xref: /netbsd-src/sys/dev/ic/wi.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: wi.c,v 1.222 2007/10/19 12:00:05 ad Exp $	*/
2 
3 /*-
4  * Copyright (c) 2004 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Charles M. Hannum.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *        This product includes software developed by the NetBSD
21  *        Foundation, Inc. and its contributors.
22  * 4. Neither the name of The NetBSD Foundation nor the names of its
23  *    contributors may be used to endorse or promote products derived
24  *    from this software without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36  * POSSIBILITY OF SUCH DAMAGE.
37  */
38 
39 /*
40  * Copyright (c) 1997, 1998, 1999
41  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
42  *
43  * Redistribution and use in source and binary forms, with or without
44  * modification, are permitted provided that the following conditions
45  * are met:
46  * 1. Redistributions of source code must retain the above copyright
47  *    notice, this list of conditions and the following disclaimer.
48  * 2. Redistributions in binary form must reproduce the above copyright
49  *    notice, this list of conditions and the following disclaimer in the
50  *    documentation and/or other materials provided with the distribution.
51  * 3. All advertising materials mentioning features or use of this software
52  *    must display the following acknowledgement:
53  *	This product includes software developed by Bill Paul.
54  * 4. Neither the name of the author nor the names of any co-contributors
55  *    may be used to endorse or promote products derived from this software
56  *    without specific prior written permission.
57  *
58  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
59  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
62  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
63  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
64  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
65  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
66  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
67  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
68  * THE POSSIBILITY OF SUCH DAMAGE.
69  */
70 
71 /*
72  * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
73  *
74  * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
75  * Electrical Engineering Department
76  * Columbia University, New York City
77  */
78 
79 /*
80  * The WaveLAN/IEEE adapter is the second generation of the WaveLAN
81  * from Lucent. Unlike the older cards, the new ones are programmed
82  * entirely via a firmware-driven controller called the Hermes.
83  * Unfortunately, Lucent will not release the Hermes programming manual
84  * without an NDA (if at all). What they do release is an API library
85  * called the HCF (Hardware Control Functions) which is supposed to
86  * do the device-specific operations of a device driver for you. The
87  * publically available version of the HCF library (the 'HCF Light') is
88  * a) extremely gross, b) lacks certain features, particularly support
89  * for 802.11 frames, and c) is contaminated by the GNU Public License.
90  *
91  * This driver does not use the HCF or HCF Light at all. Instead, it
92  * programs the Hermes controller directly, using information gleaned
93  * from the HCF Light code and corresponding documentation.
94  *
95  * This driver supports both the PCMCIA and ISA versions of the
96  * WaveLAN/IEEE cards. Note however that the ISA card isn't really
97  * anything of the sort: it's actually a PCMCIA bridge adapter
98  * that fits into an ISA slot, into which a PCMCIA WaveLAN card is
99  * inserted. Consequently, you need to use the pccard support for
100  * both the ISA and PCMCIA adapters.
101  */
102 
103 /*
104  * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
105  * Oslo IETF plenary meeting.
106  */
107 
108 #include <sys/cdefs.h>
109 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.222 2007/10/19 12:00:05 ad Exp $");
110 
111 #define WI_HERMES_AUTOINC_WAR	/* Work around data write autoinc bug. */
112 #define WI_HERMES_STATS_WAR	/* Work around stats counter bug. */
113 #undef WI_HISTOGRAM
114 #undef WI_RING_DEBUG
115 #define STATIC static
116 
117 #include "bpfilter.h"
118 
119 #include <sys/param.h>
120 #include <sys/sysctl.h>
121 #include <sys/systm.h>
122 #include <sys/callout.h>
123 #include <sys/device.h>
124 #include <sys/socket.h>
125 #include <sys/mbuf.h>
126 #include <sys/ioctl.h>
127 #include <sys/kernel.h>		/* for hz */
128 #include <sys/proc.h>
129 #include <sys/kauth.h>
130 
131 #include <net/if.h>
132 #include <net/if_dl.h>
133 #include <net/if_llc.h>
134 #include <net/if_media.h>
135 #include <net/if_ether.h>
136 #include <net/route.h>
137 
138 #include <net80211/ieee80211_netbsd.h>
139 #include <net80211/ieee80211_var.h>
140 #include <net80211/ieee80211_ioctl.h>
141 #include <net80211/ieee80211_radiotap.h>
142 #include <net80211/ieee80211_rssadapt.h>
143 
144 #if NBPFILTER > 0
145 #include <net/bpf.h>
146 #include <net/bpfdesc.h>
147 #endif
148 
149 #include <sys/bus.h>
150 
151 #include <dev/ic/wi_ieee.h>
152 #include <dev/ic/wireg.h>
153 #include <dev/ic/wivar.h>
154 
155 STATIC int  wi_init(struct ifnet *);
156 STATIC void wi_stop(struct ifnet *, int);
157 STATIC void wi_start(struct ifnet *);
158 STATIC int  wi_reset(struct wi_softc *);
159 STATIC void wi_watchdog(struct ifnet *);
160 STATIC int  wi_ioctl(struct ifnet *, u_long, void *);
161 STATIC int  wi_media_change(struct ifnet *);
162 STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
163 
164 STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *);
165 STATIC void wi_node_free(struct ieee80211_node *);
166 
167 STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
168 STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
169 STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
170     struct ieee80211_frame *, u_int);
171 STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
172 STATIC void wi_rssadapt_updatestats(void *);
173 STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
174 STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
175     wi_rssdescq_t *, u_int8_t (*)[]);
176 STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
177 
178 STATIC void wi_rx_intr(struct wi_softc *);
179 STATIC void wi_txalloc_intr(struct wi_softc *);
180 STATIC void wi_cmd_intr(struct wi_softc *);
181 STATIC void wi_tx_intr(struct wi_softc *);
182 STATIC void wi_tx_ex_intr(struct wi_softc *);
183 STATIC void wi_info_intr(struct wi_softc *);
184 
185 STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *);
186 STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *,
187     const u_int8_t[IEEE80211_ADDR_LEN]);
188 STATIC void wi_key_update_begin(struct ieee80211com *);
189 STATIC void wi_key_update_end(struct ieee80211com *);
190 
191 STATIC void wi_push_packet(struct wi_softc *);
192 STATIC int  wi_get_cfg(struct ifnet *, u_long, void *);
193 STATIC int  wi_set_cfg(struct ifnet *, u_long, void *);
194 STATIC int  wi_cfg_txrate(struct wi_softc *);
195 STATIC int  wi_write_txrate(struct wi_softc *, int);
196 STATIC int  wi_write_wep(struct wi_softc *);
197 STATIC int  wi_write_multi(struct wi_softc *);
198 STATIC int  wi_alloc_fid(struct wi_softc *, int, int *);
199 STATIC void wi_read_nicid(struct wi_softc *);
200 STATIC int  wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
201 
202 STATIC int  wi_cmd(struct wi_softc *, int, int, int, int);
203 STATIC int  wi_cmd_start(struct wi_softc *, int, int, int, int);
204 STATIC int  wi_cmd_wait(struct wi_softc *, int, int);
205 STATIC int  wi_seek_bap(struct wi_softc *, int, int);
206 STATIC int  wi_read_bap(struct wi_softc *, int, int, void *, int);
207 STATIC int  wi_write_bap(struct wi_softc *, int, int, void *, int);
208 STATIC int  wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
209 STATIC int  wi_read_rid(struct wi_softc *, int, void *, int *);
210 STATIC int  wi_write_rid(struct wi_softc *, int, void *, int);
211 
212 STATIC int  wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
213 STATIC void  wi_set_tim(struct ieee80211_node *, int);
214 
215 STATIC int  wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
216 STATIC void wi_scan_result(struct wi_softc *, int, int);
217 
218 STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
219 STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state);
220 
221 static inline int
222 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
223 {
224 
225 	val = htole16(val);
226 	return wi_write_rid(sc, rid, &val, sizeof(val));
227 }
228 
229 static	struct timeval lasttxerror;	/* time of last tx error msg */
230 static	int curtxeps = 0;		/* current tx error msgs/sec */
231 static	int wi_txerate = 0;		/* tx error rate: max msgs/sec */
232 
233 #ifdef WI_DEBUG
234 #define	WI_DEBUG_MAX	2
235 int wi_debug = 0;
236 
237 #define	DPRINTF(X)	if (wi_debug) printf X
238 #define	DPRINTF2(X)	if (wi_debug > 1) printf X
239 #define	IFF_DUMPPKTS(_ifp) \
240 	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
241 static int wi_sysctl_verify_debug(SYSCTLFN_PROTO);
242 #else
243 #define	DPRINTF(X)
244 #define	DPRINTF2(X)
245 #define	IFF_DUMPPKTS(_ifp)	0
246 #endif
247 
248 #define WI_INTRS	(WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
249 			 WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
250 
251 struct wi_card_ident
252 wi_card_ident[] = {
253 	/* CARD_ID			CARD_NAME		FIRM_TYPE */
254 	{ WI_NIC_LUCENT_ID,		WI_NIC_LUCENT_STR,	WI_LUCENT },
255 	{ WI_NIC_SONY_ID,		WI_NIC_SONY_STR,	WI_LUCENT },
256 	{ WI_NIC_LUCENT_EMB_ID,		WI_NIC_LUCENT_EMB_STR,	WI_LUCENT },
257 	{ WI_NIC_EVB2_ID,		WI_NIC_EVB2_STR,	WI_INTERSIL },
258 	{ WI_NIC_HWB3763_ID,		WI_NIC_HWB3763_STR,	WI_INTERSIL },
259 	{ WI_NIC_HWB3163_ID,		WI_NIC_HWB3163_STR,	WI_INTERSIL },
260 	{ WI_NIC_HWB3163B_ID,		WI_NIC_HWB3163B_STR,	WI_INTERSIL },
261 	{ WI_NIC_EVB3_ID,		WI_NIC_EVB3_STR,	WI_INTERSIL },
262 	{ WI_NIC_HWB1153_ID,		WI_NIC_HWB1153_STR,	WI_INTERSIL },
263 	{ WI_NIC_P2_SST_ID,		WI_NIC_P2_SST_STR,	WI_INTERSIL },
264 	{ WI_NIC_EVB2_SST_ID,		WI_NIC_EVB2_SST_STR,	WI_INTERSIL },
265 	{ WI_NIC_3842_EVA_ID,		WI_NIC_3842_EVA_STR,	WI_INTERSIL },
266 	{ WI_NIC_3842_PCMCIA_AMD_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
267 	{ WI_NIC_3842_PCMCIA_SST_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
268 	{ WI_NIC_3842_PCMCIA_ATM_ID,	WI_NIC_3842_PCMCIA_STR,	WI_INTERSIL },
269 	{ WI_NIC_3842_MINI_AMD_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
270 	{ WI_NIC_3842_MINI_SST_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
271 	{ WI_NIC_3842_MINI_ATM_ID,	WI_NIC_3842_MINI_STR,	WI_INTERSIL },
272 	{ WI_NIC_3842_PCI_AMD_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
273 	{ WI_NIC_3842_PCI_SST_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
274 	{ WI_NIC_3842_PCI_ATM_ID,	WI_NIC_3842_PCI_STR,	WI_INTERSIL },
275 	{ WI_NIC_P3_PCMCIA_AMD_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
276 	{ WI_NIC_P3_PCMCIA_SST_ID,	WI_NIC_P3_PCMCIA_STR,	WI_INTERSIL },
277 	{ WI_NIC_P3_MINI_AMD_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
278 	{ WI_NIC_P3_MINI_SST_ID,	WI_NIC_P3_MINI_STR,	WI_INTERSIL },
279 	{ 0,	NULL,	0 },
280 };
281 
282 #ifndef _LKM
283 /*
284  * Setup sysctl(3) MIB, hw.wi.*
285  *
286  * TBD condition CTLFLAG_PERMANENT on being an LKM or not
287  */
288 SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup")
289 {
290 	int rc;
291 	const struct sysctlnode *rnode;
292 #ifdef WI_DEBUG
293 	const struct sysctlnode *cnode;
294 #endif /* WI_DEBUG */
295 
296 	if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
297 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
298 	    NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
299 		goto err;
300 
301 	if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
302 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi",
303 	    "Lucent/Prism/Symbol 802.11 controls",
304 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
305 		goto err;
306 
307 #ifdef WI_DEBUG
308 	/* control debugging printfs */
309 	if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
310 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
311 	    "debug", SYSCTL_DESCR("Enable debugging output"),
312 	    wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
313 		goto err;
314 #endif /* WI_DEBUG */
315 	return;
316 err:
317 	printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
318 }
319 #endif
320 
321 #ifdef WI_DEBUG
322 static int
323 wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
324 {
325 	int error, t;
326 	struct sysctlnode node;
327 
328 	node = *rnode;
329 	t = *(int*)rnode->sysctl_data;
330 	node.sysctl_data = &t;
331 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
332 	if (error || newp == NULL)
333 		return (error);
334 
335 	if (t < lower || t > upper)
336 		return (EINVAL);
337 
338 	*(int*)rnode->sysctl_data = t;
339 
340 	return (0);
341 }
342 
343 static int
344 wi_sysctl_verify_debug(SYSCTLFN_ARGS)
345 {
346 	return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
347 	    0, WI_DEBUG_MAX);
348 }
349 #endif /* WI_DEBUG */
350 
351 STATIC int
352 wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
353 {
354 	int buflen, rc;
355 
356 	buflen = ebuflen;
357 	if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
358 		return rc;
359 
360 	if (buflen < ebuflen) {
361 #ifdef WI_DEBUG
362 		printf("%s: rid=%#04x read %d, expected %d\n", __func__,
363 		    rid, buflen, ebuflen);
364 #endif
365 		return -1;
366 	}
367 	return 0;
368 }
369 
370 int
371 wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
372 {
373 	struct ieee80211com *ic = &sc->sc_ic;
374 	struct ifnet *ifp = &sc->sc_if;
375 	int chan, nrate, buflen;
376 	u_int16_t val, chanavail;
377  	struct {
378  		u_int16_t nrates;
379  		char rates[IEEE80211_RATE_SIZE];
380  	} ratebuf;
381 	static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
382 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
383 	};
384 	int s;
385 
386 	s = splnet();
387 
388 	/* Make sure interrupts are disabled. */
389 	CSR_WRITE_2(sc, WI_INT_EN, 0);
390 	CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
391 
392 	sc->sc_invalid = 0;
393 
394 	/* Reset the NIC. */
395 	if (wi_reset(sc) != 0) {
396 		sc->sc_invalid = 1;
397 		splx(s);
398 		return 1;
399 	}
400 
401 	if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
402 			 IEEE80211_ADDR_LEN) != 0 ||
403 	    IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
404 		if (macaddr != NULL)
405 			memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
406 		else {
407 			printf(" could not get mac address, attach failed\n");
408 			splx(s);
409 			return 1;
410 		}
411 	}
412 
413 	printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
414 
415 	/* Read NIC identification */
416 	wi_read_nicid(sc);
417 
418 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
419 	ifp->if_softc = sc;
420 	ifp->if_start = wi_start;
421 	ifp->if_ioctl = wi_ioctl;
422 	ifp->if_watchdog = wi_watchdog;
423 	ifp->if_init = wi_init;
424 	ifp->if_stop = wi_stop;
425 	ifp->if_flags =
426 	    IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
427 	IFQ_SET_READY(&ifp->if_snd);
428 
429 	ic->ic_ifp = ifp;
430 	ic->ic_phytype = IEEE80211_T_DS;
431 	ic->ic_opmode = IEEE80211_M_STA;
432 	ic->ic_caps = IEEE80211_C_AHDEMO;
433 	ic->ic_state = IEEE80211_S_INIT;
434 	ic->ic_max_aid = WI_MAX_AID;
435 
436 	/* Find available channel */
437 	if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
438 	                 sizeof(chanavail)) != 0) {
439 		aprint_normal("%s: using default channel list\n", sc->sc_dev.dv_xname);
440 		chanavail = htole16(0x1fff);	/* assume 1-13 */
441 	}
442 	for (chan = 16; chan > 0; chan--) {
443 		if (!isset((u_int8_t*)&chanavail, chan - 1))
444 			continue;
445 		ic->ic_ibss_chan = &ic->ic_channels[chan];
446 		ic->ic_channels[chan].ic_freq =
447 		    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
448 		ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
449 	}
450 
451 	/* Find default IBSS channel */
452 	if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
453 		chan = le16toh(val);
454 		if (isset((u_int8_t*)&chanavail, chan - 1))
455 			ic->ic_ibss_chan = &ic->ic_channels[chan];
456 	}
457 	if (ic->ic_ibss_chan == NULL) {
458 		aprint_error("%s: no available channel\n", sc->sc_dev.dv_xname);
459 		return 1;
460 	}
461 
462 	if (sc->sc_firmware_type == WI_LUCENT) {
463 		sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
464 	} else {
465 		if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
466 		    wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
467 			sc->sc_dbm_offset = le16toh(val);
468 		else
469 			sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
470 	}
471 
472 	sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
473 
474 	/*
475 	 * Set flags based on firmware version.
476 	 */
477 	switch (sc->sc_firmware_type) {
478 	case WI_LUCENT:
479 		sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
480 #ifdef WI_HERMES_AUTOINC_WAR
481 		/* XXX: not confirmed, but never seen for recent firmware */
482 		if (sc->sc_sta_firmware_ver <  40000) {
483 			sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
484 		}
485 #endif
486 		if (sc->sc_sta_firmware_ver >= 60000)
487 			sc->sc_flags |= WI_FLAGS_HAS_MOR;
488 		if (sc->sc_sta_firmware_ver >= 60006) {
489 			ic->ic_caps |= IEEE80211_C_IBSS;
490 			ic->ic_caps |= IEEE80211_C_MONITOR;
491 		}
492 		ic->ic_caps |= IEEE80211_C_PMGT;
493 		sc->sc_ibss_port = 1;
494 		break;
495 
496 	case WI_INTERSIL:
497 		sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
498 		sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
499 		sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
500 		if (sc->sc_sta_firmware_ver > 10101)
501 			sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
502 		if (sc->sc_sta_firmware_ver >= 800) {
503 			if (sc->sc_sta_firmware_ver != 10402)
504 				ic->ic_caps |= IEEE80211_C_HOSTAP;
505 			ic->ic_caps |= IEEE80211_C_IBSS;
506 			ic->ic_caps |= IEEE80211_C_MONITOR;
507 		}
508 		ic->ic_caps |= IEEE80211_C_PMGT;
509 		sc->sc_ibss_port = 0;
510 		sc->sc_alt_retry = 2;
511 		break;
512 
513 	case WI_SYMBOL:
514 		sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
515 		if (sc->sc_sta_firmware_ver >= 20000)
516 			ic->ic_caps |= IEEE80211_C_IBSS;
517 		sc->sc_ibss_port = 4;
518 		break;
519 	}
520 
521 	/*
522 	 * Find out if we support WEP on this card.
523 	 */
524 	if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
525 	    val != htole16(0))
526 		ic->ic_caps |= IEEE80211_C_WEP;
527 
528 	/* Find supported rates. */
529 	buflen = sizeof(ratebuf);
530 	if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
531 	    buflen > 2) {
532 		nrate = le16toh(ratebuf.nrates);
533 		if (nrate > IEEE80211_RATE_SIZE)
534 			nrate = IEEE80211_RATE_SIZE;
535 		memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
536 		    &ratebuf.rates[0], nrate);
537 		ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
538 	} else {
539 		aprint_error("%s: no supported rate list\n", sc->sc_dev.dv_xname);
540 		return 1;
541 	}
542 
543 	sc->sc_max_datalen = 2304;
544 	sc->sc_rts_thresh = 2347;
545 	sc->sc_frag_thresh = 2346;
546 	sc->sc_system_scale = 1;
547 	sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
548 	sc->sc_roaming_mode = 1;
549 
550 	callout_init(&sc->sc_rssadapt_ch, 0);
551 
552 	/*
553 	 * Call MI attach routines.
554 	 */
555 	if_attach(ifp);
556 	ieee80211_ifattach(ic);
557 
558 	sc->sc_newstate = ic->ic_newstate;
559 	sc->sc_set_tim = ic->ic_set_tim;
560 	ic->ic_newstate = wi_newstate;
561 	ic->ic_node_alloc = wi_node_alloc;
562 	ic->ic_node_free = wi_node_free;
563 	ic->ic_set_tim = wi_set_tim;
564 
565 	ic->ic_crypto.cs_key_delete = wi_key_delete;
566 	ic->ic_crypto.cs_key_set = wi_key_set;
567 	ic->ic_crypto.cs_key_update_begin = wi_key_update_begin;
568 	ic->ic_crypto.cs_key_update_end = wi_key_update_end;
569 
570 	ieee80211_media_init(ic, wi_media_change, wi_media_status);
571 
572 #if NBPFILTER > 0
573 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
574 	    sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
575 #endif
576 
577 	memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
578 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
579 	sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT);
580 
581 	memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
582 	sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
583 	sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT);
584 
585 	/* Attach is successful. */
586 	sc->sc_attached = 1;
587 
588 	splx(s);
589 	ieee80211_announce(ic);
590 	return 0;
591 }
592 
593 int
594 wi_detach(struct wi_softc *sc)
595 {
596 	struct ifnet *ifp = &sc->sc_if;
597 	int s;
598 
599 	if (!sc->sc_attached)
600 		return 0;
601 
602 	sc->sc_invalid = 1;
603 	s = splnet();
604 
605 	wi_stop(ifp, 1);
606 
607 	ieee80211_ifdetach(&sc->sc_ic);
608 	if_detach(ifp);
609 	splx(s);
610 	return 0;
611 }
612 
613 #ifdef __NetBSD__
614 int
615 wi_activate(struct device *self, enum devact act)
616 {
617 	struct wi_softc *sc = (struct wi_softc *)self;
618 	int rv = 0, s;
619 
620 	s = splnet();
621 	switch (act) {
622 	case DVACT_ACTIVATE:
623 		rv = EOPNOTSUPP;
624 		break;
625 
626 	case DVACT_DEACTIVATE:
627 		if_deactivate(&sc->sc_if);
628 		break;
629 	}
630 	splx(s);
631 	return rv;
632 }
633 
634 void
635 wi_power(struct wi_softc *sc, int why)
636 {
637 	struct ifnet *ifp = &sc->sc_if;
638 	int s;
639 
640 	s = splnet();
641 	switch (why) {
642 	case PWR_SUSPEND:
643 	case PWR_STANDBY:
644 		wi_stop(ifp, 1);
645 		break;
646 	case PWR_RESUME:
647 		if (ifp->if_flags & IFF_UP) {
648 			wi_init(ifp);
649 			(void)wi_intr(sc);
650 		}
651 		break;
652 	case PWR_SOFTSUSPEND:
653 	case PWR_SOFTSTANDBY:
654 	case PWR_SOFTRESUME:
655 		break;
656 	}
657 	splx(s);
658 }
659 #endif /* __NetBSD__ */
660 
661 void
662 wi_shutdown(struct wi_softc *sc)
663 {
664 	struct ifnet *ifp = &sc->sc_if;
665 
666 	if (sc->sc_attached)
667 		wi_stop(ifp, 1);
668 }
669 
670 int
671 wi_intr(void *arg)
672 {
673 	int i;
674 	struct wi_softc	*sc = arg;
675 	struct ifnet *ifp = &sc->sc_if;
676 	u_int16_t status;
677 
678 	if (sc->sc_enabled == 0 ||
679 	    !device_is_active(&sc->sc_dev) ||
680 	    (ifp->if_flags & IFF_RUNNING) == 0)
681 		return 0;
682 
683 	if ((ifp->if_flags & IFF_UP) == 0) {
684 		CSR_WRITE_2(sc, WI_INT_EN, 0);
685 		CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
686 		return 1;
687 	}
688 
689 	/* This is superfluous on Prism, but Lucent breaks if we
690 	 * do not disable interrupts.
691 	 */
692 	CSR_WRITE_2(sc, WI_INT_EN, 0);
693 
694 	/* maximum 10 loops per interrupt */
695 	for (i = 0; i < 10; i++) {
696 		status = CSR_READ_2(sc, WI_EVENT_STAT);
697 #ifdef WI_DEBUG
698 		if (wi_debug > 1) {
699 			printf("%s: iter %d status %#04x\n", __func__, i,
700 			    status);
701 		}
702 #endif /* WI_DEBUG */
703 		if ((status & WI_INTRS) == 0)
704 			break;
705 
706 		sc->sc_status = status;
707 
708 		if (status & WI_EV_RX)
709 			wi_rx_intr(sc);
710 
711 		if (status & WI_EV_ALLOC)
712 			wi_txalloc_intr(sc);
713 
714 		if (status & WI_EV_TX)
715 			wi_tx_intr(sc);
716 
717 		if (status & WI_EV_TX_EXC)
718 			wi_tx_ex_intr(sc);
719 
720 		if (status & WI_EV_INFO)
721 			wi_info_intr(sc);
722 
723 		CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
724 
725 		if (sc->sc_status & WI_EV_CMD)
726 			wi_cmd_intr(sc);
727 
728 		if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
729 		    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
730 		    !IFQ_IS_EMPTY(&ifp->if_snd))
731 			wi_start(ifp);
732 
733 		sc->sc_status = 0;
734 	}
735 
736 	/* re-enable interrupts */
737 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
738 
739 	sc->sc_status = 0;
740 
741 	return 1;
742 }
743 
744 #define arraylen(a) (sizeof(a) / sizeof((a)[0]))
745 
746 STATIC void
747 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
748 {
749 	int i;
750 	SLIST_INIT(rssdfree);
751 	for (i = 0; i < arraylen(*rssd); i++) {
752 		SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
753 	}
754 }
755 
756 STATIC void
757 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
758     wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
759 {
760 	struct ieee80211_node *ni;
761 	int i;
762 	for (i = 0; i < arraylen(*rssd); i++) {
763 		ni = (*rssd)[i].rd_desc.id_node;
764 		(*rssd)[i].rd_desc.id_node = NULL;
765 		if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0)
766 			printf("%s: cleaning outstanding rssadapt "
767 			    "descriptor for %s\n",
768 			    ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr));
769 		if (ni != NULL)
770 			ieee80211_free_node(ni);
771 	}
772 	memset(*txpending, 0, sizeof(*txpending));
773 	wi_rssdescs_init(rssd, rssdfree);
774 }
775 
776 STATIC int
777 wi_init(struct ifnet *ifp)
778 {
779 	struct wi_softc *sc = ifp->if_softc;
780 	struct ieee80211com *ic = &sc->sc_ic;
781 	struct wi_joinreq join;
782 	int i;
783 	int error = 0, wasenabled;
784 
785 	DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
786 	wasenabled = sc->sc_enabled;
787 	if (!sc->sc_enabled) {
788 		if ((error = (*sc->sc_enable)(sc)) != 0)
789 			goto out;
790 		sc->sc_enabled = 1;
791 	} else
792 		wi_stop(ifp, 0);
793 
794 	/* Symbol firmware cannot be initialized more than once */
795 	if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
796 		if ((error = wi_reset(sc)) != 0)
797 			goto out;
798 
799 	/* common 802.11 configuration */
800 	ic->ic_flags &= ~IEEE80211_F_IBSSON;
801 	sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
802 	switch (ic->ic_opmode) {
803 	case IEEE80211_M_STA:
804 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
805 		break;
806 	case IEEE80211_M_IBSS:
807 		wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
808 		ic->ic_flags |= IEEE80211_F_IBSSON;
809 		break;
810 	case IEEE80211_M_AHDEMO:
811 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
812 		break;
813 	case IEEE80211_M_HOSTAP:
814 		wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
815 		break;
816 	case IEEE80211_M_MONITOR:
817 		if (sc->sc_firmware_type == WI_LUCENT)
818 			wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
819 		wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
820 		break;
821 	}
822 
823 	/* Intersil interprets this RID as joining ESS even in IBSS mode */
824 	if (sc->sc_firmware_type == WI_LUCENT &&
825 	    (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
826 		wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
827 	else
828 		wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
829 	wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
830 	wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
831 	    ic->ic_des_esslen);
832 	wi_write_val(sc, WI_RID_OWN_CHNL,
833 	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
834 	wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
835 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
836 	wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
837 	if (ic->ic_caps & IEEE80211_C_PMGT)
838 		wi_write_val(sc, WI_RID_PM_ENABLED,
839 		    (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
840 
841 	/* not yet common 802.11 configuration */
842 	wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
843 	wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
844 	if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
845 		wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
846 
847 	/* driver specific 802.11 configuration */
848 	if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
849 		wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
850 	if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
851 		wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
852 	if (sc->sc_flags & WI_FLAGS_HAS_MOR)
853 		wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
854 	wi_cfg_txrate(sc);
855 	wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
856 
857 #ifndef	IEEE80211_NO_HOSTAP
858 	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
859 	    sc->sc_firmware_type == WI_INTERSIL) {
860 		wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
861 		wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
862 	}
863 #endif /* !IEEE80211_NO_HOSTAP */
864 
865 	if (sc->sc_firmware_type == WI_INTERSIL) {
866 		struct ieee80211_rateset *rs =
867 		    &ic->ic_sup_rates[IEEE80211_MODE_11B];
868 		u_int16_t basic = 0, supported = 0, rate;
869 
870 		for (i = 0; i < rs->rs_nrates; i++) {
871 			switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
872 			case 2:
873 				rate = 1;
874 				break;
875 			case 4:
876 				rate = 2;
877 				break;
878 			case 11:
879 				rate = 4;
880 				break;
881 			case 22:
882 				rate = 8;
883 				break;
884 			default:
885 				rate = 0;
886 				break;
887 			}
888 			if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
889 				basic |= rate;
890 			supported |= rate;
891 		}
892 		wi_write_val(sc, WI_RID_BASIC_RATE, basic);
893 		wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
894 		wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
895 	}
896 
897 	/*
898 	 * Initialize promisc mode.
899 	 *	Being in Host-AP mode causes a great
900 	 *	deal of pain if promiscuous mode is set.
901 	 *	Therefore we avoid confusing the firmware
902 	 *	and always reset promisc mode in Host-AP
903 	 *	mode.  Host-AP sees all the packets anyway.
904 	 */
905 	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
906 	    (ifp->if_flags & IFF_PROMISC) != 0) {
907 		wi_write_val(sc, WI_RID_PROMISC, 1);
908 	} else {
909 		wi_write_val(sc, WI_RID_PROMISC, 0);
910 	}
911 
912 	/* Configure WEP. */
913 	if (ic->ic_caps & IEEE80211_C_WEP) {
914 		sc->sc_cnfauthmode = ic->ic_bss->ni_authmode;
915 		wi_write_wep(sc);
916 	}
917 
918 	/* Set multicast filter. */
919 	wi_write_multi(sc);
920 
921 	sc->sc_txalloc = 0;
922 	sc->sc_txalloced = 0;
923 	sc->sc_txqueue = 0;
924 	sc->sc_txqueued = 0;
925 	sc->sc_txstart = 0;
926 	sc->sc_txstarted = 0;
927 
928 	if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
929 		sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
930 		if (sc->sc_firmware_type == WI_SYMBOL)
931 			sc->sc_buflen = 1585;	/* XXX */
932 		for (i = 0; i < WI_NTXBUF; i++) {
933 			error = wi_alloc_fid(sc, sc->sc_buflen,
934 			    &sc->sc_txd[i].d_fid);
935 			if (error) {
936 				printf("%s: tx buffer allocation failed\n",
937 				    sc->sc_dev.dv_xname);
938 				goto out;
939 			}
940 			DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
941 			    sc->sc_txd[i].d_fid));
942 			++sc->sc_txalloced;
943 		}
944 	}
945 
946 	wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
947 
948 	/* Enable desired port */
949 	wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
950 	ifp->if_flags |= IFF_RUNNING;
951 	ifp->if_flags &= ~IFF_OACTIVE;
952 	ic->ic_state = IEEE80211_S_INIT;
953 
954 	if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
955 	    ic->ic_opmode == IEEE80211_M_IBSS ||
956 	    ic->ic_opmode == IEEE80211_M_MONITOR ||
957 	    ic->ic_opmode == IEEE80211_M_HOSTAP)
958 		ieee80211_create_ibss(ic, ic->ic_ibss_chan);
959 
960 	/* Enable interrupts */
961 	CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
962 
963 #ifndef	IEEE80211_NO_HOSTAP
964 	if (!wasenabled &&
965 	    ic->ic_opmode == IEEE80211_M_HOSTAP &&
966 	    sc->sc_firmware_type == WI_INTERSIL) {
967 		/* XXX: some card need to be re-enabled for hostap */
968 		wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
969 		wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
970 	}
971 #endif /* !IEEE80211_NO_HOSTAP */
972 
973 	if (ic->ic_opmode == IEEE80211_M_STA &&
974 	    ((ic->ic_flags & IEEE80211_F_DESBSSID) ||
975 	    ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
976 		memset(&join, 0, sizeof(join));
977 		if (ic->ic_flags & IEEE80211_F_DESBSSID)
978 			IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
979 		if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
980 			join.wi_chan =
981 			    htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
982 		/* Lucent firmware does not support the JOIN RID. */
983 		if (sc->sc_firmware_type != WI_LUCENT)
984 			wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
985 	}
986 
987  out:
988 	if (error) {
989 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
990 		wi_stop(ifp, 0);
991 	}
992 	DPRINTF(("wi_init: return %d\n", error));
993 	return error;
994 }
995 
996 STATIC void
997 wi_txcmd_wait(struct wi_softc *sc)
998 {
999 	KASSERT(sc->sc_txcmds == 1);
1000 	if (sc->sc_status & WI_EV_CMD) {
1001 		sc->sc_status &= ~WI_EV_CMD;
1002 		CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
1003 	} else
1004 		(void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
1005 }
1006 
1007 STATIC void
1008 wi_stop(struct ifnet *ifp, int disable)
1009 {
1010 	struct wi_softc	*sc = ifp->if_softc;
1011 	struct ieee80211com *ic = &sc->sc_ic;
1012 	int s;
1013 
1014 	if (!sc->sc_enabled)
1015 		return;
1016 
1017 	s = splnet();
1018 
1019 	DPRINTF(("wi_stop: disable %d\n", disable));
1020 
1021 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1022 
1023 	/* wait for tx command completion (deassoc, deauth) */
1024 	while (sc->sc_txcmds > 0) {
1025 		wi_txcmd_wait(sc);
1026 		wi_cmd_intr(sc);
1027 	}
1028 
1029 	/* TBD wait for deassoc, deauth tx completion? */
1030 
1031 	if (!sc->sc_invalid) {
1032 		CSR_WRITE_2(sc, WI_INT_EN, 0);
1033 		wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
1034 	}
1035 
1036 	wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1037 	    &sc->sc_txpending);
1038 
1039 	sc->sc_tx_timer = 0;
1040 	sc->sc_scan_timer = 0;
1041 	sc->sc_false_syns = 0;
1042 	sc->sc_naps = 0;
1043 	ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
1044 	ifp->if_timer = 0;
1045 
1046 	if (disable) {
1047 		if (sc->sc_disable)
1048 			(*sc->sc_disable)(sc);
1049 		sc->sc_enabled = 0;
1050 	}
1051 	splx(s);
1052 }
1053 
1054 /*
1055  * Choose a data rate for a packet len bytes long that suits the packet
1056  * type and the wireless conditions.
1057  *
1058  * TBD Adapt fragmentation threshold.
1059  */
1060 STATIC int
1061 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
1062     struct ieee80211_frame *wh, u_int len)
1063 {
1064 	struct wi_softc	*sc = ic->ic_ifp->if_softc;
1065 	struct wi_node *wn = (void*)ni;
1066 	struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
1067 	int do_not_adapt, i, rateidx, s;
1068 
1069 	do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
1070 	    (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
1071 
1072 	s = splnet();
1073 
1074 	rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
1075 	    ic->ic_fixed_rate,
1076 	    ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname,
1077 	    do_not_adapt);
1078 
1079 	ni->ni_txrate = rateidx;
1080 
1081 	if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
1082 		/* choose the slowest pending rate so that we don't
1083 		 * accidentally send a packet on the MAC's queue
1084 		 * too fast. TBD find out if the MAC labels Tx
1085 		 * packets w/ rate when enqueued or dequeued.
1086 		 */
1087 		for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
1088 		rateidx = i;
1089 	}
1090 
1091 	splx(s);
1092 	return (rateidx);
1093 }
1094 
1095 STATIC void
1096 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1097 {
1098 	struct wi_node *wn;
1099 	if (id->id_node == NULL)
1100 		return;
1101 
1102 	wn = (void*)id->id_node;
1103 	ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
1104 }
1105 
1106 STATIC void
1107 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
1108 {
1109 	struct ieee80211_node *ni;
1110 	struct wi_node *wn;
1111 	int s;
1112 
1113 	s = splnet();
1114 
1115 	if ((ni = id->id_node) == NULL) {
1116 		DPRINTF(("wi_lower_rate: missing node\n"));
1117 		goto out;
1118 	}
1119 
1120 	wn = (void *)ni;
1121 
1122 	ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
1123 out:
1124 	splx(s);
1125 	return;
1126 }
1127 
1128 STATIC void
1129 wi_start(struct ifnet *ifp)
1130 {
1131 	struct wi_softc	*sc = ifp->if_softc;
1132 	struct ieee80211com *ic = &sc->sc_ic;
1133 	struct ether_header *eh;
1134 	struct ieee80211_node *ni;
1135 	struct ieee80211_frame *wh;
1136 	struct ieee80211_rateset *rs;
1137 	struct wi_rssdesc *rd;
1138 	struct ieee80211_rssdesc *id;
1139 	struct mbuf *m0;
1140 	struct wi_frame frmhdr;
1141 	int cur, fid, off, rateidx;
1142 
1143 	if (!sc->sc_enabled || sc->sc_invalid)
1144 		return;
1145 	if (sc->sc_flags & WI_FLAGS_OUTRANGE)
1146 		return;
1147 
1148 	memset(&frmhdr, 0, sizeof(frmhdr));
1149 	cur = sc->sc_txqueue;
1150 	for (;;) {
1151 		ni = ic->ic_bss;
1152 		if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
1153 			ifp->if_flags |= IFF_OACTIVE;
1154 			break;
1155 		}
1156 		if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
1157 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1158 			m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
1159 			    (void *)&frmhdr.wi_ehdr);
1160 			frmhdr.wi_ehdr.ether_type = 0;
1161                         wh = mtod(m0, struct ieee80211_frame *);
1162 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1163 			m0->m_pkthdr.rcvif = NULL;
1164 		} else if (ic->ic_state == IEEE80211_S_RUN) {
1165 			IFQ_POLL(&ifp->if_snd, m0);
1166 			if (m0 == NULL)
1167 				break;
1168 			IFQ_DEQUEUE(&ifp->if_snd, m0);
1169 			ifp->if_opackets++;
1170 			m_copydata(m0, 0, ETHER_HDR_LEN,
1171 			    (void *)&frmhdr.wi_ehdr);
1172 #if NBPFILTER > 0
1173 			if (ifp->if_bpf)
1174 				bpf_mtap(ifp->if_bpf, m0);
1175 #endif
1176 
1177 			eh = mtod(m0, struct ether_header *);
1178 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1179 			if (ni == NULL) {
1180 				ifp->if_oerrors++;
1181 				continue;
1182 			}
1183 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1184 			    (m0->m_flags & M_PWR_SAV) == 0) {
1185 				ieee80211_pwrsave(ic, ni, m0);
1186 				goto next;
1187 			}
1188 			if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
1189 				ieee80211_free_node(ni);
1190 				ifp->if_oerrors++;
1191 				continue;
1192 			}
1193 			wh = mtod(m0, struct ieee80211_frame *);
1194 		} else
1195 			break;
1196 #if NBPFILTER > 0
1197 		if (ic->ic_rawbpf)
1198 			bpf_mtap(ic->ic_rawbpf, m0);
1199 #endif
1200 		frmhdr.wi_tx_ctl =
1201 		    htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
1202 #ifndef	IEEE80211_NO_HOSTAP
1203 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1204 			frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
1205 		if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1206 		    (wh->i_fc[1] & IEEE80211_FC1_WEP)) {
1207 			if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
1208 				m_freem(m0);
1209 				ifp->if_oerrors++;
1210 				goto next;
1211 			}
1212 			frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
1213 		}
1214 #endif /* !IEEE80211_NO_HOSTAP */
1215 
1216 		rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
1217 		rs = &ni->ni_rates;
1218 
1219 #if NBPFILTER > 0
1220 		if (sc->sc_drvbpf) {
1221 			struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
1222 
1223 			tap->wt_rate = rs->rs_rates[rateidx];
1224 			tap->wt_chan_freq =
1225 			    htole16(ic->ic_bss->ni_chan->ic_freq);
1226 			tap->wt_chan_flags =
1227 			    htole16(ic->ic_bss->ni_chan->ic_flags);
1228 			/* TBD tap->wt_flags */
1229 
1230 			bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
1231 		}
1232 #endif
1233 
1234 		rd = SLIST_FIRST(&sc->sc_rssdfree);
1235 		id = &rd->rd_desc;
1236 		id->id_len = m0->m_pkthdr.len;
1237 		id->id_rateidx = ni->ni_txrate;
1238 		id->id_rssi = ni->ni_rssi;
1239 
1240 		frmhdr.wi_tx_idx = rd - sc->sc_rssd;
1241 
1242 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1243 			frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
1244 			    IEEE80211_RATE_VAL);
1245 		else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
1246 			(void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
1247 
1248 		m_copydata(m0, 0, sizeof(struct ieee80211_frame),
1249 		    (void *)&frmhdr.wi_whdr);
1250 		m_adj(m0, sizeof(struct ieee80211_frame));
1251 		frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
1252 		if (IFF_DUMPPKTS(ifp))
1253 			wi_dump_pkt(&frmhdr, ni, -1);
1254 		fid = sc->sc_txd[cur].d_fid;
1255 		off = sizeof(frmhdr);
1256 		if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
1257 		    wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
1258 			printf("%s: %s write fid %x failed\n",
1259 			    sc->sc_dev.dv_xname, __func__, fid);
1260 			ifp->if_oerrors++;
1261 			m_freem(m0);
1262 			goto next;
1263 		}
1264 		m_freem(m0);
1265 		sc->sc_txpending[ni->ni_txrate]++;
1266 		--sc->sc_txalloced;
1267 		if (sc->sc_txqueued++ == 0) {
1268 #ifdef DIAGNOSTIC
1269 			if (cur != sc->sc_txstart)
1270 				printf("%s: ring is desynchronized\n",
1271 				    sc->sc_dev.dv_xname);
1272 #endif
1273 			wi_push_packet(sc);
1274 		} else {
1275 #ifdef WI_RING_DEBUG
1276 	printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1277 	    sc->sc_dev.dv_xname, fid,
1278 	    sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1279 	    sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1280 #endif
1281 		}
1282 		sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
1283 		SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
1284 		id->id_node = ni;
1285 		continue;
1286 next:
1287 		if (ni != NULL)
1288 			ieee80211_free_node(ni);
1289 	}
1290 }
1291 
1292 
1293 STATIC int
1294 wi_reset(struct wi_softc *sc)
1295 {
1296 	int i, error;
1297 
1298 	DPRINTF(("wi_reset\n"));
1299 
1300 	if (sc->sc_reset)
1301 		(*sc->sc_reset)(sc);
1302 
1303 	error = 0;
1304 	for (i = 0; i < 5; i++) {
1305 		if (sc->sc_invalid)
1306 			return ENXIO;
1307 		DELAY(20*1000);	/* XXX: way too long! */
1308 		if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
1309 			break;
1310 	}
1311 	if (error) {
1312 		printf("%s: init failed\n", sc->sc_dev.dv_xname);
1313 		return error;
1314 	}
1315 	CSR_WRITE_2(sc, WI_INT_EN, 0);
1316 	CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
1317 
1318 	/* Calibrate timer. */
1319 	wi_write_val(sc, WI_RID_TICK_TIME, 0);
1320 	return 0;
1321 }
1322 
1323 STATIC void
1324 wi_watchdog(struct ifnet *ifp)
1325 {
1326 	struct wi_softc *sc = ifp->if_softc;
1327 
1328 	ifp->if_timer = 0;
1329 	if (!sc->sc_enabled)
1330 		return;
1331 
1332 	if (sc->sc_tx_timer) {
1333 		if (--sc->sc_tx_timer == 0) {
1334 			printf("%s: device timeout\n", ifp->if_xname);
1335 			ifp->if_oerrors++;
1336 			wi_init(ifp);
1337 			return;
1338 		}
1339 		ifp->if_timer = 1;
1340 	}
1341 
1342 	if (sc->sc_scan_timer) {
1343 		if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
1344 		    sc->sc_firmware_type == WI_INTERSIL) {
1345 			DPRINTF(("wi_watchdog: inquire scan\n"));
1346 			wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
1347 		}
1348 		if (sc->sc_scan_timer)
1349 			ifp->if_timer = 1;
1350 	}
1351 
1352 	/* TODO: rate control */
1353 	ieee80211_watchdog(&sc->sc_ic);
1354 }
1355 
1356 STATIC int
1357 wi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1358 {
1359 	struct wi_softc *sc = ifp->if_softc;
1360 	struct ieee80211com *ic = &sc->sc_ic;
1361 	struct ifreq *ifr = (struct ifreq *)data;
1362 	int s, error = 0;
1363 
1364 	if (!device_is_active(&sc->sc_dev))
1365 		return ENXIO;
1366 
1367 	s = splnet();
1368 
1369 	switch (cmd) {
1370 	case SIOCSIFFLAGS:
1371 		/*
1372 		 * Can't do promisc and hostap at the same time.  If all that's
1373 		 * changing is the promisc flag, try to short-circuit a call to
1374 		 * wi_init() by just setting PROMISC in the hardware.
1375 		 */
1376 		if (ifp->if_flags & IFF_UP) {
1377 			if (sc->sc_enabled) {
1378 				if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1379 				    (ifp->if_flags & IFF_PROMISC) != 0)
1380 					wi_write_val(sc, WI_RID_PROMISC, 1);
1381 				else
1382 					wi_write_val(sc, WI_RID_PROMISC, 0);
1383 			} else
1384 				error = wi_init(ifp);
1385 		} else if (sc->sc_enabled)
1386 			wi_stop(ifp, 1);
1387 		break;
1388 	case SIOCSIFMEDIA:
1389 	case SIOCGIFMEDIA:
1390 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
1391 		break;
1392 	case SIOCADDMULTI:
1393 	case SIOCDELMULTI:
1394 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1395 			if (ifp->if_flags & IFF_RUNNING) {
1396 				/* do not rescan */
1397 				error = wi_write_multi(sc);
1398 			} else
1399 				error = 0;
1400 		}
1401 		break;
1402 	case SIOCGIFGENERIC:
1403 		error = wi_get_cfg(ifp, cmd, data);
1404 		break;
1405 	case SIOCSIFGENERIC:
1406 		error = kauth_authorize_generic(curlwp->l_cred,
1407 		    KAUTH_GENERIC_ISSUSER, NULL);
1408 		if (error)
1409 			break;
1410 		error = wi_set_cfg(ifp, cmd, data);
1411 		if (error == ENETRESET) {
1412 			if (ifp->if_flags & IFF_RUNNING)
1413 				error = wi_init(ifp);
1414 			else
1415 				error = 0;
1416 		}
1417 		break;
1418 	case SIOCS80211BSSID:
1419 		if (sc->sc_firmware_type == WI_LUCENT) {
1420 			error = ENODEV;
1421 			break;
1422 		}
1423 		/* fall through */
1424 	default:
1425 		ic->ic_flags |= sc->sc_ic_flags;
1426 		error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
1427 		sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC;
1428 		if (error == ENETRESET) {
1429 			if (sc->sc_enabled)
1430 				error = wi_init(ifp);
1431 			else
1432 				error = 0;
1433 		}
1434 		break;
1435 	}
1436 	wi_mend_flags(sc, ic->ic_state);
1437 	splx(s);
1438 	return error;
1439 }
1440 
1441 STATIC int
1442 wi_media_change(struct ifnet *ifp)
1443 {
1444 	struct wi_softc *sc = ifp->if_softc;
1445 	struct ieee80211com *ic = &sc->sc_ic;
1446 	int error;
1447 
1448 	error = ieee80211_media_change(ifp);
1449 	if (error == ENETRESET) {
1450 		if (sc->sc_enabled)
1451 			error = wi_init(ifp);
1452 		else
1453 			error = 0;
1454 	}
1455 	ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
1456 
1457 	return error;
1458 }
1459 
1460 STATIC void
1461 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
1462 {
1463 	struct wi_softc *sc = ifp->if_softc;
1464 	struct ieee80211com *ic = &sc->sc_ic;
1465 	u_int16_t val;
1466 	int rate;
1467 
1468 	if (sc->sc_enabled == 0) {
1469 		imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
1470 		imr->ifm_status = 0;
1471 		return;
1472 	}
1473 
1474 	imr->ifm_status = IFM_AVALID;
1475 	imr->ifm_active = IFM_IEEE80211;
1476 	if (ic->ic_state == IEEE80211_S_RUN &&
1477 	    (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
1478 		imr->ifm_status |= IFM_ACTIVE;
1479 	if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
1480 		/* convert to 802.11 rate */
1481 		val = le16toh(val);
1482 		rate = val * 2;
1483 		if (sc->sc_firmware_type == WI_LUCENT) {
1484 			if (rate == 10)
1485 				rate = 11;	/* 5.5Mbps */
1486 		} else {
1487 			if (rate == 4*2)
1488 				rate = 11;	/* 5.5Mbps */
1489 			else if (rate == 8*2)
1490 				rate = 22;	/* 11Mbps */
1491 		}
1492 	} else
1493 		rate = 0;
1494 	imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
1495 	switch (ic->ic_opmode) {
1496 	case IEEE80211_M_STA:
1497 		break;
1498 	case IEEE80211_M_IBSS:
1499 		imr->ifm_active |= IFM_IEEE80211_ADHOC;
1500 		break;
1501 	case IEEE80211_M_AHDEMO:
1502 		imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
1503 		break;
1504 	case IEEE80211_M_HOSTAP:
1505 		imr->ifm_active |= IFM_IEEE80211_HOSTAP;
1506 		break;
1507 	case IEEE80211_M_MONITOR:
1508 		imr->ifm_active |= IFM_IEEE80211_MONITOR;
1509 		break;
1510 	}
1511 }
1512 
1513 STATIC struct ieee80211_node *
1514 wi_node_alloc(struct ieee80211_node_table *nt)
1515 {
1516 	struct wi_node *wn =
1517 	    malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1518 	return wn ? &wn->wn_node : NULL;
1519 }
1520 
1521 STATIC void
1522 wi_node_free(struct ieee80211_node *ni)
1523 {
1524 	struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
1525 	int i;
1526 
1527 	for (i = 0; i < WI_NTXRSS; i++) {
1528 		if (sc->sc_rssd[i].rd_desc.id_node == ni)
1529 			sc->sc_rssd[i].rd_desc.id_node = NULL;
1530 	}
1531 	free(ni, M_DEVBUF);
1532 }
1533 
1534 STATIC void
1535 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
1536 {
1537 	struct ieee80211com *ic = &sc->sc_ic;
1538 	struct ieee80211_node *ni = ic->ic_bss;
1539 	struct ifnet *ifp = &sc->sc_if;
1540 
1541 	if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
1542 		return;
1543 
1544 	DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
1545 	DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
1546 
1547 	/* In promiscuous mode, the BSSID field is not a reliable
1548 	 * indicator of the firmware's BSSID. Damp spurious
1549 	 * change-of-BSSID indications.
1550 	 */
1551 	if ((ifp->if_flags & IFF_PROMISC) != 0 &&
1552 	    !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
1553 	                 WI_MAX_FALSE_SYNS))
1554 		return;
1555 
1556 	sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
1557 	/*
1558 	 * XXX hack; we should create a new node with the new bssid
1559 	 * and replace the existing ic_bss with it but since we don't
1560 	 * process management frames to collect state we cheat by
1561 	 * reusing the existing node as we know wi_newstate will be
1562 	 * called and it will overwrite the node state.
1563 	 */
1564         ieee80211_sta_join(ic, ieee80211_ref_node(ni));
1565 }
1566 
1567 static inline void
1568 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
1569     struct ieee80211_frame *wh, int rssi)
1570 {
1571 	struct wi_node *wn;
1572 
1573 	if (ni == NULL) {
1574 		printf("%s: null node", __func__);
1575 		return;
1576 	}
1577 
1578 	wn = (void*)ni;
1579 	ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
1580 }
1581 
1582 STATIC void
1583 wi_rx_intr(struct wi_softc *sc)
1584 {
1585 	struct ieee80211com *ic = &sc->sc_ic;
1586 	struct ifnet *ifp = &sc->sc_if;
1587 	struct ieee80211_node *ni;
1588 	struct wi_frame frmhdr;
1589 	struct mbuf *m;
1590 	struct ieee80211_frame *wh;
1591 	int fid, len, off, rssi;
1592 	u_int8_t dir;
1593 	u_int16_t status;
1594 	u_int32_t rstamp;
1595 
1596 	fid = CSR_READ_2(sc, WI_RX_FID);
1597 
1598 	/* First read in the frame header */
1599 	if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
1600 		printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1601 		    __func__, fid);
1602 		ifp->if_ierrors++;
1603 		return;
1604 	}
1605 
1606 	if (IFF_DUMPPKTS(ifp))
1607 		wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
1608 
1609 	/*
1610 	 * Drop undecryptable or packets with receive errors here
1611 	 */
1612 	status = le16toh(frmhdr.wi_status);
1613 	if ((status & WI_STAT_ERRSTAT) != 0 &&
1614 	    ic->ic_opmode != IEEE80211_M_MONITOR) {
1615 		ifp->if_ierrors++;
1616 		DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
1617 		return;
1618 	}
1619 	rssi = frmhdr.wi_rx_signal;
1620 	rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
1621 	    le16toh(frmhdr.wi_rx_tstamp1);
1622 
1623 	len = le16toh(frmhdr.wi_dat_len);
1624 	off = ALIGN(sizeof(struct ieee80211_frame));
1625 
1626 	/* Sometimes the PRISM2.x returns bogusly large frames. Except
1627 	 * in monitor mode, just throw them away.
1628 	 */
1629 	if (off + len > MCLBYTES) {
1630 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1631 			ifp->if_ierrors++;
1632 			DPRINTF(("wi_rx_intr: oversized packet\n"));
1633 			return;
1634 		} else
1635 			len = 0;
1636 	}
1637 
1638 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1639 	if (m == NULL) {
1640 		ifp->if_ierrors++;
1641 		DPRINTF(("wi_rx_intr: MGET failed\n"));
1642 		return;
1643 	}
1644 	if (off + len > MHLEN) {
1645 		MCLGET(m, M_DONTWAIT);
1646 		if ((m->m_flags & M_EXT) == 0) {
1647 			m_freem(m);
1648 			ifp->if_ierrors++;
1649 			DPRINTF(("wi_rx_intr: MCLGET failed\n"));
1650 			return;
1651 		}
1652 	}
1653 
1654 	m->m_data += off - sizeof(struct ieee80211_frame);
1655 	memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
1656 	wi_read_bap(sc, fid, sizeof(frmhdr),
1657 	    m->m_data + sizeof(struct ieee80211_frame), len);
1658 	m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
1659 	m->m_pkthdr.rcvif = ifp;
1660 
1661 	wh = mtod(m, struct ieee80211_frame *);
1662 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1663 		/*
1664 		 * WEP is decrypted by hardware. Clear WEP bit
1665 		 * header for ieee80211_input().
1666 		 */
1667 		wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1668 	}
1669 #if NBPFILTER > 0
1670 	if (sc->sc_drvbpf) {
1671 		struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
1672 
1673 		tap->wr_rate = frmhdr.wi_rx_rate / 5;
1674 		tap->wr_antsignal = frmhdr.wi_rx_signal;
1675 		tap->wr_antnoise = frmhdr.wi_rx_silence;
1676 		tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
1677 		tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
1678 		if (frmhdr.wi_status & WI_STAT_PCF)
1679 			tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
1680 
1681 		/* XXX IEEE80211_RADIOTAP_F_WEP */
1682 		bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
1683 	}
1684 #endif
1685 
1686 	/* synchronize driver's BSSID with firmware's BSSID */
1687 	dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
1688 	if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
1689 		wi_sync_bssid(sc, wh->i_addr3);
1690 
1691 	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1692 
1693 	ieee80211_input(ic, m, ni, rssi, rstamp);
1694 
1695 	wi_rssadapt_input(ic, ni, wh, rssi);
1696 
1697 	/*
1698 	 * The frame may have caused the node to be marked for
1699 	 * reclamation (e.g. in response to a DEAUTH message)
1700 	 * so use release_node here instead of unref_node.
1701 	 */
1702 	ieee80211_free_node(ni);
1703 }
1704 
1705 STATIC void
1706 wi_tx_ex_intr(struct wi_softc *sc)
1707 {
1708 	struct ieee80211com *ic = &sc->sc_ic;
1709 	struct ifnet *ifp = &sc->sc_if;
1710 	struct ieee80211_node *ni;
1711 	struct ieee80211_rssdesc *id;
1712 	struct wi_rssdesc *rssd;
1713 	struct wi_frame frmhdr;
1714 	int fid;
1715 	u_int16_t status;
1716 
1717 	fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1718 	/* Read in the frame header */
1719 	if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
1720 		printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1721 		    __func__, fid);
1722 		wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1723 		    &sc->sc_txpending);
1724 		goto out;
1725 	}
1726 
1727 	if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1728 		printf("%s: %s bad idx %02x\n",
1729 		    sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1730 		wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1731 		    &sc->sc_txpending);
1732 		goto out;
1733 	}
1734 
1735 	status = le16toh(frmhdr.wi_status);
1736 
1737 	/*
1738 	 * Spontaneous station disconnects appear as xmit
1739 	 * errors.  Don't announce them and/or count them
1740 	 * as an output error.
1741 	 */
1742 	if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
1743 		printf("%s: tx failed", sc->sc_dev.dv_xname);
1744 		if (status & WI_TXSTAT_RET_ERR)
1745 			printf(", retry limit exceeded");
1746 		if (status & WI_TXSTAT_AGED_ERR)
1747 			printf(", max transmit lifetime exceeded");
1748 		if (status & WI_TXSTAT_DISCONNECT)
1749 			printf(", port disconnected");
1750 		if (status & WI_TXSTAT_FORM_ERR)
1751 			printf(", invalid format (data len %u src %s)",
1752 				le16toh(frmhdr.wi_dat_len),
1753 				ether_sprintf(frmhdr.wi_ehdr.ether_shost));
1754 		if (status & ~0xf)
1755 			printf(", status=0x%x", status);
1756 		printf("\n");
1757 	}
1758 	ifp->if_oerrors++;
1759 	rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1760 	id = &rssd->rd_desc;
1761 	if ((status & WI_TXSTAT_RET_ERR) != 0)
1762 		wi_lower_rate(ic, id);
1763 
1764 	ni = id->id_node;
1765 	id->id_node = NULL;
1766 
1767 	if (ni == NULL) {
1768 		printf("%s: %s null node, rssdesc %02x\n",
1769 		    sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1770 		goto out;
1771 	}
1772 
1773 	if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1774 	        printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1775 		    __func__, id->id_rateidx);
1776 		sc->sc_txpending[id->id_rateidx] = 0;
1777 	}
1778 	if (ni != NULL)
1779 		ieee80211_free_node(ni);
1780 	SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1781 out:
1782 	ifp->if_flags &= ~IFF_OACTIVE;
1783 }
1784 
1785 STATIC void
1786 wi_txalloc_intr(struct wi_softc *sc)
1787 {
1788 	int fid, cur;
1789 
1790 	fid = CSR_READ_2(sc, WI_ALLOC_FID);
1791 
1792 	cur = sc->sc_txalloc;
1793 #ifdef DIAGNOSTIC
1794 	if (sc->sc_txstarted == 0) {
1795 		printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1796 		    sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur,
1797 		    sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1798 		return;
1799 	}
1800 #endif
1801 	--sc->sc_txstarted;
1802 	++sc->sc_txalloced;
1803 	sc->sc_txd[cur].d_fid = fid;
1804 	sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
1805 #ifdef WI_RING_DEBUG
1806 	printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1807 	    sc->sc_dev.dv_xname, fid,
1808 	    sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1809 	    sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1810 #endif
1811 }
1812 
1813 STATIC void
1814 wi_cmd_intr(struct wi_softc *sc)
1815 {
1816 	struct ifnet *ifp = &sc->sc_if;
1817 
1818 	if (sc->sc_invalid)
1819 		return;
1820 #ifdef WI_DEBUG
1821 	if (wi_debug > 1)
1822 		printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
1823 #endif
1824 	KASSERT(sc->sc_txcmds > 0);
1825 
1826 	--sc->sc_txcmds;
1827 
1828 	if (--sc->sc_txqueued == 0) {
1829 		sc->sc_tx_timer = 0;
1830 		ifp->if_flags &= ~IFF_OACTIVE;
1831 #ifdef WI_RING_DEBUG
1832 	printf("%s: cmd       , alloc %d queue %d start %d alloced %d queued %d started %d\n",
1833 	    sc->sc_dev.dv_xname,
1834 	    sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1835 	    sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1836 #endif
1837 	} else
1838 		wi_push_packet(sc);
1839 }
1840 
1841 STATIC void
1842 wi_push_packet(struct wi_softc *sc)
1843 {
1844 	struct ifnet *ifp = &sc->sc_if;
1845 	int cur, fid;
1846 
1847 	cur = sc->sc_txstart;
1848 	fid = sc->sc_txd[cur].d_fid;
1849 
1850 	KASSERT(sc->sc_txcmds == 0);
1851 
1852 	if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
1853 		printf("%s: xmit failed\n", sc->sc_dev.dv_xname);
1854 		/* XXX ring might have a hole */
1855 	}
1856 
1857 	if (sc->sc_txcmds++ > 0)
1858 		printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
1859 
1860 	++sc->sc_txstarted;
1861 #ifdef DIAGNOSTIC
1862 	if (sc->sc_txstarted > WI_NTXBUF)
1863 		printf("%s: too many buffers started\n", sc->sc_dev.dv_xname);
1864 #endif
1865 	sc->sc_txstart = (cur + 1) % WI_NTXBUF;
1866 	sc->sc_tx_timer = 5;
1867 	ifp->if_timer = 1;
1868 #ifdef WI_RING_DEBUG
1869 	printf("%s: push  %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
1870 	    sc->sc_dev.dv_xname, fid,
1871 	    sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
1872 	    sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
1873 #endif
1874 }
1875 
1876 STATIC void
1877 wi_tx_intr(struct wi_softc *sc)
1878 {
1879 	struct ieee80211com *ic = &sc->sc_ic;
1880 	struct ifnet *ifp = &sc->sc_if;
1881 	struct ieee80211_node *ni;
1882 	struct ieee80211_rssdesc *id;
1883 	struct wi_rssdesc *rssd;
1884 	struct wi_frame frmhdr;
1885 	int fid;
1886 
1887 	fid = CSR_READ_2(sc, WI_TX_CMP_FID);
1888 	/* Read in the frame header */
1889 	if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
1890 	                &frmhdr.wi_tx_swsup2, 2) != 0) {
1891 		printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname,
1892 		    __func__, fid);
1893 		wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1894 		    &sc->sc_txpending);
1895 		goto out;
1896 	}
1897 
1898 	if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
1899 		printf("%s: %s bad idx %02x\n",
1900 		    sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1901 		wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
1902 		    &sc->sc_txpending);
1903 		goto out;
1904 	}
1905 
1906 	rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
1907 	id = &rssd->rd_desc;
1908 	wi_raise_rate(ic, id);
1909 
1910 	ni = id->id_node;
1911 	id->id_node = NULL;
1912 
1913 	if (ni == NULL) {
1914 		printf("%s: %s null node, rssdesc %02x\n",
1915 		    sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx);
1916 		goto out;
1917 	}
1918 
1919 	if (sc->sc_txpending[id->id_rateidx]-- == 0) {
1920 	        printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname,
1921 		    __func__, id->id_rateidx);
1922 		sc->sc_txpending[id->id_rateidx] = 0;
1923 	}
1924 	if (ni != NULL)
1925 		ieee80211_free_node(ni);
1926 	SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
1927 out:
1928 	ifp->if_flags &= ~IFF_OACTIVE;
1929 }
1930 
1931 STATIC void
1932 wi_info_intr(struct wi_softc *sc)
1933 {
1934 	struct ieee80211com *ic = &sc->sc_ic;
1935 	struct ifnet *ifp = &sc->sc_if;
1936 	int i, fid, len, off;
1937 	u_int16_t ltbuf[2];
1938 	u_int16_t stat;
1939 	u_int32_t *ptr;
1940 
1941 	fid = CSR_READ_2(sc, WI_INFO_FID);
1942 	wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
1943 
1944 	switch (le16toh(ltbuf[1])) {
1945 
1946 	case WI_INFO_LINK_STAT:
1947 		wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
1948 		DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
1949 		switch (le16toh(stat)) {
1950 		case CONNECTED:
1951 			sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1952 			if (ic->ic_state == IEEE80211_S_RUN &&
1953 			    ic->ic_opmode != IEEE80211_M_IBSS)
1954 				break;
1955 			/* FALLTHROUGH */
1956 		case AP_CHANGE:
1957 			ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1958 			break;
1959 		case AP_IN_RANGE:
1960 			sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
1961 			break;
1962 		case AP_OUT_OF_RANGE:
1963 			if (sc->sc_firmware_type == WI_SYMBOL &&
1964 			    sc->sc_scan_timer > 0) {
1965 				if (wi_cmd(sc, WI_CMD_INQUIRE,
1966 				    WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
1967 					sc->sc_scan_timer = 0;
1968 				break;
1969 			}
1970 			if (ic->ic_opmode == IEEE80211_M_STA)
1971 				sc->sc_flags |= WI_FLAGS_OUTRANGE;
1972 			break;
1973 		case DISCONNECTED:
1974 		case ASSOC_FAILED:
1975 			if (ic->ic_opmode == IEEE80211_M_STA)
1976 				ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1977 			break;
1978 		}
1979 		break;
1980 
1981 	case WI_INFO_COUNTERS:
1982 		/* some card versions have a larger stats structure */
1983 		len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
1984 		ptr = (u_int32_t *)&sc->sc_stats;
1985 		off = sizeof(ltbuf);
1986 		for (i = 0; i < len; i++, off += 2, ptr++) {
1987 			wi_read_bap(sc, fid, off, &stat, sizeof(stat));
1988 			stat = le16toh(stat);
1989 #ifdef WI_HERMES_STATS_WAR
1990 			if (stat & 0xf000)
1991 				stat = ~stat;
1992 #endif
1993 			*ptr += stat;
1994 		}
1995 		ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
1996 		    sc->sc_stats.wi_tx_multi_retries +
1997 		    sc->sc_stats.wi_tx_retry_limit;
1998 		break;
1999 
2000 	case WI_INFO_SCAN_RESULTS:
2001 	case WI_INFO_HOST_SCAN_RESULTS:
2002 		wi_scan_result(sc, fid, le16toh(ltbuf[0]));
2003 		break;
2004 
2005 	default:
2006 		DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
2007 		    le16toh(ltbuf[1]), le16toh(ltbuf[0])));
2008 		break;
2009 	}
2010 }
2011 
2012 STATIC int
2013 wi_write_multi(struct wi_softc *sc)
2014 {
2015 	struct ifnet *ifp = &sc->sc_if;
2016 	int n;
2017 	struct wi_mcast mlist;
2018 	struct ether_multi *enm;
2019 	struct ether_multistep estep;
2020 
2021 	if ((ifp->if_flags & IFF_PROMISC) != 0) {
2022 allmulti:
2023 		ifp->if_flags |= IFF_ALLMULTI;
2024 		memset(&mlist, 0, sizeof(mlist));
2025 		return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2026 		    sizeof(mlist));
2027 	}
2028 
2029 	n = 0;
2030 	ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
2031 	while (enm != NULL) {
2032 		/* Punt on ranges or too many multicast addresses. */
2033 		if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
2034 		    n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
2035 			goto allmulti;
2036 
2037 		IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
2038 		n++;
2039 		ETHER_NEXT_MULTI(estep, enm);
2040 	}
2041 	ifp->if_flags &= ~IFF_ALLMULTI;
2042 	return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
2043 	    IEEE80211_ADDR_LEN * n);
2044 }
2045 
2046 
2047 STATIC void
2048 wi_read_nicid(struct wi_softc *sc)
2049 {
2050 	struct wi_card_ident *id;
2051 	char *p;
2052 	int len;
2053 	u_int16_t ver[4];
2054 
2055 	/* getting chip identity */
2056 	memset(ver, 0, sizeof(ver));
2057 	len = sizeof(ver);
2058 	wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
2059 	printf("%s: using ", sc->sc_dev.dv_xname);
2060 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
2061 
2062 	sc->sc_firmware_type = WI_NOTYPE;
2063 	for (id = wi_card_ident; id->card_name != NULL; id++) {
2064 		if (le16toh(ver[0]) == id->card_id) {
2065 			printf("%s", id->card_name);
2066 			sc->sc_firmware_type = id->firm_type;
2067 			break;
2068 		}
2069 	}
2070 	if (sc->sc_firmware_type == WI_NOTYPE) {
2071 		if (le16toh(ver[0]) & 0x8000) {
2072 			printf("Unknown PRISM2 chip");
2073 			sc->sc_firmware_type = WI_INTERSIL;
2074 		} else {
2075 			printf("Unknown Lucent chip");
2076 			sc->sc_firmware_type = WI_LUCENT;
2077 		}
2078 	}
2079 
2080 	/* get primary firmware version (Only Prism chips) */
2081 	if (sc->sc_firmware_type != WI_LUCENT) {
2082 		memset(ver, 0, sizeof(ver));
2083 		len = sizeof(ver);
2084 		wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
2085 		sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
2086 		    le16toh(ver[3]) * 100 + le16toh(ver[1]);
2087 	}
2088 
2089 	/* get station firmware version */
2090 	memset(ver, 0, sizeof(ver));
2091 	len = sizeof(ver);
2092 	wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
2093 	sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
2094 	    le16toh(ver[3]) * 100 + le16toh(ver[1]);
2095 	if (sc->sc_firmware_type == WI_INTERSIL &&
2096 	    (sc->sc_sta_firmware_ver == 10102 ||
2097 	     sc->sc_sta_firmware_ver == 20102)) {
2098 		char ident[12];
2099 		memset(ident, 0, sizeof(ident));
2100 		len = sizeof(ident);
2101 		/* value should be the format like "V2.00-11" */
2102 		if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
2103 		    *(p = (char *)ident) >= 'A' &&
2104 		    p[2] == '.' && p[5] == '-' && p[8] == '\0') {
2105 			sc->sc_firmware_type = WI_SYMBOL;
2106 			sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
2107 			    (p[3] - '0') * 1000 + (p[4] - '0') * 100 +
2108 			    (p[6] - '0') * 10 + (p[7] - '0');
2109 		}
2110 	}
2111 
2112 	printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname,
2113 	     sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
2114 	    (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
2115 	if (sc->sc_firmware_type != WI_LUCENT)	/* XXX */
2116 		printf("Primary (%u.%u.%u), ",
2117 		    sc->sc_pri_firmware_ver / 10000,
2118 		    (sc->sc_pri_firmware_ver % 10000) / 100,
2119 		    sc->sc_pri_firmware_ver % 100);
2120 	printf("Station (%u.%u.%u)\n",
2121 	    sc->sc_sta_firmware_ver / 10000,
2122 	    (sc->sc_sta_firmware_ver % 10000) / 100,
2123 	    sc->sc_sta_firmware_ver % 100);
2124 }
2125 
2126 STATIC int
2127 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
2128 {
2129 	struct wi_ssid ssid;
2130 
2131 	if (buflen > IEEE80211_NWID_LEN)
2132 		return ENOBUFS;
2133 	memset(&ssid, 0, sizeof(ssid));
2134 	ssid.wi_len = htole16(buflen);
2135 	memcpy(ssid.wi_ssid, buf, buflen);
2136 	return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
2137 }
2138 
2139 STATIC int
2140 wi_get_cfg(struct ifnet *ifp, u_long cmd, void *data)
2141 {
2142 	struct wi_softc *sc = ifp->if_softc;
2143 	struct ieee80211com *ic = &sc->sc_ic;
2144 	struct ifreq *ifr = (struct ifreq *)data;
2145 	struct wi_req wreq;
2146 	int len, n, error;
2147 
2148 	error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2149 	if (error)
2150 		return error;
2151 	len = (wreq.wi_len - 1) * 2;
2152 	if (len < sizeof(u_int16_t))
2153 		return ENOSPC;
2154 	if (len > sizeof(wreq.wi_val))
2155 		len = sizeof(wreq.wi_val);
2156 
2157 	switch (wreq.wi_type) {
2158 
2159 	case WI_RID_IFACE_STATS:
2160 		memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
2161 		if (len < sizeof(sc->sc_stats))
2162 			error = ENOSPC;
2163 		else
2164 			len = sizeof(sc->sc_stats);
2165 		break;
2166 
2167 	case WI_RID_ENCRYPTION:
2168 	case WI_RID_TX_CRYPT_KEY:
2169 	case WI_RID_DEFLT_CRYPT_KEYS:
2170 	case WI_RID_TX_RATE:
2171 		return ieee80211_cfgget(ic, cmd, data);
2172 
2173 	case WI_RID_MICROWAVE_OVEN:
2174 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
2175 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2176 			    &len);
2177 			break;
2178 		}
2179 		wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
2180 		len = sizeof(u_int16_t);
2181 		break;
2182 
2183 	case WI_RID_DBM_ADJUST:
2184 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
2185 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2186 			    &len);
2187 			break;
2188 		}
2189 		wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
2190 		len = sizeof(u_int16_t);
2191 		break;
2192 
2193 	case WI_RID_ROAMING_MODE:
2194 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
2195 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2196 			    &len);
2197 			break;
2198 		}
2199 		wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
2200 		len = sizeof(u_int16_t);
2201 		break;
2202 
2203 	case WI_RID_SYSTEM_SCALE:
2204 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
2205 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2206 			    &len);
2207 			break;
2208 		}
2209 		wreq.wi_val[0] = htole16(sc->sc_system_scale);
2210 		len = sizeof(u_int16_t);
2211 		break;
2212 
2213 	case WI_RID_FRAG_THRESH:
2214 		if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
2215 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2216 			    &len);
2217 			break;
2218 		}
2219 		wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2220 		len = sizeof(u_int16_t);
2221 		break;
2222 
2223 	case WI_RID_READ_APS:
2224 #ifndef	IEEE80211_NO_HOSTAP
2225 		if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2226 			return ieee80211_cfgget(ic, cmd, data);
2227 #endif /* !IEEE80211_NO_HOSTAP */
2228 		if (sc->sc_scan_timer > 0) {
2229 			error = EINPROGRESS;
2230 			break;
2231 		}
2232 		n = sc->sc_naps;
2233 		if (len < sizeof(n)) {
2234 			error = ENOSPC;
2235 			break;
2236 		}
2237 		if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
2238 			n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
2239 		len = sizeof(n) + sizeof(struct wi_apinfo) * n;
2240 		memcpy(wreq.wi_val, &n, sizeof(n));
2241 		memcpy((char *)wreq.wi_val + sizeof(n), sc->sc_aps,
2242 		    sizeof(struct wi_apinfo) * n);
2243 		break;
2244 
2245 	default:
2246 		if (sc->sc_enabled) {
2247 			error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
2248 			    &len);
2249 			break;
2250 		}
2251 		switch (wreq.wi_type) {
2252 		case WI_RID_MAX_DATALEN:
2253 			wreq.wi_val[0] = htole16(sc->sc_max_datalen);
2254 			len = sizeof(u_int16_t);
2255 			break;
2256 		case WI_RID_FRAG_THRESH:
2257 			wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
2258 			len = sizeof(u_int16_t);
2259 			break;
2260 		case WI_RID_RTS_THRESH:
2261 			wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
2262 			len = sizeof(u_int16_t);
2263 			break;
2264 		case WI_RID_CNFAUTHMODE:
2265 			wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
2266 			len = sizeof(u_int16_t);
2267 			break;
2268 		case WI_RID_NODENAME:
2269 			if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
2270 				error = ENOSPC;
2271 				break;
2272 			}
2273 			len = sc->sc_nodelen + sizeof(u_int16_t);
2274 			wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
2275 			memcpy(&wreq.wi_val[1], sc->sc_nodename,
2276 			    sc->sc_nodelen);
2277 			break;
2278 		default:
2279 			return ieee80211_cfgget(ic, cmd, data);
2280 		}
2281 		break;
2282 	}
2283 	if (error)
2284 		return error;
2285 	wreq.wi_len = (len + 1) / 2 + 1;
2286 	return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
2287 }
2288 
2289 STATIC int
2290 wi_set_cfg(struct ifnet *ifp, u_long cmd, void *data)
2291 {
2292 	struct wi_softc *sc = ifp->if_softc;
2293 	struct ieee80211com *ic = &sc->sc_ic;
2294 	struct ifreq *ifr = (struct ifreq *)data;
2295 	struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2296 	struct wi_req wreq;
2297 	struct mbuf *m;
2298 	int i, len, error;
2299 
2300 	error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
2301 	if (error)
2302 		return error;
2303 	len = (wreq.wi_len - 1) * 2;
2304 	switch (wreq.wi_type) {
2305         case WI_RID_MAC_NODE:
2306 		(void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN);
2307 		IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl),ic->ic_myaddr);
2308 		wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
2309 		    IEEE80211_ADDR_LEN);
2310 		break;
2311 
2312 	case WI_RID_DBM_ADJUST:
2313 		return ENODEV;
2314 
2315 	case WI_RID_NODENAME:
2316 		if (le16toh(wreq.wi_val[0]) * 2 > len ||
2317 		    le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
2318 			error = ENOSPC;
2319 			break;
2320 		}
2321 		if (sc->sc_enabled) {
2322 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2323 			    len);
2324 			if (error)
2325 				break;
2326 		}
2327 		sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
2328 		memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
2329 		break;
2330 
2331 	case WI_RID_MICROWAVE_OVEN:
2332 	case WI_RID_ROAMING_MODE:
2333 	case WI_RID_SYSTEM_SCALE:
2334 	case WI_RID_FRAG_THRESH:
2335 		if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
2336 		    (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
2337 			break;
2338 		if (wreq.wi_type == WI_RID_ROAMING_MODE &&
2339 		    (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
2340 			break;
2341 		if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
2342 		    (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
2343 			break;
2344 		if (wreq.wi_type == WI_RID_FRAG_THRESH &&
2345 		    (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
2346 			break;
2347 		/* FALLTHROUGH */
2348 	case WI_RID_RTS_THRESH:
2349 	case WI_RID_CNFAUTHMODE:
2350 	case WI_RID_MAX_DATALEN:
2351 		if (sc->sc_enabled) {
2352 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2353 			    sizeof(u_int16_t));
2354 			if (error)
2355 				break;
2356 		}
2357 		switch (wreq.wi_type) {
2358 		case WI_RID_FRAG_THRESH:
2359 			sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
2360 			break;
2361 		case WI_RID_RTS_THRESH:
2362 			sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
2363 			break;
2364 		case WI_RID_MICROWAVE_OVEN:
2365 			sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
2366 			break;
2367 		case WI_RID_ROAMING_MODE:
2368 			sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
2369 			break;
2370 		case WI_RID_SYSTEM_SCALE:
2371 			sc->sc_system_scale = le16toh(wreq.wi_val[0]);
2372 			break;
2373 		case WI_RID_CNFAUTHMODE:
2374 			sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
2375 			break;
2376 		case WI_RID_MAX_DATALEN:
2377 			sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
2378 			break;
2379 		}
2380 		break;
2381 
2382 	case WI_RID_TX_RATE:
2383 		switch (le16toh(wreq.wi_val[0])) {
2384 		case 3:
2385 			ic->ic_fixed_rate = -1;
2386 			break;
2387 		default:
2388 			for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
2389 				if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
2390 				    / 2 == le16toh(wreq.wi_val[0]))
2391 					break;
2392 			}
2393 			if (i == IEEE80211_RATE_SIZE)
2394 				return EINVAL;
2395 			ic->ic_fixed_rate = i;
2396 		}
2397 		if (sc->sc_enabled)
2398 			error = wi_cfg_txrate(sc);
2399 		break;
2400 
2401 	case WI_RID_SCAN_APS:
2402 		if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
2403 			error = wi_scan_ap(sc, 0x3fff, 0x000f);
2404 		break;
2405 
2406 	case WI_RID_MGMT_XMIT:
2407 		if (!sc->sc_enabled) {
2408 			error = ENETDOWN;
2409 			break;
2410 		}
2411 		if (ic->ic_mgtq.ifq_len > 5) {
2412 			error = EAGAIN;
2413 			break;
2414 		}
2415 		/* XXX wi_len looks in u_int8_t, not in u_int16_t */
2416 		m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
2417 		if (m == NULL) {
2418 			error = ENOMEM;
2419 			break;
2420 		}
2421 		IF_ENQUEUE(&ic->ic_mgtq, m);
2422 		break;
2423 
2424 	default:
2425 		if (sc->sc_enabled) {
2426 			error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
2427 			    len);
2428 			if (error)
2429 				break;
2430 		}
2431 		error = ieee80211_cfgset(ic, cmd, data);
2432 		break;
2433 	}
2434 	return error;
2435 }
2436 
2437 /* Rate is 0 for hardware auto-select, otherwise rate is
2438  * 2, 4, 11, or 22 (units of 500Kbps).
2439  */
2440 STATIC int
2441 wi_write_txrate(struct wi_softc *sc, int rate)
2442 {
2443 	u_int16_t hwrate;
2444 
2445 	/* rate: 0, 2, 4, 11, 22 */
2446 	switch (sc->sc_firmware_type) {
2447 	case WI_LUCENT:
2448 		switch (rate & IEEE80211_RATE_VAL) {
2449 		case 2:
2450 			hwrate = 1;
2451 			break;
2452 		case 4:
2453 			hwrate = 2;
2454 			break;
2455 		default:
2456 			hwrate = 3;	/* auto */
2457 			break;
2458 		case 11:
2459 			hwrate = 4;
2460 			break;
2461 		case 22:
2462 			hwrate = 5;
2463 			break;
2464 		}
2465 		break;
2466 	default:
2467 		switch (rate & IEEE80211_RATE_VAL) {
2468 		case 2:
2469 			hwrate = 1;
2470 			break;
2471 		case 4:
2472 			hwrate = 2;
2473 			break;
2474 		case 11:
2475 			hwrate = 4;
2476 			break;
2477 		case 22:
2478 			hwrate = 8;
2479 			break;
2480 		default:
2481 			hwrate = 15;	/* auto */
2482 			break;
2483 		}
2484 		break;
2485 	}
2486 
2487 	if (sc->sc_tx_rate == hwrate)
2488 		return 0;
2489 
2490 	if (sc->sc_if.if_flags & IFF_DEBUG)
2491 		printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
2492 		    hwrate, rate);
2493 
2494 	sc->sc_tx_rate = hwrate;
2495 
2496 	return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
2497 }
2498 
2499 STATIC int
2500 wi_cfg_txrate(struct wi_softc *sc)
2501 {
2502 	struct ieee80211com *ic = &sc->sc_ic;
2503 	struct ieee80211_rateset *rs;
2504 	int rate;
2505 
2506 	rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
2507 
2508 	sc->sc_tx_rate = 0; /* force write to RID */
2509 
2510 	if (ic->ic_fixed_rate < 0)
2511 		rate = 0;	/* auto */
2512 	else
2513 		rate = rs->rs_rates[ic->ic_fixed_rate];
2514 
2515 	return wi_write_txrate(sc, rate);
2516 }
2517 
2518 STATIC int
2519 wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
2520 {
2521 	struct wi_softc *sc = ic->ic_ifp->if_softc;
2522 	u_int keyix = k->wk_keyix;
2523 
2524 	DPRINTF(("%s: delete key %u\n", __func__, keyix));
2525 
2526 	if (keyix >= IEEE80211_WEP_NKID)
2527 		return 0;
2528 	if (k->wk_keylen != 0)
2529 		sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2530 
2531 	return 1;
2532 }
2533 
2534 static int
2535 wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
2536 	const u_int8_t mac[IEEE80211_ADDR_LEN])
2537 {
2538 	struct wi_softc *sc = ic->ic_ifp->if_softc;
2539 
2540 	DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix));
2541 
2542 	if (k->wk_keyix >= IEEE80211_WEP_NKID)
2543 		return 0;
2544 
2545 	sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
2546 
2547 	return 1;
2548 }
2549 
2550 STATIC void
2551 wi_key_update_begin(struct ieee80211com *ic)
2552 {
2553 	DPRINTF(("%s:\n", __func__));
2554 }
2555 
2556 STATIC void
2557 wi_key_update_end(struct ieee80211com *ic)
2558 {
2559 	struct ifnet *ifp = ic->ic_ifp;
2560 	struct wi_softc *sc = ifp->if_softc;
2561 
2562 	DPRINTF(("%s:\n", __func__));
2563 
2564 	if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0)
2565 		return;
2566 	if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled &&
2567 	    !sc->sc_invalid)
2568 		(void)wi_write_wep(sc);
2569 }
2570 
2571 STATIC int
2572 wi_write_wep(struct wi_softc *sc)
2573 {
2574 	struct ifnet *ifp = &sc->sc_if;
2575 	struct ieee80211com *ic = &sc->sc_ic;
2576 	int error = 0;
2577 	int i, keylen;
2578 	u_int16_t val;
2579 	struct wi_key wkey[IEEE80211_WEP_NKID];
2580 
2581 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2582 		wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
2583 
2584 	switch (sc->sc_firmware_type) {
2585 	case WI_LUCENT:
2586 		val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
2587 		error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
2588 		if (error)
2589 			break;
2590 		error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey);
2591 		if (error)
2592 			break;
2593 		memset(wkey, 0, sizeof(wkey));
2594 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2595 			keylen = ic->ic_nw_keys[i].wk_keylen;
2596 			wkey[i].wi_keylen = htole16(keylen);
2597 			memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
2598 			    keylen);
2599 		}
2600 		error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
2601 		    wkey, sizeof(wkey));
2602 		break;
2603 
2604 	case WI_INTERSIL:
2605 	case WI_SYMBOL:
2606 		if (ic->ic_flags & IEEE80211_F_PRIVACY) {
2607 			/*
2608 			 * ONLY HWB3163 EVAL-CARD Firmware version
2609 			 * less than 0.8 variant2
2610 			 *
2611 			 *   If promiscuous mode disable, Prism2 chip
2612 			 *  does not work with WEP .
2613 			 * It is under investigation for details.
2614 			 * (ichiro@NetBSD.org)
2615 			 */
2616 			if (sc->sc_firmware_type == WI_INTERSIL &&
2617 			    sc->sc_sta_firmware_ver < 802 ) {
2618 				/* firm ver < 0.8 variant 2 */
2619 				wi_write_val(sc, WI_RID_PROMISC, 1);
2620 			}
2621 			wi_write_val(sc, WI_RID_CNFAUTHMODE,
2622 			    sc->sc_cnfauthmode);
2623 			val = PRIVACY_INVOKED;
2624 			if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0)
2625 				val |= EXCLUDE_UNENCRYPTED;
2626 #ifndef	IEEE80211_NO_HOSTAP
2627 			/*
2628 			 * Encryption firmware has a bug for HostAP mode.
2629 			 */
2630 			if (sc->sc_firmware_type == WI_INTERSIL &&
2631 			    ic->ic_opmode == IEEE80211_M_HOSTAP)
2632 				val |= HOST_ENCRYPT;
2633 #endif /* !IEEE80211_NO_HOSTAP */
2634 		} else {
2635 			wi_write_val(sc, WI_RID_CNFAUTHMODE,
2636 			    IEEE80211_AUTH_OPEN);
2637 			val = HOST_ENCRYPT | HOST_DECRYPT;
2638 		}
2639 		error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
2640 		if (error)
2641 			break;
2642 		error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
2643 		    ic->ic_def_txkey);
2644 		if (error)
2645 			break;
2646 		/*
2647 		 * It seems that the firmware accept 104bit key only if
2648 		 * all the keys have 104bit length.  We get the length of
2649 		 * the transmit key and use it for all other keys.
2650 		 * Perhaps we should use software WEP for such situation.
2651 		 */
2652 		if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
2653 		    IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
2654 			keylen = 13;	/* No keys => 104bit ok */
2655 		else
2656 			keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen;
2657 
2658 		if (keylen > IEEE80211_WEP_KEYLEN)
2659 			keylen = 13;	/* 104bit keys */
2660 		else
2661 			keylen = IEEE80211_WEP_KEYLEN;
2662 		for (i = 0; i < IEEE80211_WEP_NKID; i++) {
2663 			error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
2664 			    ic->ic_nw_keys[i].wk_key, keylen);
2665 			if (error)
2666 				break;
2667 		}
2668 		break;
2669 	}
2670 	if ((ifp->if_flags & IFF_RUNNING) != 0)
2671 		wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
2672 	if (error == 0)
2673 		sc->sc_flags |= WI_FLAGS_WEP_VALID;
2674 	return error;
2675 }
2676 
2677 /* Must be called at proper protection level! */
2678 STATIC int
2679 wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2680 {
2681 #ifdef WI_HISTOGRAM
2682 	static int hist1[11];
2683 	static int hist1count;
2684 #endif
2685 	int i;
2686 
2687 	/* wait for the busy bit to clear */
2688 	for (i = 500; i > 0; i--) {	/* 5s */
2689 		if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
2690 			break;
2691 		if (sc->sc_invalid)
2692 			return ENXIO;
2693 		DELAY(1000);	/* 1 m sec */
2694 	}
2695 	if (i == 0) {
2696 		printf("%s: wi_cmd: busy bit won't clear.\n",
2697 		    sc->sc_dev.dv_xname);
2698 		return(ETIMEDOUT);
2699   	}
2700 #ifdef WI_HISTOGRAM
2701 	if (i > 490)
2702 		hist1[500 - i]++;
2703 	else
2704 		hist1[10]++;
2705 	if (++hist1count == 1000) {
2706 		hist1count = 0;
2707 		printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
2708 		    sc->sc_dev.dv_xname,
2709 		    hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
2710 		    hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
2711 		    hist1[10]);
2712 	}
2713 #endif
2714 	CSR_WRITE_2(sc, WI_PARAM0, val0);
2715 	CSR_WRITE_2(sc, WI_PARAM1, val1);
2716 	CSR_WRITE_2(sc, WI_PARAM2, val2);
2717 	CSR_WRITE_2(sc, WI_COMMAND, cmd);
2718 
2719 	return 0;
2720 }
2721 
2722 STATIC int
2723 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
2724 {
2725 	int rc;
2726 
2727 #ifdef WI_DEBUG
2728 	if (wi_debug) {
2729 		printf("%s: [enter] %d txcmds outstanding\n", __func__,
2730 		    sc->sc_txcmds);
2731 	}
2732 #endif
2733 	if (sc->sc_txcmds > 0)
2734 		wi_txcmd_wait(sc);
2735 
2736 	if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
2737 		return rc;
2738 
2739 	if (cmd == WI_CMD_INI) {
2740 		/* XXX: should sleep here. */
2741 		if (sc->sc_invalid)
2742 			return ENXIO;
2743 		DELAY(100*1000);
2744 	}
2745 	rc = wi_cmd_wait(sc, cmd, val0);
2746 
2747 #ifdef WI_DEBUG
2748 	if (wi_debug) {
2749 		printf("%s: [     ] %d txcmds outstanding\n", __func__,
2750 		    sc->sc_txcmds);
2751 	}
2752 #endif
2753 	if (sc->sc_txcmds > 0)
2754 		wi_cmd_intr(sc);
2755 
2756 #ifdef WI_DEBUG
2757 	if (wi_debug) {
2758 		printf("%s: [leave] %d txcmds outstanding\n", __func__,
2759 		    sc->sc_txcmds);
2760 	}
2761 #endif
2762 	return rc;
2763 }
2764 
2765 STATIC int
2766 wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
2767 {
2768 #ifdef WI_HISTOGRAM
2769 	static int hist2[11];
2770 	static int hist2count;
2771 #endif
2772 	int i, status;
2773 #ifdef WI_DEBUG
2774 	if (wi_debug > 1)
2775 		printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
2776 #endif /* WI_DEBUG */
2777 
2778 	/* wait for the cmd completed bit */
2779 	for (i = 0; i < WI_TIMEOUT; i++) {
2780 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
2781 			break;
2782 		if (sc->sc_invalid)
2783 			return ENXIO;
2784 		DELAY(WI_DELAY);
2785 	}
2786 
2787 #ifdef WI_HISTOGRAM
2788 	if (i < 100)
2789 		hist2[i/10]++;
2790 	else
2791 		hist2[10]++;
2792 	if (++hist2count == 1000) {
2793 		hist2count = 0;
2794 		printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
2795 		    sc->sc_dev.dv_xname,
2796 		    hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
2797 		    hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
2798 		    hist2[10]);
2799 	}
2800 #endif
2801 
2802 	status = CSR_READ_2(sc, WI_STATUS);
2803 
2804 	if (i == WI_TIMEOUT) {
2805 		printf("%s: command timed out, cmd=0x%x, arg=0x%x\n",
2806 		    sc->sc_dev.dv_xname, cmd, val0);
2807 		return ETIMEDOUT;
2808 	}
2809 
2810 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
2811 
2812 	if (status & WI_STAT_CMD_RESULT) {
2813 		printf("%s: command failed, cmd=0x%x, arg=0x%x\n",
2814 		    sc->sc_dev.dv_xname, cmd, val0);
2815 		return EIO;
2816 	}
2817 	return 0;
2818 }
2819 
2820 STATIC int
2821 wi_seek_bap(struct wi_softc *sc, int id, int off)
2822 {
2823 #ifdef WI_HISTOGRAM
2824 	static int hist4[11];
2825 	static int hist4count;
2826 #endif
2827 	int i, status;
2828 
2829 	CSR_WRITE_2(sc, WI_SEL0, id);
2830 	CSR_WRITE_2(sc, WI_OFF0, off);
2831 
2832 	for (i = 0; ; i++) {
2833 		status = CSR_READ_2(sc, WI_OFF0);
2834 		if ((status & WI_OFF_BUSY) == 0)
2835 			break;
2836 		if (i == WI_TIMEOUT) {
2837 			printf("%s: timeout in wi_seek to %x/%x\n",
2838 			    sc->sc_dev.dv_xname, id, off);
2839 			sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2840 			return ETIMEDOUT;
2841 		}
2842 		if (sc->sc_invalid)
2843 			return ENXIO;
2844 		DELAY(2);
2845 	}
2846 #ifdef WI_HISTOGRAM
2847 	if (i < 100)
2848 		hist4[i/10]++;
2849 	else
2850 		hist4[10]++;
2851 	if (++hist4count == 2500) {
2852 		hist4count = 0;
2853 		printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
2854 		    sc->sc_dev.dv_xname,
2855 		    hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
2856 		    hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
2857 		    hist4[10]);
2858 	}
2859 #endif
2860 	if (status & WI_OFF_ERR) {
2861 		printf("%s: failed in wi_seek to %x/%x\n",
2862 		    sc->sc_dev.dv_xname, id, off);
2863 		sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2864 		return EIO;
2865 	}
2866 	sc->sc_bap_id = id;
2867 	sc->sc_bap_off = off;
2868 	return 0;
2869 }
2870 
2871 STATIC int
2872 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2873 {
2874 	int error, cnt;
2875 
2876 	if (buflen == 0)
2877 		return 0;
2878 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2879 		if ((error = wi_seek_bap(sc, id, off)) != 0)
2880 			return error;
2881 	}
2882 	cnt = (buflen + 1) / 2;
2883 	CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2884 	sc->sc_bap_off += cnt * 2;
2885 	return 0;
2886 }
2887 
2888 STATIC int
2889 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
2890 {
2891 	int error, cnt;
2892 
2893 	if (buflen == 0)
2894 		return 0;
2895 
2896 #ifdef WI_HERMES_AUTOINC_WAR
2897   again:
2898 #endif
2899 	if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
2900 		if ((error = wi_seek_bap(sc, id, off)) != 0)
2901 			return error;
2902 	}
2903 	cnt = (buflen + 1) / 2;
2904 	CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
2905 	sc->sc_bap_off += cnt * 2;
2906 
2907 #ifdef WI_HERMES_AUTOINC_WAR
2908 	/*
2909 	 * According to the comments in the HCF Light code, there is a bug
2910 	 * in the Hermes (or possibly in certain Hermes firmware revisions)
2911 	 * where the chip's internal autoincrement counter gets thrown off
2912 	 * during data writes:  the autoincrement is missed, causing one
2913 	 * data word to be overwritten and subsequent words to be written to
2914 	 * the wrong memory locations. The end result is that we could end
2915 	 * up transmitting bogus frames without realizing it. The workaround
2916 	 * for this is to write a couple of extra guard words after the end
2917 	 * of the transfer, then attempt to read then back. If we fail to
2918 	 * locate the guard words where we expect them, we preform the
2919 	 * transfer over again.
2920 	 */
2921 	if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
2922 		CSR_WRITE_2(sc, WI_DATA0, 0x1234);
2923 		CSR_WRITE_2(sc, WI_DATA0, 0x5678);
2924 		wi_seek_bap(sc, id, sc->sc_bap_off);
2925 		sc->sc_bap_off = WI_OFF_ERR;	/* invalidate */
2926 		if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
2927 		    CSR_READ_2(sc, WI_DATA0) != 0x5678) {
2928 			printf("%s: detect auto increment bug, try again\n",
2929 			    sc->sc_dev.dv_xname);
2930 			goto again;
2931 		}
2932 	}
2933 #endif
2934 	return 0;
2935 }
2936 
2937 STATIC int
2938 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
2939 {
2940 	int error, len;
2941 	struct mbuf *m;
2942 
2943 	for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
2944 		if (m->m_len == 0)
2945 			continue;
2946 
2947 		len = min(m->m_len, totlen);
2948 
2949 		if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
2950 			m_copydata(m, 0, totlen, (void *)&sc->sc_txbuf);
2951 			return wi_write_bap(sc, id, off, (void *)&sc->sc_txbuf,
2952 			    totlen);
2953 		}
2954 
2955 		if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
2956 			return error;
2957 
2958 		off += m->m_len;
2959 		totlen -= len;
2960 	}
2961 	return 0;
2962 }
2963 
2964 STATIC int
2965 wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
2966 {
2967 	int i;
2968 
2969 	if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
2970 		printf("%s: failed to allocate %d bytes on NIC\n",
2971 		    sc->sc_dev.dv_xname, len);
2972 		return ENOMEM;
2973 	}
2974 
2975 	for (i = 0; i < WI_TIMEOUT; i++) {
2976 		if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
2977 			break;
2978 		DELAY(1);
2979 	}
2980 	if (i == WI_TIMEOUT) {
2981 		printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname);
2982 		return ETIMEDOUT;
2983 	}
2984 	*idp = CSR_READ_2(sc, WI_ALLOC_FID);
2985 	CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
2986 	return 0;
2987 }
2988 
2989 STATIC int
2990 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
2991 {
2992 	int error, len;
2993 	u_int16_t ltbuf[2];
2994 
2995 	/* Tell the NIC to enter record read mode. */
2996 	error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
2997 	if (error)
2998 		return error;
2999 
3000 	error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
3001 	if (error)
3002 		return error;
3003 
3004 	if (le16toh(ltbuf[0]) == 0)
3005 		return EOPNOTSUPP;
3006 	if (le16toh(ltbuf[1]) != rid) {
3007 		printf("%s: record read mismatch, rid=%x, got=%x\n",
3008 		    sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1]));
3009 		return EIO;
3010 	}
3011 	len = (le16toh(ltbuf[0]) - 1) * 2;	 /* already got rid */
3012 	if (*buflenp < len) {
3013 		printf("%s: record buffer is too small, "
3014 		    "rid=%x, size=%d, len=%d\n",
3015 		    sc->sc_dev.dv_xname, rid, *buflenp, len);
3016 		return ENOSPC;
3017 	}
3018 	*buflenp = len;
3019 	return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
3020 }
3021 
3022 STATIC int
3023 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
3024 {
3025 	int error;
3026 	u_int16_t ltbuf[2];
3027 
3028 	ltbuf[0] = htole16((buflen + 1) / 2 + 1);	 /* includes rid */
3029 	ltbuf[1] = htole16(rid);
3030 
3031 	error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
3032 	if (error)
3033 		return error;
3034 	error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
3035 	if (error)
3036 		return error;
3037 
3038 	return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
3039 }
3040 
3041 STATIC void
3042 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
3043 {
3044 	struct wi_node *wn = (void*)ni;
3045 	ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
3046 }
3047 
3048 STATIC void
3049 wi_rssadapt_updatestats(void *arg)
3050 {
3051 	struct wi_softc *sc = arg;
3052 	struct ieee80211com *ic = &sc->sc_ic;
3053 	ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg);
3054 	if (ic->ic_opmode != IEEE80211_M_MONITOR &&
3055 	    ic->ic_state == IEEE80211_S_RUN)
3056 		callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3057 		    wi_rssadapt_updatestats, arg);
3058 }
3059 
3060 /*
3061  * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating
3062  * with WEP enabled so that the AP drops unencoded frames at the
3063  * 802.11 layer.
3064  *
3065  * In all other modes, clear IEEE80211_F_DROPUNENC when operating
3066  * with WEP enabled so we don't drop unencoded frames at the 802.11
3067  * layer.  This is necessary because we must strip the WEP bit from
3068  * the 802.11 header before passing frames to ieee80211_input
3069  * because the card has already stripped the WEP crypto header from
3070  * the packet.
3071  */
3072 STATIC void
3073 wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate)
3074 {
3075 	struct ieee80211com *ic = &sc->sc_ic;
3076 
3077 	if (nstate == IEEE80211_S_RUN &&
3078 	    (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 &&
3079 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
3080 		ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
3081 	else
3082 		ic->ic_flags |= sc->sc_ic_flags;
3083 
3084 	DPRINTF(("%s: state %d, "
3085 	    "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", "
3086 	    "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n",
3087 	    __func__, nstate,
3088 	    ic->ic_flags & IEEE80211_F_DROPUNENC,
3089 	    sc->sc_ic_flags & IEEE80211_F_DROPUNENC));
3090 }
3091 
3092 STATIC int
3093 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3094 {
3095 	struct ifnet *ifp = ic->ic_ifp;
3096 	struct wi_softc *sc = ifp->if_softc;
3097 	struct ieee80211_node *ni = ic->ic_bss;
3098 	u_int16_t val;
3099 	struct wi_ssid ssid;
3100 	struct wi_macaddr bssid, old_bssid;
3101 	enum ieee80211_state ostate;
3102 #ifdef WI_DEBUG
3103 	static const char *stname[] =
3104 	    { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
3105 #endif /* WI_DEBUG */
3106 
3107 	ostate = ic->ic_state;
3108 	DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
3109 
3110 	switch (nstate) {
3111 	case IEEE80211_S_INIT:
3112 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
3113 			callout_stop(&sc->sc_rssadapt_ch);
3114 		ic->ic_flags &= ~IEEE80211_F_SIBSS;
3115 		sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3116 		break;
3117 
3118 	case IEEE80211_S_SCAN:
3119 	case IEEE80211_S_AUTH:
3120 	case IEEE80211_S_ASSOC:
3121 		ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */
3122 		wi_mend_flags(sc, nstate);
3123 		return 0;
3124 
3125 	case IEEE80211_S_RUN:
3126 		sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
3127 		IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
3128 		wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
3129 		    IEEE80211_ADDR_LEN);
3130 		IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
3131 		IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
3132 		wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
3133 		if (!isset(ic->ic_chan_avail, le16toh(val)))
3134 			panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname,
3135 			    le16toh(val));
3136 		ni->ni_chan = &ic->ic_channels[le16toh(val)];
3137 
3138 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3139 #ifndef	IEEE80211_NO_HOSTAP
3140 			ni->ni_esslen = ic->ic_des_esslen;
3141 			memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
3142 			ni->ni_rates = ic->ic_sup_rates[
3143 			    ieee80211_chan2mode(ic, ni->ni_chan)];
3144 			ni->ni_intval = ic->ic_lintval;
3145 			ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
3146 			if (ic->ic_flags & IEEE80211_F_PRIVACY)
3147 				ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
3148 #endif /* !IEEE80211_NO_HOSTAP */
3149 		} else {
3150 			wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
3151 			    sizeof(ssid));
3152 			ni->ni_esslen = le16toh(ssid.wi_len);
3153 			if (ni->ni_esslen > IEEE80211_NWID_LEN)
3154 				ni->ni_esslen = IEEE80211_NWID_LEN;	/*XXX*/
3155 			memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
3156 			ni->ni_rates = ic->ic_sup_rates[
3157 			    ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
3158 		}
3159 		if (ic->ic_opmode != IEEE80211_M_MONITOR)
3160 			callout_reset(&sc->sc_rssadapt_ch, hz / 10,
3161 			    wi_rssadapt_updatestats, sc);
3162 		/* Trigger routing socket messages. XXX Copied from
3163 		 * ieee80211_newstate.
3164 		 */
3165 		if (ic->ic_opmode == IEEE80211_M_STA)
3166 			ieee80211_notify_node_join(ic, ic->ic_bss,
3167 				arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
3168 		break;
3169 	}
3170 	wi_mend_flags(sc, nstate);
3171 	return (*sc->sc_newstate)(ic, nstate, arg);
3172 }
3173 
3174 STATIC void
3175 wi_set_tim(struct ieee80211_node *ni, int set)
3176 {
3177 	struct ieee80211com *ic = ni->ni_ic;
3178 	struct wi_softc *sc = ic->ic_ifp->if_softc;
3179 
3180 	(*sc->sc_set_tim)(ni, set);
3181 
3182 	if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0)
3183 		return;
3184 
3185 	ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
3186 
3187 	(void)wi_write_val(sc, WI_RID_SET_TIM,
3188 	    IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0));
3189 }
3190 
3191 STATIC int
3192 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
3193 {
3194 	int error = 0;
3195 	u_int16_t val[2];
3196 
3197 	if (!sc->sc_enabled)
3198 		return ENXIO;
3199 	switch (sc->sc_firmware_type) {
3200 	case WI_LUCENT:
3201 		(void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
3202 		break;
3203 	case WI_INTERSIL:
3204 		val[0] = htole16(chanmask);	/* channel */
3205 		val[1] = htole16(txrate);	/* tx rate */
3206 		error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
3207 		break;
3208 	case WI_SYMBOL:
3209 		/*
3210 		 * XXX only supported on 3.x ?
3211 		 */
3212 		val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
3213 		error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
3214 		    val, sizeof(val[0]));
3215 		break;
3216 	}
3217 	if (error == 0) {
3218 		sc->sc_scan_timer = WI_SCAN_WAIT;
3219 		sc->sc_if.if_timer = 1;
3220 		DPRINTF(("wi_scan_ap: start scanning, "
3221 			"chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
3222 	}
3223 	return error;
3224 }
3225 
3226 STATIC void
3227 wi_scan_result(struct wi_softc *sc, int fid, int cnt)
3228 {
3229 #define	N(a)	(sizeof (a) / sizeof (a[0]))
3230 	int i, naps, off, szbuf;
3231 	struct wi_scan_header ws_hdr;	/* Prism2 header */
3232 	struct wi_scan_data_p2 ws_dat;	/* Prism2 scantable*/
3233 	struct wi_apinfo *ap;
3234 
3235 	off = sizeof(u_int16_t) * 2;
3236 	memset(&ws_hdr, 0, sizeof(ws_hdr));
3237 	switch (sc->sc_firmware_type) {
3238 	case WI_INTERSIL:
3239 		wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
3240 		off += sizeof(ws_hdr);
3241 		szbuf = sizeof(struct wi_scan_data_p2);
3242 		break;
3243 	case WI_SYMBOL:
3244 		szbuf = sizeof(struct wi_scan_data_p2) + 6;
3245 		break;
3246 	case WI_LUCENT:
3247 		szbuf = sizeof(struct wi_scan_data);
3248 		break;
3249 	default:
3250 		printf("%s: wi_scan_result: unknown firmware type %u\n",
3251 		    sc->sc_dev.dv_xname, sc->sc_firmware_type);
3252 		naps = 0;
3253 		goto done;
3254 	}
3255 	naps = (cnt * 2 + 2 - off) / szbuf;
3256 	if (naps > N(sc->sc_aps))
3257 		naps = N(sc->sc_aps);
3258 	sc->sc_naps = naps;
3259 	/* Read Data */
3260 	ap = sc->sc_aps;
3261 	memset(&ws_dat, 0, sizeof(ws_dat));
3262 	for (i = 0; i < naps; i++, ap++) {
3263 		wi_read_bap(sc, fid, off, &ws_dat,
3264 		    (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
3265 		DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
3266 		    ether_sprintf(ws_dat.wi_bssid)));
3267 		off += szbuf;
3268 		ap->scanreason = le16toh(ws_hdr.wi_reason);
3269 		memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
3270 		ap->channel = le16toh(ws_dat.wi_chid);
3271 		ap->signal  = le16toh(ws_dat.wi_signal);
3272 		ap->noise   = le16toh(ws_dat.wi_noise);
3273 		ap->quality = ap->signal - ap->noise;
3274 		ap->capinfo = le16toh(ws_dat.wi_capinfo);
3275 		ap->interval = le16toh(ws_dat.wi_interval);
3276 		ap->rate    = le16toh(ws_dat.wi_rate);
3277 		ap->namelen = le16toh(ws_dat.wi_namelen);
3278 		if (ap->namelen > sizeof(ap->name))
3279 			ap->namelen = sizeof(ap->name);
3280 		memcpy(ap->name, ws_dat.wi_name, ap->namelen);
3281 	}
3282 done:
3283 	/* Done scanning */
3284 	sc->sc_scan_timer = 0;
3285 	DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
3286 #undef N
3287 }
3288 
3289 STATIC void
3290 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
3291 {
3292 	ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
3293 	    ni	? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
3294 		: -1,
3295 	    rssi);
3296 	printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
3297 		le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
3298 		le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
3299 	printf(" rx_signal %u rx_rate %u rx_flow %u\n",
3300 		wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
3301 	printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
3302 		wh->wi_tx_rtry, wh->wi_tx_rate,
3303 		le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
3304 	printf(" ehdr dst %s src %s type 0x%x\n",
3305 		ether_sprintf(wh->wi_ehdr.ether_dhost),
3306 		ether_sprintf(wh->wi_ehdr.ether_shost),
3307 		wh->wi_ehdr.ether_type);
3308 }
3309