic_mgtq, m); 2386 break; 2387 2388 default: 2389 if (sc->sc_enabled) { 2390 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2391 len); 2392 if (error) 2393 break; 2394 } 2395 error = ieee80211_cfgset(ic, cmd, data); 2396 break; 2397 } 2398 return error; 2399 } 2400 2401 /* Rate is 0 for hardware auto-select, otherwise rate is 2402 * 2, 4, 11, or 22 (units of 500Kbps). 2403 */ 2404 STATIC int 2405 wi_write_txrate(struct wi_softc *sc, int rate) 2406 { 2407 u_int16_t hwrate; 2408 2409 /* rate: 0, 2, 4, 11, 22 */ 2410 switch (sc->sc_firmware_type) { 2411 case WI_LUCENT: 2412 switch (rate & IEEE80211_RATE_VAL) { 2413 case 2: 2414 hwrate = 1; 2415 break; 2416 case 4: 2417 hwrate = 2; 2418 break; 2419 default: 2420 hwrate = 3; /* auto */ 2421 break; 2422 case 11: 2423 hwrate = 4; 2424 break; 2425 case 22: 2426 hwrate = 5; 2427 break; 2428 } 2429 break; 2430 default: 2431 switch (rate & IEEE80211_RATE_VAL) { 2432 case 2: 2433 hwrate = 1; 2434 break; 2435 case 4: 2436 hwrate = 2; 2437 break; 2438 case 11: 2439 hwrate = 4; 2440 break; 2441 case 22: 2442 hwrate = 8; 2443 break; 2444 default: 2445 hwrate = 15; /* auto */ 2446 break; 2447 } 2448 break; 2449 } 2450 2451 if (sc->sc_tx_rate == hwrate) 2452 return 0; 2453 2454 if (sc->sc_if.if_flags & IFF_DEBUG) 2455 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate, 2456 hwrate, rate); 2457 2458 sc->sc_tx_rate = hwrate; 2459 2460 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate); 2461 } 2462 2463 STATIC int 2464 wi_cfg_txrate(struct wi_softc *sc) 2465 { 2466 struct ieee80211com *ic = &sc->sc_ic; 2467 struct ieee80211_rateset *rs; 2468 int rate; 2469 2470 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2471 2472 sc->sc_tx_rate = 0; /* force write to RID */ 2473 2474 if (ic->ic_fixed_rate < 0) 2475 rate = 0; /* auto */ 2476 else 2477 rate = rs->rs_rates[ic->ic_fixed_rate]; 2478 2479 return wi_write_txrate(sc, rate); 2480 } 2481 2482 STATIC int 2483 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) 2484 { 2485 struct wi_softc *sc = ic->ic_ifp->if_softc; 2486 u_int keyix = k->wk_keyix; 2487 2488 DPRINTF(("%s: delete key %u\n", __func__, keyix)); 2489 2490 if (keyix >= IEEE80211_WEP_NKID) 2491 return 0; 2492 if (k->wk_keylen != 0) 2493 sc->sc_flags &= ~WI_FLAGS_WEP_VALID; 2494 2495 return 1; 2496 } 2497 2498 static int 2499 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, 2500 const u_int8_t mac[IEEE80211_ADDR_LEN]) 2501 { 2502 struct wi_softc *sc = ic->ic_ifp->if_softc; 2503 2504 DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix)); 2505 2506 if (k->wk_keyix >= IEEE80211_WEP_NKID) 2507 return 0; 2508 2509 sc->sc_flags &= ~WI_FLAGS_WEP_VALID; 2510 2511 return 1; 2512 } 2513 2514 STATIC void 2515 wi_key_update_begin(struct ieee80211com *ic) 2516 { 2517 DPRINTF(("%s:\n", __func__)); 2518 } 2519 2520 STATIC void 2521 wi_key_update_end(struct ieee80211com *ic) 2522 { 2523 struct ifnet *ifp = ic->ic_ifp; 2524 struct wi_softc *sc = ifp->if_softc; 2525 2526 DPRINTF(("%s:\n", __func__)); 2527 2528 if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0) 2529 return; 2530 if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled && 2531 !sc->sc_invalid) 2532 (void)wi_write_wep(sc); 2533 } 2534 2535 STATIC int 2536 wi_write_wep(struct wi_softc *sc) 2537 { 2538 struct ifnet *ifp = &sc->sc_if; 2539 struct ieee80211com *ic = &sc->sc_ic; 2540 int error = 0; 2541 int i, keylen; 2542 u_int16_t val; 2543 struct wi_key wkey[IEEE80211_WEP_NKID]; 2544 2545 if ((ifp->if_flags & IFF_RUNNING) != 0) 2546 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 2547 2548 switch (sc->sc_firmware_type) { 2549 case WI_LUCENT: 2550 val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0; 2551 error = wi_write_val(sc, WI_RID_ENCRYPTION, val); 2552 if (error) 2553 break; 2554 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey); 2555 if (error) 2556 break; 2557 memset(wkey, 0, sizeof(wkey)); 2558 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2559 keylen = ic->ic_nw_keys[i].wk_keylen; 2560 wkey[i].wi_keylen = htole16(keylen); 2561 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, 2562 keylen); 2563 } 2564 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, 2565 wkey, sizeof(wkey)); 2566 break; 2567 2568 case WI_INTERSIL: 2569 case WI_SYMBOL: 2570 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 2571 /* 2572 * ONLY HWB3163 EVAL-CARD Firmware version 2573 * less than 0.8 variant2 2574 * 2575 * If promiscuous mode disable, Prism2 chip 2576 * does not work with WEP . 2577 * It is under investigation for details. 2578 * (ichiro@NetBSD.org) 2579 */ 2580 if (sc->sc_firmware_type == WI_INTERSIL && 2581 sc->sc_sta_firmware_ver < 802 ) { 2582 /* firm ver < 0.8 variant 2 */ 2583 wi_write_val(sc, WI_RID_PROMISC, 1); 2584 } 2585 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2586 sc->sc_cnfauthmode); 2587 val = PRIVACY_INVOKED; 2588 if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0) 2589 val |= EXCLUDE_UNENCRYPTED; 2590 #ifndef IEEE80211_NO_HOSTAP 2591 /* 2592 * Encryption firmware has a bug for HostAP mode. 2593 */ 2594 if (sc->sc_firmware_type == WI_INTERSIL && 2595 ic->ic_opmode == IEEE80211_M_HOSTAP) 2596 val |= HOST_ENCRYPT; 2597 #endif /* !IEEE80211_NO_HOSTAP */ 2598 } else { 2599 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2600 IEEE80211_AUTH_OPEN); 2601 val = HOST_ENCRYPT | HOST_DECRYPT; 2602 } 2603 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); 2604 if (error) 2605 break; 2606 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, 2607 ic->ic_def_txkey); 2608 if (error) 2609 break; 2610 /* 2611 * It seems that the firmware accept 104bit key only if 2612 * all the keys have 104bit length. We get the length of 2613 * the transmit key and use it for all other keys. 2614 * Perhaps we should use software WEP for such situation. 2615 */ 2616 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 2617 IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 2618 keylen = 13; /* No keys => 104bit ok */ 2619 else 2620 keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen; 2621 2622 if (keylen > IEEE80211_WEP_KEYLEN) 2623 keylen = 13; /* 104bit keys */ 2624 else 2625 keylen = IEEE80211_WEP_KEYLEN; 2626 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2627 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, 2628 ic->ic_nw_keys[i].wk_key, keylen); 2629 if (error) 2630 break; 2631 } 2632 break; 2633 } 2634 if ((ifp->if_flags & IFF_RUNNING) != 0) 2635 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 2636 if (error == 0) 2637 sc->sc_flags |= WI_FLAGS_WEP_VALID; 2638 return error; 2639 } 2640 2641 /* Must be called at proper protection level! */ 2642 STATIC int 2643 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2644 { 2645 #ifdef WI_HISTOGRAM 2646 static int hist1[11]; 2647 static int hist1count; 2648 #endif 2649 int i; 2650 2651 /* wait for the busy bit to clear */ 2652 for (i = 500; i > 0; i--) { /* 5s */ 2653 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) 2654 break; 2655 if (sc->sc_invalid) 2656 return ENXIO; 2657 DELAY(1000); /* 1 m sec */ 2658 } 2659 if (i == 0) { 2660 aprint_error_dev(&sc->sc_dev, "wi_cmd: busy bit won't clear.\n"); 2661 return(ETIMEDOUT); 2662 } 2663 #ifdef WI_HISTOGRAM 2664 if (i > 490) 2665 hist1[500 - i]++; 2666 else 2667 hist1[10]++; 2668 if (++hist1count == 1000) { 2669 hist1count = 0; 2670 printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n", 2671 device_xname(&sc->sc_dev), 2672 hist1[0], hist1[1], hist1[2], hist1[3], hist1[4], 2673 hist1[5], hist1[6], hist1[7], hist1[8], hist1[9], 2674 hist1[10]); 2675 } 2676 #endif 2677 CSR_WRITE_2(sc, WI_PARAM0, val0); 2678 CSR_WRITE_2(sc, WI_PARAM1, val1); 2679 CSR_WRITE_2(sc, WI_PARAM2, val2); 2680 CSR_WRITE_2(sc, WI_COMMAND, cmd); 2681 2682 return 0; 2683 } 2684 2685 STATIC int 2686 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2687 { 2688 int rc; 2689 2690 #ifdef WI_DEBUG 2691 if (wi_debug) { 2692 printf("%s: [enter] %d txcmds outstanding\n", __func__, 2693 sc->sc_txcmds); 2694 } 2695 #endif 2696 if (sc->sc_txcmds > 0) 2697 wi_txcmd_wait(sc); 2698 2699 if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0) 2700 return rc; 2701 2702 if (cmd == WI_CMD_INI) { 2703 /* XXX: should sleep here. */ 2704 if (sc->sc_invalid) 2705 return ENXIO; 2706 DELAY(100*1000); 2707 } 2708 rc = wi_cmd_wait(sc, cmd, val0); 2709 2710 #ifdef WI_DEBUG 2711 if (wi_debug) { 2712 printf("%s: [ ] %d txcmds outstanding\n", __func__, 2713 sc->sc_txcmds); 2714 } 2715 #endif 2716 if (sc->sc_txcmds > 0) 2717 wi_cmd_intr(sc); 2718 2719 #ifdef WI_DEBUG 2720 if (wi_debug) { 2721 printf("%s: [leave] %d txcmds outstanding\n", __func__, 2722 sc->sc_txcmds); 2723 } 2724 #endif 2725 return rc; 2726 } 2727 2728 STATIC int 2729 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0) 2730 { 2731 #ifdef WI_HISTOGRAM 2732 static int hist2[11]; 2733 static int hist2count; 2734 #endif 2735 int i, status; 2736 #ifdef WI_DEBUG 2737 if (wi_debug > 1) 2738 printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0); 2739 #endif /* WI_DEBUG */ 2740 2741 /* wait for the cmd completed bit */ 2742 for (i = 0; i < WI_TIMEOUT; i++) { 2743 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) 2744 break; 2745 if (sc->sc_invalid) 2746 return ENXIO; 2747 DELAY(WI_DELAY); 2748 } 2749 2750 #ifdef WI_HISTOGRAM 2751 if (i < 100) 2752 hist2[i/10]++; 2753 else 2754 hist2[10]++; 2755 if (++hist2count == 1000) { 2756 hist2count = 0; 2757 printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n", 2758 device_xname(&sc->sc_dev), 2759 hist2[0], hist2[1], hist2[2], hist2[3], hist2[4], 2760 hist2[5], hist2[6], hist2[7], hist2[8], hist2[9], 2761 hist2[10]); 2762 } 2763 #endif 2764 2765 status = CSR_READ_2(sc, WI_STATUS); 2766 2767 if (i == WI_TIMEOUT) { 2768 aprint_error_dev(&sc->sc_dev, "command timed out, cmd=0x%x, arg=0x%x\n", 2769 cmd, val0); 2770 return ETIMEDOUT; 2771 } 2772 2773 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 2774 2775 if (status & WI_STAT_CMD_RESULT) { 2776 aprint_error_dev(&sc->sc_dev, "command failed, cmd=0x%x, arg=0x%x\n", 2777 cmd, val0); 2778 return EIO; 2779 } 2780 return 0; 2781 } 2782 2783 STATIC int 2784 wi_seek_bap(struct wi_softc *sc, int id, int off) 2785 { 2786 #ifdef WI_HISTOGRAM 2787 static int hist4[11]; 2788 static int hist4count; 2789 #endif 2790 int i, status; 2791 2792 CSR_WRITE_2(sc, WI_SEL0, id); 2793 CSR_WRITE_2(sc, WI_OFF0, off); 2794 2795 for (i = 0; ; i++) { 2796 status = CSR_READ_2(sc, WI_OFF0); 2797 if ((status & WI_OFF_BUSY) == 0) 2798 break; 2799 if (i == WI_TIMEOUT) { 2800 aprint_error_dev(&sc->sc_dev, "timeout in wi_seek to %x/%x\n", 2801 id, off); 2802 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2803 return ETIMEDOUT; 2804 } 2805 if (sc->sc_invalid) 2806 return ENXIO; 2807 DELAY(2); 2808 } 2809 #ifdef WI_HISTOGRAM 2810 if (i < 100) 2811 hist4[i/10]++; 2812 else 2813 hist4[10]++; 2814 if (++hist4count == 2500) { 2815 hist4count = 0; 2816 printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n", 2817 device_xname(&sc->sc_dev), 2818 hist4[0], hist4[1], hist4[2], hist4[3], hist4[4], 2819 hist4[5], hist4[6], hist4[7], hist4[8], hist4[9], 2820 hist4[10]); 2821 } 2822 #endif 2823 if (status & WI_OFF_ERR) { 2824 printf("%s: failed in wi_seek to %x/%x\n", 2825 device_xname(&sc->sc_dev), id, off); 2826 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2827 return EIO; 2828 } 2829 sc->sc_bap_id = id; 2830 sc->sc_bap_off = off; 2831 return 0; 2832 } 2833 2834 STATIC int 2835 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2836 { 2837 int error, cnt; 2838 2839 if (buflen == 0) 2840 return 0; 2841 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2842 if ((error = wi_seek_bap(sc, id, off)) != 0) 2843 return error; 2844 } 2845 cnt = (buflen + 1) / 2; 2846 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2847 sc->sc_bap_off += cnt * 2; 2848 return 0; 2849 } 2850 2851 STATIC int 2852 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2853 { 2854 int error, cnt; 2855 2856 if (buflen == 0) 2857 return 0; 2858 2859 #ifdef WI_HERMES_AUTOINC_WAR 2860 again: 2861 #endif 2862 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2863 if ((error = wi_seek_bap(sc, id, off)) != 0) 2864 return error; 2865 } 2866 cnt = (buflen + 1) / 2; 2867 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2868 sc->sc_bap_off += cnt * 2; 2869 2870 #ifdef WI_HERMES_AUTOINC_WAR 2871 /* 2872 * According to the comments in the HCF Light code, there is a bug 2873 * in the Hermes (or possibly in certain Hermes firmware revisions) 2874 * where the chip's internal autoincrement counter gets thrown off 2875 * during data writes: the autoincrement is missed, causing one 2876 * data word to be overwritten and subsequent words to be written to 2877 * the wrong memory locations. The end result is that we could end 2878 * up transmitting bogus frames without realizing it. The workaround 2879 * for this is to write a couple of extra guard words after the end 2880 * of the transfer, then attempt to read then back. If we fail to 2881 * locate the guard words where we expect them, we preform the 2882 * transfer over again. 2883 */ 2884 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { 2885 CSR_WRITE_2(sc, WI_DATA0, 0x1234); 2886 CSR_WRITE_2(sc, WI_DATA0, 0x5678); 2887 wi_seek_bap(sc, id, sc->sc_bap_off); 2888 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2889 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || 2890 CSR_READ_2(sc, WI_DATA0) != 0x5678) { 2891 aprint_error_dev(&sc->sc_dev, "detect auto increment bug, try again\n"); 2892 goto again; 2893 } 2894 } 2895 #endif 2896 return 0; 2897 } 2898 2899 STATIC int 2900 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) 2901 { 2902 int error, len; 2903 struct mbuf *m; 2904 2905 for (m = m0; m != NULL && totlen > 0; m = m->m_next) { 2906 if (m->m_len == 0) 2907 continue; 2908 2909 len = min(m->m_len, totlen); 2910 2911 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { 2912 m_copydata(m, 0, totlen, (void *)&sc->sc_txbuf); 2913 return wi_write_bap(sc, id, off, (void *)&sc->sc_txbuf, 2914 totlen); 2915 } 2916 2917 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) 2918 return error; 2919 2920 off += m->m_len; 2921 totlen -= len; 2922 } 2923 return 0; 2924 } 2925 2926 STATIC int 2927 wi_alloc_fid(struct wi_softc *sc, int len, int *idp) 2928 { 2929 int i; 2930 2931 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { 2932 aprint_error_dev(&sc->sc_dev, "failed to allocate %d bytes on NIC\n", len); 2933 return ENOMEM; 2934 } 2935 2936 for (i = 0; i < WI_TIMEOUT; i++) { 2937 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) 2938 break; 2939 DELAY(1); 2940 } 2941 if (i == WI_TIMEOUT) { 2942 aprint_error_dev(&sc->sc_dev, "timeout in alloc\n"); 2943 return ETIMEDOUT; 2944 } 2945 *idp = CSR_READ_2(sc, WI_ALLOC_FID); 2946 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 2947 return 0; 2948 } 2949 2950 STATIC int 2951 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) 2952 { 2953 int error, len; 2954 u_int16_t ltbuf[2]; 2955 2956 /* Tell the NIC to enter record read mode. */ 2957 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); 2958 if (error) 2959 return error; 2960 2961 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2962 if (error) 2963 return error; 2964 2965 if (le16toh(ltbuf[0]) == 0) 2966 return EOPNOTSUPP; 2967 if (le16toh(ltbuf[1]) != rid) { 2968 aprint_error_dev(&sc->sc_dev, "record read mismatch, rid=%x, got=%x\n", 2969 rid, le16toh(ltbuf[1])); 2970 return EIO; 2971 } 2972 len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ 2973 if (*buflenp < len) { 2974 aprint_error_dev(&sc->sc_dev, "record buffer is too small, " 2975 "rid=%x, size=%d, len=%d\n", 2976 rid, *buflenp, len); 2977 return ENOSPC; 2978 } 2979 *buflenp = len; 2980 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); 2981 } 2982 2983 STATIC int 2984 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) 2985 { 2986 int error; 2987 u_int16_t ltbuf[2]; 2988 2989 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ 2990 ltbuf[1] = htole16(rid); 2991 2992 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2993 if (error) 2994 return error; 2995 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); 2996 if (error) 2997 return error; 2998 2999 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); 3000 } 3001 3002 STATIC void 3003 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni) 3004 { 3005 struct wi_node *wn = (void*)ni; 3006 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt); 3007 } 3008 3009 STATIC void 3010 wi_rssadapt_updatestats(void *arg) 3011 { 3012 struct wi_softc *sc = arg; 3013 struct ieee80211com *ic = &sc->sc_ic; 3014 ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg); 3015 if (ic->ic_opmode != IEEE80211_M_MONITOR && 3016 ic->ic_state == IEEE80211_S_RUN) 3017 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 3018 wi_rssadapt_updatestats, arg); 3019 } 3020 3021 /* 3022 * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating 3023 * with WEP enabled so that the AP drops unencoded frames at the 3024 * 802.11 layer. 3025 * 3026 * In all other modes, clear IEEE80211_F_DROPUNENC when operating 3027 * with WEP enabled so we don't drop unencoded frames at the 802.11 3028 * layer. This is necessary because we must strip the WEP bit from 3029 * the 802.11 header before passing frames to ieee80211_input 3030 * because the card has already stripped the WEP crypto header from 3031 * the packet. 3032 */ 3033 STATIC void 3034 wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate) 3035 { 3036 struct ieee80211com *ic = &sc->sc_ic; 3037 3038 if (nstate == IEEE80211_S_RUN && 3039 (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 && 3040 ic->ic_opmode != IEEE80211_M_HOSTAP) 3041 ic->ic_flags &= ~IEEE80211_F_DROPUNENC; 3042 else 3043 ic->ic_flags |= sc->sc_ic_flags; 3044 3045 DPRINTF(("%s: state %d, " 3046 "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", " 3047 "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n", 3048 __func__, nstate, 3049 ic->ic_flags & IEEE80211_F_DROPUNENC, 3050 sc->sc_ic_flags & IEEE80211_F_DROPUNENC)); 3051 } 3052 3053 STATIC int 3054 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 3055 { 3056 struct ifnet *ifp = ic->ic_ifp; 3057 struct wi_softc *sc = ifp->if_softc; 3058 struct ieee80211_node *ni = ic->ic_bss; 3059 u_int16_t val; 3060 struct wi_ssid ssid; 3061 struct wi_macaddr bssid, old_bssid; 3062 enum ieee80211_state ostate; 3063 #ifdef WI_DEBUG 3064 static const char *stname[] = 3065 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" }; 3066 #endif /* WI_DEBUG */ 3067 3068 ostate = ic->ic_state; 3069 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate])); 3070 3071 switch (nstate) { 3072 case IEEE80211_S_INIT: 3073 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3074 callout_stop(&sc->sc_rssadapt_ch); 3075 ic->ic_flags &= ~IEEE80211_F_SIBSS; 3076 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 3077 break; 3078 3079 case IEEE80211_S_SCAN: 3080 case IEEE80211_S_AUTH: 3081 case IEEE80211_S_ASSOC: 3082 ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */ 3083 wi_mend_flags(sc, nstate); 3084 return 0; 3085 3086 case IEEE80211_S_RUN: 3087 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 3088 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid); 3089 wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid, 3090 IEEE80211_ADDR_LEN); 3091 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid); 3092 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid); 3093 wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val)); 3094 if (!isset(ic->ic_chan_avail, le16toh(val))) 3095 panic("%s: invalid channel %d\n", device_xname(&sc->sc_dev), 3096 le16toh(val)); 3097 ni->ni_chan = &ic->ic_channels[le16toh(val)]; 3098 3099 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 3100 #ifndef IEEE80211_NO_HOSTAP 3101 ni->ni_esslen = ic->ic_des_esslen; 3102 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen); 3103 ni->ni_rates = ic->ic_sup_rates[ 3104 ieee80211_chan2mode(ic, ni->ni_chan)]; 3105 ni->ni_intval = ic->ic_lintval; 3106 ni->ni_capinfo = IEEE80211_CAPINFO_ESS; 3107 if (ic->ic_flags & IEEE80211_F_PRIVACY) 3108 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; 3109 #endif /* !IEEE80211_NO_HOSTAP */ 3110 } else { 3111 wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid, 3112 sizeof(ssid)); 3113 ni->ni_esslen = le16toh(ssid.wi_len); 3114 if (ni->ni_esslen > IEEE80211_NWID_LEN) 3115 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 3116 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); 3117 ni->ni_rates = ic->ic_sup_rates[ 3118 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/ 3119 } 3120 if (ic->ic_opmode != IEEE80211_M_MONITOR) 3121 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 3122 wi_rssadapt_updatestats, sc); 3123 /* Trigger routing socket messages. XXX Copied from 3124 * ieee80211_newstate. 3125 */ 3126 if (ic->ic_opmode == IEEE80211_M_STA) 3127 ieee80211_notify_node_join(ic, ic->ic_bss, 3128 arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); 3129 break; 3130 } 3131 wi_mend_flags(sc, nstate); 3132 return (*sc->sc_newstate)(ic, nstate, arg); 3133 } 3134 3135 STATIC void 3136 wi_set_tim(struct ieee80211_node *ni, int set) 3137 { 3138 struct ieee80211com *ic = ni->ni_ic; 3139 struct wi_softc *sc = ic->ic_ifp->if_softc; 3140 3141 (*sc->sc_set_tim)(ni, set); 3142 3143 if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0) 3144 return; 3145 3146 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 3147 3148 (void)wi_write_val(sc, WI_RID_SET_TIM, 3149 IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0)); 3150 } 3151 3152 STATIC int 3153 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) 3154 { 3155 int error = 0; 3156 u_int16_t val[2]; 3157 3158 if (!sc->sc_enabled) 3159 return ENXIO; 3160 switch (sc->sc_firmware_type) { 3161 case WI_LUCENT: 3162 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 3163 break; 3164 case WI_INTERSIL: 3165 val[0] = htole16(chanmask); /* channel */ 3166 val[1] = htole16(txrate); /* tx rate */ 3167 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); 3168 break; 3169 case WI_SYMBOL: 3170 /* 3171 * XXX only supported on 3.x ? 3172 */ 3173 val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME); 3174 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, 3175 val, sizeof(val[0])); 3176 break; 3177 } 3178 if (error == 0) { 3179 sc->sc_scan_timer = WI_SCAN_WAIT; 3180 sc->sc_if.if_timer = 1; 3181 DPRINTF(("wi_scan_ap: start scanning, " 3182 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate)); 3183 } 3184 return error; 3185 } 3186 3187 STATIC void 3188 wi_scan_result(struct wi_softc *sc, int fid, int cnt) 3189 { 3190 #define N(a) (sizeof (a) / sizeof (a[0])) 3191 int i, naps, off, szbuf; 3192 struct wi_scan_header ws_hdr; /* Prism2 header */ 3193 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ 3194 struct wi_apinfo *ap; 3195 3196 off = sizeof(u_int16_t) * 2; 3197 memset(&ws_hdr, 0, sizeof(ws_hdr)); 3198 switch (sc->sc_firmware_type) { 3199 case WI_INTERSIL: 3200 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); 3201 off += sizeof(ws_hdr); 3202 szbuf = sizeof(struct wi_scan_data_p2); 3203 break; 3204 case WI_SYMBOL: 3205 szbuf = sizeof(struct wi_scan_data_p2) + 6; 3206 break; 3207 case WI_LUCENT: 3208 szbuf = sizeof(struct wi_scan_data); 3209 break; 3210 default: 3211 aprint_error_dev(&sc->sc_dev, "wi_scan_result: unknown firmware type %u\n", 3212 sc->sc_firmware_type); 3213 naps = 0; 3214 goto done; 3215 } 3216 naps = (cnt * 2 + 2 - off) / szbuf; 3217 if (naps > N(sc->sc_aps)) 3218 naps = N(sc->sc_aps); 3219 sc->sc_naps = naps; 3220 /* Read Data */ 3221 ap = sc->sc_aps; 3222 memset(&ws_dat, 0, sizeof(ws_dat)); 3223 for (i = 0; i < naps; i++, ap++) { 3224 wi_read_bap(sc, fid, off, &ws_dat, 3225 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); 3226 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, 3227 ether_sprintf(ws_dat.wi_bssid))); 3228 off += szbuf; 3229 ap->scanreason = le16toh(ws_hdr.wi_reason); 3230 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); 3231 ap->channel = le16toh(ws_dat.wi_chid); 3232 ap->signal = le16toh(ws_dat.wi_signal); 3233 ap->noise = le16toh(ws_dat.wi_noise); 3234 ap->quality = ap->signal - ap->noise; 3235 ap->capinfo = le16toh(ws_dat.wi_capinfo); 3236 ap->interval = le16toh(ws_dat.wi_interval); 3237 ap->rate = le16toh(ws_dat.wi_rate); 3238 ap->namelen = le16toh(ws_dat.wi_namelen); 3239 if (ap->namelen > sizeof(ap->name)) 3240 ap->namelen = sizeof(ap->name); 3241 memcpy(ap->name, ws_dat.wi_name, ap->namelen); 3242 } 3243 done: 3244 /* Done scanning */ 3245 sc->sc_scan_timer = 0; 3246 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); 3247 #undef N 3248 } 3249 3250 STATIC void 3251 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) 3252 { 3253 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), 3254 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL 3255 : -1, 3256 rssi); 3257 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", 3258 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), 3259 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); 3260 printf(" rx_signal %u rx_rate %u rx_flow %u\n", 3261 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); 3262 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", 3263 wh->wi_tx_rtry, wh->wi_tx_rate, 3264 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); 3265 printf(" ehdr dst %s src %s type 0x%x\n", 3266 ether_sprintf(wh->wi_ehdr.ether_dhost), 3267 ether_sprintf(wh->wi_ehdr.ether_shost), 3268 wh->wi_ehdr.ether_type); 3269 } 3270