xref: /netbsd-src/sys/dev/ic/wi.c (revision 8ac07aec990b9d2e483062509d0a9fa5b4f57cf2)
1 /*	$NetBSD: wi.c,v 1.225 2008/04/08 12:07:27 cegger Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1997, 1998, 1999
41  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Bill Paul.
54  * 4. Neither the name of the author nor the names of any co-contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68  * THE POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73  *
74  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81  * from Lucent. Unlike the older cards, the new ones are programmed
82  * entirely via a firmware-driven controller called the Hermes.
83  * Unfortunately, Lucent will not release the Hermes programming manual
84  * without an NDA (if at all). What they do release is an API library
85  * called the HCF (Hardware Control Functions) which is supposed to
86  * do the device-specific operations of a device driver for you. The
87  * publically available version of the HCF library (the 'HCF Light') is
88  * a) extremely gross, b) lacks certain features, particularly support
89  * for 802.11 frames, and c) is contaminated by the GNU Public License.
90  *
91  * This driver does not use the HCF or HCF Light at all. Instead, it
92  * programs the Hermes controller directly, using information gleaned
93  * from the HCF Light code and corresponding documentation.
94  *
95  * This driver supports both the PCMCIA and ISA versions of the
96  * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97  * anything of the sort: it's actually a PCMCIA bridge adapter
98  * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99  * inserted. Consequently, you need to use the pccard support for
100  * both the ISA and PCMCIA adapters.
101  */
102 
103 /*
104  * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105  * Oslo IETF plenary meeting.
106  */
107 
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.225 2008/04/08 12:07:27 cegger Exp $");
110 
111 #define WI_HERMES_AUTOINC_WAR	/* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR	/* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116 
117 #include "bpfilter.h"
118 
119 #include <sys/param.h>
120 #include <sys/sysctl.h>
121 #include <sys/systm.h>
122 #include <sys/callout.h>
123 #include <sys/device.h>
124 #include <sys/socket.h>
125 #include <sys/mbuf.h>
126 #include <sys/ioctl.h>
127 #include <sys/kernel.h>		/* for hz */
128 #include <sys/proc.h>
129 #include <sys/kauth.h>
130 
131 #include <net/if.h>
132 #include <net/if_dl.h>
133 #include <net/if_llc.h>
134 #include <net/if_media.h>
135 #include <net/if_ether.h>
136 #include <net/route.h>
137 
138 #include <net80211/ieee80211_netbsd.h>
139 #include <net80211/ieee80211_var.h>
140 #include <net80211/ieee80211_ioctl.h>
141 #include <net80211/ieee80211_radiotap.h>
142 #include <net80211/ieee80211_rssadapt.h>
143 
144 #if NBPFILTER > 0
145 #include <net/bpf.h>
146 #include <net/bpfdesc.h>
147 #endif
148 
149 #include <sys/bus.h>
150 
151 #include <dev/ic/wi_ieee.h>
152 #include <dev/ic/wireg.h>
153 #include <dev/ic/wivar.h>
154 
155 STATIC int  wi_init(struct ifnet *);
156 STATIC void wi_stop(struct ifnet *, int);
157 STATIC void wi_start(struct ifnet *);
158 STATIC int  wi_reset(struct wi_softc *);
159 STATIC void wi_watchdog(struct ifnet *);
160 STATIC int  wi_ioctl(struct ifnet *, u_long, void *);
161 STATIC int  wi_media_change(struct ifnet *);
162 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
163 
164 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *);
165 STATIC void wi_node_free(struct ieee80211_node *);
166 
167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
170     struct ieee80211_frame *, u_int);
171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
172 STATIC void wi_rssadapt_updatestats(void *);
173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
175     wi_rssdescq_t *, u_int8_t (*)[]);
176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
177 
178 STATIC void wi_rx_intr(struct wi_softc *);
179 STATIC void wi_txalloc_intr(struct wi_softc *);
180 STATIC void wi_cmd_intr(struct wi_softc *);
181 STATIC void wi_tx_intr(struct wi_softc *);
182 STATIC void wi_tx_ex_intr(struct wi_softc *);
183 STATIC void wi_info_intr(struct wi_softc *);
184 
185 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *);
186 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *,
187     const u_int8_t[IEEE80211_ADDR_LEN]);
188 STATIC void wi_key_update_begin(struct ieee80211com *);
189 STATIC void wi_key_update_end(struct ieee80211com *);
190 
191 STATIC void wi_push_packet(struct wi_softc *);
192 STATIC int  wi_get_cfg(struct ifnet *, u_long, void *);
193 STATIC int  wi_set_cfg(struct ifnet *, u_long, void *);
194 STATIC int  wi_cfg_txrate(struct wi_softc *);
195 STATIC int  wi_write_txrate(struct wi_softc *, int);
196 STATIC int  wi_write_wep(struct wi_softc *);
197 STATIC int  wi_write_multi(struct wi_softc *);
198 STATIC int  wi_alloc_fid(struct wi_softc *, int, int *);
199 STATIC void wi_read_nicid(struct wi_softc *);
200 STATIC int  wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
201 
202 STATIC int  wi_cmd(struct wi_softc *, int, int, int, int);
203 STATIC int  wi_cmd_start(struct wi_softc *, int, int, int, int);
204 STATIC int  wi_cmd_wait(struct wi_softc *, int, int);
205 STATIC int  wi_seek_bap(struct wi_softc *, int, int);
206 STATIC int  wi_read_bap(struct wi_softc *, int, int, void *, int);
207 STATIC int  wi_write_bap(struct wi_softc *, int, int, void *, int);
208 STATIC int  wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
209 STATIC int  wi_read_rid(struct wi_softc *, int, void *, int *);
210 STATIC int  wi_write_rid(struct wi_softc *, int, void *, int);
211 
212 STATIC int  wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
213 STATIC void  wi_set_tim(struct ieee80211_node *, int);
214 
215 STATIC int  wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
216 STATIC void wi_scan_result(struct wi_softc *, int, int);
217 
218 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
219 STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state);
220 
221 static inline int
222 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
223 {
224 
225 	val = htole16(val);
226 	return wi_write_rid(sc, rid, &val, sizeof(val));
227 }
228 
229 static	struct timeval lasttxerror;	/* time of last tx error msg */
230 static	int curtxeps = 0;		/* current tx error msgs/sec */
231 static	int wi_txerate = 0;		/* tx error rate: max msgs/sec */
232 
233 #ifdef WI_DEBUG
234 #define	WI_DEBUG_MAX	2
235 int wi_debug = 0;
236 
237 #define	DPRINTF(X)	if (wi_debug) printf X
238 #define	DPRINTF2(X)	if (wi_debug > 1) printf X
239 #define	IFF_DUMPPKTS(_ifp) \
240 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
241 static int wi_sysctl_verify_debug(SYSCTLFN_PROTO);
242 #else
243 #define	DPRINTF(X)
244 #define	DPRINTF2(X)
245 #define	IFF_DUMPPKTS(_ifp)	0
246 #endif
247 
248 #define WI_INTRS	(WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
249 			 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
250 
251 struct wi_card_ident
252 wi_card_ident[] = {
253 	/* CARD_ID			CARD_NAME		FIRM_TYPE */
254 	{ WI_NIC_LUCENT_ID,		WI_NIC_LUCENT_STR,	WI_LUCENT },
255 	{ WI_NIC_SONY_ID,		WI_NIC_SONY_STR,	WI_LUCENT },
256 	{ WI_NIC_LUCENT_EMB_ID,		WI_NIC_LUCENT_EMB_STR,	WI_LUCENT },
257 	{ WI_NIC_EVB2_ID,		WI_NIC_EVB2_STR,	WI_INTERSIL },
258 	{ WI_NIC_HWB3763_ID,		WI_NIC_HWB3763_STR,	WI_INTERSIL },
259 	{ WI_NIC_HWB3163_ID,		WI_NIC_HWB3163_STR,	WI_INTERSIL },
260 	{ WI_NIC_HWB3163B_ID,		WI_NIC_HWB3163B_STR,	WI_INTERSIL },
261 	{ WI_NIC_EVB3_ID,		WI_NIC_EVB3_STR,	WI_INTERSIL },
262 	{ WI_NIC_HWB1153_ID,		WI_NIC_HWB1153_STR,	WI_INTERSIL },
263 	{ WI_NIC_P2_SST_ID,		WI_NIC_P2_SST_STR,	WI_INTERSIL },
264 	{ WI_NIC_EVB2_SST_ID,		WI_NIC_EVB2_SST_STR,	WI_INTERSIL },
265 	{ WI_NIC_3842_EVA_ID,		WI_NIC_3842_EVA_STR,	WI_INTERSIL },
266 	{ WI_NIC_3842_PCMCIA_AMD_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
267 	{ WI_NIC_3842_PCMCIA_SST_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
268 	{ WI_NIC_3842_PCMCIA_ATM_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
269 	{ WI_NIC_3842_MINI_AMD_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
270 	{ WI_NIC_3842_MINI_SST_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
271 	{ WI_NIC_3842_MINI_ATM_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
272 	{ WI_NIC_3842_PCI_AMD_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
273 	{ WI_NIC_3842_PCI_SST_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
274 	{ WI_NIC_3842_PCI_ATM_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
275 	{ WI_NIC_P3_PCMCIA_AMD_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
276 	{ WI_NIC_P3_PCMCIA_SST_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
277 	{ WI_NIC_P3_MINI_AMD_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
278 	{ WI_NIC_P3_MINI_SST_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
279 	{ 0,	NULL,	0 },
280 };
281 
282 #ifndef _LKM
283 /*
284  * Setup sysctl(3) MIB, hw.wi.*
285  *
286  * TBD condition CTLFLAG_PERMANENT on being an LKM or not
287  */
288 SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup")
289 {
290 	int rc;
291 	const struct sysctlnode *rnode;
292 #ifdef WI_DEBUG
293 	const struct sysctlnode *cnode;
294 #endif /* WI_DEBUG */
295 
296 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
297 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
298 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
299 		goto err;
300 
301 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
302 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi",
303 	    "Lucent/Prism/Symbol 802.11 controls",
304 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
305 		goto err;
306 
307 #ifdef WI_DEBUG
308 	/* control debugging printfs */
309 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
310 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
311 	    "debug", SYSCTL_DESCR("Enable debugging output"),
312 	    wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
313 		goto err;
314 #endif /* WI_DEBUG */
315 	return;
316 err:
317 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
318 }
319 #endif
320 
321 #ifdef WI_DEBUG
322 static int
323 wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
324 {
325 	int error, t;
326 	struct sysctlnode node;
327 
328 	node = *rnode;
329 	t = *(int*)rnode->sysctl_data;
330 	node.sysctl_data = &t;
331 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
332 	if (error || newp == NULL)
333 		return (error);
334 
335 	if (t < lower || t > upper)
336 		return (EINVAL);
337 
338 	*(int*)rnode->sysctl_data = t;
339 
340 	return (0);
341 }
342 
343 static int
344 wi_sysctl_verify_debug(SYSCTLFN_ARGS)
345 {
346 	return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
347 	    0, WI_DEBUG_MAX);
348 }
349 #endif /* WI_DEBUG */
350 
351 STATIC int
352 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
353 {
354 	int buflen, rc;
355 
356 	buflen = ebuflen;
357 	if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
358 		return rc;
359 
360 	if (buflen < ebuflen) {
361 #ifdef WI_DEBUG
362 		printf("%s: rid=%#04x read %d, expected %d\n", __func__,
363 		    rid, buflen, ebuflen);
364 #endif
365 		return -1;
366 	}
367 	return 0;
368 }
369 
370 int
371 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
372 {
373 	struct ieee80211com *ic = &sc->sc_ic;
374 	struct ifnet *ifp = &sc->sc_if;
375 	int chan, nrate, buflen;
376 	u_int16_t val, chanavail;
377  	struct {
378  		u_int16_t nrates;
379  		char rates[IEEE80211_RATE_SIZE];
380  	} ratebuf;
381 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
382 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
383 	};
384 	int s;
385 
386 	s = splnet();
387 
388 	/* Make sure interrupts are disabled. */
389 	CSR_WRITE_2(sc, WI_INT_EN, 0);
390 	CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
391 
392 	sc->sc_invalid = 0;
393 
394 	/* Reset the NIC. */
395 	if (wi_reset(sc) != 0) {
396 		sc->sc_invalid = 1;
397 		splx(s);
398 		return 1;
399 	}
400 
401 	if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
402 			 IEEE80211_ADDR_LEN) != 0 ||
403 	    IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
404 		if (macaddr != NULL)
405 			memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
406 		else {
407 			printf(" could not get mac address, attach failed\n");
408 			splx(s);
409 			return 1;
410 		}
411 	}
412 
413 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
414 
415 	/* Read NIC identification */
416 	wi_read_nicid(sc);
417 
418 	memcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
419 	ifp->if_softc = sc;
420 	ifp->if_start = wi_start;
421 	ifp->if_ioctl = wi_ioctl;
422 	ifp->if_watchdog = wi_watchdog;
423 	ifp->if_init = wi_init;
424 	ifp->if_stop = wi_stop;
425 	ifp->if_flags =
426 	    IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
427 	IFQ_SET_READY(&ifp->if_snd);
428 
429 	ic->ic_ifp = ifp;
430 	ic->ic_phytype = IEEE80211_T_DS;
431 	ic->ic_opmode = IEEE80211_M_STA;
432 	ic->ic_caps = IEEE80211_C_AHDEMO;
433 	ic->ic_state = IEEE80211_S_INIT;
434 	ic->ic_max_aid = WI_MAX_AID;
435 
436 	/* Find available channel */
437 	if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
438 	                 sizeof(chanavail)) != 0) {
439 		aprint_normal_dev(&sc->sc_dev, "using default channel list\n");
440 		chanavail = htole16(0x1fff);	/* assume 1-13 */
441 	}
442 	for (chan = 16; chan > 0; chan--) {
443 		if (!isset((u_int8_t*)&chanavail, chan - 1))
444 			continue;
445 		ic->ic_ibss_chan = &ic->ic_channels[chan];
446 		ic->ic_channels[chan].ic_freq =
447 		    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
448 		ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
449 	}
450 
451 	/* Find default IBSS channel */
452 	if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
453 		chan = le16toh(val);
454 		if (isset((u_int8_t*)&chanavail, chan - 1))
455 			ic->ic_ibss_chan = &ic->ic_channels[chan];
456 	}
457 	if (ic->ic_ibss_chan == NULL) {
458 		aprint_error_dev(&sc->sc_dev, "no available channel\n");
459 		return 1;
460 	}
461 
462 	if (sc->sc_firmware_type == WI_LUCENT) {
463 		sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
464 	} else {
465 		if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
466 		    wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
467 			sc->sc_dbm_offset = le16toh(val);
468 		else
469 			sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
470 	}
471 
472 	sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
473 
474 	/*
475 	 * Set flags based on firmware version.
476 	 */
477 	switch (sc->sc_firmware_type) {
478 	case WI_LUCENT:
479 		sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
480 #ifdef WI_HERMES_AUTOINC_WAR
481 		/* XXX: not confirmed, but never seen for recent firmware */
482 		if (sc->sc_sta_firmware_ver <  40000) {
483 			sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
484 		}
485 #endif
486 		if (sc->sc_sta_firmware_ver >= 60000)
487 			sc->sc_flags |= WI_FLAGS_HAS_MOR;
488 		if (sc->sc_sta_firmware_ver >= 60006) {
489 			ic->ic_caps |= IEEE80211_C_IBSS;
490 			ic->ic_caps |= IEEE80211_C_MONITOR;
491 		}
492 		ic->ic_caps |= IEEE80211_C_PMGT;
493 		sc->sc_ibss_port = 1;
494 		break;
495 
496 	case WI_INTERSIL:
497 		sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
498 		sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
499 		sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
500 		if (sc->sc_sta_firmware_ver > 10101)
501 			sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
502 		if (sc->sc_sta_firmware_ver >= 800) {
503 			if (sc->sc_sta_firmware_ver != 10402)
504 				ic->ic_caps |= IEEE80211_C_HOSTAP;
505 			ic->ic_caps |= IEEE80211_C_IBSS;
506 			ic->ic_caps |= IEEE80211_C_MONITOR;
507 		}
508 		ic->ic_caps |= IEEE80211_C_PMGT;
509 		sc->sc_ibss_port = 0;
510 		sc->sc_alt_retry = 2;
511 		break;
512 
513 	case WI_SYMBOL:
514 		sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
515 		if (sc->sc_sta_firmware_ver >= 20000)
516 			ic->ic_caps |= IEEE80211_C_IBSS;
517 		sc->sc_ibss_port = 4;
518 		break;
519 	}
520 
521 	/*
522 	 * Find out if we support WEP on this card.
523 	 */
524 	if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
525 	    val != htole16(0))
526 		ic->ic_caps |= IEEE80211_C_WEP;
527 
528 	/* Find supported rates. */
529 	buflen = sizeof(ratebuf);
530 	if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
531 	    buflen > 2) {
532 		nrate = le16toh(ratebuf.nrates);
533 		if (nrate > IEEE80211_RATE_SIZE)
534 			nrate = IEEE80211_RATE_SIZE;
535 		memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
536 		    &ratebuf.rates[0], nrate);
537 		ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
538 	} else {
539 		aprint_error_dev(&sc->sc_dev, "no supported rate list\n");
540 		return 1;
541 	}
542 
543 	sc->sc_max_datalen = 2304;
544 	sc->sc_rts_thresh = 2347;
545 	sc->sc_frag_thresh = 2346;
546 	sc->sc_system_scale = 1;
547 	sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
548 	sc->sc_roaming_mode = 1;
549 
550 	callout_init(&sc->sc_rssadapt_ch, 0);
551 
552 	/*
553 	 * Call MI attach routines.
554 	 */
555 	if_attach(ifp);
556 	ieee80211_ifattach(ic);
557 
558 	sc->sc_newstate = ic->ic_newstate;
559 	sc->sc_set_tim = ic->ic_set_tim;
560 	ic->ic_newstate = wi_newstate;
561 	ic->ic_node_alloc = wi_node_alloc;
562 	ic->ic_node_free = wi_node_free;
563 	ic->ic_set_tim = wi_set_tim;
564 
565 	ic->ic_crypto.cs_key_delete = wi_key_delete;
566 	ic->ic_crypto.cs_key_set = wi_key_set;
567 	ic->ic_crypto.cs_key_update_begin = wi_key_update_begin;
568 	ic->ic_crypto.cs_key_update_end = wi_key_update_end;
569 
570 	ieee80211_media_init(ic, wi_media_change, wi_media_status);
571 
572 #if NBPFILTER > 0
573 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
574 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
575 #endif
576 
577 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
578 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
579 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT);
580 
581 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
582 	sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
583 	sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT);
584 
585 	/* Attach is successful. */
586 	sc->sc_attached = 1;
587 
588 	splx(s);
589 	ieee80211_announce(ic);
590 	return 0;
591 }
592 
593 int
594 wi_detach(struct wi_softc *sc)
595 {
596 	struct ifnet *ifp = &sc->sc_if;
597 	int s;
598 
599 	if (!sc->sc_attached)
600 		return 0;
601 
602 	sc->sc_invalid = 1;
603 	s = splnet();
604 
605 	wi_stop(ifp, 1);
606 
607 	ieee80211_ifdetach(&sc->sc_ic);
608 	if_detach(ifp);
609 	splx(s);
610 	return 0;
611 }
612 
613 #ifdef __NetBSD__
614 int
615 wi_activate(struct device *self, enum devact act)
616 {
617 	struct wi_softc *sc = (struct wi_softc *)self;
618 	int rv = 0, s;
619 
620 	s = splnet();
621 	switch (act) {
622 	case DVACT_ACTIVATE:
623 		rv = EOPNOTSUPP;
624 		break;
625 
626 	case DVACT_DEACTIVATE:
627 		if_deactivate(&sc->sc_if);
628 		break;
629 	}
630 	splx(s);
631 	return rv;
632 }
633 #endif /* __NetBSD__ */
634 
635 int
636 wi_intr(void *arg)
637 {
638 	int i;
639 	struct wi_softc	*sc = arg;
640 	struct ifnet *ifp = &sc->sc_if;
641 	u_int16_t status;
642 
643 	if (sc->sc_enabled == 0 ||
644 	    !device_is_active(&sc->sc_dev) ||
645 	    (ifp->if_flags & IFF_RUNNING) == 0)
646 		return 0;
647 
648 	if ((ifp->if_flags & IFF_UP) == 0) {
649 		CSR_WRITE_2(sc, WI_INT_EN, 0);
650 		CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
651 		return 1;
652 	}
653 
654 	/* This is superfluous on Prism, but Lucent breaks if we
655 	 * do not disable interrupts.
656 	 */
657 	CSR_WRITE_2(sc, WI_INT_EN, 0);
658 
659 	/* maximum 10 loops per interrupt */
660 	for (i = 0; i < 10; i++) {
661 		status = CSR_READ_2(sc, WI_EVENT_STAT);
662 #ifdef WI_DEBUG
663 		if (wi_debug > 1) {
664 			printf("%s: iter %d status %#04x\n", __func__, i,
665 			    status);
666 		}
667 #endif /* WI_DEBUG */
668 		if ((status & WI_INTRS) == 0)
669 			break;
670 
671 		sc->sc_status = status;
672 
673 		if (status & WI_EV_RX)
674 			wi_rx_intr(sc);
675 
676 		if (status & WI_EV_ALLOC)
677 			wi_txalloc_intr(sc);
678 
679 		if (status & WI_EV_TX)
680 			wi_tx_intr(sc);
681 
682 		if (status & WI_EV_TX_EXC)
683 			wi_tx_ex_intr(sc);
684 
685 		if (status & WI_EV_INFO)
686 			wi_info_intr(sc);
687 
688 		CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
689 
690 		if (sc->sc_status & WI_EV_CMD)
691 			wi_cmd_intr(sc);
692 
693 		if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
694 		    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
695 		    !IFQ_IS_EMPTY(&ifp->if_snd))
696 			wi_start(ifp);
697 
698 		sc->sc_status = 0;
699 	}
700 
701 	/* re-enable interrupts */
702 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
703 
704 	sc->sc_status = 0;
705 
706 	return 1;
707 }
708 
709 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
710 
711 STATIC void
712 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
713 {
714 	int i;
715 	SLIST_INIT(rssdfree);
716 	for (i = 0; i < arraylen(*rssd); i++) {
717 		SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
718 	}
719 }
720 
721 STATIC void
722 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
723     wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
724 {
725 	struct ieee80211_node *ni;
726 	int i;
727 	for (i = 0; i < arraylen(*rssd); i++) {
728 		ni = (*rssd)[i].rd_desc.id_node;
729 		(*rssd)[i].rd_desc.id_node = NULL;
730 		if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0)
731 			printf("%s: cleaning outstanding rssadapt "
732 			    "descriptor for %s\n",
733 			    ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr));
734 		if (ni != NULL)
735 			ieee80211_free_node(ni);
736 	}
737 	memset(*txpending, 0, sizeof(*txpending));
738 	wi_rssdescs_init(rssd, rssdfree);
739 }
740 
741 STATIC int
742 wi_init(struct ifnet *ifp)
743 {
744 	struct wi_softc *sc = ifp->if_softc;
745 	struct ieee80211com *ic = &sc->sc_ic;
746 	struct wi_joinreq join;
747 	int i;
748 	int error = 0, wasenabled;
749 
750 	DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
751 	wasenabled = sc->sc_enabled;
752 	if (!sc->sc_enabled) {
753 		if ((error = (*sc->sc_enable)(sc)) != 0)
754 			goto out;
755 		sc->sc_enabled = 1;
756 	} else
757 		wi_stop(ifp, 0);
758 
759 	/* Symbol firmware cannot be initialized more than once */
760 	if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
761 		if ((error = wi_reset(sc)) != 0)
762 			goto out;
763 
764 	/* common 802.11 configuration */
765 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
766 	sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
767 	switch (ic->ic_opmode) {
768 	case IEEE80211_M_STA:
769 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
770 		break;
771 	case IEEE80211_M_IBSS:
772 		wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
773 		ic->ic_flags |= IEEE80211_F_IBSSON;
774 		break;
775 	case IEEE80211_M_AHDEMO:
776 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
777 		break;
778 	case IEEE80211_M_HOSTAP:
779 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
780 		break;
781 	case IEEE80211_M_MONITOR:
782 		if (sc->sc_firmware_type == WI_LUCENT)
783 			wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
784 		wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
785 		break;
786 	}
787 
788 	/* Intersil interprets this RID as joining ESS even in IBSS mode */
789 	if (sc->sc_firmware_type == WI_LUCENT &&
790 	    (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
791 		wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
792 	else
793 		wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
794 	wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
795 	wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
796 	    ic->ic_des_esslen);
797 	wi_write_val(sc, WI_RID_OWN_CHNL,
798 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
799 	wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
800 	IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
801 	wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
802 	if (ic->ic_caps & IEEE80211_C_PMGT)
803 		wi_write_val(sc, WI_RID_PM_ENABLED,
804 		    (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
805 
806 	/* not yet common 802.11 configuration */
807 	wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
808 	wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
809 	if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
810 		wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
811 
812 	/* driver specific 802.11 configuration */
813 	if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
814 		wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
815 	if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
816 		wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
817 	if (sc->sc_flags & WI_FLAGS_HAS_MOR)
818 		wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
819 	wi_cfg_txrate(sc);
820 	wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
821 
822 #ifndef	IEEE80211_NO_HOSTAP
823 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
824 	    sc->sc_firmware_type == WI_INTERSIL) {
825 		wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
826 		wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
827 	}
828 #endif /* !IEEE80211_NO_HOSTAP */
829 
830 	if (sc->sc_firmware_type == WI_INTERSIL) {
831 		struct ieee80211_rateset *rs =
832 		    &ic->ic_sup_rates[IEEE80211_MODE_11B];
833 		u_int16_t basic = 0, supported = 0, rate;
834 
835 		for (i = 0; i < rs->rs_nrates; i++) {
836 			switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
837 			case 2:
838 				rate = 1;
839 				break;
840 			case 4:
841 				rate = 2;
842 				break;
843 			case 11:
844 				rate = 4;
845 				break;
846 			case 22:
847 				rate = 8;
848 				break;
849 			default:
850 				rate = 0;
851 				break;
852 			}
853 			if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
854 				basic |= rate;
855 			supported |= rate;
856 		}
857 		wi_write_val(sc, WI_RID_BASIC_RATE, basic);
858 		wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
859 		wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
860 	}
861 
862 	/*
863 	 * Initialize promisc mode.
864 	 *	Being in Host-AP mode causes a great
865 	 *	deal of pain if promiscuous mode is set.
866 	 *	Therefore we avoid confusing the firmware
867 	 *	and always reset promisc mode in Host-AP
868 	 *	mode.  Host-AP sees all the packets anyway.
869 	 */
870 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
871 	    (ifp->if_flags & IFF_PROMISC) != 0) {
872 		wi_write_val(sc, WI_RID_PROMISC, 1);
873 	} else {
874 		wi_write_val(sc, WI_RID_PROMISC, 0);
875 	}
876 
877 	/* Configure WEP. */
878 	if (ic->ic_caps & IEEE80211_C_WEP) {
879 		sc->sc_cnfauthmode = ic->ic_bss->ni_authmode;
880 		wi_write_wep(sc);
881 	}
882 
883 	/* Set multicast filter. */
884 	wi_write_multi(sc);
885 
886 	sc->sc_txalloc = 0;
887 	sc->sc_txalloced = 0;
888 	sc->sc_txqueue = 0;
889 	sc->sc_txqueued = 0;
890 	sc->sc_txstart = 0;
891 	sc->sc_txstarted = 0;
892 
893 	if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
894 		sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
895 		if (sc->sc_firmware_type == WI_SYMBOL)
896 			sc->sc_buflen = 1585;	/* XXX */
897 		for (i = 0; i < WI_NTXBUF; i++) {
898 			error = wi_alloc_fid(sc, sc->sc_buflen,
899 			    &sc->sc_txd[i].d_fid);
900 			if (error) {
901 				aprint_error_dev(&sc->sc_dev, "tx buffer allocation failed\n");
902 				goto out;
903 			}
904 			DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
905 			    sc->sc_txd[i].d_fid));
906 			++sc->sc_txalloced;
907 		}
908 	}
909 
910 	wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
911 
912 	/* Enable desired port */
913 	wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
914 	ifp->if_flags |= IFF_RUNNING;
915 	ifp->if_flags &= ~IFF_OACTIVE;
916 	ic->ic_state = IEEE80211_S_INIT;
917 
918 	if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
919 	    ic->ic_opmode == IEEE80211_M_IBSS ||
920 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
921 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
922 		ieee80211_create_ibss(ic, ic->ic_ibss_chan);
923 
924 	/* Enable interrupts */
925 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
926 
927 #ifndef	IEEE80211_NO_HOSTAP
928 	if (!wasenabled &&
929 	    ic->ic_opmode == IEEE80211_M_HOSTAP &&
930 	    sc->sc_firmware_type == WI_INTERSIL) {
931 		/* XXX: some card need to be re-enabled for hostap */
932 		wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
933 		wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
934 	}
935 #endif /* !IEEE80211_NO_HOSTAP */
936 
937 	if (ic->ic_opmode == IEEE80211_M_STA &&
938 	    ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
939 	    ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
940 		memset(&join, 0, sizeof(join));
941 		if (ic->ic_flags & IEEE80211_F_DESBSSID)
942 			IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
943 		if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
944 			join.wi_chan =
945 			    htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
946 		/* Lucent firmware does not support the JOIN RID. */
947 		if (sc->sc_firmware_type != WI_LUCENT)
948 			wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
949 	}
950 
951  out:
952 	if (error) {
953 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
954 		wi_stop(ifp, 0);
955 	}
956 	DPRINTF(("wi_init: return %d\n", error));
957 	return error;
958 }
959 
960 STATIC void
961 wi_txcmd_wait(struct wi_softc *sc)
962 {
963 	KASSERT(sc->sc_txcmds == 1);
964 	if (sc->sc_status & WI_EV_CMD) {
965 		sc->sc_status &= ~WI_EV_CMD;
966 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
967 	} else
968 		(void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
969 }
970 
971 STATIC void
972 wi_stop(struct ifnet *ifp, int disable)
973 {
974 	struct wi_softc	*sc = ifp->if_softc;
975 	struct ieee80211com *ic = &sc->sc_ic;
976 	int s;
977 
978 	if (!sc->sc_enabled)
979 		return;
980 
981 	s = splnet();
982 
983 	DPRINTF(("wi_stop: disable %d\n", disable));
984 
985 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
986 
987 	/* wait for tx command completion (deassoc, deauth) */
988 	while (sc->sc_txcmds > 0) {
989 		wi_txcmd_wait(sc);
990 		wi_cmd_intr(sc);
991 	}
992 
993 	/* TBD wait for deassoc, deauth tx completion? */
994 
995 	if (!sc->sc_invalid) {
996 		CSR_WRITE_2(sc, WI_INT_EN, 0);
997 		wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
998 	}
999 
1000 	wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1001 	    &sc->sc_txpending);
1002 
1003 	sc->sc_tx_timer = 0;
1004 	sc->sc_scan_timer = 0;
1005 	sc->sc_false_syns = 0;
1006 	sc->sc_naps = 0;
1007 	ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1008 	ifp->if_timer = 0;
1009 
1010 	if (disable) {
1011 		if (sc->sc_disable)
1012 			(*sc->sc_disable)(sc);
1013 		sc->sc_enabled = 0;
1014 	}
1015 	splx(s);
1016 }
1017 
1018 /*
1019  * Choose a data rate for a packet len bytes long that suits the packet
1020  * type and the wireless conditions.
1021  *
1022  * TBD Adapt fragmentation threshold.
1023  */
1024 STATIC int
1025 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
1026     struct ieee80211_frame *wh, u_int len)
1027 {
1028 	struct wi_softc	*sc = ic->ic_ifp->if_softc;
1029 	struct wi_node *wn = (void*)ni;
1030 	struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
1031 	int do_not_adapt, i, rateidx, s;
1032 
1033 	do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
1034 	    (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
1035 
1036 	s = splnet();
1037 
1038 	rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
1039 	    ic->ic_fixed_rate,
1040 	    ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname,
1041 	    do_not_adapt);
1042 
1043 	ni->ni_txrate = rateidx;
1044 
1045 	if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
1046 		/* choose the slowest pending rate so that we don't
1047 		 * accidentally send a packet on the MAC's queue
1048 		 * too fast. TBD find out if the MAC labels Tx
1049 		 * packets w/ rate when enqueued or dequeued.
1050 		 */
1051 		for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
1052 		rateidx = i;
1053 	}
1054 
1055 	splx(s);
1056 	return (rateidx);
1057 }
1058 
1059 STATIC void
1060 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1061 {
1062 	struct wi_node *wn;
1063 	if (id->id_node == NULL)
1064 		return;
1065 
1066 	wn = (void*)id->id_node;
1067 	ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
1068 }
1069 
1070 STATIC void
1071 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1072 {
1073 	struct ieee80211_node *ni;
1074 	struct wi_node *wn;
1075 	int s;
1076 
1077 	s = splnet();
1078 
1079 	if ((ni = id->id_node) == NULL) {
1080 		DPRINTF(("wi_lower_rate: missing node\n"));
1081 		goto out;
1082 	}
1083 
1084 	wn = (void *)ni;
1085 
1086 	ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1087 out:
1088 	splx(s);
1089 	return;
1090 }
1091 
1092 STATIC void
1093 wi_start(struct ifnet *ifp)
1094 {
1095 	struct wi_softc	*sc = ifp->if_softc;
1096 	struct ieee80211com *ic = &sc->sc_ic;
1097 	struct ether_header *eh;
1098 	struct ieee80211_node *ni;
1099 	struct ieee80211_frame *wh;
1100 	struct ieee80211_rateset *rs;
1101 	struct wi_rssdesc *rd;
1102 	struct ieee80211_rssdesc *id;
1103 	struct mbuf *m0;
1104 	struct wi_frame frmhdr;
1105 	int cur, fid, off, rateidx;
1106 
1107 	if (!sc->sc_enabled || sc->sc_invalid)
1108 		return;
1109 	if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1110 		return;
1111 
1112 	memset(&frmhdr, 0, sizeof(frmhdr));
1113 	cur = sc->sc_txqueue;
1114 	for (;;) {
1115 		ni = ic->ic_bss;
1116 		if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1117 			ifp->if_flags |= IFF_OACTIVE;
1118 			break;
1119 		}
1120 		if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1121 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1122 			m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1123 			    (void *)&frmhdr.wi_ehdr);
1124 			frmhdr.wi_ehdr.ether_type = 0;
1125                         wh = mtod(m0, struct ieee80211_frame *);
1126 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1127 			m0->m_pkthdr.rcvif = NULL;
1128 		} else if (ic->ic_state == IEEE80211_S_RUN) {
1129 			IFQ_POLL(&ifp->if_snd, m0);
1130 			if (m0 == NULL)
1131 				break;
1132 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1133 			ifp->if_opackets++;
1134 			m_copydata(m0, 0, ETHER_HDR_LEN,
1135 			    (void *)&frmhdr.wi_ehdr);
1136 #if NBPFILTER > 0
1137 			if (ifp->if_bpf)
1138 				bpf_mtap(ifp->if_bpf, m0);
1139 #endif
1140 
1141 			eh = mtod(m0, struct ether_header *);
1142 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1143 			if (ni == NULL) {
1144 				ifp->if_oerrors++;
1145 				continue;
1146 			}
1147 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1148 			    (m0->m_flags & M_PWR_SAV) == 0) {
1149 				ieee80211_pwrsave(ic, ni, m0);
1150 				goto next;
1151 			}
1152 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
1153 				ieee80211_free_node(ni);
1154 				ifp->if_oerrors++;
1155 				continue;
1156 			}
1157 			wh = mtod(m0, struct ieee80211_frame *);
1158 		} else
1159 			break;
1160 #if NBPFILTER > 0
1161 		if (ic->ic_rawbpf)
1162 			bpf_mtap(ic->ic_rawbpf, m0);
1163 #endif
1164 		frmhdr.wi_tx_ctl =
1165 		    htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1166 #ifndef	IEEE80211_NO_HOSTAP
1167 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1168 			frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1169 		if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1170 		    (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1171 			if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1172 				m_freem(m0);
1173 				ifp->if_oerrors++;
1174 				goto next;
1175 			}
1176 			frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1177 		}
1178 #endif /* !IEEE80211_NO_HOSTAP */
1179 
1180 		rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1181 		rs = &ni->ni_rates;
1182 
1183 #if NBPFILTER > 0
1184 		if (sc->sc_drvbpf) {
1185 			struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1186 
1187 			tap->wt_rate = rs->rs_rates[rateidx];
1188 			tap->wt_chan_freq =
1189 			    htole16(ic->ic_bss->ni_chan->ic_freq);
1190 			tap->wt_chan_flags =
1191 			    htole16(ic->ic_bss->ni_chan->ic_flags);
1192 			/* TBD tap->wt_flags */
1193 
1194 			bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1195 		}
1196 #endif
1197 
1198 		rd = SLIST_FIRST(&sc->sc_rssdfree);
1199 		id = &rd->rd_desc;
1200 		id->id_len = m0->m_pkthdr.len;
1201 		id->id_rateidx = ni->ni_txrate;
1202 		id->id_rssi = ni->ni_rssi;
1203 
1204 		frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1205 
1206 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1207 			frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1208 			    IEEE80211_RATE_VAL);
1209 		else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1210 			(void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1211 
1212 		m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1213 		    (void *)&frmhdr.wi_whdr);
1214 		m_adj(m0, sizeof(struct ieee80211_frame));
1215 		frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1216 		if (IFF_DUMPPKTS(ifp))
1217 			wi_dump_pkt(&frmhdr, ni, -1);
1218 		fid = sc->sc_txd[cur].d_fid;
1219 		off = sizeof(frmhdr);
1220 		if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1221 		    wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1222 			aprint_error_dev(&sc->sc_dev, "%s write fid %x failed\n",
1223 			    __func__, fid);
1224 			ifp->if_oerrors++;
1225 			m_freem(m0);
1226 			goto next;
1227 		}
1228 		m_freem(m0);
1229 		sc->sc_txpending[ni->ni_txrate]++;
1230 		--sc->sc_txalloced;
1231 		if (sc->sc_txqueued++ == 0) {
1232 #ifdef DIAGNOSTIC
1233 			if (cur != sc->sc_txstart)
1234 				printf("%s: ring is desynchronized\n",
1235 				    device_xname(&sc->sc_dev));
1236 #endif
1237 			wi_push_packet(sc);
1238 		} else {
1239 #ifdef WI_RING_DEBUG
1240 	printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1241 	    device_xname(&sc->sc_dev), fid,
1242 	    sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1243 	    sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1244 #endif
1245 		}
1246 		sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1247 		SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1248 		id->id_node = ni;
1249 		continue;
1250 next:
1251 		if (ni != NULL)
1252 			ieee80211_free_node(ni);
1253 	}
1254 }
1255 
1256 
1257 STATIC int
1258 wi_reset(struct wi_softc *sc)
1259 {
1260 	int i, error;
1261 
1262 	DPRINTF(("wi_reset\n"));
1263 
1264 	if (sc->sc_reset)
1265 		(*sc->sc_reset)(sc);
1266 
1267 	error = 0;
1268 	for (i = 0; i < 5; i++) {
1269 		if (sc->sc_invalid)
1270 			return ENXIO;
1271 		DELAY(20*1000);	/* XXX: way too long! */
1272 		if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1273 			break;
1274 	}
1275 	if (error) {
1276 		aprint_error_dev(&sc->sc_dev, "init failed\n");
1277 		return error;
1278 	}
1279 	CSR_WRITE_2(sc, WI_INT_EN, 0);
1280 	CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1281 
1282 	/* Calibrate timer. */
1283 	wi_write_val(sc, WI_RID_TICK_TIME, 0);
1284 	return 0;
1285 }
1286 
1287 STATIC void
1288 wi_watchdog(struct ifnet *ifp)
1289 {
1290 	struct wi_softc *sc = ifp->if_softc;
1291 
1292 	ifp->if_timer = 0;
1293 	if (!sc->sc_enabled)
1294 		return;
1295 
1296 	if (sc->sc_tx_timer) {
1297 		if (--sc->sc_tx_timer == 0) {
1298 			printf("%s: device timeout\n", ifp->if_xname);
1299 			ifp->if_oerrors++;
1300 			wi_init(ifp);
1301 			return;
1302 		}
1303 		ifp->if_timer = 1;
1304 	}
1305 
1306 	if (sc->sc_scan_timer) {
1307 		if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1308 		    sc->sc_firmware_type == WI_INTERSIL) {
1309 			DPRINTF(("wi_watchdog: inquire scan\n"));
1310 			wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1311 		}
1312 		if (sc->sc_scan_timer)
1313 			ifp->if_timer = 1;
1314 	}
1315 
1316 	/* TODO: rate control */
1317 	ieee80211_watchdog(&sc->sc_ic);
1318 }
1319 
1320 STATIC int
1321 wi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1322 {
1323 	struct wi_softc *sc = ifp->if_softc;
1324 	struct ieee80211com *ic = &sc->sc_ic;
1325 	struct ifreq *ifr = (struct ifreq *)data;
1326 	int s, error = 0;
1327 
1328 	if (!device_is_active(&sc->sc_dev))
1329 		return ENXIO;
1330 
1331 	s = splnet();
1332 
1333 	switch (cmd) {
1334 	case SIOCSIFFLAGS:
1335 		/*
1336 		 * Can't do promisc and hostap at the same time.  If all that's
1337 		 * changing is the promisc flag, try to short-circuit a call to
1338 		 * wi_init() by just setting PROMISC in the hardware.
1339 		 */
1340 		if (ifp->if_flags & IFF_UP) {
1341 			if (sc->sc_enabled) {
1342 				if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1343 				    (ifp->if_flags & IFF_PROMISC) != 0)
1344 					wi_write_val(sc, WI_RID_PROMISC, 1);
1345 				else
1346 					wi_write_val(sc, WI_RID_PROMISC, 0);
1347 			} else
1348 				error = wi_init(ifp);
1349 		} else if (sc->sc_enabled)
1350 			wi_stop(ifp, 1);
1351 		break;
1352 	case SIOCSIFMEDIA:
1353 	case SIOCGIFMEDIA:
1354 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1355 		break;
1356 	case SIOCADDMULTI:
1357 	case SIOCDELMULTI:
1358 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1359 			if (ifp->if_flags & IFF_RUNNING) {
1360 				/* do not rescan */
1361 				error = wi_write_multi(sc);
1362 			} else
1363 				error = 0;
1364 		}
1365 		break;
1366 	case SIOCGIFGENERIC:
1367 		error = wi_get_cfg(ifp, cmd, data);
1368 		break;
1369 	case SIOCSIFGENERIC:
1370 		error = kauth_authorize_generic(curlwp->l_cred,
1371 		    KAUTH_GENERIC_ISSUSER, NULL);
1372 		if (error)
1373 			break;
1374 		error = wi_set_cfg(ifp, cmd, data);
1375 		if (error == ENETRESET) {
1376 			if (ifp->if_flags & IFF_RUNNING)
1377 				error = wi_init(ifp);
1378 			else
1379 				error = 0;
1380 		}
1381 		break;
1382 	case SIOCS80211BSSID:
1383 		if (sc->sc_firmware_type == WI_LUCENT) {
1384 			error = ENODEV;
1385 			break;
1386 		}
1387 		/* fall through */
1388 	default:
1389 		ic->ic_flags |= sc->sc_ic_flags;
1390 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1391 		sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC;
1392 		if (error == ENETRESET) {
1393 			if (sc->sc_enabled)
1394 				error = wi_init(ifp);
1395 			else
1396 				error = 0;
1397 		}
1398 		break;
1399 	}
1400 	wi_mend_flags(sc, ic->ic_state);
1401 	splx(s);
1402 	return error;
1403 }
1404 
1405 STATIC int
1406 wi_media_change(struct ifnet *ifp)
1407 {
1408 	struct wi_softc *sc = ifp->if_softc;
1409 	struct ieee80211com *ic = &sc->sc_ic;
1410 	int error;
1411 
1412 	error = ieee80211_media_change(ifp);
1413 	if (error == ENETRESET) {
1414 		if (sc->sc_enabled)
1415 			error = wi_init(ifp);
1416 		else
1417 			error = 0;
1418 	}
1419 	ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1420 
1421 	return error;
1422 }
1423 
1424 STATIC void
1425 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1426 {
1427 	struct wi_softc *sc = ifp->if_softc;
1428 	struct ieee80211com *ic = &sc->sc_ic;
1429 	u_int16_t val;
1430 	int rate;
1431 
1432 	if (sc->sc_enabled == 0) {
1433 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1434 		imr->ifm_status = 0;
1435 		return;
1436 	}
1437 
1438 	imr->ifm_status = IFM_AVALID;
1439 	imr->ifm_active = IFM_IEEE80211;
1440 	if (ic->ic_state == IEEE80211_S_RUN &&
1441 	    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1442 		imr->ifm_status |= IFM_ACTIVE;
1443 	if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1444 		/* convert to 802.11 rate */
1445 		val = le16toh(val);
1446 		rate = val * 2;
1447 		if (sc->sc_firmware_type == WI_LUCENT) {
1448 			if (rate == 10)
1449 				rate = 11;	/* 5.5Mbps */
1450 		} else {
1451 			if (rate == 4*2)
1452 				rate = 11;	/* 5.5Mbps */
1453 			else if (rate == 8*2)
1454 				rate = 22;	/* 11Mbps */
1455 		}
1456 	} else
1457 		rate = 0;
1458 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1459 	switch (ic->ic_opmode) {
1460 	case IEEE80211_M_STA:
1461 		break;
1462 	case IEEE80211_M_IBSS:
1463 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
1464 		break;
1465 	case IEEE80211_M_AHDEMO:
1466 		imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1467 		break;
1468 	case IEEE80211_M_HOSTAP:
1469 		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1470 		break;
1471 	case IEEE80211_M_MONITOR:
1472 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
1473 		break;
1474 	}
1475 }
1476 
1477 STATIC struct ieee80211_node *
1478 wi_node_alloc(struct ieee80211_node_table *nt)
1479 {
1480 	struct wi_node *wn =
1481 	    malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1482 	return wn ? &wn->wn_node : NULL;
1483 }
1484 
1485 STATIC void
1486 wi_node_free(struct ieee80211_node *ni)
1487 {
1488 	struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1489 	int i;
1490 
1491 	for (i = 0; i < WI_NTXRSS; i++) {
1492 		if (sc->sc_rssd[i].rd_desc.id_node == ni)
1493 			sc->sc_rssd[i].rd_desc.id_node = NULL;
1494 	}
1495 	free(ni, M_DEVBUF);
1496 }
1497 
1498 STATIC void
1499 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1500 {
1501 	struct ieee80211com *ic = &sc->sc_ic;
1502 	struct ieee80211_node *ni = ic->ic_bss;
1503 	struct ifnet *ifp = &sc->sc_if;
1504 
1505 	if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1506 		return;
1507 
1508 	DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1509 	DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1510 
1511 	/* In promiscuous mode, the BSSID field is not a reliable
1512 	 * indicator of the firmware's BSSID. Damp spurious
1513 	 * change-of-BSSID indications.
1514 	 */
1515 	if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1516 	    !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1517 	                 WI_MAX_FALSE_SYNS))
1518 		return;
1519 
1520 	sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
1521 	/*
1522 	 * XXX hack; we should create a new node with the new bssid
1523 	 * and replace the existing ic_bss with it but since we don't
1524 	 * process management frames to collect state we cheat by
1525 	 * reusing the existing node as we know wi_newstate will be
1526 	 * called and it will overwrite the node state.
1527 	 */
1528         ieee80211_sta_join(ic, ieee80211_ref_node(ni));
1529 }
1530 
1531 static inline void
1532 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1533     struct ieee80211_frame *wh, int rssi)
1534 {
1535 	struct wi_node *wn;
1536 
1537 	if (ni == NULL) {
1538 		printf("%s: null node", __func__);
1539 		return;
1540 	}
1541 
1542 	wn = (void*)ni;
1543 	ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1544 }
1545 
1546 STATIC void
1547 wi_rx_intr(struct wi_softc *sc)
1548 {
1549 	struct ieee80211com *ic = &sc->sc_ic;
1550 	struct ifnet *ifp = &sc->sc_if;
1551 	struct ieee80211_node *ni;
1552 	struct wi_frame frmhdr;
1553 	struct mbuf *m;
1554 	struct ieee80211_frame *wh;
1555 	int fid, len, off, rssi;
1556 	u_int8_t dir;
1557 	u_int16_t status;
1558 	u_int32_t rstamp;
1559 
1560 	fid = CSR_READ_2(sc, WI_RX_FID);
1561 
1562 	/* First read in the frame header */
1563 	if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1564 		aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n",
1565 		    __func__, fid);
1566 		ifp->if_ierrors++;
1567 		return;
1568 	}
1569 
1570 	if (IFF_DUMPPKTS(ifp))
1571 		wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1572 
1573 	/*
1574 	 * Drop undecryptable or packets with receive errors here
1575 	 */
1576 	status = le16toh(frmhdr.wi_status);
1577 	if ((status & WI_STAT_ERRSTAT) != 0 &&
1578 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
1579 		ifp->if_ierrors++;
1580 		DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1581 		return;
1582 	}
1583 	rssi = frmhdr.wi_rx_signal;
1584 	rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1585 	    le16toh(frmhdr.wi_rx_tstamp1);
1586 
1587 	len = le16toh(frmhdr.wi_dat_len);
1588 	off = ALIGN(sizeof(struct ieee80211_frame));
1589 
1590 	/* Sometimes the PRISM2.x returns bogusly large frames. Except
1591 	 * in monitor mode, just throw them away.
1592 	 */
1593 	if (off + len > MCLBYTES) {
1594 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1595 			ifp->if_ierrors++;
1596 			DPRINTF(("wi_rx_intr: oversized packet\n"));
1597 			return;
1598 		} else
1599 			len = 0;
1600 	}
1601 
1602 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1603 	if (m == NULL) {
1604 		ifp->if_ierrors++;
1605 		DPRINTF(("wi_rx_intr: MGET failed\n"));
1606 		return;
1607 	}
1608 	if (off + len > MHLEN) {
1609 		MCLGET(m, M_DONTWAIT);
1610 		if ((m->m_flags & M_EXT) == 0) {
1611 			m_freem(m);
1612 			ifp->if_ierrors++;
1613 			DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1614 			return;
1615 		}
1616 	}
1617 
1618 	m->m_data += off - sizeof(struct ieee80211_frame);
1619 	memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1620 	wi_read_bap(sc, fid, sizeof(frmhdr),
1621 	    m->m_data + sizeof(struct ieee80211_frame), len);
1622 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1623 	m->m_pkthdr.rcvif = ifp;
1624 
1625 	wh = mtod(m, struct ieee80211_frame *);
1626 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1627 		/*
1628 		 * WEP is decrypted by hardware. Clear WEP bit
1629 		 * header for ieee80211_input().
1630 		 */
1631 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1632 	}
1633 #if NBPFILTER > 0
1634 	if (sc->sc_drvbpf) {
1635 		struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1636 
1637 		tap->wr_rate = frmhdr.wi_rx_rate / 5;
1638 		tap->wr_antsignal = frmhdr.wi_rx_signal;
1639 		tap->wr_antnoise = frmhdr.wi_rx_silence;
1640 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1641 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1642 		if (frmhdr.wi_status & WI_STAT_PCF)
1643 			tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1644 
1645 		/* XXX IEEE80211_RADIOTAP_F_WEP */
1646 		bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1647 	}
1648 #endif
1649 
1650 	/* synchronize driver's BSSID with firmware's BSSID */
1651 	dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1652 	if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1653 		wi_sync_bssid(sc, wh->i_addr3);
1654 
1655 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1656 
1657 	ieee80211_input(ic, m, ni, rssi, rstamp);
1658 
1659 	wi_rssadapt_input(ic, ni, wh, rssi);
1660 
1661 	/*
1662 	 * The frame may have caused the node to be marked for
1663 	 * reclamation (e.g. in response to a DEAUTH message)
1664 	 * so use release_node here instead of unref_node.
1665 	 */
1666 	ieee80211_free_node(ni);
1667 }
1668 
1669 STATIC void
1670 wi_tx_ex_intr(struct wi_softc *sc)
1671 {
1672 	struct ieee80211com *ic = &sc->sc_ic;
1673 	struct ifnet *ifp = &sc->sc_if;
1674 	struct ieee80211_node *ni;
1675 	struct ieee80211_rssdesc *id;
1676 	struct wi_rssdesc *rssd;
1677 	struct wi_frame frmhdr;
1678 	int fid;
1679 	u_int16_t status;
1680 
1681 	fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1682 	/* Read in the frame header */
1683 	if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1684 		aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n",
1685 		    __func__, fid);
1686 		wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1687 		    &sc->sc_txpending);
1688 		goto out;
1689 	}
1690 
1691 	if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1692 		printf("%s: %s bad idx %02x\n",
1693 		    device_xname(&sc->sc_dev), __func__, frmhdr.wi_tx_idx);
1694 		wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1695 		    &sc->sc_txpending);
1696 		goto out;
1697 	}
1698 
1699 	status = le16toh(frmhdr.wi_status);
1700 
1701 	/*
1702 	 * Spontaneous station disconnects appear as xmit
1703 	 * errors.  Don't announce them and/or count them
1704 	 * as an output error.
1705 	 */
1706 	if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1707 		aprint_error_dev(&sc->sc_dev, "tx failed");
1708 		if (status & WI_TXSTAT_RET_ERR)
1709 			printf(", retry limit exceeded");
1710 		if (status & WI_TXSTAT_AGED_ERR)
1711 			printf(", max transmit lifetime exceeded");
1712 		if (status & WI_TXSTAT_DISCONNECT)
1713 			printf(", port disconnected");
1714 		if (status & WI_TXSTAT_FORM_ERR)
1715 			printf(", invalid format (data len %u src %s)",
1716 				le16toh(frmhdr.wi_dat_len),
1717 				ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1718 		if (status & ~0xf)
1719 			printf(", status=0x%x", status);
1720 		printf("\n");
1721 	}
1722 	ifp->if_oerrors++;
1723 	rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1724 	id = &rssd->rd_desc;
1725 	if ((status & WI_TXSTAT_RET_ERR) != 0)
1726 		wi_lower_rate(ic, id);
1727 
1728 	ni = id->id_node;
1729 	id->id_node = NULL;
1730 
1731 	if (ni == NULL) {
1732 		aprint_error_dev(&sc->sc_dev, "%s null node, rssdesc %02x\n",
1733 		    __func__, frmhdr.wi_tx_idx);
1734 		goto out;
1735 	}
1736 
1737 	if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1738 		aprint_error_dev(&sc->sc_dev, "%s txpending[%i] wraparound",
1739 		    __func__, id->id_rateidx);
1740 		sc->sc_txpending[id->id_rateidx] = 0;
1741 	}
1742 	if (ni != NULL)
1743 		ieee80211_free_node(ni);
1744 	SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1745 out:
1746 	ifp->if_flags &= ~IFF_OACTIVE;
1747 }
1748 
1749 STATIC void
1750 wi_txalloc_intr(struct wi_softc *sc)
1751 {
1752 	int fid, cur;
1753 
1754 	fid = CSR_READ_2(sc, WI_ALLOC_FID);
1755 
1756 	cur = sc->sc_txalloc;
1757 #ifdef DIAGNOSTIC
1758 	if (sc->sc_txstarted == 0) {
1759 		printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1760 		    device_xname(&sc->sc_dev), fid, sc->sc_txd[cur].d_fid, cur,
1761 		    sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1762 		return;
1763 	}
1764 #endif
1765 	--sc->sc_txstarted;
1766 	++sc->sc_txalloced;
1767 	sc->sc_txd[cur].d_fid = fid;
1768 	sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1769 #ifdef WI_RING_DEBUG
1770 	printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1771 	    device_xname(&sc->sc_dev), fid,
1772 	    sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1773 	    sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1774 #endif
1775 }
1776 
1777 STATIC void
1778 wi_cmd_intr(struct wi_softc *sc)
1779 {
1780 	struct ifnet *ifp = &sc->sc_if;
1781 
1782 	if (sc->sc_invalid)
1783 		return;
1784 #ifdef WI_DEBUG
1785 	if (wi_debug > 1)
1786 		printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
1787 #endif
1788 	KASSERT(sc->sc_txcmds > 0);
1789 
1790 	--sc->sc_txcmds;
1791 
1792 	if (--sc->sc_txqueued == 0) {
1793 		sc->sc_tx_timer = 0;
1794 		ifp->if_flags &= ~IFF_OACTIVE;
1795 #ifdef WI_RING_DEBUG
1796 	printf("%s: cmd       , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1797 	    device_xname(&sc->sc_dev),
1798 	    sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1799 	    sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1800 #endif
1801 	} else
1802 		wi_push_packet(sc);
1803 }
1804 
1805 STATIC void
1806 wi_push_packet(struct wi_softc *sc)
1807 {
1808 	struct ifnet *ifp = &sc->sc_if;
1809 	int cur, fid;
1810 
1811 	cur = sc->sc_txstart;
1812 	fid = sc->sc_txd[cur].d_fid;
1813 
1814 	KASSERT(sc->sc_txcmds == 0);
1815 
1816 	if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1817 		aprint_error_dev(&sc->sc_dev, "xmit failed\n");
1818 		/* XXX ring might have a hole */
1819 	}
1820 
1821 	if (sc->sc_txcmds++ > 0)
1822 		printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
1823 
1824 	++sc->sc_txstarted;
1825 #ifdef DIAGNOSTIC
1826 	if (sc->sc_txstarted > WI_NTXBUF)
1827 		aprint_error_dev(&sc->sc_dev, "too many buffers started\n");
1828 #endif
1829 	sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1830 	sc->sc_tx_timer = 5;
1831 	ifp->if_timer = 1;
1832 #ifdef WI_RING_DEBUG
1833 	printf("%s: push  %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1834 	    device_xname(&sc->sc_dev), fid,
1835 	    sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1836 	    sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1837 #endif
1838 }
1839 
1840 STATIC void
1841 wi_tx_intr(struct wi_softc *sc)
1842 {
1843 	struct ieee80211com *ic = &sc->sc_ic;
1844 	struct ifnet *ifp = &sc->sc_if;
1845 	struct ieee80211_node *ni;
1846 	struct ieee80211_rssdesc *id;
1847 	struct wi_rssdesc *rssd;
1848 	struct wi_frame frmhdr;
1849 	int fid;
1850 
1851 	fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1852 	/* Read in the frame header */
1853 	if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
1854 	                &frmhdr.wi_tx_swsup2, 2) != 0) {
1855 		aprint_error_dev(&sc->sc_dev, "%s read fid %x failed\n",
1856 		    __func__, fid);
1857 		wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1858 		    &sc->sc_txpending);
1859 		goto out;
1860 	}
1861 
1862 	if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1863 		aprint_error_dev(&sc->sc_dev, "%s bad idx %02x\n",
1864 		    __func__, frmhdr.wi_tx_idx);
1865 		wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1866 		    &sc->sc_txpending);
1867 		goto out;
1868 	}
1869 
1870 	rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1871 	id = &rssd->rd_desc;
1872 	wi_raise_rate(ic, id);
1873 
1874 	ni = id->id_node;
1875 	id->id_node = NULL;
1876 
1877 	if (ni == NULL) {
1878 		aprint_error_dev(&sc->sc_dev, "%s null node, rssdesc %02x\n",
1879 		    __func__, frmhdr.wi_tx_idx);
1880 		goto out;
1881 	}
1882 
1883 	if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1884 		aprint_error_dev(&sc->sc_dev, "%s txpending[%i] wraparound",
1885 		    __func__, id->id_rateidx);
1886 		sc->sc_txpending[id->id_rateidx] = 0;
1887 	}
1888 	if (ni != NULL)
1889 		ieee80211_free_node(ni);
1890 	SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1891 out:
1892 	ifp->if_flags &= ~IFF_OACTIVE;
1893 }
1894 
1895 STATIC void
1896 wi_info_intr(struct wi_softc *sc)
1897 {
1898 	struct ieee80211com *ic = &sc->sc_ic;
1899 	struct ifnet *ifp = &sc->sc_if;
1900 	int i, fid, len, off;
1901 	u_int16_t ltbuf[2];
1902 	u_int16_t stat;
1903 	u_int32_t *ptr;
1904 
1905 	fid = CSR_READ_2(sc, WI_INFO_FID);
1906 	wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1907 
1908 	switch (le16toh(ltbuf[1])) {
1909 
1910 	case WI_INFO_LINK_STAT:
1911 		wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1912 		DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1913 		switch (le16toh(stat)) {
1914 		case CONNECTED:
1915 			sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1916 			if (ic->ic_state == IEEE80211_S_RUN &&
1917 			    ic->ic_opmode != IEEE80211_M_IBSS)
1918 				break;
1919 			/* FALLTHROUGH */
1920 		case AP_CHANGE:
1921 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1922 			break;
1923 		case AP_IN_RANGE:
1924 			sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1925 			break;
1926 		case AP_OUT_OF_RANGE:
1927 			if (sc->sc_firmware_type == WI_SYMBOL &&
1928 			    sc->sc_scan_timer > 0) {
1929 				if (wi_cmd(sc, WI_CMD_INQUIRE,
1930 				    WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1931 					sc->sc_scan_timer = 0;
1932 				break;
1933 			}
1934 			if (ic->ic_opmode == IEEE80211_M_STA)
1935 				sc->sc_flags |= WI_FLAGS_OUTRANGE;
1936 			break;
1937 		case DISCONNECTED:
1938 		case ASSOC_FAILED:
1939 			if (ic->ic_opmode == IEEE80211_M_STA)
1940 				ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1941 			break;
1942 		}
1943 		break;
1944 
1945 	case WI_INFO_COUNTERS:
1946 		/* some card versions have a larger stats structure */
1947 		len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1948 		ptr = (u_int32_t *)&sc->sc_stats;
1949 		off = sizeof(ltbuf);
1950 		for (i = 0; i < len; i++, off += 2, ptr++) {
1951 			wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1952 			stat = le16toh(stat);
1953 #ifdef WI_HERMES_STATS_WAR
1954 			if (stat & 0xf000)
1955 				stat = ~stat;
1956 #endif
1957 			*ptr += stat;
1958 		}
1959 		ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1960 		    sc->sc_stats.wi_tx_multi_retries +
1961 		    sc->sc_stats.wi_tx_retry_limit;
1962 		break;
1963 
1964 	case WI_INFO_SCAN_RESULTS:
1965 	case WI_INFO_HOST_SCAN_RESULTS:
1966 		wi_scan_result(sc, fid, le16toh(ltbuf[0]));
1967 		break;
1968 
1969 	default:
1970 		DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
1971 		    le16toh(ltbuf[1]), le16toh(ltbuf[0])));
1972 		break;
1973 	}
1974 }
1975 
1976 STATIC int
1977 wi_write_multi(struct wi_softc *sc)
1978 {
1979 	struct ifnet *ifp = &sc->sc_if;
1980 	int n;
1981 	struct wi_mcast mlist;
1982 	struct ether_multi *enm;
1983 	struct ether_multistep estep;
1984 
1985 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1986 allmulti:
1987 		ifp->if_flags |= IFF_ALLMULTI;
1988 		memset(&mlist, 0, sizeof(mlist));
1989 		return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
1990 		    sizeof(mlist));
1991 	}
1992 
1993 	n = 0;
1994 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
1995 	while (enm != NULL) {
1996 		/* Punt on ranges or too many multicast addresses. */
1997 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
1998 		    n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
1999 			goto allmulti;
2000 
2001 		IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
2002 		n++;
2003 		ETHER_NEXT_MULTI(estep, enm);
2004 	}
2005 	ifp->if_flags &= ~IFF_ALLMULTI;
2006 	return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2007 	    IEEE80211_ADDR_LEN * n);
2008 }
2009 
2010 
2011 STATIC void
2012 wi_read_nicid(struct wi_softc *sc)
2013 {
2014 	struct wi_card_ident *id;
2015 	char *p;
2016 	int len;
2017 	u_int16_t ver[4];
2018 
2019 	/* getting chip identity */
2020 	memset(ver, 0, sizeof(ver));
2021 	len = sizeof(ver);
2022 	wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
2023 	printf("%s: using ", device_xname(&sc->sc_dev));
2024 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
2025 
2026 	sc->sc_firmware_type = WI_NOTYPE;
2027 	for (id = wi_card_ident; id->card_name != NULL; id++) {
2028 		if (le16toh(ver[0]) == id->card_id) {
2029 			printf("%s", id->card_name);
2030 			sc->sc_firmware_type = id->firm_type;
2031 			break;
2032 		}
2033 	}
2034 	if (sc->sc_firmware_type == WI_NOTYPE) {
2035 		if (le16toh(ver[0]) & 0x8000) {
2036 			printf("Unknown PRISM2 chip");
2037 			sc->sc_firmware_type = WI_INTERSIL;
2038 		} else {
2039 			printf("Unknown Lucent chip");
2040 			sc->sc_firmware_type = WI_LUCENT;
2041 		}
2042 	}
2043 
2044 	/* get primary firmware version (Only Prism chips) */
2045 	if (sc->sc_firmware_type != WI_LUCENT) {
2046 		memset(ver, 0, sizeof(ver));
2047 		len = sizeof(ver);
2048 		wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
2049 		sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
2050 		    le16toh(ver[3]) * 100 + le16toh(ver[1]);
2051 	}
2052 
2053 	/* get station firmware version */
2054 	memset(ver, 0, sizeof(ver));
2055 	len = sizeof(ver);
2056 	wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
2057 	sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
2058 	    le16toh(ver[3]) * 100 + le16toh(ver[1]);
2059 	if (sc->sc_firmware_type == WI_INTERSIL &&
2060 	    (sc->sc_sta_firmware_ver == 10102 ||
2061 	     sc->sc_sta_firmware_ver == 20102)) {
2062 		char ident[12];
2063 		memset(ident, 0, sizeof(ident));
2064 		len = sizeof(ident);
2065 		/* value should be the format like "V2.00-11" */
2066 		if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
2067 		    *(p = (char *)ident) >= 'A' &&
2068 		    p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2069 			sc->sc_firmware_type = WI_SYMBOL;
2070 			sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2071 			    (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2072 			    (p[6] - '0') * 10 + (p[7] - '0');
2073 		}
2074 	}
2075 
2076 	printf("\n%s: %s Firmware: ", device_xname(&sc->sc_dev),
2077 	     sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2078 	    (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2079 	if (sc->sc_firmware_type != WI_LUCENT)	/* XXX */
2080 		printf("Primary (%u.%u.%u), ",
2081 		    sc->sc_pri_firmware_ver / 10000,
2082 		    (sc->sc_pri_firmware_ver % 10000) / 100,
2083 		    sc->sc_pri_firmware_ver % 100);
2084 	printf("Station (%u.%u.%u)\n",
2085 	    sc->sc_sta_firmware_ver / 10000,
2086 	    (sc->sc_sta_firmware_ver % 10000) / 100,
2087 	    sc->sc_sta_firmware_ver % 100);
2088 }
2089 
2090 STATIC int
2091 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2092 {
2093 	struct wi_ssid ssid;
2094 
2095 	if (buflen > IEEE80211_NWID_LEN)
2096 		return ENOBUFS;
2097 	memset(&ssid, 0, sizeof(ssid));
2098 	ssid.wi_len = htole16(buflen);
2099 	memcpy(ssid.wi_ssid, buf, buflen);
2100 	return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2101 }
2102 
2103 STATIC int
2104 wi_get_cfg(struct ifnet *ifp, u_long cmd, void *data)
2105 {
2106 	struct wi_softc *sc = ifp->if_softc;
2107 	struct ieee80211com *ic = &sc->sc_ic;
2108 	struct ifreq *ifr = (struct ifreq *)data;
2109 	struct wi_req wreq;
2110 	int len, n, error;
2111 
2112 	error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2113 	if (error)
2114 		return error;
2115 	len = (wreq.wi_len - 1) * 2;
2116 	if (len < sizeof(u_int16_t))
2117 		return ENOSPC;
2118 	if (len > sizeof(wreq.wi_val))
2119 		len = sizeof(wreq.wi_val);
2120 
2121 	switch (wreq.wi_type) {
2122 
2123 	case WI_RID_IFACE_STATS:
2124 		memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2125 		if (len < sizeof(sc->sc_stats))
2126 			error = ENOSPC;
2127 		else
2128 			len = sizeof(sc->sc_stats);
2129 		break;
2130 
2131 	case WI_RID_ENCRYPTION:
2132 	case WI_RID_TX_CRYPT_KEY:
2133 	case WI_RID_DEFLT_CRYPT_KEYS:
2134 	case WI_RID_TX_RATE:
2135 		return ieee80211_cfgget(ic, cmd, data);
2136 
2137 	case WI_RID_MICROWAVE_OVEN:
2138 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2139 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2140 			    &len);
2141 			break;
2142 		}
2143 		wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2144 		len = sizeof(u_int16_t);
2145 		break;
2146 
2147 	case WI_RID_DBM_ADJUST:
2148 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2149 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2150 			    &len);
2151 			break;
2152 		}
2153 		wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2154 		len = sizeof(u_int16_t);
2155 		break;
2156 
2157 	case WI_RID_ROAMING_MODE:
2158 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2159 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2160 			    &len);
2161 			break;
2162 		}
2163 		wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2164 		len = sizeof(u_int16_t);
2165 		break;
2166 
2167 	case WI_RID_SYSTEM_SCALE:
2168 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2169 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2170 			    &len);
2171 			break;
2172 		}
2173 		wreq.wi_val[0] = htole16(sc->sc_system_scale);
2174 		len = sizeof(u_int16_t);
2175 		break;
2176 
2177 	case WI_RID_FRAG_THRESH:
2178 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2179 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2180 			    &len);
2181 			break;
2182 		}
2183 		wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2184 		len = sizeof(u_int16_t);
2185 		break;
2186 
2187 	case WI_RID_READ_APS:
2188 #ifndef	IEEE80211_NO_HOSTAP
2189 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2190 			return ieee80211_cfgget(ic, cmd, data);
2191 #endif /* !IEEE80211_NO_HOSTAP */
2192 		if (sc->sc_scan_timer > 0) {
2193 			error = EINPROGRESS;
2194 			break;
2195 		}
2196 		n = sc->sc_naps;
2197 		if (len < sizeof(n)) {
2198 			error = ENOSPC;
2199 			break;
2200 		}
2201 		if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2202 			n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2203 		len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2204 		memcpy(wreq.wi_val, &n, sizeof(n));
2205 		memcpy((char *)wreq.wi_val + sizeof(n), sc->sc_aps,
2206 		    sizeof(struct wi_apinfo) * n);
2207 		break;
2208 
2209 	default:
2210 		if (sc->sc_enabled) {
2211 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2212 			    &len);
2213 			break;
2214 		}
2215 		switch (wreq.wi_type) {
2216 		case WI_RID_MAX_DATALEN:
2217 			wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2218 			len = sizeof(u_int16_t);
2219 			break;
2220 		case WI_RID_FRAG_THRESH:
2221 			wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2222 			len = sizeof(u_int16_t);
2223 			break;
2224 		case WI_RID_RTS_THRESH:
2225 			wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2226 			len = sizeof(u_int16_t);
2227 			break;
2228 		case WI_RID_CNFAUTHMODE:
2229 			wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2230 			len = sizeof(u_int16_t);
2231 			break;
2232 		case WI_RID_NODENAME:
2233 			if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2234 				error = ENOSPC;
2235 				break;
2236 			}
2237 			len = sc->sc_nodelen + sizeof(u_int16_t);
2238 			wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2239 			memcpy(&wreq.wi_val[1], sc->sc_nodename,
2240 			    sc->sc_nodelen);
2241 			break;
2242 		default:
2243 			return ieee80211_cfgget(ic, cmd, data);
2244 		}
2245 		break;
2246 	}
2247 	if (error)
2248 		return error;
2249 	wreq.wi_len = (len + 1) / 2 + 1;
2250 	return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2251 }
2252 
2253 STATIC int
2254 wi_set_cfg(struct ifnet *ifp, u_long cmd, void *data)
2255 {
2256 	struct wi_softc *sc = ifp->if_softc;
2257 	struct ieee80211com *ic = &sc->sc_ic;
2258 	struct ifreq *ifr = (struct ifreq *)data;
2259 	struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2260 	struct wi_req wreq;
2261 	struct mbuf *m;
2262 	int i, len, error;
2263 
2264 	error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2265 	if (error)
2266 		return error;
2267 	len = (wreq.wi_len - 1) * 2;
2268 	switch (wreq.wi_type) {
2269         case WI_RID_MAC_NODE:
2270 		(void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN);
2271 		if_set_sadl(ifp, ic->ic_myaddr, ETHER_ADDR_LEN);
2272 		wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
2273 		    IEEE80211_ADDR_LEN);
2274 		break;
2275 
2276 	case WI_RID_DBM_ADJUST:
2277 		return ENODEV;
2278 
2279 	case WI_RID_NODENAME:
2280 		if (le16toh(wreq.wi_val[0]) * 2 > len ||
2281 		    le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2282 			error = ENOSPC;
2283 			break;
2284 		}
2285 		if (sc->sc_enabled) {
2286 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2287 			    len);
2288 			if (error)
2289 				break;
2290 		}
2291 		sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2292 		memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2293 		break;
2294 
2295 	case WI_RID_MICROWAVE_OVEN:
2296 	case WI_RID_ROAMING_MODE:
2297 	case WI_RID_SYSTEM_SCALE:
2298 	case WI_RID_FRAG_THRESH:
2299 		if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2300 		    (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2301 			break;
2302 		if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2303 		    (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2304 			break;
2305 		if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2306 		    (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2307 			break;
2308 		if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2309 		    (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2310 			break;
2311 		/* FALLTHROUGH */
2312 	case WI_RID_RTS_THRESH:
2313 	case WI_RID_CNFAUTHMODE:
2314 	case WI_RID_MAX_DATALEN:
2315 		if (sc->sc_enabled) {
2316 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2317 			    sizeof(u_int16_t));
2318 			if (error)
2319 				break;
2320 		}
2321 		switch (wreq.wi_type) {
2322 		case WI_RID_FRAG_THRESH:
2323 			sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2324 			break;
2325 		case WI_RID_RTS_THRESH:
2326 			sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2327 			break;
2328 		case WI_RID_MICROWAVE_OVEN:
2329 			sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2330 			break;
2331 		case WI_RID_ROAMING_MODE:
2332 			sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2333 			break;
2334 		case WI_RID_SYSTEM_SCALE:
2335 			sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2336 			break;
2337 		case WI_RID_CNFAUTHMODE:
2338 			sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2339 			break;
2340 		case WI_RID_MAX_DATALEN:
2341 			sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2342 			break;
2343 		}
2344 		break;
2345 
2346 	case WI_RID_TX_RATE:
2347 		switch (le16toh(wreq.wi_val[0])) {
2348 		case 3:
2349 			ic->ic_fixed_rate = -1;
2350 			break;
2351 		default:
2352 			for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2353 				if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2354 				    / 2 == le16toh(wreq.wi_val[0]))
2355 					break;
2356 			}
2357 			if (i == IEEE80211_RATE_SIZE)
2358 				return EINVAL;
2359 			ic->ic_fixed_rate = i;
2360 		}
2361 		if (sc->sc_enabled)
2362 			error = wi_cfg_txrate(sc);
2363 		break;
2364 
2365 	case WI_RID_SCAN_APS:
2366 		if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2367 			error = wi_scan_ap(sc, 0x3fff, 0x000f);
2368 		break;
2369 
2370 	case WI_RID_MGMT_XMIT:
2371 		if (!sc->sc_enabled) {
2372 			error = ENETDOWN;
2373 			break;
2374 		}
2375 		if (ic->ic_mgtq.ifq_len > 5) {
2376 			error = EAGAIN;
2377 			break;
2378 		}
2379 		/* XXX wi_len looks in u_int8_t, not in u_int16_t */
2380 		m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2381 		if (m == NULL) {
2382 			error = ENOMEM;
2383 			break;
2384 		}
2385 		IF_ENQUEUE(&ic->ic_mgtq, m);
2386 		break;
2387 
2388 	default:
2389 		if (sc->sc_enabled) {
2390 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2391 			    len);
2392 			if (error)
2393 				break;
2394 		}
2395 		error = ieee80211_cfgset(ic, cmd, data);
2396 		break;
2397 	}
2398 	return error;
2399 }
2400 
2401 /* Rate is 0 for hardware auto-select, otherwise rate is
2402  * 2, 4, 11, or 22 (units of 500Kbps).
2403  */
2404 STATIC int
2405 wi_write_txrate(struct wi_softc *sc, int rate)
2406 {
2407 	u_int16_t hwrate;
2408 
2409 	/* rate: 0, 2, 4, 11, 22 */
2410 	switch (sc->sc_firmware_type) {
2411 	case WI_LUCENT:
2412 		switch (rate & IEEE80211_RATE_VAL) {
2413 		case 2:
2414 			hwrate = 1;
2415 			break;
2416 		case 4:
2417 			hwrate = 2;
2418 			break;
2419 		default:
2420 			hwrate = 3;	/* auto */
2421 			break;
2422 		case 11:
2423 			hwrate = 4;
2424 			break;
2425 		case 22:
2426 			hwrate = 5;
2427 			break;
2428 		}
2429 		break;
2430 	default:
2431 		switch (rate & IEEE80211_RATE_VAL) {
2432 		case 2:
2433 			hwrate = 1;
2434 			break;
2435 		case 4:
2436 			hwrate = 2;
2437 			break;
2438 		case 11:
2439 			hwrate = 4;
2440 			break;
2441 		case 22:
2442 			hwrate = 8;
2443 			break;
2444 		default:
2445 			hwrate = 15;	/* auto */
2446 			break;
2447 		}
2448 		break;
2449 	}
2450 
2451 	if (sc->sc_tx_rate == hwrate)
2452 		return 0;
2453 
2454 	if (sc->sc_if.if_flags & IFF_DEBUG)
2455 		printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2456 		    hwrate, rate);
2457 
2458 	sc->sc_tx_rate = hwrate;
2459 
2460 	return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2461 }
2462 
2463 STATIC int
2464 wi_cfg_txrate(struct wi_softc *sc)
2465 {
2466 	struct ieee80211com *ic = &sc->sc_ic;
2467 	struct ieee80211_rateset *rs;
2468 	int rate;
2469 
2470 	rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2471 
2472 	sc->sc_tx_rate = 0; /* force write to RID */
2473 
2474 	if (ic->ic_fixed_rate < 0)
2475 		rate = 0;	/* auto */
2476 	else
2477 		rate = rs->rs_rates[ic->ic_fixed_rate];
2478 
2479 	return wi_write_txrate(sc, rate);
2480 }
2481 
2482 STATIC int
2483 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2484 {
2485 	struct wi_softc *sc = ic->ic_ifp->if_softc;
2486 	u_int keyix = k->wk_keyix;
2487 
2488 	DPRINTF(("%s: delete key %u\n", __func__, keyix));
2489 
2490 	if (keyix >= IEEE80211_WEP_NKID)
2491 		return 0;
2492 	if (k->wk_keylen != 0)
2493 		sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2494 
2495 	return 1;
2496 }
2497 
2498 static int
2499 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2500 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2501 {
2502 	struct wi_softc *sc = ic->ic_ifp->if_softc;
2503 
2504 	DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix));
2505 
2506 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2507 		return 0;
2508 
2509 	sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2510 
2511 	return 1;
2512 }
2513 
2514 STATIC void
2515 wi_key_update_begin(struct ieee80211com *ic)
2516 {
2517 	DPRINTF(("%s:\n", __func__));
2518 }
2519 
2520 STATIC void
2521 wi_key_update_end(struct ieee80211com *ic)
2522 {
2523 	struct ifnet *ifp = ic->ic_ifp;
2524 	struct wi_softc *sc = ifp->if_softc;
2525 
2526 	DPRINTF(("%s:\n", __func__));
2527 
2528 	if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0)
2529 		return;
2530 	if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled &&
2531 	    !sc->sc_invalid)
2532 		(void)wi_write_wep(sc);
2533 }
2534 
2535 STATIC int
2536 wi_write_wep(struct wi_softc *sc)
2537 {
2538 	struct ifnet *ifp = &sc->sc_if;
2539 	struct ieee80211com *ic = &sc->sc_ic;
2540 	int error = 0;
2541 	int i, keylen;
2542 	u_int16_t val;
2543 	struct wi_key wkey[IEEE80211_WEP_NKID];
2544 
2545 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2546 		wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
2547 
2548 	switch (sc->sc_firmware_type) {
2549 	case WI_LUCENT:
2550 		val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2551 		error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2552 		if (error)
2553 			break;
2554 		error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey);
2555 		if (error)
2556 			break;
2557 		memset(wkey, 0, sizeof(wkey));
2558 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2559 			keylen = ic->ic_nw_keys[i].wk_keylen;
2560 			wkey[i].wi_keylen = htole16(keylen);
2561 			memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2562 			    keylen);
2563 		}
2564 		error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2565 		    wkey, sizeof(wkey));
2566 		break;
2567 
2568 	case WI_INTERSIL:
2569 	case WI_SYMBOL:
2570 		if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2571 			/*
2572 			 * ONLY HWB3163 EVAL-CARD Firmware version
2573 			 * less than 0.8 variant2
2574 			 *
2575 			 *   If promiscuous mode disable, Prism2 chip
2576 			 *  does not work with WEP .
2577 			 * It is under investigation for details.
2578 			 * (ichiro@NetBSD.org)
2579 			 */
2580 			if (sc->sc_firmware_type == WI_INTERSIL &&
2581 			    sc->sc_sta_firmware_ver < 802 ) {
2582 				/* firm ver < 0.8 variant 2 */
2583 				wi_write_val(sc, WI_RID_PROMISC, 1);
2584 			}
2585 			wi_write_val(sc, WI_RID_CNFAUTHMODE,
2586 			    sc->sc_cnfauthmode);
2587 			val = PRIVACY_INVOKED;
2588 			if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0)
2589 				val |= EXCLUDE_UNENCRYPTED;
2590 #ifndef	IEEE80211_NO_HOSTAP
2591 			/*
2592 			 * Encryption firmware has a bug for HostAP mode.
2593 			 */
2594 			if (sc->sc_firmware_type == WI_INTERSIL &&
2595 			    ic->ic_opmode == IEEE80211_M_HOSTAP)
2596 				val |= HOST_ENCRYPT;
2597 #endif /* !IEEE80211_NO_HOSTAP */
2598 		} else {
2599 			wi_write_val(sc, WI_RID_CNFAUTHMODE,
2600 			    IEEE80211_AUTH_OPEN);
2601 			val = HOST_ENCRYPT | HOST_DECRYPT;
2602 		}
2603 		error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2604 		if (error)
2605 			break;
2606 		error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2607 		    ic->ic_def_txkey);
2608 		if (error)
2609 			break;
2610 		/*
2611 		 * It seems that the firmware accept 104bit key only if
2612 		 * all the keys have 104bit length.  We get the length of
2613 		 * the transmit key and use it for all other keys.
2614 		 * Perhaps we should use software WEP for such situation.
2615 		 */
2616 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
2617 		    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
2618 			keylen = 13;	/* No keys => 104bit ok */
2619 		else
2620 			keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen;
2621 
2622 		if (keylen > IEEE80211_WEP_KEYLEN)
2623 			keylen = 13;	/* 104bit keys */
2624 		else
2625 			keylen = IEEE80211_WEP_KEYLEN;
2626 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2627 			error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2628 			    ic->ic_nw_keys[i].wk_key, keylen);
2629 			if (error)
2630 				break;
2631 		}
2632 		break;
2633 	}
2634 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2635 		wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
2636 	if (error == 0)
2637 		sc->sc_flags |= WI_FLAGS_WEP_VALID;
2638 	return error;
2639 }
2640 
2641 /* Must be called at proper protection level! */
2642 STATIC int
2643 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2644 {
2645 #ifdef WI_HISTOGRAM
2646 	static int hist1[11];
2647 	static int hist1count;
2648 #endif
2649 	int i;
2650 
2651 	/* wait for the busy bit to clear */
2652 	for (i = 500; i > 0; i--) {	/* 5s */
2653 		if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2654 			break;
2655 		if (sc->sc_invalid)
2656 			return ENXIO;
2657 		DELAY(1000);	/* 1 m sec */
2658 	}
2659 	if (i == 0) {
2660 		aprint_error_dev(&sc->sc_dev, "wi_cmd: busy bit won't clear.\n");
2661 		return(ETIMEDOUT);
2662   	}
2663 #ifdef WI_HISTOGRAM
2664 	if (i > 490)
2665 		hist1[500 - i]++;
2666 	else
2667 		hist1[10]++;
2668 	if (++hist1count == 1000) {
2669 		hist1count = 0;
2670 		printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2671 		    device_xname(&sc->sc_dev),
2672 		    hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2673 		    hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2674 		    hist1[10]);
2675 	}
2676 #endif
2677 	CSR_WRITE_2(sc, WI_PARAM0, val0);
2678 	CSR_WRITE_2(sc, WI_PARAM1, val1);
2679 	CSR_WRITE_2(sc, WI_PARAM2, val2);
2680 	CSR_WRITE_2(sc, WI_COMMAND, cmd);
2681 
2682 	return 0;
2683 }
2684 
2685 STATIC int
2686 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2687 {
2688 	int rc;
2689 
2690 #ifdef WI_DEBUG
2691 	if (wi_debug) {
2692 		printf("%s: [enter] %d txcmds outstanding\n", __func__,
2693 		    sc->sc_txcmds);
2694 	}
2695 #endif
2696 	if (sc->sc_txcmds > 0)
2697 		wi_txcmd_wait(sc);
2698 
2699 	if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
2700 		return rc;
2701 
2702 	if (cmd == WI_CMD_INI) {
2703 		/* XXX: should sleep here. */
2704 		if (sc->sc_invalid)
2705 			return ENXIO;
2706 		DELAY(100*1000);
2707 	}
2708 	rc = wi_cmd_wait(sc, cmd, val0);
2709 
2710 #ifdef WI_DEBUG
2711 	if (wi_debug) {
2712 		printf("%s: [     ] %d txcmds outstanding\n", __func__,
2713 		    sc->sc_txcmds);
2714 	}
2715 #endif
2716 	if (sc->sc_txcmds > 0)
2717 		wi_cmd_intr(sc);
2718 
2719 #ifdef WI_DEBUG
2720 	if (wi_debug) {
2721 		printf("%s: [leave] %d txcmds outstanding\n", __func__,
2722 		    sc->sc_txcmds);
2723 	}
2724 #endif
2725 	return rc;
2726 }
2727 
2728 STATIC int
2729 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
2730 {
2731 #ifdef WI_HISTOGRAM
2732 	static int hist2[11];
2733 	static int hist2count;
2734 #endif
2735 	int i, status;
2736 #ifdef WI_DEBUG
2737 	if (wi_debug > 1)
2738 		printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
2739 #endif /* WI_DEBUG */
2740 
2741 	/* wait for the cmd completed bit */
2742 	for (i = 0; i < WI_TIMEOUT; i++) {
2743 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2744 			break;
2745 		if (sc->sc_invalid)
2746 			return ENXIO;
2747 		DELAY(WI_DELAY);
2748 	}
2749 
2750 #ifdef WI_HISTOGRAM
2751 	if (i < 100)
2752 		hist2[i/10]++;
2753 	else
2754 		hist2[10]++;
2755 	if (++hist2count == 1000) {
2756 		hist2count = 0;
2757 		printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2758 		    device_xname(&sc->sc_dev),
2759 		    hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2760 		    hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2761 		    hist2[10]);
2762 	}
2763 #endif
2764 
2765 	status = CSR_READ_2(sc, WI_STATUS);
2766 
2767 	if (i == WI_TIMEOUT) {
2768 		aprint_error_dev(&sc->sc_dev, "command timed out, cmd=0x%x, arg=0x%x\n",
2769 		    cmd, val0);
2770 		return ETIMEDOUT;
2771 	}
2772 
2773 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2774 
2775 	if (status & WI_STAT_CMD_RESULT) {
2776 		aprint_error_dev(&sc->sc_dev, "command failed, cmd=0x%x, arg=0x%x\n",
2777 		    cmd, val0);
2778 		return EIO;
2779 	}
2780 	return 0;
2781 }
2782 
2783 STATIC int
2784 wi_seek_bap(struct wi_softc *sc, int id, int off)
2785 {
2786 #ifdef WI_HISTOGRAM
2787 	static int hist4[11];
2788 	static int hist4count;
2789 #endif
2790 	int i, status;
2791 
2792 	CSR_WRITE_2(sc, WI_SEL0, id);
2793 	CSR_WRITE_2(sc, WI_OFF0, off);
2794 
2795 	for (i = 0; ; i++) {
2796 		status = CSR_READ_2(sc, WI_OFF0);
2797 		if ((status & WI_OFF_BUSY) == 0)
2798 			break;
2799 		if (i == WI_TIMEOUT) {
2800 			aprint_error_dev(&sc->sc_dev, "timeout in wi_seek to %x/%x\n",
2801 			    id, off);
2802 			sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2803 			return ETIMEDOUT;
2804 		}
2805 		if (sc->sc_invalid)
2806 			return ENXIO;
2807 		DELAY(2);
2808 	}
2809 #ifdef WI_HISTOGRAM
2810 	if (i < 100)
2811 		hist4[i/10]++;
2812 	else
2813 		hist4[10]++;
2814 	if (++hist4count == 2500) {
2815 		hist4count = 0;
2816 		printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2817 		    device_xname(&sc->sc_dev),
2818 		    hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2819 		    hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2820 		    hist4[10]);
2821 	}
2822 #endif
2823 	if (status & WI_OFF_ERR) {
2824 		printf("%s: failed in wi_seek to %x/%x\n",
2825 		    device_xname(&sc->sc_dev), id, off);
2826 		sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2827 		return EIO;
2828 	}
2829 	sc->sc_bap_id = id;
2830 	sc->sc_bap_off = off;
2831 	return 0;
2832 }
2833 
2834 STATIC int
2835 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2836 {
2837 	int error, cnt;
2838 
2839 	if (buflen == 0)
2840 		return 0;
2841 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2842 		if ((error = wi_seek_bap(sc, id, off)) != 0)
2843 			return error;
2844 	}
2845 	cnt = (buflen + 1) / 2;
2846 	CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2847 	sc->sc_bap_off += cnt * 2;
2848 	return 0;
2849 }
2850 
2851 STATIC int
2852 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2853 {
2854 	int error, cnt;
2855 
2856 	if (buflen == 0)
2857 		return 0;
2858 
2859 #ifdef WI_HERMES_AUTOINC_WAR
2860   again:
2861 #endif
2862 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2863 		if ((error = wi_seek_bap(sc, id, off)) != 0)
2864 			return error;
2865 	}
2866 	cnt = (buflen + 1) / 2;
2867 	CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2868 	sc->sc_bap_off += cnt * 2;
2869 
2870 #ifdef WI_HERMES_AUTOINC_WAR
2871 	/*
2872 	 * According to the comments in the HCF Light code, there is a bug
2873 	 * in the Hermes (or possibly in certain Hermes firmware revisions)
2874 	 * where the chip's internal autoincrement counter gets thrown off
2875 	 * during data writes:  the autoincrement is missed, causing one
2876 	 * data word to be overwritten and subsequent words to be written to
2877 	 * the wrong memory locations. The end result is that we could end
2878 	 * up transmitting bogus frames without realizing it. The workaround
2879 	 * for this is to write a couple of extra guard words after the end
2880 	 * of the transfer, then attempt to read then back. If we fail to
2881 	 * locate the guard words where we expect them, we preform the
2882 	 * transfer over again.
2883 	 */
2884 	if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2885 		CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2886 		CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2887 		wi_seek_bap(sc, id, sc->sc_bap_off);
2888 		sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2889 		if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2890 		    CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2891 			aprint_error_dev(&sc->sc_dev, "detect auto increment bug, try again\n");
2892 			goto again;
2893 		}
2894 	}
2895 #endif
2896 	return 0;
2897 }
2898 
2899 STATIC int
2900 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2901 {
2902 	int error, len;
2903 	struct mbuf *m;
2904 
2905 	for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2906 		if (m->m_len == 0)
2907 			continue;
2908 
2909 		len = min(m->m_len, totlen);
2910 
2911 		if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2912 			m_copydata(m, 0, totlen, (void *)&sc->sc_txbuf);
2913 			return wi_write_bap(sc, id, off, (void *)&sc->sc_txbuf,
2914 			    totlen);
2915 		}
2916 
2917 		if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2918 			return error;
2919 
2920 		off += m->m_len;
2921 		totlen -= len;
2922 	}
2923 	return 0;
2924 }
2925 
2926 STATIC int
2927 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2928 {
2929 	int i;
2930 
2931 	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2932 		aprint_error_dev(&sc->sc_dev, "failed to allocate %d bytes on NIC\n", len);
2933 		return ENOMEM;
2934 	}
2935 
2936 	for (i = 0; i < WI_TIMEOUT; i++) {
2937 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2938 			break;
2939 		DELAY(1);
2940 	}
2941 	if (i == WI_TIMEOUT) {
2942 		aprint_error_dev(&sc->sc_dev, "timeout in alloc\n");
2943 		return ETIMEDOUT;
2944 	}
2945 	*idp = CSR_READ_2(sc, WI_ALLOC_FID);
2946 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2947 	return 0;
2948 }
2949 
2950 STATIC int
2951 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2952 {
2953 	int error, len;
2954 	u_int16_t ltbuf[2];
2955 
2956 	/* Tell the NIC to enter record read mode. */
2957 	error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2958 	if (error)
2959 		return error;
2960 
2961 	error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2962 	if (error)
2963 		return error;
2964 
2965 	if (le16toh(ltbuf[0]) == 0)
2966 		return EOPNOTSUPP;
2967 	if (le16toh(ltbuf[1]) != rid) {
2968 		aprint_error_dev(&sc->sc_dev, "record read mismatch, rid=%x, got=%x\n",
2969 		    rid, le16toh(ltbuf[1]));
2970 		return EIO;
2971 	}
2972 	len = (le16toh(ltbuf[0]) - 1) * 2;	 /* already got rid */
2973 	if (*buflenp < len) {
2974 		aprint_error_dev(&sc->sc_dev, "record buffer is too small, "
2975 		    "rid=%x, size=%d, len=%d\n",
2976 		    rid, *buflenp, len);
2977 		return ENOSPC;
2978 	}
2979 	*buflenp = len;
2980 	return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
2981 }
2982 
2983 STATIC int
2984 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
2985 {
2986 	int error;
2987 	u_int16_t ltbuf[2];
2988 
2989 	ltbuf[0] = htole16((buflen + 1) / 2 + 1);	 /* includes rid */
2990 	ltbuf[1] = htole16(rid);
2991 
2992 	error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
2993 	if (error)
2994 		return error;
2995 	error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
2996 	if (error)
2997 		return error;
2998 
2999 	return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
3000 }
3001 
3002 STATIC void
3003 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
3004 {
3005 	struct wi_node *wn = (void*)ni;
3006 	ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
3007 }
3008 
3009 STATIC void
3010 wi_rssadapt_updatestats(void *arg)
3011 {
3012 	struct wi_softc *sc = arg;
3013 	struct ieee80211com *ic = &sc->sc_ic;
3014 	ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg);
3015 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
3016 	    ic->ic_state == IEEE80211_S_RUN)
3017 		callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3018 		    wi_rssadapt_updatestats, arg);
3019 }
3020 
3021 /*
3022  * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating
3023  * with WEP enabled so that the AP drops unencoded frames at the
3024  * 802.11 layer.
3025  *
3026  * In all other modes, clear IEEE80211_F_DROPUNENC when operating
3027  * with WEP enabled so we don't drop unencoded frames at the 802.11
3028  * layer.  This is necessary because we must strip the WEP bit from
3029  * the 802.11 header before passing frames to ieee80211_input
3030  * because the card has already stripped the WEP crypto header from
3031  * the packet.
3032  */
3033 STATIC void
3034 wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate)
3035 {
3036 	struct ieee80211com *ic = &sc->sc_ic;
3037 
3038 	if (nstate == IEEE80211_S_RUN &&
3039 	    (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 &&
3040 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
3041 		ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
3042 	else
3043 		ic->ic_flags |= sc->sc_ic_flags;
3044 
3045 	DPRINTF(("%s: state %d, "
3046 	    "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", "
3047 	    "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n",
3048 	    __func__, nstate,
3049 	    ic->ic_flags & IEEE80211_F_DROPUNENC,
3050 	    sc->sc_ic_flags & IEEE80211_F_DROPUNENC));
3051 }
3052 
3053 STATIC int
3054 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3055 {
3056 	struct ifnet *ifp = ic->ic_ifp;
3057 	struct wi_softc *sc = ifp->if_softc;
3058 	struct ieee80211_node *ni = ic->ic_bss;
3059 	u_int16_t val;
3060 	struct wi_ssid ssid;
3061 	struct wi_macaddr bssid, old_bssid;
3062 	enum ieee80211_state ostate;
3063 #ifdef WI_DEBUG
3064 	static const char *stname[] =
3065 	    { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
3066 #endif /* WI_DEBUG */
3067 
3068 	ostate = ic->ic_state;
3069 	DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
3070 
3071 	switch (nstate) {
3072 	case IEEE80211_S_INIT:
3073 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
3074 			callout_stop(&sc->sc_rssadapt_ch);
3075 		ic->ic_flags &= ~IEEE80211_F_SIBSS;
3076 		sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3077 		break;
3078 
3079 	case IEEE80211_S_SCAN:
3080 	case IEEE80211_S_AUTH:
3081 	case IEEE80211_S_ASSOC:
3082 		ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */
3083 		wi_mend_flags(sc, nstate);
3084 		return 0;
3085 
3086 	case IEEE80211_S_RUN:
3087 		sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3088 		IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
3089 		wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
3090 		    IEEE80211_ADDR_LEN);
3091 		IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
3092 		IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
3093 		wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
3094 		if (!isset(ic->ic_chan_avail, le16toh(val)))
3095 			panic("%s: invalid channel %d\n", device_xname(&sc->sc_dev),
3096 			    le16toh(val));
3097 		ni->ni_chan = &ic->ic_channels[le16toh(val)];
3098 
3099 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3100 #ifndef	IEEE80211_NO_HOSTAP
3101 			ni->ni_esslen = ic->ic_des_esslen;
3102 			memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
3103 			ni->ni_rates = ic->ic_sup_rates[
3104 			    ieee80211_chan2mode(ic, ni->ni_chan)];
3105 			ni->ni_intval = ic->ic_lintval;
3106 			ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
3107 			if (ic->ic_flags & IEEE80211_F_PRIVACY)
3108 				ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
3109 #endif /* !IEEE80211_NO_HOSTAP */
3110 		} else {
3111 			wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
3112 			    sizeof(ssid));
3113 			ni->ni_esslen = le16toh(ssid.wi_len);
3114 			if (ni->ni_esslen > IEEE80211_NWID_LEN)
3115 				ni->ni_esslen = IEEE80211_NWID_LEN;	/*XXX*/
3116 			memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
3117 			ni->ni_rates = ic->ic_sup_rates[
3118 			    ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
3119 		}
3120 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
3121 			callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3122 			    wi_rssadapt_updatestats, sc);
3123 		/* Trigger routing socket messages. XXX Copied from
3124 		 * ieee80211_newstate.
3125 		 */
3126 		if (ic->ic_opmode == IEEE80211_M_STA)
3127 			ieee80211_notify_node_join(ic, ic->ic_bss,
3128 				arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
3129 		break;
3130 	}
3131 	wi_mend_flags(sc, nstate);
3132 	return (*sc->sc_newstate)(ic, nstate, arg);
3133 }
3134 
3135 STATIC void
3136 wi_set_tim(struct ieee80211_node *ni, int set)
3137 {
3138 	struct ieee80211com *ic = ni->ni_ic;
3139 	struct wi_softc *sc = ic->ic_ifp->if_softc;
3140 
3141 	(*sc->sc_set_tim)(ni, set);
3142 
3143 	if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0)
3144 		return;
3145 
3146 	ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
3147 
3148 	(void)wi_write_val(sc, WI_RID_SET_TIM,
3149 	    IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0));
3150 }
3151 
3152 STATIC int
3153 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
3154 {
3155 	int error = 0;
3156 	u_int16_t val[2];
3157 
3158 	if (!sc->sc_enabled)
3159 		return ENXIO;
3160 	switch (sc->sc_firmware_type) {
3161 	case WI_LUCENT:
3162 		(void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
3163 		break;
3164 	case WI_INTERSIL:
3165 		val[0] = htole16(chanmask);	/* channel */
3166 		val[1] = htole16(txrate);	/* tx rate */
3167 		error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
3168 		break;
3169 	case WI_SYMBOL:
3170 		/*
3171 		 * XXX only supported on 3.x ?
3172 		 */
3173 		val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
3174 		error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
3175 		    val, sizeof(val[0]));
3176 		break;
3177 	}
3178 	if (error == 0) {
3179 		sc->sc_scan_timer = WI_SCAN_WAIT;
3180 		sc->sc_if.if_timer = 1;
3181 		DPRINTF(("wi_scan_ap: start scanning, "
3182 			"chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
3183 	}
3184 	return error;
3185 }
3186 
3187 STATIC void
3188 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
3189 {
3190 #define	N(a)	(sizeof (a) / sizeof (a[0]))
3191 	int i, naps, off, szbuf;
3192 	struct wi_scan_header ws_hdr;	/* Prism2 header */
3193 	struct wi_scan_data_p2 ws_dat;	/* Prism2 scantable*/
3194 	struct wi_apinfo *ap;
3195 
3196 	off = sizeof(u_int16_t) * 2;
3197 	memset(&ws_hdr, 0, sizeof(ws_hdr));
3198 	switch (sc->sc_firmware_type) {
3199 	case WI_INTERSIL:
3200 		wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
3201 		off += sizeof(ws_hdr);
3202 		szbuf = sizeof(struct wi_scan_data_p2);
3203 		break;
3204 	case WI_SYMBOL:
3205 		szbuf = sizeof(struct wi_scan_data_p2) + 6;
3206 		break;
3207 	case WI_LUCENT:
3208 		szbuf = sizeof(struct wi_scan_data);
3209 		break;
3210 	default:
3211 		aprint_error_dev(&sc->sc_dev, "wi_scan_result: unknown firmware type %u\n",
3212 		    sc->sc_firmware_type);
3213 		naps = 0;
3214 		goto done;
3215 	}
3216 	naps = (cnt * 2 + 2 - off) / szbuf;
3217 	if (naps > N(sc->sc_aps))
3218 		naps = N(sc->sc_aps);
3219 	sc->sc_naps = naps;
3220 	/* Read Data */
3221 	ap = sc->sc_aps;
3222 	memset(&ws_dat, 0, sizeof(ws_dat));
3223 	for (i = 0; i < naps; i++, ap++) {
3224 		wi_read_bap(sc, fid, off, &ws_dat,
3225 		    (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3226 		DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3227 		    ether_sprintf(ws_dat.wi_bssid)));
3228 		off += szbuf;
3229 		ap->scanreason = le16toh(ws_hdr.wi_reason);
3230 		memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3231 		ap->channel = le16toh(ws_dat.wi_chid);
3232 		ap->signal  = le16toh(ws_dat.wi_signal);
3233 		ap->noise   = le16toh(ws_dat.wi_noise);
3234 		ap->quality = ap->signal - ap->noise;
3235 		ap->capinfo = le16toh(ws_dat.wi_capinfo);
3236 		ap->interval = le16toh(ws_dat.wi_interval);
3237 		ap->rate    = le16toh(ws_dat.wi_rate);
3238 		ap->namelen = le16toh(ws_dat.wi_namelen);
3239 		if (ap->namelen > sizeof(ap->name))
3240 			ap->namelen = sizeof(ap->name);
3241 		memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3242 	}
3243 done:
3244 	/* Done scanning */
3245 	sc->sc_scan_timer = 0;
3246 	DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3247 #undef N
3248 }
3249 
3250 STATIC void
3251 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3252 {
3253 	ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3254 	    ni	? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3255 		: -1,
3256 	    rssi);
3257 	printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3258 		le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3259 		le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3260 	printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3261 		wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3262 	printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3263 		wh->wi_tx_rtry, wh->wi_tx_rate,
3264 		le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3265 	printf(" ehdr dst %s src %s type 0x%x\n",
3266 		ether_sprintf(wh->wi_ehdr.ether_dhost),
3267 		ether_sprintf(wh->wi_ehdr.ether_shost),
3268 		wh->wi_ehdr.ether_type);
3269 }
3270