1 /* $NetBSD: wi.c,v 1.161 2004/06/06 05:32:17 dyoung Exp $ */ 2 3 /* 4 * Copyright (c) 1997, 1998, 1999 5 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 /* 36 * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. 37 * 38 * Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu> 39 * Electrical Engineering Department 40 * Columbia University, New York City 41 */ 42 43 /* 44 * The WaveLAN/IEEE adapter is the second generation of the WaveLAN 45 * from Lucent. Unlike the older cards, the new ones are programmed 46 * entirely via a firmware-driven controller called the Hermes. 47 * Unfortunately, Lucent will not release the Hermes programming manual 48 * without an NDA (if at all). What they do release is an API library 49 * called the HCF (Hardware Control Functions) which is supposed to 50 * do the device-specific operations of a device driver for you. The 51 * publically available version of the HCF library (the 'HCF Light') is 52 * a) extremely gross, b) lacks certain features, particularly support 53 * for 802.11 frames, and c) is contaminated by the GNU Public License. 54 * 55 * This driver does not use the HCF or HCF Light at all. Instead, it 56 * programs the Hermes controller directly, using information gleaned 57 * from the HCF Light code and corresponding documentation. 58 * 59 * This driver supports both the PCMCIA and ISA versions of the 60 * WaveLAN/IEEE cards. Note however that the ISA card isn't really 61 * anything of the sort: it's actually a PCMCIA bridge adapter 62 * that fits into an ISA slot, into which a PCMCIA WaveLAN card is 63 * inserted. Consequently, you need to use the pccard support for 64 * both the ISA and PCMCIA adapters. 65 */ 66 67 /* 68 * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the 69 * Oslo IETF plenary meeting. 70 */ 71 72 #include <sys/cdefs.h> 73 __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.161 2004/06/06 05:32:17 dyoung Exp $"); 74 75 #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ 76 #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ 77 78 #include "bpfilter.h" 79 80 #include <sys/param.h> 81 #include <sys/systm.h> 82 #include <sys/callout.h> 83 #include <sys/device.h> 84 #include <sys/socket.h> 85 #include <sys/mbuf.h> 86 #include <sys/ioctl.h> 87 #include <sys/kernel.h> /* for hz */ 88 #include <sys/proc.h> 89 90 #include <net/if.h> 91 #include <net/if_dl.h> 92 #include <net/if_llc.h> 93 #include <net/if_media.h> 94 #include <net/if_ether.h> 95 96 #include <net80211/ieee80211_var.h> 97 #include <net80211/ieee80211_compat.h> 98 #include <net80211/ieee80211_ioctl.h> 99 #include <net80211/ieee80211_radiotap.h> 100 #include <net80211/ieee80211_rssadapt.h> 101 102 #if NBPFILTER > 0 103 #include <net/bpf.h> 104 #include <net/bpfdesc.h> 105 #endif 106 107 #include <machine/bus.h> 108 109 #include <dev/ic/wi_ieee.h> 110 #include <dev/ic/wireg.h> 111 #include <dev/ic/wivar.h> 112 113 static int wi_init(struct ifnet *); 114 static void wi_stop(struct ifnet *, int); 115 static void wi_start(struct ifnet *); 116 static int wi_reset(struct wi_softc *); 117 static void wi_watchdog(struct ifnet *); 118 static int wi_ioctl(struct ifnet *, u_long, caddr_t); 119 static int wi_media_change(struct ifnet *); 120 static void wi_media_status(struct ifnet *, struct ifmediareq *); 121 122 static struct ieee80211_node *wi_node_alloc(struct ieee80211com *); 123 static void wi_node_copy(struct ieee80211com *, struct ieee80211_node *, 124 const struct ieee80211_node *); 125 static void wi_node_free(struct ieee80211com *, struct ieee80211_node *); 126 127 static void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 128 static void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *); 129 static void wi_choose_rate(struct ieee80211com *, struct ieee80211_node *, 130 struct ieee80211_frame *, u_int); 131 static void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *); 132 static void wi_rssadapt_updatestats(void *); 133 134 static void wi_rx_intr(struct wi_softc *); 135 static void wi_txalloc_intr(struct wi_softc *); 136 static void wi_tx_intr(struct wi_softc *); 137 static void wi_tx_ex_intr(struct wi_softc *); 138 static void wi_info_intr(struct wi_softc *); 139 140 static int wi_get_cfg(struct ifnet *, u_long, caddr_t); 141 static int wi_set_cfg(struct ifnet *, u_long, caddr_t); 142 static int wi_cfg_txrate(struct wi_softc *); 143 static int wi_write_txrate(struct wi_softc *, int); 144 static int wi_write_wep(struct wi_softc *); 145 static int wi_write_multi(struct wi_softc *); 146 static int wi_alloc_fid(struct wi_softc *, int, int *); 147 static void wi_read_nicid(struct wi_softc *); 148 static int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); 149 150 static int wi_cmd(struct wi_softc *, int, int, int, int); 151 static int wi_seek_bap(struct wi_softc *, int, int); 152 static int wi_read_bap(struct wi_softc *, int, int, void *, int); 153 static int wi_write_bap(struct wi_softc *, int, int, void *, int); 154 static int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); 155 static int wi_read_rid(struct wi_softc *, int, void *, int *); 156 static int wi_write_rid(struct wi_softc *, int, void *, int); 157 158 static int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); 159 static int wi_set_tim(struct ieee80211com *, int, int); 160 161 static int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); 162 static void wi_scan_result(struct wi_softc *, int, int); 163 164 static void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); 165 166 static inline int 167 wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) 168 { 169 170 val = htole16(val); 171 return wi_write_rid(sc, rid, &val, sizeof(val)); 172 } 173 174 static struct timeval lasttxerror; /* time of last tx error msg */ 175 static int curtxeps = 0; /* current tx error msgs/sec */ 176 static int wi_txerate = 0; /* tx error rate: max msgs/sec */ 177 178 #ifdef WI_DEBUG 179 int wi_debug = 0; 180 181 #define DPRINTF(X) if (wi_debug) printf X 182 #define DPRINTF2(X) if (wi_debug > 1) printf X 183 #define IFF_DUMPPKTS(_ifp) \ 184 (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) 185 #else 186 #define DPRINTF(X) 187 #define DPRINTF2(X) 188 #define IFF_DUMPPKTS(_ifp) 0 189 #endif 190 191 #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \ 192 WI_EV_TX | WI_EV_TX_EXC) 193 194 struct wi_card_ident 195 wi_card_ident[] = { 196 /* CARD_ID CARD_NAME FIRM_TYPE */ 197 { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, 198 { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, 199 { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, 200 { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, 201 { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, 202 { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, 203 { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, 204 { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, 205 { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, 206 { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, 207 { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, 208 { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, 209 { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 210 { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 211 { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, 212 { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 213 { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 214 { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, 215 { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 216 { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 217 { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, 218 { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 219 { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, 220 { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 221 { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, 222 { 0, NULL, 0 }, 223 }; 224 225 int 226 wi_attach(struct wi_softc *sc) 227 { 228 struct ieee80211com *ic = &sc->sc_ic; 229 struct ifnet *ifp = &ic->ic_if; 230 int chan, nrate, buflen; 231 u_int16_t val, chanavail; 232 struct { 233 u_int16_t nrates; 234 char rates[IEEE80211_RATE_SIZE]; 235 } ratebuf; 236 static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 237 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 238 }; 239 int s; 240 241 s = splnet(); 242 243 /* Make sure interrupts are disabled. */ 244 CSR_WRITE_2(sc, WI_INT_EN, 0); 245 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 246 247 sc->sc_invalid = 0; 248 249 /* Reset the NIC. */ 250 if (wi_reset(sc) != 0) { 251 sc->sc_invalid = 1; 252 splx(s); 253 return 1; 254 } 255 256 buflen = IEEE80211_ADDR_LEN; 257 if (wi_read_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, &buflen) != 0 || 258 IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { 259 printf(" could not get mac address, attach failed\n"); 260 splx(s); 261 return 1; 262 } 263 264 printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); 265 266 /* Read NIC identification */ 267 wi_read_nicid(sc); 268 269 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 270 ifp->if_softc = sc; 271 ifp->if_start = wi_start; 272 ifp->if_ioctl = wi_ioctl; 273 ifp->if_watchdog = wi_watchdog; 274 ifp->if_init = wi_init; 275 ifp->if_stop = wi_stop; 276 ifp->if_flags = 277 IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; 278 IFQ_SET_READY(&ifp->if_snd); 279 280 ic->ic_phytype = IEEE80211_T_DS; 281 ic->ic_opmode = IEEE80211_M_STA; 282 ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_AHDEMO; 283 ic->ic_state = IEEE80211_S_INIT; 284 ic->ic_max_aid = WI_MAX_AID; 285 286 /* Find available channel */ 287 buflen = sizeof(chanavail); 288 if (wi_read_rid(sc, WI_RID_CHANNEL_LIST, &chanavail, &buflen) != 0) 289 chanavail = htole16(0x1fff); /* assume 1-11 */ 290 for (chan = 16; chan > 0; chan--) { 291 if (!isset((u_int8_t*)&chanavail, chan - 1)) 292 continue; 293 ic->ic_ibss_chan = &ic->ic_channels[chan]; 294 ic->ic_channels[chan].ic_freq = 295 ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); 296 ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; 297 } 298 299 /* Find default IBSS channel */ 300 buflen = sizeof(val); 301 if (wi_read_rid(sc, WI_RID_OWN_CHNL, &val, &buflen) == 0) { 302 chan = le16toh(val); 303 if (isset((u_int8_t*)&chanavail, chan - 1)) 304 ic->ic_ibss_chan = &ic->ic_channels[chan]; 305 } 306 if (ic->ic_ibss_chan == NULL) 307 panic("%s: no available channel\n", sc->sc_dev.dv_xname); 308 309 if (sc->sc_firmware_type == WI_LUCENT) { 310 sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; 311 } else { 312 buflen = sizeof(val); 313 if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && 314 wi_read_rid(sc, WI_RID_DBM_ADJUST, &val, &buflen) == 0) 315 sc->sc_dbm_offset = le16toh(val); 316 else 317 sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; 318 } 319 320 sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; 321 322 /* 323 * Set flags based on firmware version. 324 */ 325 switch (sc->sc_firmware_type) { 326 case WI_LUCENT: 327 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 328 #ifdef WI_HERMES_AUTOINC_WAR 329 /* XXX: not confirmed, but never seen for recent firmware */ 330 if (sc->sc_sta_firmware_ver < 40000) { 331 sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; 332 } 333 #endif 334 if (sc->sc_sta_firmware_ver >= 60000) 335 sc->sc_flags |= WI_FLAGS_HAS_MOR; 336 if (sc->sc_sta_firmware_ver >= 60006) { 337 ic->ic_caps |= IEEE80211_C_IBSS; 338 ic->ic_caps |= IEEE80211_C_MONITOR; 339 } 340 sc->sc_ibss_port = 1; 341 break; 342 343 case WI_INTERSIL: 344 sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; 345 sc->sc_flags |= WI_FLAGS_HAS_ROAMING; 346 sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; 347 if (sc->sc_sta_firmware_ver > 10101) 348 sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; 349 if (sc->sc_sta_firmware_ver >= 800) { 350 if (sc->sc_sta_firmware_ver != 10402) 351 ic->ic_caps |= IEEE80211_C_HOSTAP; 352 ic->ic_caps |= IEEE80211_C_IBSS; 353 ic->ic_caps |= IEEE80211_C_MONITOR; 354 } 355 sc->sc_ibss_port = 0; 356 sc->sc_alt_retry = 2; 357 break; 358 359 case WI_SYMBOL: 360 sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; 361 if (sc->sc_sta_firmware_ver >= 20000) 362 ic->ic_caps |= IEEE80211_C_IBSS; 363 sc->sc_ibss_port = 4; 364 break; 365 } 366 367 /* 368 * Find out if we support WEP on this card. 369 */ 370 buflen = sizeof(val); 371 if (wi_read_rid(sc, WI_RID_WEP_AVAIL, &val, &buflen) == 0 && 372 val != htole16(0)) 373 ic->ic_caps |= IEEE80211_C_WEP; 374 375 /* Find supported rates. */ 376 buflen = sizeof(ratebuf); 377 if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0) { 378 nrate = le16toh(ratebuf.nrates); 379 if (nrate > IEEE80211_RATE_SIZE) 380 nrate = IEEE80211_RATE_SIZE; 381 memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates, 382 &ratebuf.rates[0], nrate); 383 ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; 384 } 385 buflen = sizeof(val); 386 387 sc->sc_max_datalen = 2304; 388 sc->sc_rts_thresh = 2347; 389 sc->sc_frag_thresh = 2346; 390 sc->sc_system_scale = 1; 391 sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; 392 sc->sc_roaming_mode = 1; 393 394 callout_init(&sc->sc_rssadapt_ch); 395 396 /* 397 * Call MI attach routines. 398 */ 399 if_attach(ifp); 400 ieee80211_ifattach(ifp); 401 402 sc->sc_newstate = ic->ic_newstate; 403 ic->ic_newstate = wi_newstate; 404 ic->ic_node_alloc = wi_node_alloc; 405 ic->ic_node_free = wi_node_free; 406 ic->ic_node_copy = wi_node_copy; 407 ic->ic_set_tim = wi_set_tim; 408 409 ieee80211_media_init(ifp, wi_media_change, wi_media_status); 410 411 #if NBPFILTER > 0 412 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 413 sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); 414 #endif 415 416 memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); 417 sc->sc_rxtap.wr_ihdr.it_len = sizeof(sc->sc_rxtapu); 418 sc->sc_rxtap.wr_ihdr.it_present = WI_RX_RADIOTAP_PRESENT; 419 420 memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); 421 sc->sc_txtap.wt_ihdr.it_len = sizeof(sc->sc_txtapu); 422 sc->sc_txtap.wt_ihdr.it_present = WI_TX_RADIOTAP_PRESENT; 423 424 /* Attach is successful. */ 425 sc->sc_attached = 1; 426 427 splx(s); 428 return 0; 429 } 430 431 int 432 wi_detach(struct wi_softc *sc) 433 { 434 struct ifnet *ifp = &sc->sc_ic.ic_if; 435 int s; 436 437 if (!sc->sc_attached) 438 return 0; 439 440 s = splnet(); 441 442 sc->sc_invalid = 1; 443 wi_stop(ifp, 1); 444 445 /* Delete all remaining media. */ 446 ifmedia_delete_instance(&sc->sc_ic.ic_media, IFM_INST_ANY); 447 448 ieee80211_ifdetach(ifp); 449 if_detach(ifp); 450 splx(s); 451 return 0; 452 } 453 454 #ifdef __NetBSD__ 455 int 456 wi_activate(struct device *self, enum devact act) 457 { 458 struct wi_softc *sc = (struct wi_softc *)self; 459 int rv = 0, s; 460 461 s = splnet(); 462 switch (act) { 463 case DVACT_ACTIVATE: 464 rv = EOPNOTSUPP; 465 break; 466 467 case DVACT_DEACTIVATE: 468 if_deactivate(&sc->sc_ic.ic_if); 469 break; 470 } 471 splx(s); 472 return rv; 473 } 474 475 void 476 wi_power(struct wi_softc *sc, int why) 477 { 478 struct ifnet *ifp = &sc->sc_ic.ic_if; 479 int s; 480 481 s = splnet(); 482 switch (why) { 483 case PWR_SUSPEND: 484 case PWR_STANDBY: 485 wi_stop(ifp, 1); 486 break; 487 case PWR_RESUME: 488 if (ifp->if_flags & IFF_UP) { 489 wi_init(ifp); 490 (void)wi_intr(sc); 491 } 492 break; 493 case PWR_SOFTSUSPEND: 494 case PWR_SOFTSTANDBY: 495 case PWR_SOFTRESUME: 496 break; 497 } 498 splx(s); 499 } 500 #endif /* __NetBSD__ */ 501 502 void 503 wi_shutdown(struct wi_softc *sc) 504 { 505 struct ifnet *ifp = &sc->sc_ic.ic_if; 506 507 if (sc->sc_attached) 508 wi_stop(ifp, 1); 509 } 510 511 int 512 wi_intr(void *arg) 513 { 514 int i; 515 struct wi_softc *sc = arg; 516 struct ifnet *ifp = &sc->sc_ic.ic_if; 517 u_int16_t status; 518 519 if (sc->sc_enabled == 0 || 520 (sc->sc_dev.dv_flags & DVF_ACTIVE) == 0 || 521 (ifp->if_flags & IFF_RUNNING) == 0) 522 return 0; 523 524 if ((ifp->if_flags & IFF_UP) == 0) { 525 CSR_WRITE_2(sc, WI_INT_EN, 0); 526 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 527 return 1; 528 } 529 530 /* This is superfluous on Prism, but Lucent breaks if we 531 * do not disable interrupts. 532 */ 533 CSR_WRITE_2(sc, WI_INT_EN, 0); 534 535 /* maximum 10 loops per interrupt */ 536 for (i = 0; i < 10; i++) { 537 /* 538 * Only believe a status bit when we enter wi_intr, or when 539 * the bit was "off" the last time through the loop. This is 540 * my strategy to avoid racing the hardware/firmware if I 541 * can re-read the event status register more quickly than 542 * it is updated. 543 */ 544 status = CSR_READ_2(sc, WI_EVENT_STAT); 545 if ((status & WI_INTRS) == 0) 546 break; 547 548 if (status & WI_EV_RX) 549 wi_rx_intr(sc); 550 551 if (status & WI_EV_ALLOC) 552 wi_txalloc_intr(sc); 553 554 if (status & WI_EV_TX) 555 wi_tx_intr(sc); 556 557 if (status & WI_EV_TX_EXC) 558 wi_tx_ex_intr(sc); 559 560 if (status & WI_EV_INFO) 561 wi_info_intr(sc); 562 563 if ((ifp->if_flags & IFF_OACTIVE) == 0 && 564 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && 565 !IFQ_IS_EMPTY(&ifp->if_snd)) 566 wi_start(ifp); 567 } 568 569 /* re-enable interrupts */ 570 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 571 572 return 1; 573 } 574 575 #define arraylen(a) (sizeof(a) / sizeof((a)[0])) 576 577 static void 578 wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree) 579 { 580 int i; 581 SLIST_INIT(rssdfree); 582 for (i = 0; i < arraylen(*rssd); i++) { 583 SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next); 584 } 585 } 586 587 static void 588 wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS], 589 wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE]) 590 { 591 struct ieee80211_node *ni; 592 int i; 593 for (i = 0; i < arraylen(*rssd); i++) { 594 ni = (*rssd)[i].rd_desc.id_node; 595 (*rssd)[i].rd_desc.id_node = NULL; 596 if (ni != NULL && (ic->ic_if.if_flags & IFF_DEBUG) != 0) 597 printf("%s: cleaning outstanding rssadapt " 598 "descriptor for %s\n", 599 ic->ic_if.if_xname, ether_sprintf(ni->ni_macaddr)); 600 if (ni != NULL && ni != ic->ic_bss) 601 ieee80211_free_node(ic, ni); 602 } 603 memset(*txpending, 0, sizeof(*txpending)); 604 wi_rssdescs_init(rssd, rssdfree); 605 } 606 607 static int 608 wi_init(struct ifnet *ifp) 609 { 610 struct wi_softc *sc = ifp->if_softc; 611 struct ieee80211com *ic = &sc->sc_ic; 612 struct wi_joinreq join; 613 int i; 614 int error = 0, wasenabled; 615 616 DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled)); 617 wasenabled = sc->sc_enabled; 618 if (!sc->sc_enabled) { 619 if ((error = (*sc->sc_enable)(sc)) != 0) 620 goto out; 621 sc->sc_enabled = 1; 622 } else 623 wi_stop(ifp, 0); 624 625 /* Symbol firmware cannot be initialized more than once */ 626 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) 627 if ((error = wi_reset(sc)) != 0) 628 goto out; 629 630 /* common 802.11 configuration */ 631 ic->ic_flags &= ~IEEE80211_F_IBSSON; 632 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 633 switch (ic->ic_opmode) { 634 case IEEE80211_M_STA: 635 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); 636 break; 637 case IEEE80211_M_IBSS: 638 wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); 639 ic->ic_flags |= IEEE80211_F_IBSSON; 640 sc->sc_syn_timer = 5; 641 ifp->if_timer = 1; 642 break; 643 case IEEE80211_M_AHDEMO: 644 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 645 break; 646 case IEEE80211_M_HOSTAP: 647 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); 648 break; 649 case IEEE80211_M_MONITOR: 650 if (sc->sc_firmware_type == WI_LUCENT) 651 wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); 652 wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0); 653 break; 654 } 655 656 /* Intersil interprets this RID as joining ESS even in IBSS mode */ 657 if (sc->sc_firmware_type == WI_LUCENT && 658 (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0) 659 wi_write_val(sc, WI_RID_CREATE_IBSS, 1); 660 else 661 wi_write_val(sc, WI_RID_CREATE_IBSS, 0); 662 wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); 663 wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid, 664 ic->ic_des_esslen); 665 wi_write_val(sc, WI_RID_OWN_CHNL, 666 ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); 667 wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen); 668 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 669 wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); 670 wi_write_val(sc, WI_RID_PM_ENABLED, 671 (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); 672 673 /* not yet common 802.11 configuration */ 674 wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); 675 wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh); 676 if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) 677 wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh); 678 679 /* driver specific 802.11 configuration */ 680 if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) 681 wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); 682 if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) 683 wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); 684 if (sc->sc_flags & WI_FLAGS_HAS_MOR) 685 wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); 686 wi_cfg_txrate(sc); 687 wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); 688 689 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 690 sc->sc_firmware_type == WI_INTERSIL) { 691 wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval); 692 wi_write_val(sc, WI_RID_BASIC_RATE, 0x03); /* 1, 2 */ 693 wi_write_val(sc, WI_RID_SUPPORT_RATE, 0x0f); /* 1, 2, 5.5, 11 */ 694 wi_write_val(sc, WI_RID_DTIM_PERIOD, 1); 695 } 696 697 if (sc->sc_firmware_type == WI_INTERSIL) 698 wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry); 699 700 /* 701 * Initialize promisc mode. 702 * Being in Host-AP mode causes a great 703 * deal of pain if promiscuous mode is set. 704 * Therefore we avoid confusing the firmware 705 * and always reset promisc mode in Host-AP 706 * mode. Host-AP sees all the packets anyway. 707 */ 708 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 709 (ifp->if_flags & IFF_PROMISC) != 0) { 710 wi_write_val(sc, WI_RID_PROMISC, 1); 711 } else { 712 wi_write_val(sc, WI_RID_PROMISC, 0); 713 } 714 715 /* Configure WEP. */ 716 if (ic->ic_caps & IEEE80211_C_WEP) 717 wi_write_wep(sc); 718 719 /* Set multicast filter. */ 720 wi_write_multi(sc); 721 722 if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { 723 sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); 724 if (sc->sc_firmware_type == WI_SYMBOL) 725 sc->sc_buflen = 1585; /* XXX */ 726 for (i = 0; i < WI_NTXBUF; i++) { 727 error = wi_alloc_fid(sc, sc->sc_buflen, 728 &sc->sc_txd[i].d_fid); 729 if (error) { 730 printf("%s: tx buffer allocation failed\n", 731 sc->sc_dev.dv_xname); 732 goto out; 733 } 734 DPRINTF2(("wi_init: txbuf %d allocated %x\n", i, 735 sc->sc_txd[i].d_fid)); 736 sc->sc_txd[i].d_len = 0; 737 } 738 } 739 sc->sc_txcur = sc->sc_txnext = 0; 740 741 wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree); 742 743 /* Enable desired port */ 744 wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); 745 ifp->if_flags |= IFF_RUNNING; 746 ifp->if_flags &= ~IFF_OACTIVE; 747 ic->ic_state = IEEE80211_S_INIT; 748 749 if (ic->ic_opmode == IEEE80211_M_AHDEMO || 750 ic->ic_opmode == IEEE80211_M_MONITOR || 751 ic->ic_opmode == IEEE80211_M_HOSTAP) 752 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 753 754 /* Enable interrupts */ 755 CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); 756 757 if (!wasenabled && 758 ic->ic_opmode == IEEE80211_M_HOSTAP && 759 sc->sc_firmware_type == WI_INTERSIL) { 760 /* XXX: some card need to be re-enabled for hostap */ 761 wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); 762 wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); 763 } 764 765 if (ic->ic_opmode == IEEE80211_M_STA && 766 ((ic->ic_flags & IEEE80211_F_DESBSSID) || 767 ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { 768 memset(&join, 0, sizeof(join)); 769 if (ic->ic_flags & IEEE80211_F_DESBSSID) 770 IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); 771 if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) 772 join.wi_chan = 773 htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan)); 774 /* Lucent firmware does not support the JOIN RID. */ 775 if (sc->sc_firmware_type != WI_LUCENT) 776 wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); 777 } 778 779 out: 780 if (error) { 781 printf("%s: interface not running\n", sc->sc_dev.dv_xname); 782 wi_stop(ifp, 0); 783 } 784 DPRINTF(("wi_init: return %d\n", error)); 785 return error; 786 } 787 788 static void 789 wi_stop(struct ifnet *ifp, int disable) 790 { 791 struct wi_softc *sc = ifp->if_softc; 792 struct ieee80211com *ic = &sc->sc_ic; 793 int s; 794 795 if (!sc->sc_enabled) 796 return; 797 798 s = splnet(); 799 800 DPRINTF(("wi_stop: disable %d\n", disable)); 801 802 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 803 if (!sc->sc_invalid) { 804 CSR_WRITE_2(sc, WI_INT_EN, 0); 805 wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); 806 } 807 808 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 809 &sc->sc_txpending); 810 811 sc->sc_tx_timer = 0; 812 sc->sc_scan_timer = 0; 813 sc->sc_syn_timer = 0; 814 sc->sc_false_syns = 0; 815 sc->sc_naps = 0; 816 ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); 817 ifp->if_timer = 0; 818 819 if (disable) { 820 if (sc->sc_disable) 821 (*sc->sc_disable)(sc); 822 sc->sc_enabled = 0; 823 } 824 splx(s); 825 } 826 827 /* 828 * Choose a data rate for a packet len bytes long that suits the packet 829 * type and the wireless conditions. 830 * 831 * TBD Adapt fragmentation threshold. 832 */ 833 static void 834 wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni, 835 struct ieee80211_frame *wh, u_int len) 836 { 837 struct wi_softc *sc = ic->ic_if.if_softc; 838 struct wi_node *wn = (void*)ni; 839 struct ieee80211_rssadapt *ra = &wn->wn_rssadapt; 840 int do_not_adapt, i, rateidx, s; 841 842 do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) && 843 (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0; 844 845 s = splnet(); 846 847 rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len, 848 ic->ic_fixed_rate, 849 ((ic->ic_if.if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_if.if_xname, 850 do_not_adapt); 851 852 if (ic->ic_opmode != IEEE80211_M_HOSTAP) { 853 /* choose the slowest pending rate so that we don't 854 * accidentally send a packet on the MAC's queue 855 * too fast. TBD find out if the MAC labels Tx 856 * packets w/ rate when enqueued or dequeued. 857 */ 858 for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++); 859 ni->ni_txrate = i; 860 } else 861 ni->ni_txrate = rateidx; 862 splx(s); 863 return; 864 } 865 866 static void 867 wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 868 { 869 struct wi_node *wn; 870 if (id->id_node == NULL) 871 return; 872 873 wn = (void*)id->id_node; 874 ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id); 875 } 876 877 static void 878 wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) 879 { 880 struct ieee80211_node *ni; 881 struct wi_node *wn; 882 int s; 883 884 s = splnet(); 885 886 if ((ni = id->id_node) == NULL) { 887 DPRINTF(("wi_lower_rate: missing node\n")); 888 goto out; 889 } 890 891 wn = (void *)ni; 892 893 ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id); 894 out: 895 splx(s); 896 return; 897 } 898 899 static void 900 wi_start(struct ifnet *ifp) 901 { 902 struct wi_softc *sc = ifp->if_softc; 903 struct ieee80211com *ic = &sc->sc_ic; 904 struct ieee80211_node *ni; 905 struct ieee80211_frame *wh; 906 struct ieee80211_rateset *rs; 907 struct wi_rssdesc *rd; 908 struct ieee80211_rssdesc *id; 909 struct mbuf *m0; 910 struct wi_frame frmhdr; 911 int cur, fid, off; 912 913 if (!sc->sc_enabled || sc->sc_invalid) 914 return; 915 if (sc->sc_flags & WI_FLAGS_OUTRANGE) 916 return; 917 918 memset(&frmhdr, 0, sizeof(frmhdr)); 919 cur = sc->sc_txnext; 920 for (;;) { 921 ni = ic->ic_bss; 922 if (!IF_IS_EMPTY(&ic->ic_mgtq)) { 923 if (sc->sc_txd[cur].d_len != 0 || 924 SLIST_EMPTY(&sc->sc_rssdfree)) { 925 ifp->if_flags |= IFF_OACTIVE; 926 break; 927 } 928 IF_DEQUEUE(&ic->ic_mgtq, m0); 929 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 930 (caddr_t)&frmhdr.wi_ehdr); 931 frmhdr.wi_ehdr.ether_type = 0; 932 wh = mtod(m0, struct ieee80211_frame *); 933 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 934 m0->m_pkthdr.rcvif = NULL; 935 } else if (!IF_IS_EMPTY(&ic->ic_pwrsaveq)) { 936 struct llc *llc; 937 938 /* 939 * Should these packets be processed after the 940 * regular packets or before? Since they are being 941 * probed for, they are probably less time critical 942 * than other packets, but, on the other hand, 943 * we want the power saving nodes to go back to 944 * sleep as quickly as possible to save power... 945 */ 946 947 if (ic->ic_state != IEEE80211_S_RUN) 948 break; 949 950 if (sc->sc_txd[cur].d_len != 0 || 951 SLIST_EMPTY(&sc->sc_rssdfree)) { 952 ifp->if_flags |= IFF_OACTIVE; 953 break; 954 } 955 IF_DEQUEUE(&ic->ic_pwrsaveq, m0); 956 wh = mtod(m0, struct ieee80211_frame *); 957 llc = (struct llc *) (wh + 1); 958 m_copydata(m0, 4, ETHER_ADDR_LEN * 2, 959 (caddr_t)&frmhdr.wi_ehdr); 960 frmhdr.wi_ehdr.ether_type = llc->llc_snap.ether_type; 961 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 962 m0->m_pkthdr.rcvif = NULL; 963 } else { 964 if (ic->ic_state != IEEE80211_S_RUN) { 965 break; 966 } 967 IFQ_POLL(&ifp->if_snd, m0); 968 if (m0 == NULL) { 969 break; 970 } 971 if (sc->sc_txd[cur].d_len != 0 || 972 SLIST_EMPTY(&sc->sc_rssdfree)) { 973 ifp->if_flags |= IFF_OACTIVE; 974 break; 975 } 976 IFQ_DEQUEUE(&ifp->if_snd, m0); 977 ifp->if_opackets++; 978 m_copydata(m0, 0, ETHER_HDR_LEN, 979 (caddr_t)&frmhdr.wi_ehdr); 980 #if NBPFILTER > 0 981 if (ifp->if_bpf) 982 bpf_mtap(ifp->if_bpf, m0); 983 #endif 984 985 if ((m0 = ieee80211_encap(ifp, m0, &ni)) == NULL) { 986 ifp->if_oerrors++; 987 continue; 988 } 989 wh = mtod(m0, struct ieee80211_frame *); 990 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 991 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 992 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 993 IEEE80211_FC0_TYPE_DATA) { 994 if (ni->ni_associd == 0) { 995 m_freem(m0); 996 ifp->if_oerrors++; 997 goto next; 998 } 999 if (ni->ni_pwrsave & IEEE80211_PS_SLEEP) { 1000 ieee80211_pwrsave(ic, ni, m0); 1001 continue; /* don't free node. */ 1002 } 1003 } 1004 } 1005 #if NBPFILTER > 0 1006 if (ic->ic_rawbpf) 1007 bpf_mtap(ic->ic_rawbpf, m0); 1008 #endif 1009 frmhdr.wi_tx_ctl = 1010 htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK); 1011 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1012 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); 1013 if (ic->ic_opmode == IEEE80211_M_HOSTAP && 1014 (wh->i_fc[1] & IEEE80211_FC1_WEP)) { 1015 if ((m0 = ieee80211_wep_crypt(ifp, m0, 1)) == NULL) { 1016 ifp->if_oerrors++; 1017 goto next; 1018 } 1019 frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); 1020 } 1021 1022 wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len); 1023 1024 #if NBPFILTER > 0 1025 if (sc->sc_drvbpf) { 1026 struct mbuf mb; 1027 1028 struct wi_tx_radiotap_header *tap = &sc->sc_txtap; 1029 1030 tap->wt_rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 1031 tap->wt_chan_freq = 1032 htole16(ic->ic_bss->ni_chan->ic_freq); 1033 tap->wt_chan_flags = 1034 htole16(ic->ic_bss->ni_chan->ic_flags); 1035 1036 /* TBD tap->wt_flags */ 1037 1038 M_COPY_PKTHDR(&mb, m0); 1039 mb.m_data = (caddr_t)tap; 1040 mb.m_len = tap->wt_ihdr.it_len; 1041 mb.m_next = m0; 1042 mb.m_pkthdr.len += mb.m_len; 1043 bpf_mtap(sc->sc_drvbpf, &mb); 1044 } 1045 #endif 1046 rs = &ni->ni_rates; 1047 rd = SLIST_FIRST(&sc->sc_rssdfree); 1048 id = &rd->rd_desc; 1049 id->id_len = m0->m_pkthdr.len; 1050 sc->sc_txd[cur].d_rate = id->id_rateidx = ni->ni_txrate; 1051 id->id_rssi = ni->ni_rssi; 1052 1053 frmhdr.wi_tx_idx = rd - sc->sc_rssd; 1054 1055 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1056 frmhdr.wi_tx_rate = 5 * (rs->rs_rates[ni->ni_txrate] & 1057 IEEE80211_RATE_VAL); 1058 else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) 1059 (void)wi_write_txrate(sc, rs->rs_rates[ni->ni_txrate]); 1060 1061 m_copydata(m0, 0, sizeof(struct ieee80211_frame), 1062 (caddr_t)&frmhdr.wi_whdr); 1063 m_adj(m0, sizeof(struct ieee80211_frame)); 1064 frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); 1065 if (IFF_DUMPPKTS(ifp)) 1066 wi_dump_pkt(&frmhdr, ni, -1); 1067 fid = sc->sc_txd[cur].d_fid; 1068 off = sizeof(frmhdr); 1069 if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 || 1070 wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) { 1071 ifp->if_oerrors++; 1072 m_freem(m0); 1073 goto next; 1074 } 1075 m_freem(m0); 1076 sc->sc_txd[cur].d_len = off; 1077 if (sc->sc_txcur == cur) { 1078 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) { 1079 printf("%s: xmit failed\n", 1080 sc->sc_dev.dv_xname); 1081 sc->sc_txd[cur].d_len = 0; 1082 goto next; 1083 } 1084 sc->sc_txpending[ni->ni_txrate]++; 1085 sc->sc_tx_timer = 5; 1086 ifp->if_timer = 1; 1087 } 1088 sc->sc_txnext = cur = (cur + 1) % WI_NTXBUF; 1089 SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next); 1090 id->id_node = ni; 1091 continue; 1092 next: 1093 if (ni != NULL && ni != ic->ic_bss) 1094 ieee80211_free_node(ic, ni); 1095 } 1096 } 1097 1098 1099 static int 1100 wi_reset(struct wi_softc *sc) 1101 { 1102 int i, error; 1103 1104 DPRINTF(("wi_reset\n")); 1105 1106 if (sc->sc_reset) 1107 (*sc->sc_reset)(sc); 1108 1109 error = 0; 1110 for (i = 0; i < 5; i++) { 1111 DELAY(20*1000); /* XXX: way too long! */ 1112 if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) 1113 break; 1114 } 1115 if (error) { 1116 printf("%s: init failed\n", sc->sc_dev.dv_xname); 1117 return error; 1118 } 1119 CSR_WRITE_2(sc, WI_INT_EN, 0); 1120 CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); 1121 1122 /* Calibrate timer. */ 1123 wi_write_val(sc, WI_RID_TICK_TIME, 0); 1124 return 0; 1125 } 1126 1127 static void 1128 wi_watchdog(struct ifnet *ifp) 1129 { 1130 struct wi_softc *sc = ifp->if_softc; 1131 struct ieee80211com *ic = &sc->sc_ic; 1132 1133 ifp->if_timer = 0; 1134 if (!sc->sc_enabled) 1135 return; 1136 1137 if (sc->sc_tx_timer) { 1138 if (--sc->sc_tx_timer == 0) { 1139 printf("%s: device timeout\n", ifp->if_xname); 1140 ifp->if_oerrors++; 1141 wi_init(ifp); 1142 return; 1143 } 1144 ifp->if_timer = 1; 1145 } 1146 1147 if (sc->sc_scan_timer) { 1148 if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && 1149 sc->sc_firmware_type == WI_INTERSIL) { 1150 DPRINTF(("wi_watchdog: inquire scan\n")); 1151 wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 1152 } 1153 if (sc->sc_scan_timer) 1154 ifp->if_timer = 1; 1155 } 1156 1157 if (sc->sc_syn_timer) { 1158 if (--sc->sc_syn_timer == 0) { 1159 DPRINTF2(("%s: %d false syns\n", 1160 sc->sc_dev.dv_xname, sc->sc_false_syns)); 1161 sc->sc_false_syns = 0; 1162 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1163 sc->sc_syn_timer = 5; 1164 } 1165 ifp->if_timer = 1; 1166 } 1167 1168 /* TODO: rate control */ 1169 ieee80211_watchdog(ifp); 1170 } 1171 1172 static int 1173 wi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1174 { 1175 struct wi_softc *sc = ifp->if_softc; 1176 struct ieee80211com *ic = &sc->sc_ic; 1177 struct ifreq *ifr = (struct ifreq *)data; 1178 int s, error = 0; 1179 1180 if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0) 1181 return ENXIO; 1182 1183 s = splnet(); 1184 1185 switch (cmd) { 1186 case SIOCSIFFLAGS: 1187 /* 1188 * Can't do promisc and hostap at the same time. If all that's 1189 * changing is the promisc flag, try to short-circuit a call to 1190 * wi_init() by just setting PROMISC in the hardware. 1191 */ 1192 if (ifp->if_flags & IFF_UP) { 1193 if (sc->sc_enabled) { 1194 if (ic->ic_opmode != IEEE80211_M_HOSTAP && 1195 (ifp->if_flags & IFF_PROMISC) != 0) 1196 wi_write_val(sc, WI_RID_PROMISC, 1); 1197 else 1198 wi_write_val(sc, WI_RID_PROMISC, 0); 1199 } else 1200 error = wi_init(ifp); 1201 } else if (sc->sc_enabled) 1202 wi_stop(ifp, 1); 1203 break; 1204 case SIOCSIFMEDIA: 1205 case SIOCGIFMEDIA: 1206 error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); 1207 break; 1208 case SIOCADDMULTI: 1209 case SIOCDELMULTI: 1210 error = (cmd == SIOCADDMULTI) ? 1211 ether_addmulti(ifr, &sc->sc_ic.ic_ec) : 1212 ether_delmulti(ifr, &sc->sc_ic.ic_ec); 1213 if (error == ENETRESET) { 1214 if (sc->sc_enabled) { 1215 /* do not rescan */ 1216 error = wi_write_multi(sc); 1217 } else 1218 error = 0; 1219 } 1220 break; 1221 case SIOCGIFGENERIC: 1222 error = wi_get_cfg(ifp, cmd, data); 1223 break; 1224 case SIOCSIFGENERIC: 1225 error = suser(curproc->p_ucred, &curproc->p_acflag); 1226 if (error) 1227 break; 1228 error = wi_set_cfg(ifp, cmd, data); 1229 if (error == ENETRESET) { 1230 if (sc->sc_enabled) 1231 error = wi_init(ifp); 1232 else 1233 error = 0; 1234 } 1235 break; 1236 case SIOCS80211BSSID: 1237 if (sc->sc_firmware_type == WI_LUCENT) { 1238 error = ENODEV; 1239 break; 1240 } 1241 /* fall through */ 1242 default: 1243 error = ieee80211_ioctl(ifp, cmd, data); 1244 if (error == ENETRESET) { 1245 if (sc->sc_enabled) 1246 error = wi_init(ifp); 1247 else 1248 error = 0; 1249 } 1250 break; 1251 } 1252 splx(s); 1253 return error; 1254 } 1255 1256 static int 1257 wi_media_change(struct ifnet *ifp) 1258 { 1259 struct wi_softc *sc = ifp->if_softc; 1260 struct ieee80211com *ic = &sc->sc_ic; 1261 int error; 1262 1263 error = ieee80211_media_change(ifp); 1264 if (error == ENETRESET) { 1265 if (sc->sc_enabled) 1266 error = wi_init(ifp); 1267 else 1268 error = 0; 1269 } 1270 ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); 1271 1272 return error; 1273 } 1274 1275 static void 1276 wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) 1277 { 1278 struct wi_softc *sc = ifp->if_softc; 1279 struct ieee80211com *ic = &sc->sc_ic; 1280 u_int16_t val; 1281 int rate, len; 1282 1283 if (sc->sc_enabled == 0) { 1284 imr->ifm_active = IFM_IEEE80211 | IFM_NONE; 1285 imr->ifm_status = 0; 1286 return; 1287 } 1288 1289 imr->ifm_status = IFM_AVALID; 1290 imr->ifm_active = IFM_IEEE80211; 1291 if (ic->ic_state == IEEE80211_S_RUN && 1292 (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) 1293 imr->ifm_status |= IFM_ACTIVE; 1294 len = sizeof(val); 1295 if (wi_read_rid(sc, WI_RID_CUR_TX_RATE, &val, &len) != 0) 1296 rate = 0; 1297 else { 1298 /* convert to 802.11 rate */ 1299 val = le16toh(val); 1300 rate = val * 2; 1301 if (sc->sc_firmware_type == WI_LUCENT) { 1302 if (rate == 10) 1303 rate = 11; /* 5.5Mbps */ 1304 } else { 1305 if (rate == 4*2) 1306 rate = 11; /* 5.5Mbps */ 1307 else if (rate == 8*2) 1308 rate = 22; /* 11Mbps */ 1309 } 1310 } 1311 imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); 1312 switch (ic->ic_opmode) { 1313 case IEEE80211_M_STA: 1314 break; 1315 case IEEE80211_M_IBSS: 1316 imr->ifm_active |= IFM_IEEE80211_ADHOC; 1317 break; 1318 case IEEE80211_M_AHDEMO: 1319 imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; 1320 break; 1321 case IEEE80211_M_HOSTAP: 1322 imr->ifm_active |= IFM_IEEE80211_HOSTAP; 1323 break; 1324 case IEEE80211_M_MONITOR: 1325 imr->ifm_active |= IFM_IEEE80211_MONITOR; 1326 break; 1327 } 1328 } 1329 1330 static struct ieee80211_node * 1331 wi_node_alloc(struct ieee80211com *ic) 1332 { 1333 struct wi_node *wn = 1334 malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO); 1335 return wn ? &wn->wn_node : NULL; 1336 } 1337 1338 static void 1339 wi_node_free(struct ieee80211com *ic, struct ieee80211_node *ni) 1340 { 1341 struct wi_softc *sc = ic->ic_if.if_softc; 1342 int i; 1343 1344 for (i = 0; i < WI_NTXRSS; i++) { 1345 if (sc->sc_rssd[i].rd_desc.id_node == ni) 1346 sc->sc_rssd[i].rd_desc.id_node = NULL; 1347 } 1348 free(ni, M_DEVBUF); 1349 } 1350 1351 static void 1352 wi_node_copy(struct ieee80211com *ic, struct ieee80211_node *dst, 1353 const struct ieee80211_node *src) 1354 { 1355 *(struct wi_node *)dst = *(const struct wi_node *)src; 1356 } 1357 1358 static void 1359 wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) 1360 { 1361 struct ieee80211com *ic = &sc->sc_ic; 1362 struct ieee80211_node *ni = ic->ic_bss; 1363 struct ifnet *ifp = &ic->ic_if; 1364 1365 if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) 1366 return; 1367 1368 DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); 1369 DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); 1370 1371 /* In promiscuous mode, the BSSID field is not a reliable 1372 * indicator of the firmware's BSSID. Damp spurious 1373 * change-of-BSSID indications. 1374 */ 1375 if ((ifp->if_flags & IFF_PROMISC) != 0 && 1376 sc->sc_false_syns >= WI_MAX_FALSE_SYNS) 1377 return; 1378 1379 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1380 } 1381 1382 static __inline void 1383 wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni, 1384 struct ieee80211_frame *wh, int rssi) 1385 { 1386 struct wi_node *wn; 1387 1388 if (ni == NULL) { 1389 printf("%s: null node", __func__); 1390 return; 1391 } 1392 1393 wn = (void*)ni; 1394 ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi); 1395 } 1396 1397 static void 1398 wi_rx_intr(struct wi_softc *sc) 1399 { 1400 struct ieee80211com *ic = &sc->sc_ic; 1401 struct ifnet *ifp = &ic->ic_if; 1402 struct ieee80211_node *ni; 1403 struct wi_frame frmhdr; 1404 struct mbuf *m; 1405 struct ieee80211_frame *wh; 1406 int fid, len, off, rssi; 1407 u_int8_t dir; 1408 u_int16_t status; 1409 u_int32_t rstamp; 1410 1411 fid = CSR_READ_2(sc, WI_RX_FID); 1412 1413 /* First read in the frame header */ 1414 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { 1415 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1416 ifp->if_ierrors++; 1417 DPRINTF(("wi_rx_intr: read fid %x failed\n", fid)); 1418 return; 1419 } 1420 1421 if (IFF_DUMPPKTS(ifp)) 1422 wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); 1423 1424 /* 1425 * Drop undecryptable or packets with receive errors here 1426 */ 1427 status = le16toh(frmhdr.wi_status); 1428 if ((status & WI_STAT_ERRSTAT) != 0 && 1429 ic->ic_opmode != IEEE80211_M_MONITOR) { 1430 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1431 ifp->if_ierrors++; 1432 DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); 1433 return; 1434 } 1435 rssi = frmhdr.wi_rx_signal; 1436 rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | 1437 le16toh(frmhdr.wi_rx_tstamp1); 1438 1439 len = le16toh(frmhdr.wi_dat_len); 1440 off = ALIGN(sizeof(struct ieee80211_frame)); 1441 1442 /* Sometimes the PRISM2.x returns bogusly large frames. Except 1443 * in monitor mode, just throw them away. 1444 */ 1445 if (off + len > MCLBYTES) { 1446 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 1447 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1448 ifp->if_ierrors++; 1449 DPRINTF(("wi_rx_intr: oversized packet\n")); 1450 return; 1451 } else 1452 len = 0; 1453 } 1454 1455 MGETHDR(m, M_DONTWAIT, MT_DATA); 1456 if (m == NULL) { 1457 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1458 ifp->if_ierrors++; 1459 DPRINTF(("wi_rx_intr: MGET failed\n")); 1460 return; 1461 } 1462 if (off + len > MHLEN) { 1463 MCLGET(m, M_DONTWAIT); 1464 if ((m->m_flags & M_EXT) == 0) { 1465 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1466 m_freem(m); 1467 ifp->if_ierrors++; 1468 DPRINTF(("wi_rx_intr: MCLGET failed\n")); 1469 return; 1470 } 1471 } 1472 1473 m->m_data += off - sizeof(struct ieee80211_frame); 1474 memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); 1475 wi_read_bap(sc, fid, sizeof(frmhdr), 1476 m->m_data + sizeof(struct ieee80211_frame), len); 1477 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; 1478 m->m_pkthdr.rcvif = ifp; 1479 1480 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_RX); 1481 1482 #if NBPFILTER > 0 1483 if (sc->sc_drvbpf) { 1484 struct mbuf mb; 1485 struct wi_rx_radiotap_header *tap = &sc->sc_rxtap; 1486 1487 tap->wr_rate = frmhdr.wi_rx_rate / 5; 1488 tap->wr_antsignal = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_signal); 1489 tap->wr_antnoise = WI_RSSI_TO_DBM(sc, frmhdr.wi_rx_silence); 1490 1491 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1492 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1493 if (frmhdr.wi_status & WI_STAT_PCF) 1494 tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP; 1495 1496 M_COPY_PKTHDR(&mb, m); 1497 mb.m_data = (caddr_t)tap; 1498 mb.m_len = tap->wr_ihdr.it_len; 1499 mb.m_next = m; 1500 mb.m_pkthdr.len += mb.m_len; 1501 bpf_mtap(sc->sc_drvbpf, &mb); 1502 } 1503 #endif 1504 wh = mtod(m, struct ieee80211_frame *); 1505 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1506 /* 1507 * WEP is decrypted by hardware. Clear WEP bit 1508 * header for ieee80211_input(). 1509 */ 1510 wh->i_fc[1] &= ~IEEE80211_FC1_WEP; 1511 } 1512 1513 /* synchronize driver's BSSID with firmware's BSSID */ 1514 dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; 1515 if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) 1516 wi_sync_bssid(sc, wh->i_addr3); 1517 1518 ni = ieee80211_find_rxnode(ic, wh); 1519 1520 ieee80211_input(ifp, m, ni, rssi, rstamp); 1521 1522 wi_rssadapt_input(ic, ni, wh, rssi); 1523 1524 /* 1525 * The frame may have caused the node to be marked for 1526 * reclamation (e.g. in response to a DEAUTH message) 1527 * so use free_node here instead of unref_node. 1528 */ 1529 if (ni == ic->ic_bss) 1530 ieee80211_unref_node(&ni); 1531 else 1532 ieee80211_free_node(ic, ni); 1533 } 1534 1535 static void 1536 wi_tx_ex_intr(struct wi_softc *sc) 1537 { 1538 struct ieee80211com *ic = &sc->sc_ic; 1539 struct ifnet *ifp = &ic->ic_if; 1540 struct ieee80211_node *ni; 1541 struct ieee80211_rssdesc *id; 1542 struct wi_rssdesc *rssd; 1543 struct wi_frame frmhdr; 1544 int fid; 1545 u_int16_t status; 1546 1547 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1548 /* Read in the frame header */ 1549 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1550 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1551 __func__, fid); 1552 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1553 &sc->sc_txpending); 1554 goto out; 1555 } 1556 1557 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1558 printf("%s: %s bad idx %02x\n", 1559 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1560 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1561 &sc->sc_txpending); 1562 goto out; 1563 } 1564 1565 status = le16toh(frmhdr.wi_status); 1566 1567 /* 1568 * Spontaneous station disconnects appear as xmit 1569 * errors. Don't announce them and/or count them 1570 * as an output error. 1571 */ 1572 if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { 1573 printf("%s: tx failed", sc->sc_dev.dv_xname); 1574 if (status & WI_TXSTAT_RET_ERR) 1575 printf(", retry limit exceeded"); 1576 if (status & WI_TXSTAT_AGED_ERR) 1577 printf(", max transmit lifetime exceeded"); 1578 if (status & WI_TXSTAT_DISCONNECT) 1579 printf(", port disconnected"); 1580 if (status & WI_TXSTAT_FORM_ERR) 1581 printf(", invalid format (data len %u src %s)", 1582 le16toh(frmhdr.wi_dat_len), 1583 ether_sprintf(frmhdr.wi_ehdr.ether_shost)); 1584 if (status & ~0xf) 1585 printf(", status=0x%x", status); 1586 printf("\n"); 1587 } 1588 ifp->if_oerrors++; 1589 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1590 id = &rssd->rd_desc; 1591 if ((status & WI_TXSTAT_RET_ERR) != 0) 1592 wi_lower_rate(ic, id); 1593 1594 ni = id->id_node; 1595 id->id_node = NULL; 1596 1597 if (ni == NULL) { 1598 printf("%s: %s null node, rssdesc %02x\n", 1599 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1600 goto out; 1601 } 1602 1603 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1604 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1605 __func__, id->id_rateidx); 1606 sc->sc_txpending[id->id_rateidx] = 0; 1607 } 1608 if (ni != NULL && ni != ic->ic_bss) 1609 ieee80211_free_node(ic, ni); 1610 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1611 out: 1612 ifp->if_flags &= ~IFF_OACTIVE; 1613 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX_EXC); 1614 } 1615 1616 static void 1617 wi_txalloc_intr(struct wi_softc *sc) 1618 { 1619 struct ieee80211com *ic = &sc->sc_ic; 1620 struct ifnet *ifp = &ic->ic_if; 1621 int fid, cur; 1622 1623 fid = CSR_READ_2(sc, WI_ALLOC_FID); 1624 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 1625 1626 cur = sc->sc_txcur; 1627 if (sc->sc_txd[cur].d_fid != fid) { 1628 printf("%s: bad alloc %x != %x, cur %d nxt %d\n", 1629 sc->sc_dev.dv_xname, fid, sc->sc_txd[cur].d_fid, cur, 1630 sc->sc_txnext); 1631 return; 1632 } 1633 sc->sc_tx_timer = 0; 1634 sc->sc_txd[cur].d_len = 0; 1635 sc->sc_txcur = cur = (cur + 1) % WI_NTXBUF; 1636 if (sc->sc_txd[cur].d_len == 0) 1637 ifp->if_flags &= ~IFF_OACTIVE; 1638 else { 1639 if (wi_cmd(sc, WI_CMD_TX | WI_RECLAIM, sc->sc_txd[cur].d_fid, 1640 0, 0)) { 1641 printf("%s: xmit failed\n", sc->sc_dev.dv_xname); 1642 sc->sc_txd[cur].d_len = 0; 1643 } else { 1644 sc->sc_txpending[sc->sc_txd[cur].d_rate]++; 1645 sc->sc_tx_timer = 5; 1646 ifp->if_timer = 1; 1647 } 1648 } 1649 } 1650 1651 static void 1652 wi_tx_intr(struct wi_softc *sc) 1653 { 1654 struct ieee80211com *ic = &sc->sc_ic; 1655 struct ifnet *ifp = &ic->ic_if; 1656 struct ieee80211_node *ni; 1657 struct ieee80211_rssdesc *id; 1658 struct wi_rssdesc *rssd; 1659 struct wi_frame frmhdr; 1660 int fid; 1661 1662 fid = CSR_READ_2(sc, WI_TX_CMP_FID); 1663 /* Read in the frame header */ 1664 if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { 1665 printf("%s: %s read fid %x failed\n", sc->sc_dev.dv_xname, 1666 __func__, fid); 1667 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1668 &sc->sc_txpending); 1669 goto out; 1670 } 1671 1672 if (frmhdr.wi_tx_idx >= WI_NTXRSS) { 1673 printf("%s: %s bad idx %02x\n", 1674 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1675 wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, 1676 &sc->sc_txpending); 1677 goto out; 1678 } 1679 1680 rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; 1681 id = &rssd->rd_desc; 1682 wi_raise_rate(ic, id); 1683 1684 ni = id->id_node; 1685 id->id_node = NULL; 1686 1687 if (ni == NULL) { 1688 printf("%s: %s null node, rssdesc %02x\n", 1689 sc->sc_dev.dv_xname, __func__, frmhdr.wi_tx_idx); 1690 goto out; 1691 } 1692 1693 if (sc->sc_txpending[id->id_rateidx]-- == 0) { 1694 printf("%s: %s txpending[%i] wraparound", sc->sc_dev.dv_xname, 1695 __func__, id->id_rateidx); 1696 sc->sc_txpending[id->id_rateidx] = 0; 1697 } 1698 if (ni != NULL && ni != ic->ic_bss) 1699 ieee80211_free_node(ic, ni); 1700 SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); 1701 out: 1702 ifp->if_flags &= ~IFF_OACTIVE; 1703 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_TX); 1704 } 1705 1706 static void 1707 wi_info_intr(struct wi_softc *sc) 1708 { 1709 struct ieee80211com *ic = &sc->sc_ic; 1710 struct ifnet *ifp = &ic->ic_if; 1711 int i, fid, len, off; 1712 u_int16_t ltbuf[2]; 1713 u_int16_t stat; 1714 u_int32_t *ptr; 1715 1716 fid = CSR_READ_2(sc, WI_INFO_FID); 1717 wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); 1718 1719 switch (le16toh(ltbuf[1])) { 1720 1721 case WI_INFO_LINK_STAT: 1722 wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); 1723 DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); 1724 switch (le16toh(stat)) { 1725 case CONNECTED: 1726 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1727 if (ic->ic_state == IEEE80211_S_RUN && 1728 ic->ic_opmode != IEEE80211_M_IBSS) 1729 break; 1730 /* FALLTHROUGH */ 1731 case AP_CHANGE: 1732 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 1733 break; 1734 case AP_IN_RANGE: 1735 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 1736 break; 1737 case AP_OUT_OF_RANGE: 1738 if (sc->sc_firmware_type == WI_SYMBOL && 1739 sc->sc_scan_timer > 0) { 1740 if (wi_cmd(sc, WI_CMD_INQUIRE, 1741 WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) 1742 sc->sc_scan_timer = 0; 1743 break; 1744 } 1745 if (ic->ic_opmode == IEEE80211_M_STA) 1746 sc->sc_flags |= WI_FLAGS_OUTRANGE; 1747 break; 1748 case DISCONNECTED: 1749 case ASSOC_FAILED: 1750 if (ic->ic_opmode == IEEE80211_M_STA) 1751 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 1752 break; 1753 } 1754 break; 1755 1756 case WI_INFO_COUNTERS: 1757 /* some card versions have a larger stats structure */ 1758 len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); 1759 ptr = (u_int32_t *)&sc->sc_stats; 1760 off = sizeof(ltbuf); 1761 for (i = 0; i < len; i++, off += 2, ptr++) { 1762 wi_read_bap(sc, fid, off, &stat, sizeof(stat)); 1763 stat = le16toh(stat); 1764 #ifdef WI_HERMES_STATS_WAR 1765 if (stat & 0xf000) 1766 stat = ~stat; 1767 #endif 1768 *ptr += stat; 1769 } 1770 ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + 1771 sc->sc_stats.wi_tx_multi_retries + 1772 sc->sc_stats.wi_tx_retry_limit; 1773 break; 1774 1775 case WI_INFO_SCAN_RESULTS: 1776 case WI_INFO_HOST_SCAN_RESULTS: 1777 wi_scan_result(sc, fid, le16toh(ltbuf[0])); 1778 break; 1779 1780 default: 1781 DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, 1782 le16toh(ltbuf[1]), le16toh(ltbuf[0]))); 1783 break; 1784 } 1785 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_INFO); 1786 } 1787 1788 static int 1789 wi_write_multi(struct wi_softc *sc) 1790 { 1791 struct ifnet *ifp = &sc->sc_ic.ic_if; 1792 int n; 1793 struct wi_mcast mlist; 1794 struct ether_multi *enm; 1795 struct ether_multistep estep; 1796 1797 if ((ifp->if_flags & IFF_PROMISC) != 0) { 1798 allmulti: 1799 ifp->if_flags |= IFF_ALLMULTI; 1800 memset(&mlist, 0, sizeof(mlist)); 1801 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1802 sizeof(mlist)); 1803 } 1804 1805 n = 0; 1806 ETHER_FIRST_MULTI(estep, &sc->sc_ic.ic_ec, enm); 1807 while (enm != NULL) { 1808 /* Punt on ranges or too many multicast addresses. */ 1809 if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) || 1810 n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) 1811 goto allmulti; 1812 1813 IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo); 1814 n++; 1815 ETHER_NEXT_MULTI(estep, enm); 1816 } 1817 ifp->if_flags &= ~IFF_ALLMULTI; 1818 return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, 1819 IEEE80211_ADDR_LEN * n); 1820 } 1821 1822 1823 static void 1824 wi_read_nicid(struct wi_softc *sc) 1825 { 1826 struct wi_card_ident *id; 1827 char *p; 1828 int len; 1829 u_int16_t ver[4]; 1830 1831 /* getting chip identity */ 1832 memset(ver, 0, sizeof(ver)); 1833 len = sizeof(ver); 1834 wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); 1835 printf("%s: using ", sc->sc_dev.dv_xname); 1836 DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3]))); 1837 1838 sc->sc_firmware_type = WI_NOTYPE; 1839 for (id = wi_card_ident; id->card_name != NULL; id++) { 1840 if (le16toh(ver[0]) == id->card_id) { 1841 printf("%s", id->card_name); 1842 sc->sc_firmware_type = id->firm_type; 1843 break; 1844 } 1845 } 1846 if (sc->sc_firmware_type == WI_NOTYPE) { 1847 if (le16toh(ver[0]) & 0x8000) { 1848 printf("Unknown PRISM2 chip"); 1849 sc->sc_firmware_type = WI_INTERSIL; 1850 } else { 1851 printf("Unknown Lucent chip"); 1852 sc->sc_firmware_type = WI_LUCENT; 1853 } 1854 } 1855 1856 /* get primary firmware version (Only Prism chips) */ 1857 if (sc->sc_firmware_type != WI_LUCENT) { 1858 memset(ver, 0, sizeof(ver)); 1859 len = sizeof(ver); 1860 wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); 1861 sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + 1862 le16toh(ver[3]) * 100 + le16toh(ver[1]); 1863 } 1864 1865 /* get station firmware version */ 1866 memset(ver, 0, sizeof(ver)); 1867 len = sizeof(ver); 1868 wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); 1869 sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + 1870 le16toh(ver[3]) * 100 + le16toh(ver[1]); 1871 if (sc->sc_firmware_type == WI_INTERSIL && 1872 (sc->sc_sta_firmware_ver == 10102 || 1873 sc->sc_sta_firmware_ver == 20102)) { 1874 char ident[12]; 1875 memset(ident, 0, sizeof(ident)); 1876 len = sizeof(ident); 1877 /* value should be the format like "V2.00-11" */ 1878 if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && 1879 *(p = (char *)ident) >= 'A' && 1880 p[2] == '.' && p[5] == '-' && p[8] == '\0') { 1881 sc->sc_firmware_type = WI_SYMBOL; 1882 sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + 1883 (p[3] - '0') * 1000 + (p[4] - '0') * 100 + 1884 (p[6] - '0') * 10 + (p[7] - '0'); 1885 } 1886 } 1887 1888 printf("\n%s: %s Firmware: ", sc->sc_dev.dv_xname, 1889 sc->sc_firmware_type == WI_LUCENT ? "Lucent" : 1890 (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); 1891 if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ 1892 printf("Primary (%u.%u.%u), ", 1893 sc->sc_pri_firmware_ver / 10000, 1894 (sc->sc_pri_firmware_ver % 10000) / 100, 1895 sc->sc_pri_firmware_ver % 100); 1896 printf("Station (%u.%u.%u)\n", 1897 sc->sc_sta_firmware_ver / 10000, 1898 (sc->sc_sta_firmware_ver % 10000) / 100, 1899 sc->sc_sta_firmware_ver % 100); 1900 } 1901 1902 static int 1903 wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) 1904 { 1905 struct wi_ssid ssid; 1906 1907 if (buflen > IEEE80211_NWID_LEN) 1908 return ENOBUFS; 1909 memset(&ssid, 0, sizeof(ssid)); 1910 ssid.wi_len = htole16(buflen); 1911 memcpy(ssid.wi_ssid, buf, buflen); 1912 return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); 1913 } 1914 1915 static int 1916 wi_get_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 1917 { 1918 struct wi_softc *sc = ifp->if_softc; 1919 struct ieee80211com *ic = &sc->sc_ic; 1920 struct ifreq *ifr = (struct ifreq *)data; 1921 struct wi_req wreq; 1922 int len, n, error; 1923 1924 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 1925 if (error) 1926 return error; 1927 len = (wreq.wi_len - 1) * 2; 1928 if (len < sizeof(u_int16_t)) 1929 return ENOSPC; 1930 if (len > sizeof(wreq.wi_val)) 1931 len = sizeof(wreq.wi_val); 1932 1933 switch (wreq.wi_type) { 1934 1935 case WI_RID_IFACE_STATS: 1936 memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); 1937 if (len < sizeof(sc->sc_stats)) 1938 error = ENOSPC; 1939 else 1940 len = sizeof(sc->sc_stats); 1941 break; 1942 1943 case WI_RID_ENCRYPTION: 1944 case WI_RID_TX_CRYPT_KEY: 1945 case WI_RID_DEFLT_CRYPT_KEYS: 1946 case WI_RID_TX_RATE: 1947 return ieee80211_cfgget(ifp, cmd, data); 1948 1949 case WI_RID_MICROWAVE_OVEN: 1950 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { 1951 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 1952 &len); 1953 break; 1954 } 1955 wreq.wi_val[0] = htole16(sc->sc_microwave_oven); 1956 len = sizeof(u_int16_t); 1957 break; 1958 1959 case WI_RID_DBM_ADJUST: 1960 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { 1961 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 1962 &len); 1963 break; 1964 } 1965 wreq.wi_val[0] = htole16(sc->sc_dbm_offset); 1966 len = sizeof(u_int16_t); 1967 break; 1968 1969 case WI_RID_ROAMING_MODE: 1970 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { 1971 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 1972 &len); 1973 break; 1974 } 1975 wreq.wi_val[0] = htole16(sc->sc_roaming_mode); 1976 len = sizeof(u_int16_t); 1977 break; 1978 1979 case WI_RID_SYSTEM_SCALE: 1980 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { 1981 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 1982 &len); 1983 break; 1984 } 1985 wreq.wi_val[0] = htole16(sc->sc_system_scale); 1986 len = sizeof(u_int16_t); 1987 break; 1988 1989 case WI_RID_FRAG_THRESH: 1990 if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { 1991 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 1992 &len); 1993 break; 1994 } 1995 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 1996 len = sizeof(u_int16_t); 1997 break; 1998 1999 case WI_RID_READ_APS: 2000 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 2001 return ieee80211_cfgget(ifp, cmd, data); 2002 if (sc->sc_scan_timer > 0) { 2003 error = EINPROGRESS; 2004 break; 2005 } 2006 n = sc->sc_naps; 2007 if (len < sizeof(n)) { 2008 error = ENOSPC; 2009 break; 2010 } 2011 if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) 2012 n = (len - sizeof(n)) / sizeof(struct wi_apinfo); 2013 len = sizeof(n) + sizeof(struct wi_apinfo) * n; 2014 memcpy(wreq.wi_val, &n, sizeof(n)); 2015 memcpy((caddr_t)wreq.wi_val + sizeof(n), sc->sc_aps, 2016 sizeof(struct wi_apinfo) * n); 2017 break; 2018 2019 default: 2020 if (sc->sc_enabled) { 2021 error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, 2022 &len); 2023 break; 2024 } 2025 switch (wreq.wi_type) { 2026 case WI_RID_MAX_DATALEN: 2027 wreq.wi_val[0] = htole16(sc->sc_max_datalen); 2028 len = sizeof(u_int16_t); 2029 break; 2030 case WI_RID_FRAG_THRESH: 2031 wreq.wi_val[0] = htole16(sc->sc_frag_thresh); 2032 len = sizeof(u_int16_t); 2033 break; 2034 case WI_RID_RTS_THRESH: 2035 wreq.wi_val[0] = htole16(sc->sc_rts_thresh); 2036 len = sizeof(u_int16_t); 2037 break; 2038 case WI_RID_CNFAUTHMODE: 2039 wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); 2040 len = sizeof(u_int16_t); 2041 break; 2042 case WI_RID_NODENAME: 2043 if (len < sc->sc_nodelen + sizeof(u_int16_t)) { 2044 error = ENOSPC; 2045 break; 2046 } 2047 len = sc->sc_nodelen + sizeof(u_int16_t); 2048 wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); 2049 memcpy(&wreq.wi_val[1], sc->sc_nodename, 2050 sc->sc_nodelen); 2051 break; 2052 default: 2053 return ieee80211_cfgget(ifp, cmd, data); 2054 } 2055 break; 2056 } 2057 if (error) 2058 return error; 2059 wreq.wi_len = (len + 1) / 2 + 1; 2060 return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); 2061 } 2062 2063 static int 2064 wi_set_cfg(struct ifnet *ifp, u_long cmd, caddr_t data) 2065 { 2066 struct wi_softc *sc = ifp->if_softc; 2067 struct ieee80211com *ic = &sc->sc_ic; 2068 struct ifreq *ifr = (struct ifreq *)data; 2069 struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2070 struct wi_req wreq; 2071 struct mbuf *m; 2072 int i, len, error; 2073 2074 error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); 2075 if (error) 2076 return error; 2077 len = (wreq.wi_len - 1) * 2; 2078 switch (wreq.wi_type) { 2079 case WI_RID_DBM_ADJUST: 2080 return ENODEV; 2081 2082 case WI_RID_NODENAME: 2083 if (le16toh(wreq.wi_val[0]) * 2 > len || 2084 le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { 2085 error = ENOSPC; 2086 break; 2087 } 2088 if (sc->sc_enabled) { 2089 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2090 len); 2091 if (error) 2092 break; 2093 } 2094 sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; 2095 memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); 2096 break; 2097 2098 case WI_RID_MICROWAVE_OVEN: 2099 case WI_RID_ROAMING_MODE: 2100 case WI_RID_SYSTEM_SCALE: 2101 case WI_RID_FRAG_THRESH: 2102 if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && 2103 (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) 2104 break; 2105 if (wreq.wi_type == WI_RID_ROAMING_MODE && 2106 (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) 2107 break; 2108 if (wreq.wi_type == WI_RID_SYSTEM_SCALE && 2109 (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) 2110 break; 2111 if (wreq.wi_type == WI_RID_FRAG_THRESH && 2112 (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) 2113 break; 2114 /* FALLTHROUGH */ 2115 case WI_RID_RTS_THRESH: 2116 case WI_RID_CNFAUTHMODE: 2117 case WI_RID_MAX_DATALEN: 2118 if (sc->sc_enabled) { 2119 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2120 sizeof(u_int16_t)); 2121 if (error) 2122 break; 2123 } 2124 switch (wreq.wi_type) { 2125 case WI_RID_FRAG_THRESH: 2126 sc->sc_frag_thresh = le16toh(wreq.wi_val[0]); 2127 break; 2128 case WI_RID_RTS_THRESH: 2129 sc->sc_rts_thresh = le16toh(wreq.wi_val[0]); 2130 break; 2131 case WI_RID_MICROWAVE_OVEN: 2132 sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); 2133 break; 2134 case WI_RID_ROAMING_MODE: 2135 sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); 2136 break; 2137 case WI_RID_SYSTEM_SCALE: 2138 sc->sc_system_scale = le16toh(wreq.wi_val[0]); 2139 break; 2140 case WI_RID_CNFAUTHMODE: 2141 sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); 2142 break; 2143 case WI_RID_MAX_DATALEN: 2144 sc->sc_max_datalen = le16toh(wreq.wi_val[0]); 2145 break; 2146 } 2147 break; 2148 2149 case WI_RID_TX_RATE: 2150 switch (le16toh(wreq.wi_val[0])) { 2151 case 3: 2152 ic->ic_fixed_rate = -1; 2153 break; 2154 default: 2155 for (i = 0; i < IEEE80211_RATE_SIZE; i++) { 2156 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) 2157 / 2 == le16toh(wreq.wi_val[0])) 2158 break; 2159 } 2160 if (i == IEEE80211_RATE_SIZE) 2161 return EINVAL; 2162 ic->ic_fixed_rate = i; 2163 } 2164 if (sc->sc_enabled) 2165 error = wi_cfg_txrate(sc); 2166 break; 2167 2168 case WI_RID_SCAN_APS: 2169 if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) 2170 error = wi_scan_ap(sc, 0x3fff, 0x000f); 2171 break; 2172 2173 case WI_RID_MGMT_XMIT: 2174 if (!sc->sc_enabled) { 2175 error = ENETDOWN; 2176 break; 2177 } 2178 if (ic->ic_mgtq.ifq_len > 5) { 2179 error = EAGAIN; 2180 break; 2181 } 2182 /* XXX wi_len looks in u_int8_t, not in u_int16_t */ 2183 m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); 2184 if (m == NULL) { 2185 error = ENOMEM; 2186 break; 2187 } 2188 IF_ENQUEUE(&ic->ic_mgtq, m); 2189 break; 2190 2191 default: 2192 if (sc->sc_enabled) { 2193 error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, 2194 len); 2195 if (error) 2196 break; 2197 } 2198 error = ieee80211_cfgset(ifp, cmd, data); 2199 break; 2200 } 2201 return error; 2202 } 2203 2204 /* Rate is 0 for hardware auto-select, otherwise rate is 2205 * 2, 4, 11, or 22 (units of 500Kbps). 2206 */ 2207 static int 2208 wi_write_txrate(struct wi_softc *sc, int rate) 2209 { 2210 u_int16_t hwrate; 2211 int i; 2212 2213 rate = (rate & IEEE80211_RATE_VAL) / 2; 2214 2215 /* rate: 0, 1, 2, 5, 11 */ 2216 switch (sc->sc_firmware_type) { 2217 case WI_LUCENT: 2218 switch (rate) { 2219 case 0: 2220 hwrate = 3; /* auto */ 2221 break; 2222 case 5: 2223 hwrate = 4; 2224 break; 2225 case 11: 2226 hwrate = 5; 2227 break; 2228 default: 2229 hwrate = rate; 2230 break; 2231 } 2232 break; 2233 default: 2234 /* Choose a bit according to this table. 2235 * 2236 * bit | data rate 2237 * ----+------------------- 2238 * 0 | 1Mbps 2239 * 1 | 2Mbps 2240 * 2 | 5.5Mbps 2241 * 3 | 11Mbps 2242 */ 2243 for (i = 8; i > 0; i >>= 1) { 2244 if (rate >= i) 2245 break; 2246 } 2247 if (i == 0) 2248 hwrate = 0xf; /* auto */ 2249 else 2250 hwrate = i; 2251 break; 2252 } 2253 2254 if (sc->sc_tx_rate == hwrate) 2255 return 0; 2256 2257 if (sc->sc_if.if_flags & IFF_DEBUG) 2258 printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate, 2259 hwrate, rate); 2260 2261 sc->sc_tx_rate = hwrate; 2262 2263 return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate); 2264 } 2265 2266 static int 2267 wi_cfg_txrate(struct wi_softc *sc) 2268 { 2269 struct ieee80211com *ic = &sc->sc_ic; 2270 struct ieee80211_rateset *rs; 2271 int rate; 2272 2273 rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; 2274 2275 sc->sc_tx_rate = 0; /* force write to RID */ 2276 2277 if (ic->ic_fixed_rate < 0) 2278 rate = 0; /* auto */ 2279 else 2280 rate = rs->rs_rates[ic->ic_fixed_rate]; 2281 2282 return wi_write_txrate(sc, rate); 2283 } 2284 2285 static int 2286 wi_write_wep(struct wi_softc *sc) 2287 { 2288 struct ieee80211com *ic = &sc->sc_ic; 2289 int error = 0; 2290 int i, keylen; 2291 u_int16_t val; 2292 struct wi_key wkey[IEEE80211_WEP_NKID]; 2293 2294 switch (sc->sc_firmware_type) { 2295 case WI_LUCENT: 2296 val = (ic->ic_flags & IEEE80211_F_WEPON) ? 1 : 0; 2297 error = wi_write_val(sc, WI_RID_ENCRYPTION, val); 2298 if (error) 2299 break; 2300 error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_wep_txkey); 2301 if (error) 2302 break; 2303 memset(wkey, 0, sizeof(wkey)); 2304 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2305 keylen = ic->ic_nw_keys[i].wk_len; 2306 wkey[i].wi_keylen = htole16(keylen); 2307 memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, 2308 keylen); 2309 } 2310 error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, 2311 wkey, sizeof(wkey)); 2312 break; 2313 2314 case WI_INTERSIL: 2315 case WI_SYMBOL: 2316 if (ic->ic_flags & IEEE80211_F_WEPON) { 2317 /* 2318 * ONLY HWB3163 EVAL-CARD Firmware version 2319 * less than 0.8 variant2 2320 * 2321 * If promiscuous mode disable, Prism2 chip 2322 * does not work with WEP . 2323 * It is under investigation for details. 2324 * (ichiro@NetBSD.org) 2325 */ 2326 if (sc->sc_firmware_type == WI_INTERSIL && 2327 sc->sc_sta_firmware_ver < 802 ) { 2328 /* firm ver < 0.8 variant 2 */ 2329 wi_write_val(sc, WI_RID_PROMISC, 1); 2330 } 2331 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2332 sc->sc_cnfauthmode); 2333 val = PRIVACY_INVOKED | EXCLUDE_UNENCRYPTED; 2334 /* 2335 * Encryption firmware has a bug for HostAP mode. 2336 */ 2337 if (sc->sc_firmware_type == WI_INTERSIL && 2338 ic->ic_opmode == IEEE80211_M_HOSTAP) 2339 val |= HOST_ENCRYPT; 2340 } else { 2341 wi_write_val(sc, WI_RID_CNFAUTHMODE, 2342 IEEE80211_AUTH_OPEN); 2343 val = HOST_ENCRYPT | HOST_DECRYPT; 2344 } 2345 error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); 2346 if (error) 2347 break; 2348 error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, 2349 ic->ic_wep_txkey); 2350 if (error) 2351 break; 2352 /* 2353 * It seems that the firmware accept 104bit key only if 2354 * all the keys have 104bit length. We get the length of 2355 * the transmit key and use it for all other keys. 2356 * Perhaps we should use software WEP for such situation. 2357 */ 2358 keylen = ic->ic_nw_keys[ic->ic_wep_txkey].wk_len; 2359 if (keylen > IEEE80211_WEP_KEYLEN) 2360 keylen = 13; /* 104bit keys */ 2361 else 2362 keylen = IEEE80211_WEP_KEYLEN; 2363 for (i = 0; i < IEEE80211_WEP_NKID; i++) { 2364 error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, 2365 ic->ic_nw_keys[i].wk_key, keylen); 2366 if (error) 2367 break; 2368 } 2369 break; 2370 } 2371 return error; 2372 } 2373 2374 /* Must be called at proper protection level! */ 2375 static int 2376 wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) 2377 { 2378 int i, status; 2379 2380 /* wait for the busy bit to clear */ 2381 for (i = 500; i > 0; i--) { /* 5s */ 2382 if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) 2383 break; 2384 DELAY(10*1000); /* 10 m sec */ 2385 } 2386 if (i == 0) { 2387 printf("%s: wi_cmd: busy bit won't clear.\n", 2388 sc->sc_dev.dv_xname); 2389 return(ETIMEDOUT); 2390 } 2391 CSR_WRITE_2(sc, WI_PARAM0, val0); 2392 CSR_WRITE_2(sc, WI_PARAM1, val1); 2393 CSR_WRITE_2(sc, WI_PARAM2, val2); 2394 CSR_WRITE_2(sc, WI_COMMAND, cmd); 2395 2396 if (cmd == WI_CMD_INI) { 2397 /* XXX: should sleep here. */ 2398 DELAY(100*1000); 2399 } 2400 /* wait for the cmd completed bit */ 2401 for (i = 0; i < WI_TIMEOUT; i++) { 2402 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) 2403 break; 2404 DELAY(WI_DELAY); 2405 } 2406 2407 status = CSR_READ_2(sc, WI_STATUS); 2408 2409 /* Ack the command */ 2410 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); 2411 2412 if (i == WI_TIMEOUT) { 2413 printf("%s: command timed out, cmd=0x%x, arg=0x%x\n", 2414 sc->sc_dev.dv_xname, cmd, val0); 2415 return ETIMEDOUT; 2416 } 2417 2418 if (status & WI_STAT_CMD_RESULT) { 2419 printf("%s: command failed, cmd=0x%x, arg=0x%x\n", 2420 sc->sc_dev.dv_xname, cmd, val0); 2421 return EIO; 2422 } 2423 return 0; 2424 } 2425 2426 static int 2427 wi_seek_bap(struct wi_softc *sc, int id, int off) 2428 { 2429 int i, status; 2430 2431 CSR_WRITE_2(sc, WI_SEL0, id); 2432 CSR_WRITE_2(sc, WI_OFF0, off); 2433 2434 for (i = 0; ; i++) { 2435 status = CSR_READ_2(sc, WI_OFF0); 2436 if ((status & WI_OFF_BUSY) == 0) 2437 break; 2438 if (i == WI_TIMEOUT) { 2439 printf("%s: timeout in wi_seek to %x/%x\n", 2440 sc->sc_dev.dv_xname, id, off); 2441 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2442 return ETIMEDOUT; 2443 } 2444 DELAY(1); 2445 } 2446 if (status & WI_OFF_ERR) { 2447 printf("%s: failed in wi_seek to %x/%x\n", 2448 sc->sc_dev.dv_xname, id, off); 2449 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2450 return EIO; 2451 } 2452 sc->sc_bap_id = id; 2453 sc->sc_bap_off = off; 2454 return 0; 2455 } 2456 2457 static int 2458 wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2459 { 2460 int error, cnt; 2461 2462 if (buflen == 0) 2463 return 0; 2464 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2465 if ((error = wi_seek_bap(sc, id, off)) != 0) 2466 return error; 2467 } 2468 cnt = (buflen + 1) / 2; 2469 CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2470 sc->sc_bap_off += cnt * 2; 2471 return 0; 2472 } 2473 2474 static int 2475 wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) 2476 { 2477 int error, cnt; 2478 2479 if (buflen == 0) 2480 return 0; 2481 2482 #ifdef WI_HERMES_AUTOINC_WAR 2483 again: 2484 #endif 2485 if (id != sc->sc_bap_id || off != sc->sc_bap_off) { 2486 if ((error = wi_seek_bap(sc, id, off)) != 0) 2487 return error; 2488 } 2489 cnt = (buflen + 1) / 2; 2490 CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); 2491 sc->sc_bap_off += cnt * 2; 2492 2493 #ifdef WI_HERMES_AUTOINC_WAR 2494 /* 2495 * According to the comments in the HCF Light code, there is a bug 2496 * in the Hermes (or possibly in certain Hermes firmware revisions) 2497 * where the chip's internal autoincrement counter gets thrown off 2498 * during data writes: the autoincrement is missed, causing one 2499 * data word to be overwritten and subsequent words to be written to 2500 * the wrong memory locations. The end result is that we could end 2501 * up transmitting bogus frames without realizing it. The workaround 2502 * for this is to write a couple of extra guard words after the end 2503 * of the transfer, then attempt to read then back. If we fail to 2504 * locate the guard words where we expect them, we preform the 2505 * transfer over again. 2506 */ 2507 if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { 2508 CSR_WRITE_2(sc, WI_DATA0, 0x1234); 2509 CSR_WRITE_2(sc, WI_DATA0, 0x5678); 2510 wi_seek_bap(sc, id, sc->sc_bap_off); 2511 sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ 2512 if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || 2513 CSR_READ_2(sc, WI_DATA0) != 0x5678) { 2514 printf("%s: detect auto increment bug, try again\n", 2515 sc->sc_dev.dv_xname); 2516 goto again; 2517 } 2518 } 2519 #endif 2520 return 0; 2521 } 2522 2523 static int 2524 wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) 2525 { 2526 int error, len; 2527 struct mbuf *m; 2528 2529 for (m = m0; m != NULL && totlen > 0; m = m->m_next) { 2530 if (m->m_len == 0) 2531 continue; 2532 2533 len = min(m->m_len, totlen); 2534 2535 if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { 2536 m_copydata(m, 0, totlen, (caddr_t)&sc->sc_txbuf); 2537 return wi_write_bap(sc, id, off, (caddr_t)&sc->sc_txbuf, 2538 totlen); 2539 } 2540 2541 if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) 2542 return error; 2543 2544 off += m->m_len; 2545 totlen -= len; 2546 } 2547 return 0; 2548 } 2549 2550 static int 2551 wi_alloc_fid(struct wi_softc *sc, int len, int *idp) 2552 { 2553 int i; 2554 2555 if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { 2556 printf("%s: failed to allocate %d bytes on NIC\n", 2557 sc->sc_dev.dv_xname, len); 2558 return ENOMEM; 2559 } 2560 2561 for (i = 0; i < WI_TIMEOUT; i++) { 2562 if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) 2563 break; 2564 if (i == WI_TIMEOUT) { 2565 printf("%s: timeout in alloc\n", sc->sc_dev.dv_xname); 2566 return ETIMEDOUT; 2567 } 2568 DELAY(1); 2569 } 2570 *idp = CSR_READ_2(sc, WI_ALLOC_FID); 2571 CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); 2572 return 0; 2573 } 2574 2575 static int 2576 wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) 2577 { 2578 int error, len; 2579 u_int16_t ltbuf[2]; 2580 2581 /* Tell the NIC to enter record read mode. */ 2582 error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); 2583 if (error) 2584 return error; 2585 2586 error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2587 if (error) 2588 return error; 2589 2590 if (le16toh(ltbuf[1]) != rid) { 2591 printf("%s: record read mismatch, rid=%x, got=%x\n", 2592 sc->sc_dev.dv_xname, rid, le16toh(ltbuf[1])); 2593 return EIO; 2594 } 2595 len = max(0, le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ 2596 if (*buflenp < len) { 2597 printf("%s: record buffer is too small, " 2598 "rid=%x, size=%d, len=%d\n", 2599 sc->sc_dev.dv_xname, rid, *buflenp, len); 2600 return ENOSPC; 2601 } 2602 *buflenp = len; 2603 return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); 2604 } 2605 2606 static int 2607 wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) 2608 { 2609 int error; 2610 u_int16_t ltbuf[2]; 2611 2612 ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ 2613 ltbuf[1] = htole16(rid); 2614 2615 error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); 2616 if (error) 2617 return error; 2618 error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); 2619 if (error) 2620 return error; 2621 2622 return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); 2623 } 2624 2625 static void 2626 wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni) 2627 { 2628 struct wi_node *wn = (void*)ni; 2629 ieee80211_rssadapt_updatestats(&wn->wn_rssadapt); 2630 } 2631 2632 static void 2633 wi_rssadapt_updatestats(void *arg) 2634 { 2635 struct wi_softc *sc = arg; 2636 struct ieee80211com *ic = &sc->sc_ic; 2637 ieee80211_iterate_nodes(ic, wi_rssadapt_updatestats_cb, arg); 2638 if (ic->ic_opmode != IEEE80211_M_MONITOR && 2639 ic->ic_state == IEEE80211_S_RUN) 2640 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 2641 wi_rssadapt_updatestats, arg); 2642 } 2643 2644 static int 2645 wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 2646 { 2647 struct wi_softc *sc = ic->ic_softc; 2648 struct ieee80211_node *ni = ic->ic_bss; 2649 int buflen; 2650 u_int16_t val; 2651 struct wi_ssid ssid; 2652 struct wi_macaddr bssid, old_bssid; 2653 enum ieee80211_state ostate; 2654 #ifdef WI_DEBUG 2655 static const char *stname[] = 2656 { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" }; 2657 #endif /* WI_DEBUG */ 2658 2659 ostate = ic->ic_state; 2660 DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate])); 2661 2662 switch (nstate) { 2663 case IEEE80211_S_INIT: 2664 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2665 callout_stop(&sc->sc_rssadapt_ch); 2666 ic->ic_flags &= ~IEEE80211_F_SIBSS; 2667 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 2668 return (*sc->sc_newstate)(ic, nstate, arg); 2669 2670 case IEEE80211_S_RUN: 2671 sc->sc_flags &= ~WI_FLAGS_OUTRANGE; 2672 buflen = IEEE80211_ADDR_LEN; 2673 IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid); 2674 wi_read_rid(sc, WI_RID_CURRENT_BSSID, &bssid, &buflen); 2675 IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid); 2676 IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid); 2677 buflen = sizeof(val); 2678 wi_read_rid(sc, WI_RID_CURRENT_CHAN, &val, &buflen); 2679 if (!isset(ic->ic_chan_avail, le16toh(val))) 2680 panic("%s: invalid channel %d\n", sc->sc_dev.dv_xname, 2681 le16toh(val)); 2682 ni->ni_chan = &ic->ic_channels[le16toh(val)]; 2683 2684 if (IEEE80211_ADDR_EQ(old_bssid.wi_mac_addr, ni->ni_bssid)) 2685 sc->sc_false_syns++; 2686 else 2687 sc->sc_false_syns = 0; 2688 2689 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 2690 ni->ni_esslen = ic->ic_des_esslen; 2691 memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen); 2692 ni->ni_rates = ic->ic_sup_rates[ 2693 ieee80211_chan2mode(ic, ni->ni_chan)]; 2694 ni->ni_intval = ic->ic_lintval; 2695 ni->ni_capinfo = IEEE80211_CAPINFO_ESS; 2696 if (ic->ic_flags & IEEE80211_F_WEPON) 2697 ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; 2698 } else { 2699 buflen = sizeof(ssid); 2700 wi_read_rid(sc, WI_RID_CURRENT_SSID, &ssid, &buflen); 2701 ni->ni_esslen = le16toh(ssid.wi_len); 2702 if (ni->ni_esslen > IEEE80211_NWID_LEN) 2703 ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ 2704 memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); 2705 ni->ni_rates = ic->ic_sup_rates[ 2706 ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/ 2707 } 2708 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2709 callout_reset(&sc->sc_rssadapt_ch, hz / 10, 2710 wi_rssadapt_updatestats, sc); 2711 break; 2712 2713 case IEEE80211_S_SCAN: 2714 case IEEE80211_S_AUTH: 2715 case IEEE80211_S_ASSOC: 2716 break; 2717 } 2718 2719 ic->ic_state = nstate; 2720 /* skip standard ieee80211 handling */ 2721 return 0; 2722 } 2723 2724 static int 2725 wi_set_tim(struct ieee80211com *ic, int aid, int which) 2726 { 2727 struct wi_softc *sc = ic->ic_softc; 2728 2729 aid &= ~0xc000; 2730 if (which) 2731 aid |= 0x8000; 2732 2733 return wi_write_val(sc, WI_RID_SET_TIM, aid); 2734 } 2735 2736 static int 2737 wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) 2738 { 2739 int error = 0; 2740 u_int16_t val[2]; 2741 2742 if (!sc->sc_enabled) 2743 return ENXIO; 2744 switch (sc->sc_firmware_type) { 2745 case WI_LUCENT: 2746 (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); 2747 break; 2748 case WI_INTERSIL: 2749 val[0] = htole16(chanmask); /* channel */ 2750 val[1] = htole16(txrate); /* tx rate */ 2751 error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); 2752 break; 2753 case WI_SYMBOL: 2754 /* 2755 * XXX only supported on 3.x ? 2756 */ 2757 val[0] = BSCAN_BCAST | BSCAN_ONETIME; 2758 error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, 2759 val, sizeof(val[0])); 2760 break; 2761 } 2762 if (error == 0) { 2763 sc->sc_scan_timer = WI_SCAN_WAIT; 2764 sc->sc_ic.ic_if.if_timer = 1; 2765 DPRINTF(("wi_scan_ap: start scanning, " 2766 "chanmask 0x%x txrate 0x%x\n", chanmask, txrate)); 2767 } 2768 return error; 2769 } 2770 2771 static void 2772 wi_scan_result(struct wi_softc *sc, int fid, int cnt) 2773 { 2774 #define N(a) (sizeof (a) / sizeof (a[0])) 2775 int i, naps, off, szbuf; 2776 struct wi_scan_header ws_hdr; /* Prism2 header */ 2777 struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ 2778 struct wi_apinfo *ap; 2779 2780 off = sizeof(u_int16_t) * 2; 2781 memset(&ws_hdr, 0, sizeof(ws_hdr)); 2782 switch (sc->sc_firmware_type) { 2783 case WI_INTERSIL: 2784 wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); 2785 off += sizeof(ws_hdr); 2786 szbuf = sizeof(struct wi_scan_data_p2); 2787 break; 2788 case WI_SYMBOL: 2789 szbuf = sizeof(struct wi_scan_data_p2) + 6; 2790 break; 2791 case WI_LUCENT: 2792 szbuf = sizeof(struct wi_scan_data); 2793 break; 2794 default: 2795 printf("%s: wi_scan_result: unknown firmware type %u\n", 2796 sc->sc_dev.dv_xname, sc->sc_firmware_type); 2797 naps = 0; 2798 goto done; 2799 } 2800 naps = (cnt * 2 + 2 - off) / szbuf; 2801 if (naps > N(sc->sc_aps)) 2802 naps = N(sc->sc_aps); 2803 sc->sc_naps = naps; 2804 /* Read Data */ 2805 ap = sc->sc_aps; 2806 memset(&ws_dat, 0, sizeof(ws_dat)); 2807 for (i = 0; i < naps; i++, ap++) { 2808 wi_read_bap(sc, fid, off, &ws_dat, 2809 (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); 2810 DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, 2811 ether_sprintf(ws_dat.wi_bssid))); 2812 off += szbuf; 2813 ap->scanreason = le16toh(ws_hdr.wi_reason); 2814 memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); 2815 ap->channel = le16toh(ws_dat.wi_chid); 2816 ap->signal = le16toh(ws_dat.wi_signal); 2817 ap->noise = le16toh(ws_dat.wi_noise); 2818 ap->quality = ap->signal - ap->noise; 2819 ap->capinfo = le16toh(ws_dat.wi_capinfo); 2820 ap->interval = le16toh(ws_dat.wi_interval); 2821 ap->rate = le16toh(ws_dat.wi_rate); 2822 ap->namelen = le16toh(ws_dat.wi_namelen); 2823 if (ap->namelen > sizeof(ap->name)) 2824 ap->namelen = sizeof(ap->name); 2825 memcpy(ap->name, ws_dat.wi_name, ap->namelen); 2826 } 2827 done: 2828 /* Done scanning */ 2829 sc->sc_scan_timer = 0; 2830 DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); 2831 #undef N 2832 } 2833 2834 static void 2835 wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) 2836 { 2837 ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), 2838 ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL 2839 : -1, 2840 rssi); 2841 printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", 2842 le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), 2843 le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); 2844 printf(" rx_signal %u rx_rate %u rx_flow %u\n", 2845 wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); 2846 printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", 2847 wh->wi_tx_rtry, wh->wi_tx_rate, 2848 le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); 2849 printf(" ehdr dst %s src %s type 0x%x\n", 2850 ether_sprintf(wh->wi_ehdr.ether_dhost), 2851 ether_sprintf(wh->wi_ehdr.ether_shost), 2852 wh->wi_ehdr.ether_type); 2853 } 2854